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EXPONENTIAL INEQUALITIES FOR SELF-NORMALIZED
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We propose several exponential inequalities for self-normalized martin-
gales similar to those established by De la Pefia. The keystone is the introduc-
tion of a new notion of random variable heavy on left or right. Applications
associated with linear regressions, autoregressive and branching processes are
also provided.

1. Introduction. Let (M,) be a locally square integrable real martingale
adapted to a filtration IF = (¥,) with My = 0. The predictable quadratic variation
and the total quadratic variation of (M,,) are respectively given by

n n

(M) =) E[AM{|Fi-1] and  [Mly =) AM{
k=1 k=1

where AM,, = M,, — M,,_1. The celebrated Azuma—Hoeffding inequality [4, 16, 18]

is as follows.

THEOREM 1.1 (Azuma—Hoeffding’s inequality). Let (M,,) be a locally square
integrable real martingale such that, for each 1 <k <n, ap < AMy < by a.s. for
some constants ay < by. Then, for all x > 0,

2x2
k=1 -

Another result which involves the predictable quadratic variation ({M),) is the
so-called Freedman inequality [13].

THEOREM 1.2 (Freedman’s inequality). Let (M,) be a locally square inte-
grable real martingale such that, for each 1 <k <n, |AMy| < c a.s. for some
constant ¢ > 0. Then, for all x, y > 0,

2
(1.2) P(anx,(M)nSY)SeXP<—m>'
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Over the last decade, extensive study has been made to establish exponential
inequalities for (M},) relaxing the boundedness assumption on its increments. On
the one hand, under the standard Bernstein condition that for n > 1, p > 2 and for
some constant ¢ > 0,

cP~2p!
2

> ElNAM|P | Fr—1] < (M),

k=1

Pinelis [21] and De la Pefia [8] recover (1.2). Van de Geer [12] also proves (1.2)
replacing (M), by a suitable increasing process. On the other hand, if (M) is
conditionally symmetric which means that for n > 1, the conditional distribution of
AM, given F,_1 is symmetric, then De la Pefia [8] establishes the nice following
result.

THEOREM 1.3 (De la Pefia’s inequality). Let (M) be a locally square inte-
grable and conditionally symmetric real martingale. Then, for all x,y > 0,

2
(13) P(M, > x, (M1, < y) < exp(—;—y).

Some extensions of the above inequalities in a more general framework includ-
ing discrete-time martingales can also be found in [9, 11] where the conditionally
symmetric assumption is still required for (1.3). We also refer the reader to the
recent survey of De la Pefia, Klass and Lai [10].

By a careful reading of [8], one can see that (1.3) is a two-sided exponential in-
equality. More precisely, if (M,,) is conditionally symmetric, then, for all x, y > 0,

2
(1.4) P(IM,| > x, [M1, < y) < 2exp(_’2‘_y),

By comparing (1.4) and (1.1), we are only halfway to Azuma—Hoeffding’s inequal-
ity which holds without the total quadratic variation [M],,.

The purpose of this paper is to establish several exponential inequalities in
the spirit of the original work of De la Pefia [8]. In Section 2, we shall propose
two-sided exponential inequalities involving (M), as well as [M], without any
assumption on the martingale (M,,). Section 3 is devoted to the introduction of
a new concept of random variables heavy on left or right. This notion is really
useful if one is only interested in obtaining a one-sided exponential inequality
for (M,,). It also provides a clearer understanding of De la Pefia’s conditional sym-
metric assumption. We shall show in Section 4 that this new concept allows us
to prove (1.3). As in [8], we shall also propose exponential inequalities for (M},)
self-normalized by [M], or (M),. Section 5 is devoted to applications on linear
regressions, autoregressive and branching processes. All technical proofs are post-
poned to the Appendix.
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2. Two-sided exponential inequalities. This section is devoted to two-sided
exponential inequalities involving (M), and [M],. We start with the following
basic lemma.

LEMMA 2.1. Let X be a square integrable random variable with mean zero
and variance o* > 0. For all t € R, denote

2
t
(2.1) L(t)= E[exp(tX - 3X2>].
Then, we have for all t € R,
12
2
2.2) L) <1+ 0%,

PROOF. The proof is given in Appendix A. [
Our first result, without any assumption on (M,,), is as follows.

THEOREM 2.1. Let (M,) be a locally square integrable martingale. Then, for
all x,y >0,

2
23) P(IMy| > x, [M1, + (M), < y) < 2exp<—;—y>.

REMARK 2.1. A similar result for continuous-time locally square integrable
martingale may be found in the first part of Proposition 4.2.3 of Barlow, Jacka and
Yor [5].

For self-normalized martingales, we obtain the following result.

THEOREM 2.2. Let (M) be a locally square integrable martingale. Then, for
allx,y>0,a>0andb >0,

| M| 2 oy DY

Moreover, we also have

P(M >x,[M], §y<M>n)
a+b(M),

. %2 b2 1/p
= zéllfl(E[eXp(_(p ~Da ) (ab * 7(M>">>D '

PROOF. The proof is given in Appendix B. [J

(2.5)

REMARK 2.2. It is not hard to see that (2.4) and (2.5) also hold exchanging
the roles of (M), and [M],,.
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3. Random variables heavy on left or right. This section deals with our
new notion of random variables heavy on left or right. It allows us to improve
Lemma 2.1.

DEFINITION 3.1. We shall say that an integrable random variable X is heavy
on left if E[X] =0 and, for all a > 0, E[T,(X)] < 0 where
T (X) = min(| X|, a) sign(X)
is the truncated version of X. Moreover, X is heavy on right if —X is heavy on

left.

REMARK 3.1. Let F be the cumulative distribution function associated
with X. Standard calculation leads to E[T,(X)] = —H (a) where H is the func-
tion defined, for all a > 0, by

H(a)=/0a F(—x)— (1 = F(x—))dx

where F(x—) stands for the left limit of F at point x. Consequently, X is heavy
on left if E[X] =0 and, for all @ > 0, H(a) > 0. Moreover, H is equal to zero at
infinity as

lim H(a)=—-E[X]=0.
a—0o0
Furthermore, one can observe that a random variable X is symmetric if and only
if X is heavy on left and on right.

The following lemma is the keystone of our one-sided exponential inequalities.

LEMMA 3.1. For a random variable X and for all t € R, let
l2
2
L(Z) = E[CXP(IX — EX >i|

(1) If X is heavy on left, then for all t > 0, L(t) < 1.
(2) If X is heavy on right, then for all t <0, L(t) <1.
(3) If X is symmetric, then forallt e R, L(t) < 1.

PROOF. The proof is given in Appendix A. [J

We shall now provide several examples of random variables heavy on left. More
details concerning these examples may be found in Appendix E. We wish to point
out that most of all positive random variables centered around their mean are heavy
on left. As a matter of fact, let Y be a positive integrable random variable with
mean m and denote

X=Y —m.
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Discrete random variables.

(1) If Y has a Bernoulli distribution 8B(p) with parameter 0 < p < 1, then X is
heavy on left, heavy on right, or symmetric if p < 1/2, p > 1/2,0r p =1/2,
respectively.

(2) If Y has a Geometric distribution §(p) with parameter 0 < p < 1, then X is
always heavy on left.

(3) If Y has a Poisson distribution & (A) with parameter A > 0, then X is heavy
on left as soon as

(2] 4k
2exp(—A) Y =1
= k!

One can observe that this condition is always fulfilled if A is a positive integer;
see Lemma 1 of [1].

Continuous random variables.

(1) If Y has an exponential distribution &(A) with parameter A > 0, then X is
always heavy on left.

(2) If Y has a Gamma distribution 4 (a, A) with parameters a, > > 0, then X is
always heavy on left.

(3) If Y has a Pareto distribution with parameters a, A > 0, that is, Y = aexp(Z)
where Z has an exponential distribution & (A), then X is always heavy on left.

(4) If Y has a log-normal distribution with parameters m € R and o> > 0, that is,
Y =exp(Z) where Z has a Normal distribution N (m, 0?), then X is always
heavy on left.

4. One-sided exponential inequalities. Our next results are related to mar-
tingales heavy on left in the sense of the following definition.

DEFINITION 4.1. Let (M,) be a locally square integrable martingale adapted
to a filtration IF = (&;,). We shall say that (M},) is heavy on left if all its increments
are conditionally heavy on left. In other words, for all » > 1 and for any a > O,
E[T,(AM,;)|F,-1] <0. Moreover, (M) is heavy on right if (—M,,) is heavy on
left.

We shall recover Theorem 1.3 under the assumption that (M,,) is heavy on left.

THEOREM 4.1. Let (M,) be a locally square integrable martingale heavy on
left. Then, for all x,y > 0,

2
4.1 P(My = x, [M], =) SGXP<—;—>-
y

For self-normalized martingales, our results are as follows.
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THEOREM 4.2. Let (M,) be a locally square integrable martingale heavy on
left. Then, for all x > 0,a > 0 and b > 0,

4.2) P(Jﬁ > x) < inf (E[exp(—(p— 1)x2<ab+ b—;[M]n»])W,

and, forall y > 0,

2
4.3) >x,[M], > y) < eXP(—x2 (ab + b—y>)

IP’<7"
a+ b[M], 2

Moreover, we also have

P(m >x,[M], §y<M>n)

< Inf (E[GXP<—(p - l)xy—z(ab + b;(M),,))Dl/p.

PROOF. The proof is given in Appendix C. [J

(4.4)

REMARK 4.1. In the particular case p = 2, Theorem 4.2 is due to De la Pefa
[8] under the conditional symmetric assumption on (M,). The only difference be-
tween (2.5) and (4.4) is that (1 4 y) is replaced by y in the upper-bound of (4.4).

REMARK 4.2. A locally square integrable martingale (M,,) is Gaussian if, for
all n > 1, the distribution of its increments AM,, given F,_1 is N (0, A(M),).
Moreover, (M,,) is called sub-Gaussian if there exists some constant « > 0 such
that, foralln > 1 and r € R,

o?t?
(@.5) BlexptAM,)|F,-1) < exp( 4 A M), ).

It is well known that if the increments of (M,,) are bounded or if (M,,) is Gaussian,
then (M,,) is sub-Gaussian. In addition, if (M,,) satisfies (4.5), then inequalities
(4.1), (4.2) and (4.3) hold with appropriate upper-bounds, replacing [M], by (M),
everywhere. For example, (4.2) can be rewritten as

P(%«m Z")

= (E[CXP<—(1¢ —~ l)jt—z(ab + %Z(M)n»Dl/p_

(4.6)
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5. Applications.

5.1. Linear regressions. Consider the stochastic linear regression given, for
alln >0, by

(5.1) Xn+1=0¢n + ent1

where X,,, ¢, and g, are the observation, the regression variable and the driven
noise, respectively. We assume that (¢,) is a sequence of independent and iden-
tically distributed random variables. We also assume that (g,) is a sequence of
identically distributed random variables, with mean zero and variance o > 0.
Moreover, we suppose that, for all n > 0, the random variable ¢, is indepen-

dent of £, where F, = o (¢, €1, ..., Pn—1, En). In order “to estimate the unknown
parameter 6, we make use of the least-squares estimator 6, given, for all n > 1, by
~ g1 Pr—1Xk
(5.2) Oy = ==L 228
2 k=1 Pk
It immediately follows from (5.1) and (5.2) that
—~ M
(5.3) b, —0=0>""
(M)n
where

n n
My=) ¢raex and (M), =0 ¢; ;.
k=1

k=1

Let H and L be the cumulant generating functions of the sequences (¢,%) and (8%),
respectively given, for all r € R, by

H(t) =logElexp(t¢>)] and L(r) =logE[exp(te2)].

COROLLARY 5.1. Assume that L is finite on some interval [0, c] with ¢ > 0
and denote by I its Fenchel-Legendre transform on [0, c],

I(x)= sup {xt — L(t)}.

0<t<c
Then, foralln > 1, x > 0 and y > 0, we have

P(|6, — 6] > x)

— 1)x2 2
<2 inf exp(£H<—u)> + exp(—nl(2>).
p>1 p 202(1 +y) n
REMARK 5.1. Corollary 5.1 is also true if (¢,, &,) is a sequence of inde-
pendent and identically distributed random vectors of R? such that the marginal

distribution of &, is symmetric. By use of (4.4), inequality (5.4) holds replacing
(1 + y) by y in the argument of H.

54
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REMARK 5.2. As soon as the sequence (g,) is bounded, the right-hand side
of (5.4) vanishes since we may directly compare [M,,] with (M),. For example,
assume that (e,) is distributed as a centered Bernoulli 8 (p) distribution with pa-
rameter 0 < p < 1. If r = max(p, q), we clearly have for all n > 0,

72

[M]n = _<M>n
rq

Consequently, we immediately infer from (2.5) that for all n» > 1 and x > 0,

~ n x2
r

Furthermore, assume that (¢,) is distributed as a normal A (0, t%) distribution
with variance t2 > 0. Then, we deduce that for all n > 1 and x > 0,

T°X

P n 2y2
P(|6, — 6] > x) < 2exp(—Z log(l + W))

PROOF OF COROLLARY 5.1. It follows from (2.5) that, foralln > 1, x > 0
and y > 0,

(5, — 6] > x) =P(|Mn| > §<M>n) < P, ) + 0u(y)

where Q,(y) =P([M], > y(M),) and

_ x2 1/p
Py(x,y) = 2;r>1fl(E[exp<—(p - l)m<M>n>]>

— 1)x2
=2 inf exp(ﬁH(—(pz4)x>>.
p>1 P 20°(1+y)
In addition, forall y >0and 0 <t <c,
n n
0, (y) < P(Z ef > azy) < CXp(—Ozty)E|:exp (z g,%)]
k=1 k=1

< exp(—ozty +nL(t)) < exp(—nl(?)),

which achieves the proof of Corollary 5.1. [J

5.2. Autoregressive processes. Consider the autoregressive process given, for
all n > 0, by

(5.5) Xn+1=0X, + ent1
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where X, and ¢, are the observation and the driven noise, respectively. We assume
that (e;,) is a sequence of independent and identically distributed random variables
with standard . (0, o2) distribution where o> > 0. The process is said to be stable
if |0] < 1, unstable if |#| = 1 and explosive if [#| > 1. We can estimate the un-
known parameter 6 by the least-squares or the Yule—Walker estimators given, for
alln > 1, by

Yot Xe1 Xk D=t Xk-1 Xk
n .

i Xi C YioX?

It is well known that 8, and 6, both converge almost surely to 6 and their fluctua-
tions can be found in [22]. In the stable case |0| < 1, the large deviation principles
were established in [6]. More precisely, set

(5.6) On =

6 — 602 +8 6+ +v602+38
a=——— and b= —7-—.
4 4
Assume that X is independent of (¢,) with N (0, o%/(1 —6?)) distribution. Then,
(6,) and (6,) satisfy large deviation principles with good rate functions respec-

tively given by

1 1462 —20x )
I(x) = [ Elog(iz) if x € [a, b],

1—x
log |0 — 2x|, otherwise,
1 146% —20x ,
J(X) IOg W , if x E]—l,l[,
+oo, otherwise.

It is only recently that sharp large deviation principles were established for the
Yule—Walker estimator 5 in the stable, unstable and explosive cases [7]. Much
work remains to be done for the least-squares estimator 6,. Our goal is to propose,
whatever the value of 0 is, a very simple exponential inequality for both 6, and 6,.
For the sake of simplicity, we assume that X is independent of (&;) with N (0, 72)
distribution where t2 > o2,

COROLLARY 5.2. Foralln > 1 and x > 0, we have

(5.7) P(6, — 6] > x) <2 < ny’ )
. — X exp|l ————

P = =T T
where vy is the unique positive solution of the equation h(yy) = x> and h is the
Sfunction h(x) = (14 x)log(1 4+ x) — x. Moreover, for alln > 1 and x > 0, we also
have

- nx?
(5.8) P(16, — 0] = x +16]) §2eXp<—72(1 Ty ))-
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PROOF. The proof is given in Appendix D. [J

REMARK 5.3. Inequality (5.7) can be very simple if x is small enough. As a
matter of fact, one can easily see that forall 0 < x < 1, h(x) < x2/4. Consequently,
it immediately follows from (5.7) that, for all 0 < x < 1/2,

~ n.x2
P(6, — 0] > x) < 2€XP<—m>-

Moreover, if 8 > 0, we can deduce from (5.6) that, for all x > 0O,

~ I’le
X

5.3. Branching processes. Consider the Galton—Watson process starting from
Xo =1 and given, for all n > 1, by

Xn—1
(5.9) Xp=)_ Yui
k=1

where (Y}, x) is a sequence of independent and identically distributed, nonnegative
integer-valued random variables. The distribution of (Y} x), with finite mean m
and variance o2, is commonly called the offspring or reproduction distribution.
Hereafter, we shall assume that m > 1. In order to estimate the offspring mean m,
we can make use of the Lotka—Nagaev or the Harris estimators given, for alln > 1,
by

X n_x
(5.10) o= X and o, = k=1 Xk

Xn-1 >kt Xk—1’
Without loss of generality, we can suppose that the set of extinction of the process
(Xn) is negligible. Consequently, the Lotka—Nagaev estimator 7i,, is always well
defined. It is well known that 77i,, and /7,, both converge almost surely to m and
their fluctuations are given in [3, 14, 15]. Moreover, the large deviation properties
associated with (/72,,) may be found in [2, 19, 20]. Our goal is now to establish, as
in the previous sections, exponential inequalities for both 7i,, and 7,,. Denote by
L the cumulant generating function associated with the centered offspring distrib-
ution given, for all r € R, by L(¢) =logE[exp(¢ (Y, x —m))].

COROLLARY 5.3. Assume that L is finite on some interval [—c, c] with ¢ > 0
and let I be its Fenchel-Legendre transform,

I(x)= sup {xt—L(1)}.

—c<t<c
Then, for alln > 1 and x > 0,
(5.11) P(|m, —m| > x) < 2E[exp(—J (x)X,,—1)]
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where J(x) =min(I (x), I (—x)). Moreover, we also have

(5.12)  P(lifiy —m| = x) <2 inf (E[exp(~(p — DJ )X, 1)])?.
p>

In addition, if S, = ZZZO Xk, we have for alln > 1 and x > 0,

(5.13)  P(iy —m| = x) <2 inf (E[exp(—(p = I (0)S,-1)]) "
p>

PROOF. The proof is given in Appendix E. [J

REMARK 5.4. On the one hand, inequality (5.12) obviously holds for the Har-
ris estimator 7, since we always have S, > X,. On the other hand, in order to
specify the right-hand side of (5.11), (5.12) or (5.13), it is necessary to find an
upper-bound or to provide an explicit expression of the moment generating func-
tion of X,,. One can easily carry out this calculation when the offspring distribution
is the geometric § (p) distribution with parameter 0 < p < 1. As a matter of fact, in
that particular case, the offspring mean m = 1/ p and it follows from formula (7.3)
of [15] that forall0 <s < 1,

n
E[an] < Q
1—s
Consequently, for all » > 1 and x > 0, we obtain the simple inequality

2p"exp(—J(x))
p(1 —exp(=J(x)))’
If the offspring distribution is not geometric, one can precisely estimate the mo-

ment generating function of X, using Theorem 1, page 80 of [3] which gives a
good approximation of the distribution of X, based on the limiting distribution

P(nip —m| = x) <

. n
W= lim — a.s.
n—oo m,h

APPENDIX A

This appendix is devoted to the proofs of Lemma 2.1 and Lemma 3.1.
Lemma 2.1 immediately follows from Jensen’s inequality. As a matter of fact, (2.1)
implies that for all 7 € R,

12 12
L(t) > exp(E[tX — SXZ]) > exp(—iaz).

Consequently, we obtain that for all € R,

2,
(A.1) Lit)>1-— 70
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Furthermore, for all t € R,
2
t
(A.2) L(t)+L(—t) = 2E[exp<—EX2) cosh(tX):| <2

by the well-known inequality cosh(x) < exp(x2/2). Hence, we obtain from (A.1)
together with (A.2) that for all € R,
)
L(t)y<2—L(-1)<1+ 502.

Lemma 3.1 is much more difficult to prove. Let f be the function defined, for all
x € R, by

fx)= exp(x — );—2>

We clearly have f'(x) = (1 — x)f(x) and f'(—x) = (1 4+ x) f(—x). We shall
also make use of the functions a and b defined, for all x € R, by a(x) = f'(—x)
and b(x) = f'(—x) — f’(x). One can realize that, for all x > 0, 0 < a(x) < 1,
0 <b(x) <2 and a’(x) <0 as a'(x) = —(2x + x?) f(—x). After those simple
preliminaries, we are in position to prove Lemma 3.1. For all € R,

L(t) :E[exp(tX — g)] =/Rf(tx)dF(x)

where F is the distribution function associated with X. Integrating by parts, we
have for all € R,

L(t) = —tfRf/(tx)F(x) dx

0 400
(A3) — —t/_ f(tx)F(x) dx —t/o f(tx)F(x)dx

+00 +oo
=—t f(=tx)F(—x)dx — t/ f(tx)F(x)dx.
0 0

Consequently, as
/
—t/ f(x)ydx = [—exp(tx — —)] =1,

0 2 0
we obtain from (A.3) that, for all t € R, L(¢) =1 — ¢t (¢) where

+00 +00

1(t) =/ f/(—tx)F(—x)dx—/ flex)(1— F(x))dx
0 0

(A4)
=A@)+ B(@t)
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with

+00
A(t) = ](; a(tx)(F(—x) — (1 — F(x)))dx,

400
B(t):/o b(tx)(1 — F(x))dx.

First of all, assume that X is heavy on left. Our goal is to show that, for all ¢ > 0,
the integral (¢) is nonnegative. We obviously have, for all + > 0, B(¢#) > 0 as
b(tx) > 0. In addition, for any a > 0, let

H(a) :/Oa F(—x)—(1—=F(x—))dx.

Since H'(a) = F(—a) — (1 — F(a)) almost everywhere, integrating once again by
parts, we find that

+o00 +o00
A(t) = /() a(tx)H (x)dx = [a(tx)H(x)]g'OO — /0 ta'(tx)H (x)dx
(A.S) -~
= —t¢ /+ a'(tx)H (x)dx
0

as H(0) =0 and H vanishes at infinity. Hereafter, as X is heavy on left, H (a) >
0 for all a > 0. Moreover, we recall that, for all x > 0, a’(x) < 0. Hence, we
immediately deduce from (A.5) that, for all # > 0, A(¢) > 0. Consequently, relation
(A4)leads to I(¢) > 0 and L(¢t) <1 for all > 0, which completes the proof of
part (1) of Lemma 3.1. Next, if X is heavy on right, —X is heavy on left. Hence, we
immediately infer from (2.1) and part (1) of Lemma 3.1 that L(¢#) < 1 forall < 0.
Finally, part (3) of Lemma 3.1 follows from the conjunction of parts (1) and (2).
Another straightforward way to prove part (3) is as follows. If X is symmetric, we
have forall r € R,
+00

Lo = [ fendF@ = [ (f60 + (1) dF o)

+00
=2 / exp(—t%x%/2) cosh(tx) dF (x) < 1
0
by the well-known inequality cosh(x) < exp(x?/2).

APPENDIX B

In order to prove Theorems 2.1 and 2.2, we shall often make use of the following
lemma.

LEMMA B.1. Let (M) be a locally square integrable martingale. For all t €
R and n > 0, denote

2
V(t) = exp(rMn - Sam+ <M>n)).
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Then, for all t € R, (V,(t)) is a positive supermartingale with E[V,, ()] < 1.
PROOF. Forallt € R andn > 1, we have
Vo) = Vs 0yexp(rAM, C i+ A

where AM,, = M, — M,,_1, A[M1, = AM? and A(M),, = E[AM?|#,_,]. Hence,
we deduce from Lemma 2.1 that for all t € R,

2 2
t t
BIV, (0)1F,-1] = Vot () exp( =5 A, ) (14 5 a0,
=< Vn—l (t)

Consequently, for all # € R, (V,,(?)) is a positive supermartingale such that, for all
n> 1, E[V,(#)] <E[V,—1(t)] which implies that E[V,,(t)] < E[Vo(t)]=1. U

We are now in position to prove Theorems 2.1 and 2.2 inspired by the original
work of De la Pefia [8]. First of all, denote

Zy=[M], + <M>n
Forall x, y > 0, let
Ap={IMy| >x,Z, < y}.

We have the decomposition A, = A" U A, where A" = {M, > x,Z, <y} and
A, ={M, < —x,Z, < y}. By Markov’s inequality, we have for all # > 0,

13 t
P(AT) < E[exp(EMn _ %)1”]

t 12 12 tx

2
< exp(% - %)\/E[Vnm]wi).

Hence, we deduce from Lemma B.1 that for all ¢+ > 0,

2
(B.1) P(A}) < exp(tTy — %)\/IP’(A,T).

Dividing both sides of (B.1) by \/P(A;) and choosing the value t = x/y, we find
that

+ x?
P(AT) < — ).
( n>_exp( zy)

We also find the same upper-bound for P(A,’) which immediately leads to (2.3).
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We next proceed to the proof of Theorem 2.2 in the special casea =0and b =1
inasmuch as the proof for the general case follows exactly the same lines. For all
x,y>0,let

By ={|My| = x(M),, (M), — [M], >y} =B UB,
where
W =My = x(M)y, (M), — M1, >y},
w =My < —x(M)n, (M), — [M], = y}.

By Cauchy—Schwarz’s inequality, we have for all ¢ > 0,

P8} <Eexp(5M, — 5 (), )1, |
(B.2)

2 2
t t t t
< E[exp(EMn — ZZn> exp(z(t —2x)(M), + Z[M]”>RB;T]'
Consequently, we obtain from (B.2) with the particular choice ¢ = x that
2

(B.3) P(B}) < exp(—xT)\/IP(B+)

Therefore, if we divide both sides of (B.3) by JP(B;)), we find that

2
P55 <exp(-20).

The same upper-bound holds for P(B,) which clearly implies (2.4). Furthermore,
for all x, y > 0, let

Cn ={I1My| > x(M),,[M], < y(M),}=C,fUC,
where
Cy ={My =x(M),,[M], < y(M),},
C, ={M, < —x(M),,[M], < y(M),}.

By Holder’s inequality, we have for all £ > 0 and ¢ > 1,

P(C+)<E|:exp< M, —%<M>,,>]1C;]

(B.4) SE[eXPGM"_Z )eXp(—(t—2x—|—ty)( )) C+}

< (E[exp(;—Z(I . ty)(M),,)Dl/p.
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Consequently, as p/qg = p — 1, we can deduce from (B.4) and the particular choice
t =x/(1+y) that

) 1/p
B(C;) = inf (B[ exp(~(p = D575 0m, ) |)
We also find the same upper-bound for P(C,) which completes the proof of The-
orem 2.2.
APPENDIX C
The proofs of Theorems 4.1 and 4.2 are based on the following lemma.

LEMMA C.1. Let (M,) be a locally square integrable martingale. For all
t e Randn >0, denote

2
W,(t) = exp(tMn — %[M]n)

(1) If (M) is heavy on left, then for all t > 0, (W,,(t)) is a supermartingale with
E[W, ()] < 1.

(2) If (M) is heavy on right, then for all t <0, (W, (t)) is a supermartingale with
E[W, ()] < 1.

) If (M) is conditionally symmetric, then for all t € R, (W, (t)) is a super-
martingale with E[W,, (t)] < 1.

PROOF. Lemma C.1 part (3) is due to De la Pefia [8], Lemma 6.1. Our ap-

proach is totally different as it mainly relies on Lemma 3.1. Assume that (M,,) is
heavy on left. For all # € R and n > 1, we have

2
Wn(t) = Wn—l(t) CXP(IAMn - %A[M]n)

where A[M],, = AM,%. We infer from Lemma 3.1 part (1) that for all n > 1 and
forall t >0,

2
t
E[exp(tAM,, — ZAM,f)

37n—11| <L

Consequently, for all £ > 0, (W,,(¢)) is a positive supermartingale such that, for all
n>1,E[W,()] <E[W,_1(¢)] which leads to E[W, (t)] < E[Wy(¢)] = 1. The rest
of the proof is also a straightforward application of Lemma 3.1. [

By use of Lemma C.1, the proof of Theorem 4.1 is quite analogous to that of
Theorem 2.1 and therefore is left to the reader. We shall proceed to the proof of
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Theorem 4.2 in the special case @ =0 and b = 1. For all x > 0, let A, ={M,, >
x[M],}. By Holder’s inequality, we have for all # > 0 and ¢ > 1,

P(A,) < E|:exp< M, — —[M],,)]lAn}
t 12 t
(C.1) < E[exp(—Mn — —[M]n> exp(—(t — 2x)[M]n>]lAn]
q 2q 2q

< (E[exp(;—‘;a - 2x)[M]n)])Up(E[Wn(z)])l/q.

Since (M,) is heavy on left, it follows from Lemma C.1 that for all ¢ > 0,
E[W,(#)] < 1. Consequently, as p/q = p — 1, we can deduce from (C.1) and the
particular choice ¢ = x that

x2 1/p
P(A,) < inf<E[exp<—(p— 1)—[M],,)D .
p>1 2

Furthermore, for all x,y > 0, let B, = {M,, > x[M],,[M], > y}. As before, we
find that for all 0 < ¢ < 2x,

P(B,) < E[exp(% -1 [M]n) exp( (i 2x)[M]n)ﬂBn]

ty 12
< exp(z(t — 2x)) [exp( Z[M]n)ﬂB"]

< exp(t—y(t — 2x))\/]P’(B )

ool 2).

choosing the value ¢ = x. Finally, the last inequality of Theorem 4.2 is left to the
reader as its proof follows exactly the same arguments as (4.3).
APPENDIX D

We shall now focus our attention on the proof of Corollary 5.2. It immediately
follows from (5.5) together with (5.6) that foralln > 1,

~ ,» M,

(D.1) 0,—0=0 M),

where

n n
M,=> Xi_1ex and (M), =0>> X;_,.
k=1
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The driven noise (¢,,) is a sequence of independent and identically distributed ran-
dom variables with & (0, o%) distribution. Consequently, for all n > 1, the distrib-
ution of the increments AM,, = X,,_1&, given F,_1 is N (0, JZX,%_I) which im-
plies that (M},) is a Gaussian martingale. Therefore, we infer from inequality (4.6)
that foralln > 1 and x > 0,

P(8, — 6] = x) = P(|Mn| > §<M>n> _ 2P<Mn > §<M>n)

< 2;13 (E[exp(—(p — 1)%24(M),,)D1/p.

Similar result may be found in [17, 23, 24]. We are now halfway to our goal and
it remains to find a suitable upper-bound for the right-hand side of (D.2). For all
r €Rsuchthat 1 — 202t >0, ifa = 1/+/1 — 202t, we deduce from (5.5) that, for
alln > 1,

Elexp(tX2)|F,_1] = exp(t0> X>_ 1)IE[exp(zer,l,lg,l +162)| Fp_1]
exp(t@zX2 1)/ <

D.2)

) exp(20t X,,—1x)dx.

Hence, if 8 =2tac6X,_1, we ﬁnd via the change of variables y = x /«o that
o exp(t@ZX%_l)

V2

2
= aexp(t@zX,%_l + %) = aexp(ta’0?X?2_)),

2
Elexp(tX2)|Fn_1] = A exp(—y7 + ﬂy> dy

which implies that, forall t <O andn > 1,
(D.3) Elexp(tX3)|Fu1] < c.

Furthermore, as Xo is N (0, 2) distributed with 72 > o2, E[exp(tX N<a. It
immediately follows from (D.3) together with the tower property of the conditional
expectation that for all t < 0 and n > 0,

(D.4) Elexp(t(M),)] < (1 —20*)™"/2.

Consequently, we deduce from the conjunction of (D.2) and (D.4) with the value
t = —(p — 1)x?/20* and the change of variables y = (p — 1)x? that for all x > 0
andn > 1,

-~ n.x2
B3, — 012 x) =2 infexp( =3¢
y>0 2

where the function £ is given by

log(1+ y)

V4 =
) iy
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We clearly have

—h(y)
(1+y)(x%+ y)?

where h(y) = (1 4+ y)log(1 + y) — y. One can observe that the function 4 is the
Cramer transform of the centered Poisson distribution with parameter 1. Let y, be
the unique positive solution of the equation 4(y,) = x2. The value y, maximizes
the function ¢ and this natural choice clearly leads to (5.7). Finally, it follows
from (5.6) and (5.7) that for all x > 0 and n > 1,

(y)=

- nx?
(D.5) P16, — 6 +6fn| = x) S2eXP<—2(Ty))

where the random variable 0 < f,, < 1. Hence, (D.5) implies (5.8) which completes
the proof of Corollary 5.2.

APPENDIX E

We shall now proceed to the proof of Corollary 5.3. We only focus our attention
on the Harris estimator inasmuch as the proof for the Lotka—Nagaev estimator
follows essentially the same lines. First of all, relation (5.9) can be rewritten as

(E.1) Xn=mX,—1+5&,

where &, = X, — E[X,,|#,—1]. Consequently, we obtain from (5.10) together with
(E.1) that for all n > 1,
M,

n
where M,, = Z &.
Sn—l

k=1
Moreover, for alln > 1 and 0 <t < ¢, E[exp(t&,)|Fn—1] = exp(X,—1L(¢)) which
implies that

(E.2) E[exp(tM, — L(t)S,_1)] = 1.

m, —m=

We are in position to prove (5.13). For all x > 0, let D, = {|im,, —m| > x}. We have
the decomposition D, = D;F U D, where D;} = {m, —m > x} and D,; = {in, —
m < —x}. By Holder’s inequality together with (E.2), we have for all 0 <t <c¢

and g > 1,
exp( M, ——Sn 1) D”i|

|
(E.3) E[e ( L;I)Sn l)expG(L(t)—M)Sn—l)%;}

(E[exp(g(L(t) — tx)Sn_l)D 1/17‘

P(D;}) <E

A
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Taking the infimum over the interval [0, c], we infer from (E.3) that
(E.4) P(D;) < (E[exp(—(p — DI(x)S,_1)])"/”.

Along the same lines, we also find that

(E.5) P(D;) < (Bfexp(—(p — DI(—=x)S,_1)])"/”.
Finally, (5.13) immediately follows from (E.4) and (E.5).

APPENDIX F

This appendix is devoted to some justifications about the examples of random
variables heavy on left or right. Consider an integrable random variable X with
zero mean and denote by F' its cumulative distribution function. Let H be the
function defined, for all @ > 0, by

H(a) :/Oa F(—x)— (1= F(x—))dx.

We already saw that X is heavy on left if, for all a > 0, H(a) > 0 while X is heavy
on right if, for all @ > 0, H(a) < 0. Let Y be a positive integrable random variable
with mean m and denote

X=Y—m.

Discrete random variables. Assume that Y is a discrete random variable taking
its values in N. For all n > 0, let

sn= Yy PY =k).
k=0

After some straightforward calculations, we obtain that, for all a > 0,

[m+al
H@)=—a+ Z Sk — Sim+a] {m + a}s[m-i—a] —{m — a}s[m—a]
k=[m—al]

where, for all x € R, [x] stands for the integer part of x and its fractional part {x}
is given by {x} = x — [x] and, of course, s, =0 for all n < 0.

Continuous random variables. Assume that Y is a real random variable ab-
solutely continuous with respect to the Lebesgue measure. Denote by g its proba-
bility density function. It is not hard to see that, for all a > 0,

am m+a
H(a)z—a+2a/0 g(x)dx—i—/ (m+4+a—x)gx)dx

where a,, = inf{m — a, 0}. Consequently, in order to check that X is heavy on left,
it is only necessary to show that, for all a > 0, H(a) > 0.
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