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ESTIMATING CORRELATION FROM HIGH, LOW, OPENING
AND CLOSING PRICES

BY L. C. G. ROGERS AND FANYIN ZHOU

University of Cambridge and Imperial College London

In earlier studies, the estimation of the volatility of a stock using informa-
tion on the daily opening, closing, high and low prices has been developed;
the additional information in the high and low prices can be incorporated
to produce unbiased (or near-unbiased) estimators with substantially lower
variance than the simple open–close estimator. This paper tackles the more
difficult task of estimating the correlation of two stocks based on the daily
opening, closing, high and low prices of each. If we had access to the high
and low values of some linear combination of the two log prices, then we
could use the univariate results via polarization, but this is not data that is
available. The actual problem is more challenging; we present an unbiased
estimator which halves the variance.

1. Introduction. There is no doubt that volatility is a central concept in the
theory and application of quantitative finance. In our simplest models, we treat
volatility as a constant of the Black–Scholes paradigm, but we quickly discover
that the resulting option pricing formula does not fit reality very well, so we con-
sider variants of the basic model, for example, models where the volatility is al-
lowed to be stochastic in some way. (The enormous literature on GARCH models
aims to address similar issues, but cannot be viewed as a variant of Black–Scholes,
being as it is a firmly discrete-time theory.) It is not our purpose here to survey this
huge field; the reader may consult Ghysels, Harvey and Renault (1996), Shephard
(2005) for a survey of (some of) what is known on stochastic volatility. Having
chosen a particular model for volatility, the question of estimating it now arises.
Again, there is no shortage of papers which propose methods of doing just this;
see the survey Broto and Ruiz (2004) for further references. How this estimation
is to be carried out depends on the nature of the data available and the model to
be estimated. For example, if high-frequency data is available, then we may at-
tempt to estimate volatility through the realized variance of the path. There are
several reasons why this is not necessarily a good idea. First, as Alizadeh, Brandt
and Diebold (2002) argue, microstructure effects such as bid-ask bounce can sig-
nificantly bias the estimator upward, though this problem can be obviated to a
large extent by a more ingenious choice of estimator; see, for example, Barndorff-
Nielsen and Shephard (2004), Zhang, Mykland and Aït-Sahalia (2005). Second,

Received February 2007; revised June 2007.
AMS 2000 subject classifications. 62P20, 60J65.
Key words and phrases. Brownian motion, maximum, correlation, estimation.

813

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/07-AAP460
http://www.imstat.org
http://www.ams.org/msc/


814 L. C. G. ROGERS AND F. ZHOU

we should expect that the estimates made will not show much intertemporal sta-
bility (in view of the well-known profile of intraday trading activity). Indeed, the
recent work of Barndorff-Nielsen et al. (2007) confirms this, showing estimates of
volatility which vary very substantially from day to day. Third, we have to handle
a huge amount of data; while this is not in itself a problem, it is reasonable to ask
whether the effort (human and computer) is worth the goal and, indeed, whether
the additional effort will actually help toward the goal. Much depends on the in-
tended use, but if we want to price options, or make forecasts, a few months into
the future, then we should be using calibration data sampled on a comparable time
scale and will require estimates of volatility; studies of high-frequency realized
volatility are not so much estimating volatility as measuring it.

In this study, we shall suppose that we are interested in estimating volatility and
covariances for the purposes of derivative pricing, derivative hedging and forecast-
ing. For the reasons just outlined, we propose to restrict our attention to daily
price data, for lack of convincing evidence that high-frequency observation helps
to this goal. We shall also discuss only the estimation of constant volatilities and
covariances; if nothing can be done in this simple situation, then nothing can be
done in the more general setting. The strand of the literature that we develop in
this paper is that of range-based estimation of volatility. The idea of using infor-
mation on the daily high and low prices, as well as the opening and closing prices,
goes back a long way, to Parkinson (1980) and Garman and Klass (1980) at least,
with further contributions by Beckers (1983), Ball and Torous (1984), Rogers and
Satchell (1991), Kunitomo (1992), Yang and Zhang (2000) and Alizadeh, Brandt
and Diebold (2002), among others. However, it is only comparatively recently that
attention has been given to range-based estimation of covariance between differ-
ent assets; see, for example, Brunetti and Lildholdt (2002), Brandt and Diebold
(2006).

The covariance of assets is important for the computation of the prices of deriv-
atives written on many underlyings, such as basket options; the obvious method of
estimation (treating the daily log-returns as i.i.d. multivariate Gaussian variables)
produces an unbiased estimator of the covariance matrix. The question we address
in this paper is “Can information on daily high and low prices be used to make
better (i.e., lower mean squared error) unbiased estimates of the covariance ma-
trix?” The studies Brandt and Diebold (2006), Brunetti and Lildholdt (2002) work
with foreign exchange data, where the availability of data on the cross rates means
that one is able to observe highs and lows of linear combinations of the log asset
prices, allowing one to reduce to existing univariate methodology by polarization.
However, such an approach would be impossible if assets were equities, say, since
we do not have information on the highs and lows of linear combinations of the
log asset prices (unless full tick data is available, but this would be a very different
question). For such situations, a completely new approach is required; this is what
we undertake in this paper.
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In Section 2, we shall, without loss of generality, restrict to the situation of two
correlated log-Brownian assets, whose rates of growth we shall assume are both
zero. This assumption, used by various authors, is quite innocent if the data is being
sampled daily, as the growth rate is negligible in comparison with the fluctuations.
We aim to construct an unbiased estimator which is a quadratic function of the
high, low and closing (log-)price of the two assets, and which has smallest MSE.
For correlation ρ = −1,0,1, the various moments we require are known in closed
form, but for other values of ρ, not all were known. [The recent paper Rogers and
Shepp (2006) fills in the missing answers.] What we do is to search among linear
combinations of quadratic functions of the variables (subject to the constraint that
the estimator has no bias if ρ = −1,0,1) for the estimator that has the smallest
MSE when ρ = 0. This produces a new estimator whose variance is half that of the
obvious estimator based solely on closing prices. We present simulation evidence
that this advantage appears to be preserved for other values of ρ and is partly
robust to departures from Gaussian returns. The form of the estimator is, moreover,
insensitive to errors produced by discrete sampling of the underlying Brownian
motions, a problem encountered with some other range-based estimators.

2. Estimating covariance. We suppose that the log price processes Xi(t),
i = 1, . . . , n, are correlated Brownian motions, that is,

E[Xi(s)Xj (t)] = σij min{s, t}
for all i, j . We write

Hj ≡ max
0≤t≤1

Xj(t), Lj ≡ min
0≤t≤1

Xj(t), Sj = Xj(1)

for the high, low and final log price, respectively, over a fixed time interval which
we lose no generality in supposing to be [0,1]. We may also restrict our attention
to the case of just two assets since we may estimate the entire correlation matrix if
we can handle this case.

To state the main theoretical result of the paper, we shall suppose that X1 and
X2 are standard Brownian motions, that is, σ11 = σ22 = 1. (We shall see almost
immediately that this restriction is unnecessary.) In this case, the only parameter of
the problem to be estimated is the correlation ρ = σ12 and we obtain the following
result.

THEOREM 1. Among all cross-quadratic functionals (by which we mean a
linear combination of the terms H1H2, H1L2, L1H2, L1L2, H1S2, L1S2, S1H2,
S1L2, S1S2)

ρ̂ ≡ ρ̂(H1,L1, S1,H2,L2, S2)

of the high, low and final log-prices of the two assets which satisfy the unbiased-
ness condition

Eρ[ρ̂] = ρ (ρ = −1,0,1),(1)
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the one whose variance E0[ρ̂2] is minimal when ρ = 0 is

ρ̂ = 1

2
S1S2 + 1

2(1 − 2b)
(H1 + L1 − S1)(H2 + L2 − S2).(2)

The constant b is equal to 2 log 2 − 1 � 0.386294 and the minimized variance is
E0[ρ̂2] = 1/2.

REMARK. It is now obvious from Theorem 1, by a simple scaling, that for
general σij , the estimator

σ̂12 = 1

2
S1S2 + 1

2(1 − 2b)
(H1 + L1 − S1)(H2 + L2 − S2)(3)

is unbiased for σ12 when ρ = −1,0,1, and when ρ = 0, minimizes, variance.

PROOF OF THEOREM 1. The goal is to make an unbiased estimator of
ρ by forming linear combinations of the nine possible cross terms, ZHH =
H1H2,ZHL = H1L2,ZLH = L1H2,ZLL = L1L2,ZHS = H1S2,ZLS = L1S2,

ZSH = S1H2,ZSL = S1L2 and ZSS = S1S2. Now, the means of these products are
known for the cases ρ = −1,0,1 and the recent paper Rogers and Shepp (2006)
establishes that

EZHH = f (ρ)
(4)

≡ cosα

∫ ∞
0

dν
coshνα

sinhνπ/2
tanhνγ,

where ρ = sinα, α ∈ (−π/2, π/2) and 2γ = α + π/2. Table 1 summarizes the
situation. We seek a linear combination ρ̂ of the nine cross products with the fol-
lowing properties:

(i) Eρ[ρ̂] = ρ for ρ = −1,0,1;

TABLE 1
Means of the components of Z

ρ = −1 ρ = 0 ρ = 1 ρ

EZHH b 2/π 1 f (ρ)

EZHL −1 −2/π −b −f (−ρ)

EZLH −1 −2/π −b −f (−ρ)

EZLL b 2/π 1 f (ρ)

EZHS −1/2 0 1/2 ρ/2
EZLS −1/2 0 1/2 ρ/2
EZSH −1/2 0 1/2 ρ/2
EZSL −1/2 0 1/2 ρ/2
EZSS −1 0 1 ρ
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(ii) when ρ = 0, the variance of ρ̂ is minimal.

In order to find a minimum-variance linear combination, we need to know
the covariance of Z ≡ (ZHH ,ZHL,ZLH ,ZLL,ZHS,ZLS,ZSH ,ZSL,ZSS) when
ρ = 0. In this case, the two Brownian motions are independent and the entries of
the covariance matrix can be computed from the entries of Table 1. For example,
E0[ZHHZSL] = E1[ZHS] · E1[ZHL] = −b/2. Routine but tedious calculations
lead to the following covariance matrix:

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −b −b b2 1/2 −b/2 1/2 −b/2 1/4
−b 1 b2 −b 1/2 −b/2 −b/2 1/2 1/4
−b b2 1 −b −b/2 1/2 1/2 −b/2 1/4
b2 −b −b 1 −b/2 1/2 −b/2 1/2 1/4

1/2 1/2 −b/2 −b/2 1 −b 1/4 1/4 1/2
−b/2 −b/2 1/2 1/2 −b 1 1/4 1/4 1/2
1/2 −b/2 1/2 −b/2 1/4 1/4 1 −b 1/2

−b/2 1/2 −b/2 1/2 1/4 1/4 −b 1 1/2
1/4 1/4 1/4 1/4 1/2 1/2 1/2 1/2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(5)

Writing

m = (1,−b,−b,1,1/2,1/2,1/2,1/2,1)T ,

y = (1,−1,−1,1,0,0,0,0,0)T ,

our objective now is to choose a 9-vector w of weights to minimize w ·V w subject
to the constraints that w · y = 0 and w · m = 1. This simple optimization problem
is easily solved: we find that the solution takes the form

w = αV −1m + βV −1y,(6)

where α,β are determined by(
m · V −1m m · V −1y

y · V −1m y · V −1y

)(
α

β

)
=

(
1
0

)
.(7)

Lengthy but routine calculations lead to the final form (2), as claimed, and the
value E0[ρ̂2] = 1/2 is calculated from the explicit forms of V , m and y. �

REMARK. (i) It is clear that if we are trying to produce an estimate of the
covariance matrix of more than two Brownian motions, estimating each entry by
means of (2), then the matrix will be rank 2 and nonnegative definite.

(ii) One problem identified in the earlier literature with estimators based on
high and low values occurs when we observe the Brownian motions discretely,
at N equally spaced times, say we observe H(N) ≡ sup{X(i/N) : i = 0, . . . ,N}
and L(N) ≡ inf{X(i/N) : i = 0, . . . ,N}, and these substantially underestimate the
supremum and overestimate the infimum. A correction is known to deal with this
[see Broadie, Glasserman and Kou (1997)], but we see that as we only ever need
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to calculate H + L, the discretization errors cancel out on average because of the
observation that H −H(N) and L(N) −L have the same distribution, by symmetry.

(iii) The means in the last five lines in Table 1 are exactly linear in ρ, whereas the
means in the first four are not. The function f is well approximated by a quadratic;
the difference between f and its quadratic approximation (which is exact at ρ =
−1,0,1) is never more than 0.65%. However, if we compute the mean of ρ̂, we
find

ϕ(ρ) ≡ Eρ[ρ̂]
= 1

2
ρ + 1

2(1 − 2b)
Eρ[(H1 + L1)(H2 + L2)

− S1(H2 + L2) − S2(H1 + L1) + S1S2]
= 1

2
ρ + 1

2(1 − 2b)
[2f (ρ) − 2f (−ρ) − ρ].

Now, if we simply replace the function f by its quadratic approximation, this ex-
pression collapses to ρ. In other words, replacing f by its quadratic approximation
prevents us from understanding and correcting for the bias in the estimator ρ̂.

What we propose to do, therefore, is the following. We suppose that we see data
from a run of N days and on day i, we compute the value ri (say) of ρ̂. We then
take the mean r̄ of the ri and use as our estimator of ρ

ρ̂RZ ≡ ϕ−1(r̄).(8)

Though the function ϕ is not available in closed form, its numerical values can
easily be computed at any desired grid of points in [−1,1] and then interpolated.

3. Simulation study. We have carried out a simulation study of the estima-
tors. For each ρ = −0.9,−0.8, . . . ,0.9, we generated 20,000 paths (of duration
1) of correlated standard Brownian motions, with 500 steps on each path, and for
each path, we computed and stored the values of ρ̂0 ≡ S1S2 and ρ̂RZ . The results
are reported in Table 2. We give the sample means and standard deviations of the
two estimators for each value of ρ and we also present the ratio of the sample
variance of ρ̂0 over the sample variance of ρ̂RZ . We see that this ratio is always at
least 2, with the smallest value appearing around ρ = 0, where theory predicts the
value 2 exactly.

We see that both estimators are close to the true values across the entire range
of ρ-values chosen, but that ρ̂RZ has at most half the variance of the simple esti-
mator ρ̂0.

To check the robustness of the estimator to model assumptions, we repeated
the simulation study using a variance gamma (VG) process instead of Brownian
motion, once again with 20,000 paths sampled at 500 points in time. The results are
reported in Table 3. Probably the most striking feature is the fact that the estimator
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TABLE 2
Simulation results for Brownian motion

ρ ρ̂0 SD(ρ̂0) ρ̂RZ SD(ρ̂RZ) Variance ratio

−0.9 −0.9069 1.367 −0.9082 0.8831 2.3950
−0.8 −0.7930 1.290 −0.7950 0.8396 2.3600
−0.7 −0.7067 1.239 −0.7005 0.8079 2.3505
−0.6 −0.5880 1.157 −0.5872 0.7678 2.2719
−0.5 −0.5064 1.137 −0.5045 0.7680 2.1917
−0.4 −0.4030 1.075 −0.3962 0.7377 2.1252
−0.3 −0.2971 1.060 −0.2981 0.7178 2.1812
−0.2 −0.2075 1.019 −0.1957 0.7056 2.0835
−0.1 −0.0970 1.003 −0.1004 0.7101 1.9961

0.0 −0.0038 0.999 −0.0011 0.7021 2.0285
0.1 0.0992 1.010 0.0943 0.7151 1.9942
0.2 0.2083 1.014 0.2086 0.7111 2.0331
0.3 0.3051 1.042 0.3028 0.7187 2.1032
0.4 0.4089 1.096 0.4037 0.7370 2.2128
0.5 0.5013 1.124 0.5055 0.7649 2.1611
0.6 0.5967 1.159 0.6032 0.7812 2.1994
0.7 0.6913 1.190 0.6946 0.7941 2.2468
0.8 0.8062 1.309 0.7979 0.8441 2.4057
0.9 0.9012 1.344 0.9042 0.8671 2.4038

ρ̂RZ is now very substantially biased, even for moderately small values of ρ. We
conclude that the use of this estimator is not advisable if we are not satisfied that
the underlying process is Brownian motion. Observe that the bias is always in the
direction of underestimating the magnitude of the correlation.

As a further check of robustness, we performed the same simulation, but using
a Brownian motion with drift 0.1. The results are reported in Table 4. This time,
the bias of ρ̂RZ is small, but the variance advantage persists.

4. Empirical study. In this section, we examine a small data set of stock
prices on four stocks: Boeing (BA), GlaxoSmithKline (GSK), General Motors
(GM) and Proctor & Gamble (PG). The prices were from the NYSE, for the period
4th February 2002 up to 12th July 2006, a period of 1,118 trading days. The data
was from Yahoo Finance. The results are presented in Tables 5 and 6, and in Fig-
ure 1. Table 5 presents the point estimates (sample means) of the correlation com-
puted first by the simple open–close estimator and second by the estimator ρ̂RZ .
Table 6 gives the ratio of the sample variances of the two estimators, the sample
variance of ρ̂RZ being expressed as a percentage of the sample variance of ρ̂0. We
can see that the point estimators of the correlation are reasonably close, but notice-
ably different in places; however, inspection of Figure 1 shows that the differences
are well within sampling error.
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TABLE 3
Simulation results for VG process

ρ ρ̂0 SD(ρ̂0) ρ̂RZ SD(ρ̂RZ) Variance ratio

−0.9 −0.8969 2.0253 −0.6847 1.1751 2.9705
−0.8 −0.8094 1.9726 −0.6112 1.1094 3.1619
−0.7 −0.6681 1.6592 −0.525 0.9746 2.8982
−0.6 −0.6054 1.565 −0.4683 0.9070 2.9771
−0.5 −0.5041 1.4674 −0.3944 0.8512 2.972
−0.4 −0.3928 1.228 −0.3133 0.7264 2.8579
−0.3 −0.3017 1.1538 −0.2409 0.6792 2.8863
−0.2 −0.2000 1.0383 −0.1637 0.6063 2.9331
−0.1 −0.0854 1.0075 −0.0779 0.5759 3.0607

0.0 −0.0069 0.9940 −0.0029 0.5445 3.3326
0.1 0.0967 0.9975 0.0827 0.5694 3.0695
0.2 0.2057 1.0642 0.1660 0.6150 2.9949
0.3 0.3068 1.1338 0.2470 0.6761 2.8119
0.4 0.3891 1.2734 0.3101 0.7514 2.8722
0.5 0.4883 1.4006 0.3870 0.8192 2.9233
0.6 0.5999 1.549 0.4701 0.9150 2.8658
0.7 0.7253 1.8293 0.5515 1.0414 3.0855
0.8 0.8042 1.9081 0.6118 1.0988 3.0155
0.9 0.8941 2.0951 0.6807 1.2121 2.988

The sample variance of ρ̂RZ is substantially less than the sample variance of the
simple estimator ρ̂0, so we see that for this data, the theoretical advantage of ρ̂RZ ,
namely its lower mean-square error, appears to hold.

5. Conclusions. We have presented a new estimator for the correlation of as-
set prices, based on the information contained in daily high, low, open and close
prices. In contrast to other studies, we have not supposed that the high and low
prices of some linear combination of the log prices is available. While this sup-
position might be reasonable if the assets were currencies (when the cross rates
would provide the required information), it would only be possible in the con-
text of equity if high-frequency data were available. We have found a minimum-
variance unbiased estimator quadratic in the variables and have investigated its
properties. Simulation experiments showed that the estimator behaved as expected
for log-Brownian data, but that the performance on simulated variance gamma
data was poor. A small-scale study of prices of equity in major US firms showed
that the two estimators agreed to within sampling error and that the sample vari-
ance of the new estimator was considerably less. As with range-based estimation of
volatility, we conclude that range-based estimation of correlation lacks dependable
and decisive advantages over the simpler estimators based only on the open–close
prices.
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TABLE 4
Simulation results for Brownian motion with drift 0.1

ρ ρ̂0 SD(ρ̂0) ρ̂RZ SD(ρ̂RZ) Variance ratio

−0.9 −0.8960 1.3634 −0.8898 0.8560 2.5372
−0.8 −0.7842 1.2769 −0.7878 0.8267 2.3857
−0.7 −0.6874 1.2068 −0.6917 0.7910 2.3277
−0.6 −0.5817 1.1604 −0.5840 0.7659 2.2953
−0.5 −0.4851 1.1123 −0.4895 0.7482 2.21
−0.4 −0.3953 1.099 −0.3961 0.7481 2.1582
−0.3 −0.2868 1.0469 −0.2855 0.7196 2.1167
−0.2 −0.1851 1.0327 −0.1929 0.7229 2.0407
−0.1 −0.0871 1.0087 −0.0935 0.7120 2.0074

0.0 0.0143 0.9994 0.0047 0.7050 2.0093
0.1 0.1104 1.0095 0.1091 0.7082 2.0319
0.2 0.2130 1.0575 0.208 0.7196 2.1598
0.3 0.3076 1.0599 0.3005 0.7216 2.1572
0.4 0.4088 1.0831 0.4045 0.7359 2.166
0.5 0.5118 1.135 0.5062 0.7602 2.2291
0.6 0.6241 1.2004 0.6108 0.7827 2.3523
0.7 0.7157 1.2345 0.6987 0.7981 2.3928
0.8 0.8153 1.3177 0.8015 0.8371 2.4777
0.9 0.9199 1.3979 0.9114 0.8937 2.4465

Nevertheless, it seems that it is always worth computing the new estimator,
if only as a comparison with the simple open–close estimator. Widely differing
numerical values may indicate a departure from log-normality that requires further
investigation.

TABLE 5
Point estimates of correlation

BA GSK GM PG

Estimated correlation matrix using ρ̂0
BA 1.0000 0.3354 0.3294 0.3201
GSK 1.0000 0.2987 0.3464
GM 1.0000 0.2102
PG 1.0000

Estimated correlation matrix using ρ̂RZ

BA 1.0000 0.2948 0.2925 0.2562
GSK 1.0000 0.2208 0.3327
GM 1.0000 0.2086
PG 1.0000
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TABLE 6
Ratio of sample variances

Ratio of sample variance of ρ̂RZ

to sample variance of ρ̂0 (in %)

BA GSK GM PG

BA 92.43 55.49 45.49 60.88
GSK 54.74 45.90 55.09
GM 78.02 48.12
PG 54.97

Acknowledgment. We thank Nick Brown of BNP Paribas for posing the ques-
tion which led to this work.

FIG. 1. Estimates of ρ. Estimated values are given by solid lines (circle for simple estimator, dia-
mond for ρ̂RZ ) and the 95% confidence intervals are given by the dashed lines. The pairs in Figure
1 are listed in the order BA:GSK, BA:GM, GSK:GM, BA:PG, GSK:PG, GM:PG.



ESTIMATING CORRELATION 823

REFERENCES

ALIZADEH, S., BRANDT, M. and DIEBOLD, F. (2002). Range-based estimation of stochastic
volatility models. J. Finance 57 1047–1091.

BALL, C. A. and TOROUS, W. N. (1984). The maximum likelihood estimation of security price
volatility: Theory, evidence, and an application to option pricing. J. Business 57 97–112.

BARNDORFF-NIELSEN, O. E., HANSEN, P. R., LUNDE, A. and SHEPHARD, N. (2007). Design-
ing realised kernels to measure the ex-post variation of equity prices in the presence of noise.
Technical report, Univ. Oxford.

BARNDORFF-NIELSEN, O. E. and SHEPHARD, N. (2004). Econometric analysis of realized co-
variation: High frequency based covariance, regression, and correlation in financial economics.
Econometrica 72 885–925. MR2051439

BECKERS, S. (1983). Variance of security price returns based on high, low and closing prices. J.
Business 56 97–112.

BRANDT, M. W. and DIEBOLD, F. X. (2006). A no-arbitrage approach to range-based estimation of
return covariances and correlations. J. Business 79 61–74.

BROADIE, M., GLASSERMAN, P. and KOU, S. G. (1997). A continuity correction for discrete bar-
rier options. Math. Finance 7 325–349. MR1482707

BROTO, C. and RUIZ, E. (2004). Estimation methods for stochastic volatility models. J. Economic
Surveys 18 613–649.

BRUNETTI, C. and LILDHOLDT, P. M. (2002). Return-based and range-based (co)variance estima-
tion, with an application to foreign exchange markets. Technical Report 127, Center for Analytical
Finance, Univ. Aarhus.

GARMAN, M. and KLASS, M. J. (1980). On the estimation of security price volatilities from histor-
ical data. J. Business 53 67–78.

GHYSELS, E., HARVEY, A. C. and RENAULT, E. (1996). Stochastic volatility. In Statistical Methods
in Finance (G. S. Maddala and C. R. Rao, eds.). Handbook of Statist. 14 119–191. North-Holland,
Amsterdam. MR1602124

KUNITOMO, N. (1992). Improving the Parkinson method of estimating security price volatilities. J.
Business 65 295–302.

PARKINSON, M. (1980). The extreme value method for estimating the variance of the rate of return.
J. Business 53 61–65.

ROGERS, L. C. G. and SATCHELL, S. E. (1991). Estimating variance from high, low and closing
prices. Ann. Appl. Probab. 1 504–512. MR1129771

ROGERS, L. C. G. and SHEPP, L. (2006). The correlation of the maxima of correlated Brownian
motions. J. Appl. Probab. 43 999–999. MR2274808

SHEPHARD, N., ED. (2005). Stochastic Volatility: Selected Readings. Oxford Univ. Press.
MR2203295

YANG, D. and ZHANG, Q. (2000). Drift-independent volatility estimation based on high, low, open
and close prices. J. Business 73 477–491.

ZHANG, L., MYKLAND, P. A. and AÏT-SAHALIA, Y. (2005). A tale of two time scales: Determin-
ing integrated volatility with noisy high-frequency data. J. Amer. Statist. Assoc. 100 1394–1411.
MR2236450

STATISTICAL LABORATORY

UNIVERSITY OF CAMBRIDGE

WILBERFORCE ROAD, CAMBRIDGE CB3 0WB
UNITED KINGDOM

E-MAIL: l.c.g.rogers@statslab.cam.ac.uk

INSTITUTE FOR MATHEMATICAL SCIENCES

IMPERIAL COLLEGE LONDON

53 PRINCE’S GATE

SOUTH KENSINGTON, LONDON SW7 2PG
UNITED KINGDOM

E-MAIL: fanyin.zhou06@imperial.ac.uk

http://www.ams.org/mathscinet-getitem?mr=2051439
http://www.ams.org/mathscinet-getitem?mr=1482707
http://www.ams.org/mathscinet-getitem?mr=1602124
http://www.ams.org/mathscinet-getitem?mr=1129771
http://www.ams.org/mathscinet-getitem?mr=2274808
http://www.ams.org/mathscinet-getitem?mr=2203295
http://www.ams.org/mathscinet-getitem?mr=2236450
mailto:l.c.g.rogers@statslab.cam.ac.uk
mailto:fanyin.zhou06@imperial.ac.uk

	Introduction
	Estimating covariance
	Simulation study
	Empirical study
	Conclusions
	Acknowledgment
	References
	Author's Addresses

