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UNIQUENESS THRESHOLDS ON TREES VERSUS GRAPHS

BY ALLAN SLY

University of California, Berkeley

Counter to the general notion that the regular tree is the worst case for
decay of correlation between sets and nodes, we produce an example of a
multi-spin interacting system which has uniqueness on the d-regular tree but
does not have uniqueness on some infinite d-regular graphs.

1. Definitions.

DEFINITION 1. On a graph G = (V ,E) a Gibbs measure (also Markov ran-
dom field or graphical model) is a distribution σ taking values in CV , for some
finite set C, which satisfies the Markov property

P(σA,σB |σS) = P(σA|σS)P (σB |σS),

when A,B and S are disjoint subsets of V such that every path in G from A to
B passes through S and where σU denotes the natural projection of σ from CV to
CU for U ⊂ V .

Throughout this paper we restrict our attention to Gibbs measure with fixed
activities and interactions on the vertices and edges so that

P(σ) = 1

Z
exp

[∑
v∈V

g(σv) + ∑
(u,v)∈E

h(σu, σv)

]

where Z is a normalizing constant and g :C → R and h :C2 → R ∪ {−∞} are
functions.

DEFINITION 2. On an infinite graph G = (V ,E) with finite degrees we say
that a Gibbs measure has uniqueness if for any finite set A ⊂ V ,

lim
n

sup
σ 1,σ 2

dTV
(
P

(
σA = ·|σS(A,n) = σ 1)

,P
(
σA = ·|σS(A,n) = σ 2)) = 0,

where dTV is the total variation distance, S(A,n) denotes the set {u ∈ T :d(u,A) =
n} and the supremum is taken over all boundary conditions σ 1, σ 2 ∈ CS(v,A) on
S(v,A).
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2. Background. Sokal [9] conjectured that uniqueness in the hard-core model
on the d-regular tree implies uniqueness on any d-regular graph. He also specu-
lated that this might also be true for random colorings. Mossel [7] suggested that
this may in fact hold for every spin system.

Determining the regimes for uniqueness and nonuniqueness on regular trees can
often be done through recursions and so can be easier than on general graphs. For
many systems there exists a threshold in the parametrization between the unique-
ness and nonuniqueness regimes. The correctness of the conjectures would then
allow us to deduce uniqueness of Gibbs measures for regular graphs in the regime
for which uniqueness holds on the regular tree. In general, determining the thresh-
olds for uniqueness in regular graphs is hard.

The intuition behind such conjectures is that the regular tree has the most ver-
tices at distance n from the root and so this boundary has the greatest influence
on the root. In this sense loops constitute wasted influence. However, loops in the
graph create extra dependence between the states of the neighbors. This is crucial
in the construction of our counterexample.

Weitz in [10] showed that marginals of the hard-core model on a d-regular graph
could be exactly evaluated by calculating the marginals on a tree of self-avoiding
random walks. This approach establishes efficient deterministic polynomial time
algorithms for approximately counting independent sets on d-regular graphs. In
[10] the generalization to general 2-spin systems is implicitly given, though [5]
gives an explicit description. Tree-based constructions for spin systems have also
been used in [1, 4] and [8].

As an immediate consequence of this construction [10] shows that any 2-spin
system which has strong spatial mixing on the d-regular tree also has strong spatial
mixing on all graphs of maximum degree d . That is, the worst case for strong spa-
tial mixing is the d-regular tree. In the hard-core and antiferromagnetic Ising mod-
els [10] also showed that uniqueness on the d-regular tree in fact implies strong
spatial mixing on the d-regular tree and so implies uniqueness on all graphs of
maximum degree d , proving the conjecture of Sokal. This approach does not ap-
ply more generally to all 2-spin systems; in particular in the ferromagnetic Ising
model uniqueness on the d-regular tree does not in general imply strong spatial
mixing (see, e.g., [10]). It is unknown whether in 2-spin systems uniqueness on
the d-regular tree implies uniqueness on all d-regular graphs.

Our counterexample leaves open two important related conjectures:

• It remains open whether strong spatial mixing on the d-regular tree implies
strong spatial mixing on all graphs of maximum degree d .

• In the specific example of random colorings it remains an open problem to show
that q ≥ d + 1 colors implies uniqueness on all graphs with maximum degree d .

Later we will discuss why our example does not provide a counterexample to the
first conjecture. It remains of interest to show when uniqueness on the d-regular
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tree implies uniqueness on all graphs of maximum degree d , for instance whether
this holds on monotone spin systems.

Determining regimes for uniqueness and strong spatial mixing plays a key role
in analyzing the performance of algorithms for sampling from Markov chains and
approximately counting distributions. On lattices it is known that strong spatial
mixing implies rapid mixing of the Glauber dynamics [3, 6]. As determining the
thresholds for strong spatial mixing on trees is in many instances simpler than
on the lattice, such a result would be a powerful tool for determining on which
graphs mixing is rapid. For instance, in the 2-spin setting, Weitz [10] was able to
improve the best known bound for rapid mixing in the hard-core model on Z

2 from
λ < 1.508 to λ < 1.6875.

We should note that other seemingly counterintuitive uniqueness results have
been found in other settings. For example, it was shown in [2] that for some graphs
uniqueness in the hard-core model need not be monotone in the activity parame-
ter. In fact it was shown that nonuniqueness on a subgraph need not imply non-
uniqueness on the whole graph, even on trees, and so uniqueness is not monotone
in the degrees of the graph.

3. Our construction. The introduction of multiple spins adds greater com-
plexity to the question of spatial mixing of a graph. In a 2-spin system on a tree
the marginal at the root is maximized by maximizing the marginal of some state
in each of its neighbors. When multiple spins are involved the whole collection
of spins of the neighbors determines the marginal at the root. For instance, for
random colorings the marginal at the root is determined by which colors do not
appear amongst its neighbors. In a tree the colors of the neighbors are condition-
ally independent given the color at the root. By contrast, in a graph the colors at the
neighbors can be conditionally dependent increasing the total number of distinct
colors. This observation is the source of motivation for our model. In the graph the
dependence between the neighbors of the root more than makes up for the smaller
number of vertices on the boundary.

Our model begins with an antiferromagnetic Potts model taking states {1, . . . ,

q},

P(σ) = 1

Z
exp

[
−β

∑
(u,v)∈E

1{σu=σv}
]

on the q-ary tree T with root v. A simple modification of Lemma 3 below shows
that for large q and any 0 < β < ∞,

lim sup
n

sup
σ ∗

P
(
σv = 1|σS(v,n) = σ ∗) ≤ 1

4(1)

where S(v,n) denotes {u ∈ T :d(u, v) = n} and σ ∗ is any boundary condition on
S(v,n). In fact we can replace 1/4 with C/q for some constant C. By contrast one
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can show that on the q + 1 regular graph G described in Section 4

sup
0<β<∞

inf
n

sup
σ ∗

P
(
σv = 1|σS(v,n) = σ ∗) = 1(2)

since it is constructed so that the neighbors of v coordinate their spins to take
different values.

This antiferromagnetic Potts model does not have uniqueness on the (q + 1)-
regular tree for β > ln(q + 1). However, we exploit the difference in (1) and (2) by
adding an extra state with different interactions and intensity so that the modified
system has uniqueness on the q +1-regular tree but not on the graph G. This allows
us to prove the main result.

4. Main result. Let G = (V ,E) be a finite graph. Denote the possible states
as elements of [q + 1] = {1,2, . . . , q + 1} and let

P(σ) = 1

Z
exp

[
λ

∑
u∈V

1{σu=q+1} − β
∑

(u,v)∈E

η(σu, σv)

]
,

where λ and β are positive and

η(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

1, if 1 ≤ i = j ≤ q,
1, if i = q + 1, j ∈ {1,2},
1, if j = q + 1, i ∈ {1,2},
0, otherwise.

The first q states are just a standard antiferromagnetic Potts model.

THEOREM 1. For q ≥ 90 and eλ > q34q+1 and for any 0 < β < ∞, the Gibbs
measure is unique on the q-ary tree.

Now consider the same model on an infinite graph G defined recursively as
follows:

• Start with one root vertex v in row 1.
• For each vertex u in row i, when i is odd add a q − 1-clique of vertices

u1, . . . , uq−1 in row i + 1 and connect each of them to u to form a q-clique.
• For each q − 1-clique u1, . . . , uq−1 in row i, when i is even add q − 1 vertices

w1, . . . ,wq−1 in row i + 1 and connect ul to wl and wl+1 for 1 ≤ l ≤ q − 2 and
connect uq−1 to w1 and wq−1.

The graph G is q + 1-regular except at v. See Figure 1.

THEOREM 2. For sufficiently large finite β , uniqueness does not hold on the
graph G.

These two results show that by taking β large enough we have an example with
uniqueness on the d-regular tree but not on the d-regular graph G.



UNIQUENESS THRESHOLDS ON TREES VERSUS GRAPHS 1901

FIG. 1. The first five rows of G with q = 4.

5. Proofs. We prove four lemmas about the Gibbs measure on the q-ary tree
and conclude with the proof of Theorem 1. We will denote the q-ary tree as T with
root v, which has children u1, . . . , uq .

LEMMA 1. For 1 ≤ l ≤ q let Tl denote the subgraph generated by ul and all
its descendants and let

P l(i) = P Tl
(
σul

= i|σS(v,n)∩Tl
= σ ∗)

where P Tl is the restriction to the subgraph Tl disconnected from the rest of the
tree and σ ∗ is any boundary condition. Then for any 0 < β < ∞ and 1 ≤ k ≤ q ,

P
(
σv = k|σS(v,n) = σ ∗)

(3)

≤ 1

1 + ∑
j∈{3,...,q},j �=k

∏q
l=1(1 − P l(j))

.

PROOF. In our model we have

P
(
σv = k|σS(v,n) = σ ∗) =

∑
j ′∈[q+1]q ψ(k, j ′)∏q

l=1 P l(j ′
l )∑

j∈[q+1]
∑

j ′∈[q+1]q ψ(j, j ′)∏q
l=1 P l(j ′

l )
,(4)

where j ′ = (j ′
1, . . . , j

′
q) ∈ [q + 1]q represents the states of u1, . . . , uq and where

ψ(j, j ′) is given by

exp

[
λ1{j=q+1} − β

q∑
l=1

η(j, j ′
l )

]
.(5)
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Substituting this expression for ψ , we get

∑
j ′∈[q+1]q

ψ(j, j ′)
q∏

l=1

P l(j ′
l )

= exp
(
λ1{j=q+1}

) ∑
j ′∈[q+1]q

q∏
l=1

exp(−βη(j, jl))P
l(j ′

l )

= exp
(
λ1{j=q+1}

) q∏
l=1

∑
jl∈[q+1]

exp(−βη(j, jl))P
l(j ′

l )

(6)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q∏
l=1

(
1 − (1 − e−β)

(
P l(j) + P l(q + 1)

))
, if j ∈ {1,2},

q∏
l=1

(
1 − (1 − e−β)P l(j)

)
, if 3 ≤ j ≤ q,

eλ
q∏

l=1

(
1 − (1 − e−β)

(
P l(1) + P l(2)

))
, if j = q + 1.

It follows that for 3 ≤ j ≤ q ,

∑
j ′∈[q+1]q

ψ(j, j ′)
q∏

l=1

P l(j ′
l ) ≥

q∏
l=1

(
1 − P l(j)

)
(7)

and for 1 ≤ j ≤ q ,

∑
j ′∈[q+1]q

ψ(j, j ′)
q∏

l=1

P l(j ′
l ) ≤ ∑

j ′∈[q+1]q

q∏
l=1

P l(j ′
l ) = 1.(8)

Applying (7) and (8) to (4) we get the inequality

P
(
σv = k|σS(v,n) = σ ∗)

≤ 1

1 + ∑
j∈{3,...,q},j �=k

∏q
l=1(1 − P l(j))

. �

LEMMA 2. Assume we have that for all 1 ≤ j ≤ q and 1 ≤ l ≤ q , P l(j) ≤ p

for some 1
2 ≤ p < 1. Then if 0 < β < ∞, for any 1 ≤ k ≤ q ,

∑
j∈{3,...,q},j �=k

q∏
l=1

(
1 − P l(j)

) ≥ (q/6 − 3)p(1 − p).(9)
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PROOF. Suppose that we fix P l for 1 ≤ l ≤ q − 1 and suppose we want to
minimize

∑
j∈{3,...,q},j �=k

q∏
l=1

(
1 − P l(j)

) = − ∑
j∈{3,...,q},j �=k

P q(j)

q−1∏
l=1

(
1 − P l(j)

)
(10)

+ ∑
j∈{3,...,q},j �=k

q−1∏
l=1

(
1 − P l(j)

)
(11)

in P q . This is a linear equation in the P q(j). For 1 ≤ j ≤ q the coefficient of
P q(j) is −∏q−1

l=1 (1 − P l(j)) ≤ 0 while the coefficient of P q(q + 1) is 0. So the
minimum, subject to the constraints in the hypothesis, must have P q(q + 1) = 0
and for some states 1 ≤ j1, j2 ≤ q , P q(j1) = 1 − P q(j2) = p. This can be applied
to P l for any 1 ≤ l ≤ q so the left-hand side of (9) is minimized by taking

P l(jl1) = 1 − P l(jl2) = p(12)

for some choice of states 1 ≤ j11, . . . , jq1, j12, . . . , jq2 ≤ q .
So assume the P l are of the form given in (12). Let A be the set of states in

{j ∈ {3,4, . . . , q}, j �= k} that appear at most once in the list j11, . . . , jq1 and at
most twice in the combined list j11, . . . , jq1, j12, . . . , jq2. If j ∈ A, then P l(j) = 0
for all but at most two values of l so the product

∏q
l=1(1 − P l(j)) has at most two

terms not equal to 1. The nonone terms in the product are either equal to p or 1−p

and at most one of them is 1 − p. Then since 1 > p ≥ 1 − p we have
q∏

l=1

(
1 − P l(j)

) ≥ p(1 − p)

for any j ∈ A. The proof will be completed by showing that |A| ≥ q/6 − 3 so that

∑
j∈{3,...,q},j �=k

q∏
l=1

(
1 − P l(j)

) ≥ |A|p(1 − p) ≥ (q/6 − 3)p(1 − p).

Let a1 (resp. a2) be the number of states that appear exactly once (resp. at least
twice) in j11, . . . , jq1. Let b2 (resp. b3) be the number of states that appear exactly
twice (resp. at least three times) in j12, . . . , jq2. By counting states according to
how many times they appear in j11, . . . , jq1 and j12, . . . , jq2 we have

a1 + 2a2 ≤ q, 2b2 + 3b3 ≤ q.(13)

Any state not in |A| must appear either at least twice in j11, . . . , jq1 or at least
three times in j12, . . . , jq2 or once in j11, . . . , jq1 and twice in j12, . . . , jq2 and so

|A| ≥ q − 3 − [a2 + b3 + min{a1, b2}]
≥ q − 3 −

[
q − a1

2
+ q − 2b2

3
+ min{a1, b2}

]
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= q/6 − 3 − [min{a1, b2} − a1/2 − 2b2/3]
≥ q/6 − 3.

The second inequality follows from (13) while the final inequality follows from
the fact that min{a1, b2} ≤ (a1 + b2)/2 ≤ a1/2 + 2b2/3. �

LEMMA 3. If q ≥ 90 and eλ > q2q , then for any 0 < β < ∞ there exists an
N = N(q,λ,β) such that for all n > N ,

inf
σ ∗ P

(
σv = q + 1|σS(v,n) = σ ∗) ≥ 1

2 ,

where the infimum is over all boundary conditions on S(v,n).

PROOF. Define

pn = sup
σ ∗

sup
1≤i≤q

P
(
σv = i|σS(v,n) = σ ∗)

,

where the supremum is taken over all boundary conditions σ ∗ on S(v,n). Then
by Lemmas 1 and 2 for 1 ≤ k ≤ q we have P(σv = k|σS(v,n) = σ ∗) ≤ f (pn−1)

where f (p) = 1/(1 + (q/6 − 3)p(1 − p)) and so pn ≤ f (pn−1). Now p = f (p)

has three solutions, 1,1/
√

q/6 − 3,−1/
√

q/6 − 3. Since β < ∞ the constraints
are soft and 0 < p1 < 1. Since

d

dp
f (p)

∣∣∣∣
p=1

= q/6 − 3 ≥ 12,

then pn must decrease toward 1/
√

q/6 − 3, which is less than 1
2 , until for some n,

pn < 1
2 . Now when pn−1 < 1

2 we have that pn ≤ f (1
2) so for large enough n we

have that

pn ≤ 1

1 + (q/6 − 3)/4
≤ 1

4
.

Now given that P l(1),P l(2) ≤ 1
4 by applying (6) and (8) to (4) we get

P
(
σv = q + 1|σS(v,n) = σ ∗) ≥ eλ ∏q

l=1(1 − P l(1) − P l(2))

q + eλ
∏q

l=1(1 − P l(1) − P l(2))

≥ 2−qeλ

q + 2−qeλ

≥ 1

2

as required. �
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Lemma 3 established that there are eventually a large proportion of vertices in
state q + 1 when sufficiently far from the boundary. This enables us to establish a
contraction mapping. Now suppose we consider

P l(j) = P Tl
(
σul

= j |σS(v,n) = σ ∗)
as an element of R

q+1 and let P = P(j) ∈ R
q+1 denote P(σv = j |σS(v,n) = σ ∗),

the marginal at v. Then P can be derived from P 1, . . . ,P q by P = g(P 1, . . . ,P q)

where

g(P 1, . . . ,P q)(j) =
∑

j ′∈[q+1]q ψ(j, j ′)∏q
l=1 P l(j ′

l )∑
j∈[q+1]

∑
j ′∈[q+1]q ψ(j, j ′)∏q

l=1 P l(j ′
l )

.

LEMMA 4. Let q ≥ 90, eλ > q34q+1 and 0 < β < ∞. Suppose we have dis-
tributions P 1, . . . ,P q and Q1, . . . ,Qq all satisfying P l(q + 1),Ql(q + 1) ≥ 1

2 . If
P = g(P 1, . . . ,P q) and Q = g(Q1, . . . ,Qq), then

‖P − Q‖1 ≤ C max
1≤l≤q

‖P l − Ql‖1,

where 0 < C < 1 and ‖ · ‖1 is the usual L1 norm on R
q+1 (or equivalently in the

total variation distance between the distributions).

PROOF. Denote KP as

KP = ∑
j∈[q+1]

∑
j ′∈[q+1]q

ψ(j, j ′)
q∏

l=1

P l(j ′
l )

and denote KQ similarly. Now observe the simple inequality that if 0 ≤ x1, . . . ,

xq ≤ 1 and 0 ≤ y1, . . . , yq ≤ 1, then∣∣∣∣∣
q∏

l=1

xl −
q∏

l=1

yl

∣∣∣∣∣ =
∣∣∣∣∣

q∑
j=1

(xj − yj )

j−1∏
l=1

xl

q∏
l=j+1

yl

∣∣∣∣∣
(14)

≤
q∑

j=1

|xj − yj |.

Applying (14) to (6), it follows that for 1 ≤ j ≤ q ,∣∣∣∣∣
∑

j ′∈[q+1]q
ψ(j, j ′)

q∏
l=1

P l(j ′
l ) − ∑

j ′∈[q+1]q
ψ(j, j ′)

q∏
l=1

Ql(j ′
l )

∣∣∣∣∣ ≤
q∑

l=1

‖P l − Ql‖1

and that∣∣∣∣∣
∑

j ′∈[q+1]q
ψ(q + 1, j ′)

q∏
l=1

P l(j ′
l ) − ∑

j ′∈[q+1]q
ψ(q + 1, j ′)

q∏
l=1

Ql(j ′
l )

∣∣∣∣∣
≤ eλ

q∑
l=1

‖P l − Ql‖1
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and so

|KP − KQ| ≤ (q + eλ)

q∑
l=1

‖P l − Ql‖1.

Also note that

KP ,KQ ≥ eλ
q∏

l=1

P l(q + 1) ≥ eλ2−q .

Then for 1 ≤ j ≤ q using these estimates,

|P(j) − Q(j)|

=
∣∣∣∣
∑

j ′∈[q+1]q ψ(j, j ′)∏q
l=1 P l(j ′

l )

KP

−
∑

j ′∈[q+1]q ψ(j, j ′)∏q
l=1 Ql(j ′

l )

KQ

∣∣∣∣∣
=

∣∣∣∣
∑

j ′∈[q+1]q ψ(j, j ′)∏q
l=1 P l(j ′

l ) − ∑
j ′∈[q+1]q ψ(j, j ′)∏q

l=1 Ql(j ′
l )

KP

+ (KQ − KP )
∑

j ′∈[q+1]q ψ(j, j ′)∏q
l=1 Ql(j ′

l )

KP KQ

∣∣∣∣
≤

∑q
l=1 ‖P l − Ql‖1

eλ2−q
+ (q + eλ)

∑q
l=1 ‖P l − Ql‖1

(eλ2−q)2

≤ e−λ(
2q + 4q(1 + qe−λ)

) q∑
l=1

‖P l − Ql‖1.

Since P(q + 1) = 1 − ∑q
j=1 P(j) we have

‖P − Q‖1 ≤ 2
q∑

j=1

|P(j) − Q(j)|

≤ 2qe−λ(
2q + 4q(1 + qe−λ)

) q∑
l=1

‖P l − Ql‖1

≤ 2q2e−λ(
2q + 4q(1 + qe−λ)

)
max

1≤l≤q
‖P l − Ql‖1,

which establishes the result since 2q2e−λ(2q + 4q(1 + qe−λ)) < e−λq34q+1 < 1.
�

PROOF OF THEOREM 1. Combining Lemmas 3 and 4 shows that for any 1 ≤
i ≤ q + 1 and ε > 0, then for large enough n,

sup
σ ∗1,σ ∗2

∣∣P (
σv = i|σS(v,n) = σ ∗1) − P

(
σv = i|σS(v,n) = σ ∗2)∣∣ < ε

which is sufficient to establish uniqueness and prove Theorem 1. �
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6. Proof of Theorem 2. We will show that

sup
0<β<∞

inf
n

P
(
σv = 1|σS(v,2n) ≡ 1

) = 1.(15)

Fix 0 < β < ∞ and let

pn = P
(
σv = 1|σS(v,2n) ≡ 1

)
.

Let u1, . . . , uq−1 denote the vertices in the second row and let w1, . . . ,wq−1 be
their children in the third row. For 1 ≤ l ≤ q − 1 let Gl denote the subgraph gener-
ated by wl and all its descendants and let

P l(i) = P Gl
(
σwl

= i|σS(v,2n) ≡ 1
)

where P Gl is the model restricted to the subgraph Gl disconnected from the rest
of the graph. Note that P l(1) = pn−1. Then

pn =
∑

j∈[q+1]q−1
∑

k∈[q+1]q−1 φ(1, j, k)
∏q−1

l=1 P l(kl)∑
i∈[q+1]

∑
j∈[q+1]q−1

∑
k∈[q+1]q−1 φ(i, j, k)

∏q−1
l=1 P l(kl)

,

where j = (j1, . . . , jq−1) ∈ [q + 1]q−1 represents the states of u1, . . . , uq−1,
k = (k1, . . . , kq−1) ∈ [q + 1]q−1 represents the states of w1, . . . ,wq−1 and where
φ(i, j, k) is given by

φ(i, j, k) = exp

[
λ

(
1{i=q+1} +

q−1∑
l=1

1{jl=q+1}
)

− β
∑
l1<l2

η(jl1, jl2) − β

(q−1∑
l=1

η(j, jl) + η(jl, kl) + η(jl, kl+1)

)]
,

where kq is interpreted as k1.
To illustrate φ let us discuss the case when β = ∞ where the interactions are

hard constraints. Suppose that at most one of w1, . . . ,wq−1 does not have state 1.
Then all of the vertices u1, . . . , uq−1 are adjacent to a state 1 and therefore cannot
be in state 1 or in state q + 1, and since they form a q − 1-clique they must take
every state in {2,3, . . . , q} exactly once. Since v is connected to u1, . . . , uq−1 it can
not take any of the states 2,3, . . . , q and since it is adjacent to a 2 it also cannot
take the value q + 1 so it must take state 1.

Applying the same reasoning back in the case of soft constraints with 0 <

β < ∞, configurations (i, j, k) where k has at most one state not equal to 1 and
where i �= 1 must have at least one exp(−β) in the expansion of φ(i, j, k) and so
φ(i, j, k) ≤ exp(qλ−β). The sum of

∏q−1
l=1 P l(kl) over all k with at most one state

not equal to 1 is equal to p
q−1
n−1 + (q − 1)p

q−2
n−1(1 − pn−1). Finally, for any (i, j, k)
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we have that φ(i, j, k) ≤ exp(qλ). It follows that for i �= 1

∑
j∈[q+1]q−1

∑
k∈[q+1]q−1

φ(i, j, k)

q−1∏
l=1

P l(kl)

≤ eqλ−β(q + 1)q−1 + eqλ(q + 1)q−1(
1 − p

q−1
n−1 − (q − 1)p

q−2
n−1(1 − pn−1)

)
.

On the other hand, if i = 1 and j takes every value in {2, . . . , q} exactly once and
k is identically 1, then φ(i, j, k) = 1 so

∑
j∈[q+1]q−1

∑
k∈[q+1]q−1

φ(1, j, k)

q−1∏
l=1

P l(kl) ≥ (q − 1)!pq−1
n−1 .

Then pn ≥ fβ(pn−1) where fβ(p) is given by

(q − 1)!pq−1(
(q − 1)!pq−1 + eqλ−βq(q + 1)q−1

+ eqλq(q + 1)q−1(
1 − pq−1 − (q − 1)pq−2(1 − p)

))−1
.

Now fβ(p) converges uniformly on [0,1] to

f (p) = (q − 1)!pq−1

(q − 1)!pq−1 + qeqλ(q + 1)q−1(1 − pq−1 − (q − 1)pq−2(1 − p))

as β goes to ∞ and f (1) = 1 and f ′(1) = 0. It follows that for some ε > 0,
f (p) > p for p ∈ (1 − ε,1). Then for any p ∈ (1 − ε,1) we can find a finite β

large enough such that fβ(p∗) > p for all p∗ ∈ [p,1] and so

sup
0<β<∞

inf
n

P
(
σv = 1|σS(v,2n) ≡ 1

) ≥ p

which proves (15). But we similarly have

sup
0<β<∞

inf
n

P
(
σv = 2|σS(v,2n) ≡ 2

) = 1,

which establishes that for large enough β there is no unique Gibbs measure.

7. Remarks. We will briefly discuss why our example does not immediately
provide a counterexample to the conjecture that strong spatial mixing on the d-
regular tree implies strong spatial mixing on all graphs of maximum degree d .
Consider the following assignment in the q-ary tree with q ≥ 3. For every vertex
v ∈ T with children u1, . . . , uq set the states of ui to i for 1 ≤ i ≤ q − 2. The
component of free vertices connected to the root form a binary tree. For large
enough β because of the conditioning these vertices are likely to take the values
q −1 or q and are unlikely to take the value q +1. Then restricted to the tree of free
vertices the distribution is sufficiently close to an antiferromagnetic Ising model
which does not have uniqueness for large enough β . As a result the model does not
display strong spatial mixing for sufficiently large β . We are unable to determine
the exact thresholds in β for strong spatial mixing on the tree and the graph but do
not have any reason to expect that it should produce a counterexample.
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