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ON MARTINGALE APPROXIMATIONS1

BY OU ZHAO AND MICHAEL WOODROOFE

Yale University and University of Michigan

Consider additive functionals of a Markov chain Wk , with stationary
(marginal) distribution and transition function denoted by π and Q, say
Sn = g(W1) + · · · + g(Wn), where g is square integrable and has mean 0
with respect to π . If Sn has the form Sn = Mn + Rn, where Mn is a square
integrable martingale with stationary increments and E(R2

n) = o(n), then g

is said to admit a martingale approximation. Necessary and sufficient condi-
tions for such an approximation are developed. Two obvious necessary con-
ditions are E[E(Sn|W1)2] = o(n) and limn→∞ E(S2

n)/n < ∞. Assuming
the first of these, let ‖g‖2+ = lim supn→∞ E(S2

n)/n; then ‖ · ‖+ defines a

pseudo norm on the subspace of L2(π) where it is finite. In one main result,
a simple necessary and sufficient condition for a martingale approximation
is developed in terms of ‖ · ‖+. Let Q∗ denote the adjoint operator to Q, re-
garded as a linear operator from L2(π) into itself, and consider co-isometries
(QQ∗ = I ), an important special case that includes shift processes. In another
main result a convenient orthonormal basis for L2

0(π) is identified along with
a simple necessary and sufficient condition for the existence of a martingale
approximation in terms of the coefficients of the expansion of g with respect
to this basis.

1. Introduction. Some notation is necessary to describe the results of the pa-
per. Let . . . ,W−1,W0,W1, . . . denote a stationary, ergodic Markov chain with val-
ues in a measurable space W . The marginal distribution and transition function
of the chain are denoted by π and Q; thus, π{B} = P [Wn ∈ B] and Q(w;B) =
P [Wn+1 ∈ B|Wn = w] for w ∈ W and measurable sets B ⊆ W . In addition, Q de-
notes the operator, defined by

Qf (w) =
∫
W

f (z)Q(w;dz) a.e. (π)

for f ∈ L1(π), and the iterates of Q are denoted by Qk = Q ◦ · · · ◦ Q (k times).
Thus, Qkf (w) = E[f (Wn+k)|Wn = w] a.e. (π ) for f ∈ L1(π). The probability
space on which . . . ,W−1,W0,W1, . . . are defined is denoted by (�,A,P ), and
Fn = σ {. . . ,Wn−1,Wn}. Finally, ‖ · ‖ and 〈·, ·〉 denote the norm and inner product
in an L2 space, which may vary from one usage to the next.

Received August 2007; revised December 2007.
1Supported by the National Science Foundation.
AMS 2000 subject classifications. Primary 60F05; secondary 60J10.
Key words and phrases. Co-isometry, conditional central limit theorem, fractional Poisson equa-

tion, martingale approximation, normal operator, plus norm, shift process.

1831

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/07-AAP505
http://www.imstat.org
http://www.ams.org/msc/


1832 O. ZHAO AND M. WOODROOFE

Observe that no stringent conditions, like Harris recurrence or even irreducibil-
ity, have been placed on the Markov chain. In particular, if . . . , ξ−1, ξ0, ξ1, . . . are
i.i.d. with common distribution ρ, say, then the shift process Wk = (. . . , ξk−1, ξk)

satisfies the conditions placed on the chain with π = ρN, where N = {0,1,2, . . .},
and Qg(w) = ∫

g(w,x)ρ{dx} for g ∈ L1(π). Shift processes abound in books on
time series—for example, [2] and [16].

Next let L2
0(π) be the set of g ∈ L2(π) for which

∫
W g dπ = 0; and, for

g ∈ L2
0(π), consider stationary sequences of the form Xk = g(Wk) and their sums

Sn = X1 + · · · + Xn. Thus,

Sn = Sn(g) = g(W1) + · · · + g(Wn).

The question addressed here is the existence of a martingale M1,M2, . . . with re-
spect to F0,F1,F2, . . . having stationary increments and a sequence of remainder
terms R1,R2, . . . for which ‖Rn‖ = o(

√
n) and

Sn = Mn + Rn.(1)

If (1) holds, we say that g admits a martingale approximation. Ever since the
work of Gordin [10], martingale approximations have been an effective tool for
studying the (conditional) central limit question and law of the iterated logarithm
for stationary processes; see, for example, [3, 4, 20, 21], and their references for
recent developments. The terminology here differs slightly from that of [20].

The sequence Xk = g(Wk) is said to admit a co-boundary if there is a stationary
sequence of martingale differences dk and another stationary process Zk for which

Xk = dk + Zk − Zk−1,

for all k, in which case Sn = M̃n + R̃n with M̃n = d1 +· · ·+dn and R̃n = Zn −Z0.
Here M̃n is a martingale and R̃n is stochastically bounded, but does not necessarily
satisfy ‖R̃n‖ = o(

√
n). Conversely, a martingale approximation does not require

Rn to be stochastically bounded. The relation between co-boundaries and martin-
gale approximations is further clarified by the examples of [9].

Letting Q∗ denote the adjoint of the restriction of Q to L2(π), so that 〈Qf,g〉 =
〈f,Q∗g〉 for f,g ∈ L2(π), Q is said to be a co-isometry if QQ∗ = I , in which
case Q∗ is an isometry. Importantly, this condition is satisfied by shift processes.
In Section 3, a convenient orthonormal basis for L2

0(π) is identified when Q is a
co-isometry, and a simple necessary and sufficient condition for the existence of
a martingale approximation is given in terms of the coefficients in the expansion
of g with respect to this basis.

Returning to the main question, define

Vng =
n−1∑
k=0

Qkg,

so that E(Sn|F1) = Vng(W1). If (1) holds, then ‖Vng‖2 = E[E(Sn|F1)
2] ≤

2E(M2
1 ) + 2E(R2

n) = o(n), and limn→∞ E(S2
n)/n = E(M2

1 ). So, obvious neces-
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sary conditions for (1) are that

‖Vng‖ = o
(√

n
)

(2)

and

‖g‖2+ := lim sup
n→∞

1

n
E[Sn(g)2] < ∞.(3)

Let L denote the set of g ∈ L2
0(π) for which ‖g‖+ < ∞. Then L is a linear space,

and ‖·‖+ is a pseudo norm on L, called the plus norm below. Moreover, Q maps L
into itself, since

Sn(g) = Sn(Qg) +
n∑

k=1

[g(Wk) − Qg(Wk−1)] + Qg(W0) − Qg(Wn);(4)

and, therefore, ‖Qg‖+ ≤ ‖g‖+ +
√

E{[g(W1) − Qg(W0)]2}. In Section 4 it is
shown that g admits a martingale approximation iff (2) holds and

lim
m→∞

1

m

m∑
k=1

‖Qkg‖2+ = 0.

These results are used in Section 5 to study the relationship between martingale
approximations and solutions to the fractional Poisson equation, g = √

(I − Q)h.
The relation between martingale approximations and the conditional central limit
theorem is explored in Section 6 with special attention to superpositions of linear
processes. Section 2 contains some preliminaries.

2. Preliminaries. In this section, upon exhibiting some preliminary facts, we
establish a useful criterion for martingale approximations; and in particular, we
show martingale approximations are unique. Let

V̄n = V1 + · · · + Vn

n
=

n−1∑
k=0

(
1 − k

n

)
Qk.

Then

E[Sn(g)2] = 2n〈g, V̄ng〉 − n‖g‖2,(5)

from [2], page 219, and

V̄n = V̄nQ
i + Vi − 1

n
QVnVi(6)

for all n ≥ 1, i ≥ 1 by simple algebra and induction. Next, let π1 denote the joint
distribution of W0 and W1, define

Hn(w0,w1) = Vng(w1) − QVng(w0)(7)

and H̄n(w0,w1) = V̄ng(w1) − QV̄ng(w0) for w0,w1 ∈ W . Then Hn and H̄n are
in L2(π1).
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LEMMA 1. If (2) holds, then Sk = Mnk + Rnk where Mnk = H̄n(W0,W1) +
· · · + H̄n(Wk−1,Wk) and maxk≤n ‖Rnk‖ = o(

√
n).

PROOF. The lemma is almost a special case of Theorem 1 of [20]. Using (6)
with i = 1,

Rnk = Sk − Mnk = QV̄ng(W0) − QV̄ng(Wk) + 1

n
Sk(QVng),

from which it follows that maxk≤n ‖Rnk‖ ≤ 3 maxk≤n ‖Vkg‖, which is o(
√

n)

by (2). �

Of course, Mnk is a martingale in k for each n. The following proposition is
closely related to Theorem 1 of [17].

PROPOSITION 1. g ∈ L2
0(π) admits a martingale approximation iff (2) holds

and H̄n converges to a limit H in L2(π1), in which case

Mn = Mn(g) :=
n∑

k=1

H(Wk−1,Wk).(8)

Consequently, martingale approximations are unique.

PROOF. Suppose first that g admits a martingale approximation, Sn = Mn +
Rn. Then (2) holds and Sn = Mnn + Rnn, where ‖Rnn‖ = o(

√
n), by Lemma 1.

So,

nE{[H̄n(W0,W1) − M1]2} = E[(Mnn − Mn)
2] = E[(Rnn − Rn)

2] = o(n),

implying the convergence of H̄n(W0,W1) in L2(P ); and this is equivalent to the
convergence of H̄n in L2(π1).

Conversely, if (2) holds and H̄n converges to a limit H , say; we can let Mn =
H(W0,W1)+· · ·+H(Wn−1,Wn) and Rn = Sn−Mn. Then (1) holds, Rn = Mnn−
Mn + Rnn, and ‖Rn‖ ≤ √

n‖H̄n − H‖ + ‖Rnn‖ = o(
√

n), establishing both the
sufficiency and (8). That martingale approximations are unique is then clear. �

COROLLARY 1. If g admits a martingale approximation, then so does Qkg,
and M1(Q

kg) = H(W0,W1) − Hk(W0,W1) with Hk as defined in (7).

PROOF. For k = 1, this follows directly from (4); and for k = 2,3, . . . , it fol-
lows by induction. �

As a second corollary, we may obtain necessary and sufficient conditions for a
linear process. Let . . . , ξ−1, ξ0, ξ1, . . . be i.i.d. random variables with mean 0 and
unit variance; let a0, a1, a2, . . . be a square summable sequence; and consider a
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causal linear process

Xj =
∞∑
i=0

aiξj−i = ∑
i≤j

aj−iξi .(9)

Such a process is of the form Xk = g(Wk), where Wk = (. . . , ξk−1, ξk). Letting
b−1 = 0, bn = a0 + · · · + an for n ≥ 0, and using (9),

Sn = ∑
i≤1

(bn−i − b−i )ξi +
n−2∑
i=0

biξn−i ,

where the first term on the right-hand side is E(Sn|W1). It follows that

‖Vng‖2 = ‖E(Sn|W1)‖2 =
∞∑

i=−1

(bi+n − bi)
2,

also, Vng(W1) − QVng(W0) = bnξ1, and H̄n(W0,W1) = b̄nξ1 with b̄n = (b1 +
· · · + bn)/n. Thus, for a linear process, (2) specializes to

lim
n→∞

1

n

∞∑
i=−1

(bi+n − bi)
2 = 0.(10)

COROLLARY 2. For the linear process defined in (9), the following are equiv-
alent:

(a) There is a martingale approximation.
(b) Equation (10) holds and b̄n converges.
(c) Equation (10) holds and b̄2

n converges.

PROOF. In this case ‖H̄n − H̄m‖2 = (b̄n − b̄m)2. Hence, (a) and (b) are equiv-
alent by Proposition 1. It is clear that (b) implies (c) and it remains only to show
that (c) implies (b). If b̄2

n converges, but b̄n does not, then b̄n would have to os-
cillate between two values, there would be a positive ε for which |b̄n+1 − b̄n| ≥ ε

infinitely often; but this is impossible, since b̄n+1 − b̄n = (bn+1 − b̄n)/(n + 1) and
bn = O(

√
n), as a0, a1, . . . are square summable. �

In the next section, we show how to extend this example from linear functions
of shift processes to measurable ones with mean 0 and finite variance.

3. Co-isometries. We suppose throughout this section that the chain has a
trivial left tail field and that Q is a co-isometry; that is,

lim
n→∞‖Qnf ‖ = 0 and QQ∗ = I(11)

for all f ∈ L2
0(π). We also suppose L2

0(π) is separable. These conditions are sat-
isfied, for example, by (one-sided) shift processes.
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With a view toward later examples, we work with L 2
0 (π), the space of complex-

valued, square integrable functions with mean 0 under π . Then (11) is still valid
for this space if we extend the definition of Q to the imaginary part.

Let H denote a closed linear subspace of L 2
0 (π) that is invariant under both

Q and Q∗; restrict Q and Q∗ to H ; and let K = Q∗H . Then Q∗ is an isometry
from H onto K , since 〈Q∗f,Q∗g〉 = 〈f,QQ∗g〉 = 〈f,g〉 for f,g ∈ H . This is
the origin of the term “co-isometry.” Moreover,

Q∗h(W1) = h(W0) w.p.1(12)

for any h ∈ L2
0(π), since E[Q∗h(W1)h(W0)] = 〈QQ∗h,h〉 = ‖h‖2 by condition-

ing on W0, and therefore, E{[Q∗h(W1) − h(W0)]2} = ‖Q∗h‖2 − 2〈QQ∗h,h〉
+‖h‖2 = 0. It can be easily checked (12) also holds for h ∈ L 2

0 (π).

LEMMA 2. K is a closed, proper linear subspace of H ; and
⋂∞

j=0 Q∗jH =
{0}.

PROOF. That K is closed is clear, since Q∗ is an isometry; and that K is
proper follows from

⋂∞
j=0 Q∗jH = {0}. So, it suffices to establish the latter. If

f ∈ ⋂∞
j=0 Q∗jH , then there are h0, h1, . . . ∈ H for which f = Q∗jhj with each j .

In this case, ‖hj‖ = ‖f ‖, since Q∗ is an isometry, hj = QjQ∗jhj = Qjf , and
limj→∞ ‖Qjf ‖ = 0. So, ‖f ‖ = 0, establishing the lemma. �

Next, let K⊥ = {f ∈ H : 〈f,h〉 = 0 for all h ∈ K}. Then K⊥ = {g ∈ H :Qg =
0}, since 〈Q∗f,g〉 = 〈f,Qg〉 = 0 for all f ∈ H iff Qg = 0; and Q∗Q is the pro-
jection operator onto K , since (Q∗Q)2 = Q∗Q and Q(I − Q∗Q) = 0. Let E0 =
{ej : j ∈ J } be an orthonormal basis for K⊥, let Ei = Q∗iE0 and E = ⋃

i≥0 Ei .

LEMMA 3. E is an orthonormal basis for H .

PROOF. Ei consists of orthonormal elements for each i ≥ 0, since Q∗ is
an isometry; for any f ∈ Ei and f ′ ∈ Ei′ , where i < i′, there are e, e′ ∈ E0
for which f = Q∗ie and f ′ = Q∗i′e′, in which case 〈f,f ′〉 = 〈Q∗ie,Q∗i′e′〉 =
〈Qi′−ie, e′〉 = 0, since Qe = 0. Finally, if f ⊥ E0, then f ∈ K and f = Q∗h1 for
some h1 ∈ H . If also, f ⊥ Q∗E0, then Qf ⊥ E0, Qf = Q∗h2 for some h2 ∈ H ,
and f = Q∗Qf = Q∗2h2. Continuing, we find that if f ⊥ E , then f ∈ Q∗jH for
all j , and completeness follows from Lemma 2. �

Now write ei,j = Q∗iej , so that Ei = {ei,j : j ∈ J }, and let Hj = span(ei,j : i ≥
0), the closed linear span of {ei,j : i ≥ 0}. Then QHj = Hj for each j , and
H = ⊕

j∈J Hj . In the language of [5, 11], the Hj , j ∈ J , are an orthogonal invari-
ant splitting of H . Then, any g ∈ H may be written as g = ∑

j∈J

∑∞
i=0 ci,j ei,j ,

where ci,j are square summable. Let bn,j = c0,j + · · · + cn−1,j , b̄n,j = (b1,j +
· · · + bn,j )/n and regard bn = (bn,j : j ∈ J ) and b̄n = (b̄n,j : j ∈ J ) as elements of
�2(J ).
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THEOREM 1. g ∈ L2
0(π) admits a martingale approximation iff b̄n converges

in �2(J ), and

lim
n→∞

1

n

∞∑
i=0

‖bi+n − bi‖2 = 0.(13)

PROOF. We take H = L 2
0 (π). Since Qei,j = QQ∗iej = 0 if i = 0 and ei−1,j

if i ≥ 1, Qg = ∑
j∈J

∑∞
i=1 ci,j ei−1,j ,

Qkg =
∞∑
i=k

∑
j∈J

ci,j ei−k,j =
∞∑
i=0

∑
j∈J

ci+k,j ei,j ,

Vng =
∞∑
i=0

∑
j∈J

(bi+n,j − bi,j )ei,j

and

‖Vng‖2 =
∞∑
i=0

∑
j∈J

|bi+n,j − bi,j |2 =
∞∑
i=0

‖bi+n − bi‖2.

So (13) is just (2), specialized to the present context.
Next Q∗Qg = ∑

j∈J

∑∞
i=1 ci,j ei,j , so that from (12),

g(W1) − Qg(W0) = [g − Q∗Qg](W1) = ∑
j∈J

c0,j e0,j (W1),

H̄n(W0,W1) =
n−1∑
k=0

(
1 − k

n

)
[Qkg(W1) − Qk+1g(W0)] = ∑

j∈J

b̄n,j e0,j (W1)

and

‖H̄n − H̄m‖ = ‖b̄n − b̄m‖.
The theorem now follows directly from Proposition 1. �

EXAMPLE 1 (Bernoulli shifts). The one-sided Bernoulli shift process is de-
fined by

Wk =
∞∑

j=0

(1
2

)j+1
ξk−j ,

where . . . , ξ−1, ξ0, ξ1, . . . are i.i.d. random variables taking the values 0 and 1 with
probability 1/2 each. The state space W is the unit interval, the marginal dis-
tribution π is the uniform distribution, Qg(w) = 1

2 [g(1
2w) + g(1

2w + 1
2)], and

Q∗g(w) = g(2w) for a.e. w ∈ W and g ∈ L1(π) with the convention that g is
continued periodically. For this example, any g ∈ L 2

0 (π) has a Fourier expan-
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sion

g = ∑
r �=0

crer ,(14)

where er(w) = e2πırw and cr , r ∈ Z, are square summable. Then Qer = 0
or e(1/2)r accordingly as r is odd or even, and Q∗er = e2r for all r . With
H = L 2

0 (π), it follows that K , respectively K⊥, consists of all functions g for
which cr = 0 for odd, respectively even, r . Thus, E0 = span(er : r ∈ Odd), and
Ei = span(er2i : r ∈ Odd), and there is an invariant splitting with ei,j = ej2i . Nec-
essary and sufficient conditions for the existence of a martingale approximation
can be read from Theorem 1. See [19] for more on the Fourier analysis of Bernoulli
shifts.

EXAMPLE 2 (Lebesgue shifts). By a (one-sided) Lebesgue shift, we mean the
Markov chain Wk = (. . . ,Uk−1,Uk) where . . . ,U−1,U0,U1, . . . are independent
uniformly distributed random variables over [0,1), in which case W = [0,1)N

and π = λN, where λ is the uniform distribution. Lebesgue shifts are similar to
Bernoulli shifts. Let 
 denote the set of sequences j = (j0, j1, . . .) ∈ Z

N for which
ji = 0 for all but finite number of i. Then, letting j · w = j0w0 + j1w−1 + · · · and
ej (w) = e2πıj ·w for w = (. . . ,w−1,w0) ∈ [0,1)N and j ∈ 
, any g ∈ L 2

0 (π) has
a Fourier expansion,

g(w) = ∑
j∈


cj ej

where cj are square summable. Next, let J = {j ∈ 
 : j0 �= 0}. Then, since

Qej (w) =
[∫ 1

0
e2πıj0u du

] ∞∏
i=1

exp(2πıjiw−i+1),

E0 = {ek :k ∈ J } is an orthonormal basis for K⊥ [with H = L 2
0 (π) and K =

Q∗H ]. Define ψ :
 → 
 by ψ(j) = (0, j0, j1, . . .), then it is not difficult to check
Q∗ek = eψ(k), Q∗iek = eψi(k), where ψi is the composition of ψ with itself i

times. Necessary and sufficient conditions can be read from Theorem 1.

EXAMPLE 3 (Superlinear processes). Let ξi,j , i ∈ Z, j ∈ N, be indepen-
dent random variables, all having mean 0 and bounded variances, for which
. . . , ξ−1,j , ξ0,j , ξ1,j , . . . are identically distributed for each j , and let cij , i ∈ Z,
j ∈ N, be a square summable array. Then

Xk =
∞∑

j=0

∞∑
i=0

ci,j ξk−i,j(15)

converges w.p.1 and in mean square for each k and defines a stationary process.
Letting ξ i = (ξi,0, ξi,1, . . .), Xk is of the form Xk = g(Wk), where Wk =
(. . . , ξ k−1, ξ k) is a shift process. Next, letting H = span(ξi,j : i ≤ 0, j ≥ 0), one
finds easily that there is an invariant splitting with ei,j = ξ−i,j for i, j ≥ 0. Neces-
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sary and sufficient conditions for the existence of a martingale approximation can
again be read from Theorem 1.

4. The plus norm. To study the plus norm, we first recall the definition
‖g‖2+ = lim supn→∞ E[Sn(g)2]/n. The following example serves as a simple il-
lustration.

EXAMPLE 4. If Q is a co-isometry and the chain has a trivial left tail
field, we may write g = ∑

j∈J

∑∞
i=0 ci,j ei,j , as in Section 3, and H̄n(W0,W1) =∑

j∈J b̄n,j e0,j (W1), as in the proof of Theorem 1. So, if (2) holds, E(S2
n) =

nE[H̄ 2
n (W0,W1)] + o(n) = n‖b̄n‖2 + o(n), and ‖g‖2+ = lim supn→∞ ‖b̄n‖2.

The main result of this section is that g admits a martingale approximation
iff ‖Vng‖ = o(

√
n) and

∑m
k=1 ‖Qkg‖2+ = o(m). The following two lemmas are

needed; their proofs are given after the proof of Theorem 2.

LEMMA 4. If g ∈ L2
0(π) and (2) holds, then

lim
n→∞

[
‖H̄n − H̄m‖2 − 2

m
〈V̄ng,QVmg〉

]
= − 2

m
〈V̄mg,QVmg〉 −

∥∥∥∥QVmg

m

∥∥∥∥2

.

LEMMA 5. If g ∈ L2
0(π) and ‖g‖+ < ∞, then

lim sup
n→∞

〈V̄ng,QVmg〉 ≤ 1
2

m∑
k=1

‖Qkg‖2+ + 1
2‖QVmg‖2 + 〈g,VmQg〉;

and if g admits a martingale approximation, then the limit exists and there is equal-
ity.

THEOREM 2. g admits a martingale approximation iff (2) holds and

lim
m→∞

1

m

m∑
k=1

‖Qkg‖2+ = 0.(16)

PROOF. Suppose first that g admits a martingale approximation. Then
‖Vng‖ = o(

√
n) and limm→∞[limn→∞ ‖H̄n − H̄m‖2] = 0 by Proposition 1. Next,

by Lemmas 4 and 5,

lim
n→∞‖H̄n − H̄m‖2 = lim

n→∞
2

m
〈V̄ng,QVmg〉 −

[
2

m
〈V̄mg,QVmg〉 +

∥∥∥∥QVmg

m

∥∥∥∥
2]

= 1

m

m∑
k=1

‖Qkg‖2+ + 1

m
‖QVmg‖2 + 2

m
〈g,QVmg〉

− 2

m
〈V̄mg,QVmg〉 −

∥∥∥∥QVmg

m

∥∥∥∥
2

.
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Since ‖Vmg‖ = o(
√

m), the last four terms on the right approach 0 as m → ∞,
and, therefore, so does the first. This establishes the necessity of (16).

Next suppose that (2) and (16) hold; then limm→∞[lim supn→∞ ‖H̄n−H̄m‖2] =
0, by Lemmas 4 and 5. It follows easily that supn≥1 ‖H̄n‖ < ∞, which implies
H̄1, H̄2, . . . is weakly compact in L2(π1). Let H ∗ denote any weak limit point
of H̄1, H̄2, . . . . Then ‖H ∗ − H̄m‖ ≤ lim supn→∞ ‖H̄n − H̄m‖ for each m (cf. [8],
page 68). Thus, limm→∞ ‖H̄m − H ∗‖ = 0 from which the converse follows from
Proposition 1. �

PROOF OF LEMMA 4. To begin, write

‖H̄n − H̄m‖2 = ‖(V̄n − V̄m)g‖2 − ‖Q(V̄n − V̄m)g‖2

= 〈(I + Q)(V̄n − V̄m)g, (I − Q)(V̄n − V̄m)g〉

= 2
〈
(V̄n − V̄m)g,

(
QVmg

m
− QVng

n

)〉
−

∥∥∥∥QVmg

m
− QVng

n

∥∥∥∥
2

;
and when the first term in the last line is expanded, it becomes

2

m
〈V̄ng,QVmg〉 − 2

n
〈V̄ng,QVng〉 − 2

m
〈V̄mg,QVmg〉 + 2

n
〈V̄mg,QVng〉.

The lemma now follows directly from (2) and the mean ergodic theorem, which
implies that all those terms multiplied by 1/n approach 0 as n → ∞. �

PROOF OF LEMMA 5. Writing

〈V̄ng,QVmg〉 =
m∑

k=1

〈V̄ng,Qkg〉,

and using (6), then

〈V̄ng,QVmg〉 =
m∑

k=1

[
〈V̄nQ

kg,Qkg〉 + 〈Vkg,Qkg〉 − 1

n
〈QVnVkg,Qkg〉

]
.

Here

m∑
k=1

〈Vkg,Qkg〉 =
m∑

k=1

k∑
j=1

〈Qj−1g,Qkg〉

= 1
2

m∑
k=1

m∑
j=1

〈Qjg,Qkg〉 − 1
2

m∑
j=1

‖Qjg‖2 + 〈g,VmQg〉

= 1
2‖VmQg‖2 − 1

2

m∑
j=1

‖Qjg‖2 + 〈g,VmQg〉.
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Combining terms together,

〈V̄ng,QVmg〉 = 1

2

m∑
k=1

[2〈V̄nQ
kg,Qkg〉 − ‖Qkg‖2]

+ 1

2
‖QVmg‖2 + 〈g,VmQg〉 −

m∑
k=1

1

n
〈QVnVkg,Qkg〉.

The first assertion follows directly from (2) and (5). So does the second; for if g ad-
mits a martingale approximation, then the limit exists in the definition of ‖Qkg‖+.

�

5. The fractional Poisson equation. It is possible to attach a meaning to the
symbol

√
I − Q by replacing t with Q in the series expansion of

√
1 − t . The

definition may be written

√
I − Q = I −

∞∑
k=1

βkQ
k,

where βk = (−1)k−1(1/2
k

)
and the series converges in the operator norm, since

βk ∼ 1/(2
√

πk3/2) as k → ∞. A function h ∈ L2
0(π) is said to solve the fractional

Poisson equation (for g) if g = √
(I − Q)h. The relation between the existence of

a solution to the fractional Poisson equation and the existence of a martingale
approximation is considered in this section for co-isometries and normal operators
(QQ∗ = Q∗Q).

LEMMA 6. If g ∈ √
(I − Q)L2

0(π), then ‖Vng‖ = o(
√

n); and if g =√
(I − Q)h = √

(I − Q∗)h∗, then ‖g‖2+ = 〈(I + Q)h,h∗〉.

PROOF. Observe that (I −Qk)Vn = (I −Qn)Vk . So, if g = √
(I − Q)h, then

Vng = ∑∞
k=0 βk(I − Qk∨n)Vk∧nh, where ∧ (∨) denotes minimum (maximum).

Using the mean ergodic theorem, ‖Vnh‖ = o(n), then

‖Vng‖ ≤ 2
∞∑

k=0

βk‖Vk∧nh‖ = 2
∞∑

k=0

βko(k ∧ n) = o
(√

n
)
,

establishing the first assertion. If, in addition, g = √
(I − Q∗)h∗, then ‖g‖2 =

〈(I − Q)h,h∗〉, and

〈V̄ng, g〉 = 〈(I − Q)V̄nh,h∗〉 = 〈h,h∗〉 − 1

n
〈QVnh,h∗〉 → 〈h,h∗〉,

using the mean ergodic theorem again in the final step. Thus, in view of (5),
‖g‖2+ = limn→∞[2〈V̄ng, g〉 − ‖g‖2] = 〈(I + Q)h,h∗〉; similar calculations also
appear in [7]. �
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Normal operators. As an interesting generalization of [13] in the reversible
case, it is known [1, 6, 12] that if Q is a normal operator and there is a solution
to the fractional Poisson equation, then g admits a martingale approximation. This
result can be easily deduced from our Theorem 2. Recall that if R is any bounded
normal operator on a Hilbert space H , then

√
I − R and

√
I − R∗ have the same

range (cf. [6], Lemma 2).

PROPOSITION 2. Suppose that Q is normal; then any g ∈ √
(I − Q)L2

0(π)

admits a martingale approximation.

PROOF. If g ∈ √
(I − Q)L2

0(π), then (2) follows from Lemma 6, and it suf-
fices to establish (16). Since the ranges of

√
(I − Q) and

√
(I − Q∗) are the same,

there are h,h∗ ∈ L2
0(π) for which g = √

(I − Q)h = √
(I − Q∗)h∗. Then Qkg =√

(I − Q)Qkh = √
(I − Q∗)Qkh∗, so that ‖Qkg‖2+ = 〈(I + Q)Qkh,Qkh∗〉.

Thus, letting R = Q∗Q, ‖Qkg‖2+ = 〈(I +Q)h,Rkh∗〉, and it is necessary to show

lim
m→∞

1

m

m∑
k=1

〈(I + Q)h,Rkh∗〉 = 0.(17)

To see this let R be the closure of (I −R)L2
0(π). Then R⊥ consists of all f for

which Rf = f , and Q, Q∗, and R map both R and R⊥ into themselves. Write
h = h1 + h2 with h1 ∈ R, h2 ∈ R⊥, and let gi = √

(I − Q)hi . Then g1 ∈ R and
g2 ∈ R⊥, since Q maps R and R⊥ into themselves. Next, write h∗ = h∗

1 + h∗
2

with h∗
1 ∈ R, h∗

2 ∈ R⊥; then gi = √
(I − Q∗)h∗

i by the uniqueness of direct sum
decomposition of g. Returning to (17), we have

〈(I + Q)h,Rkh∗〉 = 〈(I + Q)h1,R
kh∗

1〉 + 〈(I + Q)h2, h
∗
2〉

= 〈(I + Q)h1,R
kh∗

1〉 + ‖g2‖2+
by orthogonality and Lemma 6. It will be first shown that ‖g2‖+ = 0; to see it,
note Rg2 = g2, then

‖Vng2‖2 = 2
n−1∑
j=0

n−1∑
k=j

〈Qjg2,Q
kg2〉 −

n−1∑
j=0

‖Qjg2‖2

= 2
n−1∑
j=0

〈g2,Vn−j g2〉 − n‖g2‖2

= n[2〈g2, V̄ng2〉 − ‖g2‖2],
thus, ‖g2‖+ = 0 follows from (5) and Lemma 6. That (17) holds when h∗

1 ∈
(I − R)L2

0(π) is clear by forming a telescoping sum, and the boundary case then
follows by approximation. �
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Co-isometries. The existence of a solution to the fractional Poisson equation
does not imply the existence of a martingale approximation for co-isometries. Here
is a simple example.

EXAMPLE 5. Let . . . , ξ−1, ξ0, ξ1, . . . be i.i.d. with mean 0 and unit vari-
ance; consider the shift process Wk = (. . . , ξk−1, ξk). For j ≥ 0, let aj =
1/[√(j + 1) log(j + 2)] and define h by

h(W0) =
∞∑

j=0

aj ξ−j ,

so that h(Wk) is a linear process. Then g = √
(I − Q)h admits a solution to the

fractional Poisson equation, and

g(W0) =
∞∑

k=1

βk(I − Qk)h(W0) =
∞∑

j=0

cj ξ−j

with

cj =
∞∑

k=1

βk(aj − aj+k),

after some straightforward calculation. Observe that aj − aj+k ≥ 0 for all j ≥ 0
and k ≥ 1, and that aj+k ≤ 3aj/4 for all k ≥ j + 1 and all j ≥ 0. So,

cj ≥ 1

4
aj

∞∑
k=j+1

βk ≥
(

aj

9
√

j

)

for all sufficiently large j . Therefore, bn = c0 +· · ·+cn → ∞, and also, its Cesàro
average b̄n → ∞ as n → ∞. No martingale approximation can exist.

However, the existence of solutions to both the forward and backward fractional
Poisson equations does imply the existence of a martingale approximation.

PROPOSITION 3. Suppose Q is a co-isometry and the chain has a trivial left
tail field, and if g ∈ √

(I − Q)L2
0(π) ∩ √

(I − Q∗)L2
0(π), then g admits a martin-

gale approximation.

PROOF. As in Section 3, we can take H = L 2
0 (π), and there is an or-

thogonal invariant splitting, H = ⊕
j∈J Hj . Let g = √

(I − Q)h for some
h ∈ H , g = ∑

j∈J gj , and h = ∑
j∈J hj with gj , hj ∈ Hj for all j . Clearly

g = ∑
j∈J

√
(I − Q)hj and, therefore, gj = √

(I − Q)hj , by taking the projection
on each Hj . Similarly, g = √

(I − Q∗)h∗, where h∗ = ∑
j∈J h∗

j with h∗
j ∈ Hj ,

and gj = √
(I − Q∗)h∗

j for each j . It then follows easily from Lemma 6 and Ex-

ample 4 that limn→∞ |b̄n,j |2 = ‖gj‖2+ = 〈(I +Q)hj ,h
∗
j 〉 exists for each j and that

limn→∞ ‖b̄n‖2 = ‖g‖2+ = 〈(I +Q)h,h∗〉 exist. It then follows from (the proof of)
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Corollary 2 that bj = limn→∞ b̄n,j exists for each j , so that b̄n converges weakly
to b = (bj : j ∈ J ). So, to show convergence of b̄n in the norm of �2(J ) and,
therefore, the existence of a martingale approximation, it suffices to show that
limn→∞ ‖b̄n‖2 = ‖b̄‖2; and this follows easily from Lemma 6 which implies

lim
n→∞‖b̄n‖2 = 〈(I + Q)h,h∗〉 = ∑

j∈J

〈(I + Q)hj ,h
∗
j 〉 = ∑

j∈J

|bj |2 = ‖b‖2.
�

6. The CCLT for superlinear processes. Let Fn denote the conditional dis-
tribution function of Sn/

√
n given W0,

Fn(w; z) = P

[
Sn√
n

≤ z
∣∣∣W0 = w

]
.

We will say that the conditional central limit theorem (CCLT) holds (with a
√

n

normalization) iff

lim
n→∞

E[S2
n]

n
= κ2 ∈ [0,∞)

and

lim
n→∞

∫
W

d[�κ,Fn(w; ·)]π{dw} = 0,

where �κ denotes the normal distribution function with mean 0 and standard devi-
ation κ , and d is the Lévy metric or any other bounded metric that metrizes weak
convergence of distribution functions.

It is clear that the existence of a martingale approximation implies the CCLT;
see, for example, [15]. It is also clear, for simple linear process as defined in (9),
CCLT necessarily requires the existence of martingale approximation. However, in
general, the converse is not true as shown in the example below. To proceed as in
Example 3, let Fj be the common distribution function of ξi,j , i = . . . ,−1,0,1, . . .

and suppose that the Fj have mean 0 and bounded variances. Recall the nota-
tion bn,j = c0,j + · · · + cn−1,j and b̄n,j = (b1,j + · · · + bn,j )/n and that bn =
(bn,1, bn,2, . . .) and b̄n may be regarded as elements of �2(N).

EXAMPLE 6 (Superlinear process revisited). Consider a superlinear process,
defined in (15), with ci,j = 0 for all j ≥ 2, bn,0 = cos(

√
logn), bn,1 = sin(

√
logn),

and c0,j = c1,j = 0 for j = 0,1. Then cn,j = bn,j − bn−1,j = O(1/(n
√

logn)) for
j = 0,1. So, the process is well defined. If F0 and F1 both have mean 0 and unit
variance, then the CCLT holds, but martingale approximation does not exist. To
see this, first observe that for any δ > 0,

∞∑
k=0

(bk+n,0 − bk,0)
2 ≤

( ∑
k≤nδ

+ ∑
k>nδ

)[
cos

(√
log(n + k)

) − cos
(√

log k
)]2

≤ 4nδ + ∑
k>nδ

(
n

2k
√

log k

)2

,
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so that
∑∞

k=0(bk+n,0 − bk,0)
2 = o(n), and similarly,

∑∞
k=0(bk+n,1 − bk,1)

2 = o(n).
So, ‖Vng‖2 = o(n). Next, for any ε > 0,

b̄n,0 − bn,0 = 1

n

n∑
k=1

[
cos

(√
log k

) − cos
(√

logn
)]

≤ 1

n

∑
k≤nε

[
cos

(√
log k

) − cos
(√

logn
)] + 1

n

∑
nε<k≤n

[√
logn −

√
log k

]

≤ 2ε + 1

n

∑
nε<k≤n

n − k

2k
√

log k
≤ 2ε + 1

n
(n − nε)

1

2ε
√

log(nε)

for all large n. It follows that b̄n,0 − bn,0 = o(1). Similarly b̄n,1 − bn,1 = o(1),
and therefore, b̄2

n,0 + b̄2
n,1 → 1. So, applying Theorem 2 of [20], CCLT holds; but

martingale approximation does not exist since b̄n,j does not converge for j = 0,1.

Next, we investigate some partial converses for superlinear processes.

THEOREM 3. If the CCLT holds for all choices F1,F2, . . . with means 0 and
unit variances, then b̄n is pre-compact in �2(N); and if the CCLT holds for all
F1,F2, . . . with means 0 and bounded variances, then b̄n converges in �2(N).

PROOF. If the CCLT holds, then (2) holds by Corollary 1 of [15]. So, by
Lemma 1, Sn = Mnn + Rnn, where ‖Rnn‖ = o(

√
n) and

Mnn =
∞∑

j=1

b̄n,j ζn,j ,

where ζn,j = ξ1,j + · · · + ξn,j . So, if the CCLT holds for any choice of F1,F2, . . .

with means 0 and unit variances, then limn→∞ ‖b̄n‖2 = κ2. In particular, b̄n,
n ≥ 1, are bounded and, therefore, weakly pre-compact. To show pre-compactness,
it thus suffices to show that any weak limit point is a strong limit point. Let
b ∈ �2(N) be an arbitrary weak limit point and let N0 be a subsequence for which
limn∈N0 b̄n = b. Then limn∈N0 b̄n,j = bj for all j , and

lim
n∈N0

jn∑
j=1

[b̄n,j − bj ]2 = 0

for some subsequence jn → ∞. By thinning the subsequence N0, if necessary, we
may suppose that jn, n ∈ N0 are strictly increasing. There is a strictly decreasing
sequence 1 > q1 > q2, . . . for which limn∈N0 nqjn = 0. Let pj = qj − qj+1 and let
Fj be the distribution which assigns mass 1

2pj to ±1/
√

pj and mass 1 − pj to 0.
With this choice of F1,F2, . . . , let

M̃n,n =
jn∑

j=1

b̄n,j ζn,j .
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Then P [ζn,j �= 0] ≤ npj , and

P [Mn,n �= M̃n,n] ≤ nqjn → 0

as n → ∞ in N0. So, M̃n,n/
√

n has a limiting normal distribution with mean 0 and
variance κ2 and, therefore,

lim inf
n∈N0

jn∑
j=1

b̄2
n,j = lim inf

n∈N0

1

n
E(M̃2

n,n) ≥ κ2

and

lim
n∈N0

∞∑
j=jn+1

b̄2
n,j = 0.

It follows easily that limn∈N0 b̄n = b in �2(N), and since b was an arbitrary weak
limit point, this establishes the first assertion.

The second assertion is now immediate. Setting all of the variances but one to
zero shows that limn→∞ b̄2

n,j exists for a fixed j , in which case limn→∞ b̄n,j exists,

since |bn+1,j − b̄n,j | = O(
√

n), as in the proof of Corollary 2. It then follows that
b̄n converges weakly, from which the assertion follows since b̄n, n ≥ 1, are pre-
compact. �
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