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ISOPERIMETRIC INEQUALITIES AND MIXING TIME FOR A
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We consider the random walk on a simple point process on R
d , d ≥ 2,

whose jump rates decay exponentially in the α-power of jump length. The
case α = 1 corresponds to the phonon-induced variable-range hopping in dis-
ordered solids in the regime of strong Anderson localization. Under mild as-
sumptions on the point process, we show, for α ∈ (0, d), that the random walk
confined to a cubic box of side L has a.s. Cheeger constant of order at least
L−1 and mixing time of order L2. For the Poisson point process, we prove
that at α = d, there is a transition from diffusive to subdiffusive behavior of
the mixing time.

1. Introduction. We consider the following model of a random walk in ran-
dom environment. We let ξ denote the realization of a simple point process on
R

d , d ≥ 2, and identify ξ with the countable collection of its points. We study the
continuous-time Markov chain with state space ξ and with jump rate from x to y

given by a negative exponential of the Euclidean distance to some power α > 0:

rx,y = e−|x−y|α , x �= y in ξ.(1.1)

The canonical examples are obtained when ξ is the realization of a homogeneous
Poisson point process, but our assumptions on the environment will allow more
general processes. We consider the random walk obtained by confining the parti-
cle to a cubic box �L ⊂ R

d with side L, that is, the random walk with rates (1.1)
on ξL := ξ ∩ �L. There are two natural processes associated with the rates (1.1),
defined as follows. Set wx := ∑

y∈ξL\{x} rx,y , x ∈ ξL. In the first model, the particle
at x waits an exponential time with mean 1/wx and then jumps to some y ∈ ξL\{x}
with probability rx,y/wx . In the second model, the particle at x waits an exponen-
tial time with mean 1 and then jumps to y ∈ ξL \ {x} with probability rx,y/wx .
While the first model has a uniform stationary measure, in the second model, the
stationary measure is given by the weights wx (see below). Our main results will
concern both models, showing that they essentially share the same features.

If ξ is the regular grid Z
d , then it follows from well-known facts that the

Cheeger constant or conductance of the Markov chains defined above is at least
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of order L−1 and that the mixing time is of order L2 (see, e.g., [25]). We shall
show that, for dimension d ≥ 2, α < d , these diffusive-type estimates continue
to hold in our setting for typical realizations of the underlying point process. We
establish our results by way of estimates on the so-called isoperimetric profile of
the random walk. This will be achieved by combining stochastic domination and
percolation techniques. Similar results have recently been obtained in the case of
a random walk on the supercritical percolation cluster [2, 20]. The case α > d ,
with ξ a Poisson point process, will be shown to be subdiffusive in the sense that
Cheeger’s constant is smaller than any inverse power of L, thus implying that the
mixing time is larger than any power of L. In the critical case α = d , we find a tran-
sition from subdiffusive to diffusive behavior of the mixing time as the intensity of
the process increases. In a separate work [6], we analyze the one-dimensional case
in detail. Before describing our results, let us add a few more lines to motivate our
work.

In recent work [10], a variant of the first model with α = 1 has been studied,
where each point x ∈ ξ is given an independent random energy Ex and the rates
in (1.1) are multiplied by a Boltzmann-type factor involving the initial and final
energies Ex,Ey , at inverse temperature β . This can be seen as a model for the
study of the phonon-induced hopping conductivity observed in disordered solids in
the regime of strong Anderson localization. Points x ∈ ξ correspond to impurities
of the solid and the quantum electron Hamiltonian has exponentially localized
eigenfunctions with localization centers x if the corresponding energy Ex is near
the Fermi level. The DC conductivity of such materials would vanish if it were not
for lattice vibrations (phonons) at nonzero temperature. These induce transitions
between the localized eigenstates, whose probability rate can be derived from the
Fermi golden rule. Due to the localization, one can think of electrons as classical
particles. Moreover, at large β and within a mean field approximation, the resulting
stochastic hopping dynamics is given by the random walk mentioned above. We
refer to [10] and references therein for a thorough discussion of the physics behind
the model.

Under suitable assumptions on the underlying point process, the authors of [10]
obtain an invariance principle for the random walk and prove, in dimension d ≥ 2,
a lower bound on the effective diffusivity which coincides with the prediction of
Mott law, that is, a power-law behavior of the logarithm of conductivity as a func-
tion of β . An upper bound in agreement with Mott law is proved in [9].

The invariance principle of [10] is based on classical homogenization results [8]
which allow one to prove that the law of the rescaled random walk converges to
the law of a Brownian motion, in probability, with respect to the environment. To
prove almost sure convergence, a different approach is required; see [4, 18] for two
different ways of obtaining the almost sure invariance principle in the case of a ran-
dom walk on the supercritical percolation cluster. The situation in our continuum
model is slightly different and we shall come back to the almost sure convergence
problem in future work. One of the byproducts of the isoperimetric inequalities we
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establish in the present paper is the almost sure Poincaré inequality for finite boxes
which, according to the approach of [18], may be seen as a first step in the program
of proving an almost sure invariance principle. In this context, the introduction of
the energy marks Ex at the points x ∈ ξ does not cause any additional technical
difficulty and we will restrict our attention to the model defined by (1.1) corre-
sponding to the case of all energies Ex being equal. We remark that, in contrast
with the one-dimensional case [6], for d ≥ 2, an invariance principle with positive
effective diffusion constant may well hold, even in the absence of diffusive bounds
for the Poincaré constant; see [5, 19] for recent interesting developments on Z

d

random walks among random conductances.
Finally, we point out some technical features of the random walks considered

here that make their analysis somewhat subtle, especially for a fixed environment:
The random walk is genuinely nonuniformly elliptic, the particle can perform ar-
bitrarily large jumps and, when visiting a very isolated region of ξ (with at least
two points in the second model), spends much time there, but, when leaving such
a region, performs a very long jump. This trapping effect will become particularly
clear in the analysis of the random walk on a Poisson point process, where the
transition from diffusive to subdiffusive behavior of the mixing time comes from
trapping in isolated regions.

1.1. Main results. The main assumptions on the point process are as follows.
We consider a simple point process P on R

d , d ≥ 2, that is, a probability measure
P on the set � of locally finite subsets ξ of R

d , endowed with the σ -algebra
F generated by the counting variables N� : ξ → #(ξ ∩ �) (cardinality function),
� a bounded Borel subset of R

d . We refer to [7] for a basic reference on point
processes.

We write P∗,ρ if P is the homogeneous Poisson point process with intensity
ρ > 0. Given a realization ξ of the point process and a bounded Borel subset � ⊂
R

d , we shall often write ξ(�) = N�(ξ) for the number of points of ξ belonging to
�. For any K ∈ R+, we write QK = [0,K)d for the cube of side K in R

d . Consider
the partition of R

d into translates of QK , that is, R
d = ⋃

x∈Zd Bx , Bx := xK +QK ,
and declare a box Bx good iff ξ(Bx) ≥ 1. The configuration of good boxes may be
described by the random field σ = σ(K) := {σx(ξ)}x∈Zd defined by

σx(ξ) := χ
(
ξ(Bx) ≥ 1

)
,(1.2)

where χ(A) denotes the indicator function of the event A. We can now state our
main assumption.

ASSUMPTION (A1). We say that P satisfies Assumption (A1) if, for every
0 < p < 1, there exists K ∈ R+ such that the random field σ(K) defined in (1.2)
stochastically dominates the independent Bernoulli process on Z

d with parame-
ter p.
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We recall that the above statement is equivalent to saying that we can construct
the process σ = σ(K) and the independent Bernoulli process Z on Z

d with para-
meter p on the same probability space in such a way that σx ≥ Zx almost surely.
We refer to [15] for more on stochastic domination by Bernoulli product measures.

It is easy to check that P∗,ρ satisfies Assumption (A1) for any ρ > 0. We shall
see (in Section 5) that this assumption is also satisfied by processes with nontrivial
correlation structure, provided a suitable mixing condition is satisfied. We will also
consider the stochastic order between point processes defined in the standard way
(see, e.g., [12]). For two processes P ,P ′, we write P ′ 	 P if P ′ is stochastically
dominated by P . This is equivalent to the existence of a coupling of the fields
P , P ′ such that, almost surely, ξ ′ ⊂ ξ , with (ξ, ξ ′) denoting the random sets with
marginal distributions given by P and P ′, respectively. In particular, it follows
that if there exists ρ > 0 such that P 
 P∗,ρ , then P satisfies Assumption (A1).

For every L ∈ N, �L is the cubic box centered at the origin and ξL denotes the
restriction of the process to �L, that is,

�L =
[
−L

2
,
L

2

]d

, ξL = ξ ∩ �L.

Before stating the results, we need another regularity assumption which guarantees
that local fluctuations in the number of points are not too large in our process. For
every bounded Borel set A ⊂ R

d , define

RA(ξ) = ∑
x∈ξ∩A

∑
y∈ξ

e−|x−y|α .(1.3)

We shall consider, for ε ∈ (0,1), the cubes Vx := Lεx + [0,Lε)d , x ∈ Z
d , with

side Lε . We write JL for the set of x ∈ Z
d such that Vx ∩ �L �= ∅.

ASSUMPTION (A2). We say that P satisfies Assumption (A2) if, for all ε ∈
(0,1), there exists C < ∞ such that P -almost surely

RVx ≤ CLεd ∀x ∈ JL,(1.4)

for L sufficiently large.

Here, and in all our statements below, we use the following convention: Given a
sequence of events {EL}L∈N, we say that EL holds P -a.s. for L sufficiently large
if there exists �0 with P (�0) = 1 such that for every ξ ∈ �0, there is L0(ξ) < ∞
such that ξ ∈ EL for all L ∈ N with L ≥ L0(ξ). In particular, the statement (1.4)
says that if we define the event

EL = {ξ :RVx (ξ) ≤ CLεd,∀x ∈ JL},
then EL eventually holds P -almost surely. Assumption (A2) is satisfied by Pois-
son point processes (see Section 5) and therefore by any process P such that
P 	 P∗,ρ for some finite intensity ρ.



RANDOM WALK ON A RANDOM POINT PROCESS 1711

Let us remark that a consequence of Assumptions (A1) and (A2) is that there
exists C < ∞ such that the inequalities

C−1Ld ≤ ξ(�L) ≤ CLd(1.5)

hold P -a.s. for L sufficiently large, where ξ(�L) is the number of points of ξ in
�L. Indeed, the lower bound is a simple consequence of Assumption (A1), while
the upper bound follows immediately from Assumption (A2) and the obvious fact
that RA(ξ) ≥ ξ(A) for any bounded Borel set A ⊂ R

d .
We now define the random walk models to be considered. In addition to the

two natural models previously discussed (which correspond, resp., to cases i = 1
and i = 2 below), we find it useful to introduce a third model. For i = 1,2,3 and
x, y ∈ ξL with x �= y, we define

Li (x, y) = e−|x−y|α

wi
x

,

(1.6)

wi
x :=



1, i = 1,∑
z∈ξL : z �=x

e−|x−z|α , i = 2,

max

{
1,

∑
z∈ξL : z �=x

e−|x−z|α
}
, i = 3.

On the diagonal, we set Li (x, x) = −∑
z∈ξL : z �=x Li (x, z). For each i = 1,2,3,

we write Xi
t = Xi

t (ξL) for the continuous-time Markov chain with state space ξL

and infinitesimal generator Li (x, y), x, y ∈ ξL. Setting

νi(x) := wi
x∑

z∈ξL
wi

z

, x ∈ ξL,(1.7)

we obtain a symmetrizing probability for the matrix Li and therefore the reversible
probability measure for Xi

t is given by νi . Note that ν1 is uniform: ν1(x) = 1
ξ(�L)

.

For any nonempty subset U ⊂ ξL, we define Uc := ξL \ U . The constant I i
U ,

i = 1,2,3, is given by

I i
U :=

∑
x∈U,y∈Uc νi(x)Li (x, y)∑

x∈U νi(x)
.(1.8)

With the notation

Wi(U) := ∑
x∈U

wi
x,(1.9)

we obtain

I i
U =

∑
x∈U,y∈Uc e−|x−y|α

Wi(U)
.(1.10)
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I i
U is sometimes called the conductance of the set U for the Markov chain associ-

ated to Li . For t ∈ (0,1), the isoperimetric profile ϕi
L(t) is defined by

ϕi
L(t) := inf

U⊂ξL : Wi(U)≤tW i(ξL)
I i
U (ξ).(1.11)

Cheeger’s constant is defined by �i
L := ϕi

L(1
2).

THEOREM 1.1. Assume Assumptions (A1), (A2) and α < d , d ≥ 2. For every
i ∈ {1,2,3} and every ε > 0, there exists δ > 0 such that, P -a.s.,

ϕi
L(t) ≥ δ min

{
1

Lε
,

1

t1/dL

}
, 0 < t ≤ 1

2
(1.12)

for all L sufficiently large. In particular, Cheeger’s constant satisfies, P -a.s.,

�i
L ≥ δL−1(1.13)

for all L sufficiently large.

Recall that when ξ coincides deterministically with Z
d , the standard isoperimet-

ric inequality implies that ϕi
L(t) ≥ δt−1/dL−1 for any 0 < t ≤ 1

2 (see, e.g., [25]).
Theorem 1.1 shows that, up to scales that are smaller than any power of L, these
estimates continue to hold in our three models.

The Poincaré constant γ i(L), i = 1,2,3, is defined by

γ i(L) := sup
f : ξL→R

Vari (f )

Ei (f )
,(1.14)

where Vari (f ) denotes the variance νi(f 2) − νi(f )2 and Ei denotes the Dirichlet
form

Ei(f ) = 1
2

∑
x,y∈ξL

νi(x)Li (x, y)
(
f (x) − f (y)

)2
.(1.15)

γ i(L) is also known as the relaxation time and it coincides with the inverse of the
spectral gap of the generator Li . Indeed, −Li is a nonnegative definite matrix and
its smallest nonzero eigenvalue λi

1 (the spectral gap) is given by λi
1 = 1/γ i(L).

The estimate (1.13) of Theorem 1.1 and an application of standard estimates (see
Section 3) together imply that, assuming Assumptions (A1), (A2) and α < d , there
exists C < ∞ such that, P -a.s.,

γ i(L) ≤ CL2(1.16)

for all L sufficiently large, for all i = 1,2,3. The Poincaré inequality (1.16) gives
us some information on the speed with which the law of the random walk Xi

t

converges to the invariant distribution νi . Namely, let

Hi
t (x, y) =

∞∑
n=0

tn

n!(L
i )n(x, y)(1.17)
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denote the kernel of the random walk, that is, the probability that Xi
t = y condi-

tioned on Xi
0 = x. We define the (uniform) mixing time τ i(L) by

τ i(L) = inf
{
t > 0 : sup

x,y∈ξL

|Hi
t (x, y) − νi(y)|

νi(y)
≤ 1

e

}
.(1.18)

Well-known bounds (see, e.g., [25]) then allow us to estimate

τ i(L) ≤ γ i(L)

(
1 + log

1

νi∗

)
,(1.19)

where νi∗ := minx∈ξL
νi(x). We shall see (Section 3.1) that under Assumptions

(A1) and (A2), for α < d and ε > 0, we can deduce the uniform almost sure bound
νi∗ ≥ δL−d−ε for some constant δ > 0. From (1.16), we then obtain that, for some
C < ∞, P -a.s.,

τ i(L) ≤ CL2 logL(1.20)

for L sufficiently large, i = 1,2,3.
Note that this estimate is only based on the bound (1.13) for Cheeger’s con-

stant. Theorem 1.1, however, shows that small sets can have a larger conductance.
As first observed by Lovasz and Kannan [16], this fact can be used to obtain bet-
ter bounds on the mixing time than (1.19). We will use refinements of this idea,
recently obtained in [11, 21], to show that Theorem 1.1 implies the following im-
provement on (1.20).

THEOREM 1.2. Assume Assumptions (A1), (A2) and α < d , d ≥ 2. There then
exists C < ∞ such that, for every i = 1,2,3, P -a.s.,

τ i(L) ≤ CL2(1.21)

for all L sufficiently large.

Note that (1.21) is a strengthening of the estimate (1.16) since we always have
(see, e.g., [25])

γ i(L) ≤ Cτ i(L).(1.22)

REMARK 1. Under suitable assumptions, one can show that the bound in The-
orem 1.2 is tight up to constant factors. For instance, consider model 1 (i.e., i = 1)
and assume that (1.5) holds P -a.s. for L sufficiently large. Set f (x) = |x| in (1.14)
and define A1 := �L/2 and A2 := �3L/4 so that∑

x,y∈ξL

(
f (x) − f (y)

)2 ≥ 2
∑

x∈ξL∩A1

∑
y∈ξL∩Ac

2

(|x| − |y|)2

(1.23)

≥ ξ(A1)ξ(�L \ A2)
L2

8
.
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Suppose that there exists c > 0 such that, P -a.s.,

ξ(A1)ξ(�L \ A2) ≥ cL2d(1.24)

for L sufficiently large. Note that (1.24) always holds under Assumption (A1).
Equations (1.23) and (1.24) then imply that Var1(f ) ≥ cL2 for some constant
c > 0. Suppose, further, that there exists C < ∞ such that, P -a.s.,∑

x,y∈ξL

e−|x−y|α (|x| − |y|)2 ≤ CLd(1.25)

for L sufficiently large. Then, E1(f ) ≤ C. It follows that there exists δ > 0 such
that, P -a.s.,

γ 1(L) ≥ δL2(1.26)

for all L sufficiently large. From (1.22), we derive the same estimate for τ 1(L).
It is easy to check that (1.25) holds if, for example, Assumption (A2) is known to
hold for all α > 0. Indeed,

e−|x−y|α (|x| − |y|)2 ≤ Ce−|x−y|α/2
.

The estimates in (1.16), Theorem 1.2 and (1.26) can be interpreted as the va-
lidity of diffusive behavior for the mixing time in the case α < d , d ≥ 2. Let us
now turn to a discussion of the case α ≥ d ≥ 2. We restrict our attention to ho-
mogeneous Poisson point processes P = P∗,ρ , but the same proof allows us to
establish analogous results in a larger class of models including, for example, di-
luted lattices. Points (1) and (2) below give subdiffusive estimates on the Poincaré
constant γ i(L) which, by (1.22), can be turned into estimates on τ i(L). From
points (2) and (3) below, we see that if α = d , for P = P∗,ρ , there is a transition
from subdiffusive to diffusive behavior as the intensity ρ is increased.

THEOREM 1.3. For i = 1,2,3, we have the following:

(1) α > d . For every ρ > 0, for any δ > 0,

γ i(L) ≥ L1/δ,(1.27)

P∗,ρ-a.s., for L sufficiently large.
(2) α = d (small density). For every δ > 0, there exists ρ0 > 0 such that, for

any 0 < ρ ≤ ρ0,

γ i(L) ≥ L1/δ,(1.28)

P∗,ρ-a.s., for L sufficiently large.
(3) α = d (high density). There exist C < ∞ and ρ1 < ∞ such that, for any

ρ ≥ ρ1,

τ i(L) ≤ CL2,(1.29)

P∗,ρ-a.s., for L sufficiently large.
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The rest of the paper is organized as follows. In Section 2, we prove Theo-
rem 1.1. Theorem 1.2 is proved in Section 3. In Section 4, we prove Theorem 1.3.
In Section 5, we discuss examples of point processes satisfying the assumptions
required in the main statements. In Appendix A, we prove that Assumption (A2)
is satisfied by the homogeneous Poisson point process, while in Appendix B, we
collect some preliminary results on Bernoulli site percolation.

2. Isoperimetric inequalities.

2.1. The basic construction. We shall partition the space R
d according to

three different scales: K , Lε , CW(logL)1/d , where ε > 0 is a small constant and
K,CW are suitably large constants (independent of L). Accordingly, we will de-
note by Bx the cubes of side K (as in the previous section), by Vx the cubes of side
Lε and by Wx the cubes of side CW(logL)1/d . These are all assumed to be of the
form ax + [0, a)d , x ∈ Z

d , for a = K,Lε,CW(logL)1/d , respectively. At the cost
of replacing a with (L/2)/�(L/2)/a� = a(1 + o(1)), with some abuse of notation,
we assume that the box �L is partitioned by the a-cubes.

2.1.1. The cluster of grey cubes. Let us look at the partition into K-cubes
Bx . As in the Introduction, we call a cube Bx such that ξ(Bx) ≥ 1 good. On the
same probability space of the point process, we consider the independent Bernoulli
process which assigns to a box Bx the color grey with probability p and the color
white with probability 1 − p. From our Assumption (A1), we may assume that
whenever a cube Bx is grey, it is also good. A collection of cubes is said to be
connected if any two cubes Bx,By belonging to it can be joined by a path of adja-
cent cubes, where two cubes Bz and Bz′ are said to be adjacent if their centers are
at distance K . We denoted by CL the largest connected component of grey cubes
Bx such that Bx ⊂ �L; see Figure 1. This is well defined since, with probability 1,

FIG. 1. A realization ξL of the point process in �L and the cluster of grey cubes CL.
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there is eventually a unique cluster with maximal cardinality if p < 1 is sufficiently
large, as will be assumed below (see, e.g., [13] or Appendix B). We refer to CL as
the cluster of grey cubes.

2.1.2. Density of the cluster of grey cubes. We shall need the following conse-
quence of Assumption (A1). Let {Vx}x∈JL

denote the partition of �L by means of
Lε-cubes. There then exists δ > 0 such that if K is sufficiently large, then, P -a.s.,

|CL ∩ Vx | ≥ δLεd ∀x ∈ JL(2.1)

for all L sufficiently large. Here, |CL∩Vx | stands for the volume of the intersection
as a subset of R

d .
Due to Assumption (A1), the grey K-cubes correspond to a Bernoulli site per-

colation with parameter p that can be taken arbitrarily close to 1 by choosing K

large. Hence, it is enough to check the above result for Bernoulli site percolation
with p < 1 sufficiently large. This is done in Appendix B.

Another consequence of Assumption (A1) is that every CW(logL)1/d -cube Wx

in the partition of �L must contain at least one grey K-cube Bz and hence at
least one point of ξL. Indeed, the probability that there exists one cube Wx ⊂ �L

containing no grey K-cube is bounded from above by(
L

CW logL

)d

(1 − p)(C
d
W /Kd) logL,(2.2)

which is summable in L ∈ N if CW is sufficiently large. The Borel–Cantelli lemma
then shows that, almost surely, every Wx ⊂ �L eventually contains at least one
grey K-cube.

2.1.3. Isoperimetric inequality for CL. As shown in [2] and [20], if p is close
to 1, it is not very hard to establish good isoperimetric bounds for the percolation
cluster. We shall now state these estimates explicitly in our context.

For any collection A ⊂ CL of K-cubes, we define ∂A as the collection of
K-cubes By such that By ∈ CL \ A and By is adjacent to some K-cube belonging
to A. |A| and |∂A| will denote their respective volumes as subsets of R

d .

LEMMA 2.1. For suitably large values of the constant K , the following holds.
There exist positive constants κ,C such that, P -almost surely, for L sufficiently
large, every collection A ⊂ CL such that 1

2 |CL| ≥ |A| ≥ C(logL)d/(d−1) satisfies

|∂A|
|A| ≥ κ

1

|A|1/d
.(2.3)

Since grey cubes form a Bernoulli process with parameter p that can be taken
to be close to 1 (by choosing K suitably large), the proof of Lemma 2.1 follows
from Lemma 2.6 of [2].
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When the collection A is such that 0 < |A| ≤ C(logL)d/(d−1), we simply ob-
serve that since ∂A is nonempty, |∂A| ≥ Kd and therefore

|∂A|
|A| ≥ Kd

C(logL)d/(d−1)
.(2.4)

Together with Lemma 2.1, this shows that for any A ⊂ CL such that 1
2 |CL| ≥ |A| >

0, we have

|∂A|
|A| ≥ κ min

{
1

|A|1/d
,

1

(logL)d/(d−1)

}
(2.5)

for a suitable constant κ > 0.

2.2. Proof of Theorem 1.1. We are given an arbitrary set U ⊂ ξL with
Wi(U) ≤ 1

2Wi(ξL) and we have to estimate

I i
U = 1

Wi(U)

∑
x∈U,y∈Uc

e−|x−y|α ,(2.6)

where Uc stands for the complement w.r.t. ξL, that is, Uc = ξL \ U .
We denote by S = S(U) the set of cubes Bx ∈ CL which intersect U (see Fig-

ure 2):

S = {Bx ∈ CL :Bx ∩ U �= ∅}.(2.7)

Also, we let T = T (U) denote the set of cubes Bx ∈ CL which intersect Uc:

T = {Bx ∈ CL :Bx ∩ Uc �= ∅}.(2.8)

Roughly speaking, the idea of the proof will be to exploit as much as possible the
isoperimetric estimates for the region S as a subset of CL (Lemma 2.1). We shall

FIG. 2. Consider the same realizations ξL,CL as in Figure 1. To mark the chosen set U , we use ◦
for points in U and • for points in Uc . Two different choices of the set U are depicted above. In each
case, the set S ⊂ CL is given by the union of the darker cubes.
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consider two separate cases, according to whether Wi(U) > γ |S| or Wi(U) ≤
γ |S|, where γ is a suitably large constant to be fixed below. If Wi(U) > γ |S|, we
show that, in this case, the set U contains islands, whose number is [neglecting
O(Lε) corrections] proportional to Wi(U) and each of which contributes at least
L−ε to the numerator in I i

U . If Wi(U) ≤ γ |S| and the set S is not too large, we can
essentially rely on Lemma 2.1. Finally, it will remain to discuss the case when S is
large in CL (e.g., S = CL). In this case, either the set T is large as well, in which
case we must have S ∩ T large and this produces a large numerator in IU , or T

is small compared to Wi(Uc), in which case things will be handled as in the case
Wi(U) > γ |S| discussed above, by switching from U to Uc.

2.2.1. The case Wi(U) > γ |S|.
LEMMA 2.2. For every ε > 0, there exists a constant γ < ∞ such that, P -a.s.,

for L sufficiently large, we have

I i
U ≥ L−ε(2.9)

for all U ⊂ ξL such that Wi(U) > γ |S|.
PROOF. Observe that, from definitions (1.3) and (1.9), we have RA ≥ Wi(A)

for every bounded set A, for every i = 1,2,3. Recall the definition of the Lε-cubes
Vx . Let m denote the number of cubes Vx such that U ∩ Vx �= ∅. Such Lε-cubes
are called special. Since RVx (ξ) ≥ Wi(Vx), by Assumption (A2), we may assume
that Wi(Vx) ≤ CLεd for all Vx in the partition of �L, so

m ≥ Wi(U)

CLεd
(2.10)

for some constant C < ∞. Special cubes Vx are classified as either strong and
weak according to whether, besides points of U , they also contain points of Uc.
Namely, a special cube V is called strong if V ∩Uc �= ∅ and weak if V ∩Uc = ∅;
see Figure 3.

Suppose Vw is a given weak special cube. Since Vw ∩ Uc = ∅, we must have

S ∩ Vw = CL ∩ Vw,(2.11)

where, with some abuse of notation we identify a collection of cubes with their
union. Indeed, if By is a K-cube with By ∈ Vw ∩CL, then we must have By ∩ ξL �=
∅ and By ∩Uc = ∅, hence By ∩U �= ∅ and therefore By ∈ S. Thus, by the density
property (2.1), we have

|S ∩ Vw| ≥ δLεd(2.12)

for some constant δ > 0. Letting m1 denote the number of weak special cubes in
�L and summing the contributions (2.12) of each weak special cube Vw , we obtain

|S| ≥ δm1L
εd.(2.13)
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FIG. 3. Two special cubes, strong (left) and weak (right).

We now observe that there are more strong special cubes than weak special
cubes, that is, that m1 < m/2. Indeed, otherwise, from (2.10) and (2.13), we would
obtain

|S| ≥ δ
m

2
Lεd ≥ δ

2C
Wi(U),(2.14)

which contradicts Wi(U) > γ |S| if γ is sufficiently large.
Let Vs be a given strong special cube. We claim that∑

x∈U∩Vs,

y∈Uc∩Vs

e−|x−y|α ≥ e−c(logL)α/d

(2.15)

for c := (2
√

dCW)α . To establish (2.15), it is sufficient to show that we can find
two vertices x, y ∈ Vs such that x ∈ U , y ∈ Uc and |x − y| ≤ 2

√
dCW(logL)1/d .

The two points x and y with the above property can be found as follows. Let
{Wi} denote the collection of CW(logL)1/d -cubes Wi such that Wi ⊂ Vs . Since
Vs ⊂ �L, from (2.2), we know that each of the cubes Wi contains at least one
point of ξL. Moreover, by the definition of a strong special cube, we know that Vs

contains a point z ∈ U and a point z′ ∈ Uc. Let z = z0, z1, . . . , zn = z′ denote a
path joining the two points z, z′, such that:

(1) zi ∈ ξL for every i = 1, . . . , n − 1;
(2) |zi − zi+1| ≤ 2

√
dCW(logL)1/d for every i = 1, . . . , n − 1.

Such a path exists, since each of the cubes Wi contains at least one point of ξL. Let
k = min{i ≥ 1 : zi ∈ Uc}. The needed points x, y are obtained by setting x := zk−1,
y := zk . This completes the proof of (2.15).

From (2.14), we know that there are at least m/2 strong special cubes. Restrict-
ing to strong special cubes Vs and using (2.15), we can then estimate∑

x∈U,y∈Uc

e−|x−y|α ≥ ∑
Vs

∑
x∈U∩Vs,

y∈Uc∩Vs

e−|x−y|α ≥ m

2
e−c(logL)α/d

.(2.16)
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Since α < d , we can estimate e−c(logL)α/d ≥ L−ε . Using (2.16) and (2.10), we see
that for every ε > 0, for any L sufficiently large,

I i
U = 1

Wi(U)

∑
x∈U,y∈Uc

e−|x−y|α ≥ e−c(logL)α/d

2CLεd
≥ L−2εd .(2.17)

This completes the proof of Lemma 2.2. �

REMARK 2. We point out that the proof of Lemma 2.2 never used the fact that
Wi(U) ≤ 1

2Wi(ξL). This will be needed in the remainder of the argument below.

REMARK 3. Also, we note that (2.17) is the only piece of the proof using the
assumption α < d . In fact, the same estimate as in (2.17) would hold in the case
α = d if one could choose the constant c arbitrarily small. Since c = (2

√
dCW)α ,

this can be achieved by taking CW small. However, the constant CW must be suf-
ficiently large in order to guarantee that, almost surely, all CW(logL)1/d -cubes
Wx ⊂ �L are occupied by at least one point of ξ , for L sufficiently large; see
(2.2). These observations will be used in the proof of Theorem 1.3.

2.2.2. The case Wi(U) ≤ γ |S|.

LEMMA 2.3. Let ε, γ be the constants appearing in Lemma 2.2. There then
exists δ > 0 such that, P -a.s., for all L sufficiently large, we have

I i
U ≥ δ min{L−ε,Wi(U)−1/d}(2.18)

for all U ⊂ ξL such that Wi(U) ≤ γ |S| and Wi(U) ≤ 1
2Wi(ξL).

PROOF. From our basic construction, any K-cube in S has at least one point
in U and any K-cube in CL \ S has at least one point in Uc. Therefore,∑

x∈U,y∈Uc

e−|x−y|α ≥ δ max{|∂S|, |∂(CL \ S)|},(2.19)

where δ = δ(d,K,α) is a positive constant.
We now prove our claim under the assumption that |S| ≤ a|CL| for some given

constant a ∈ (1
2 ,1). We will remove this restriction afterward. In this case, we have

Wi(U) ≤ γ |S| ≤ γ min
{
|S|, a

1 − a
|CL \ S|

}
.

Setting S# = S if |S| ≤ 1
2 |CL| and S# = CL \ S if |S| > 1

2 |CL|, from (2.19), we
obtain

I i
U ≥ δ(1 − a)

γ a

|∂S#|
|S#| .(2.20)
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Using (2.5), we conclude that

I i
U ≥ κδ(1 − a)

γ a
min

{
1

|S#|1/d
,

1

(logL)d/(d−1)

}
.(2.21)

Next, we claim that

|S| ≤ CWi(U).(2.22)

For i = 1, we have W 1(U) = #(U) and, since there is at least one point of U in
each cube of S, we have |S| ≤ Kd#(U). For i = 2, observe that for every x ∈ U ∩S,
there exists y ∈ ξL \ {x} such that |x −y| ≤ C for a constant C = C(K,d). Indeed,
let B denote the K-cube such that x ∈ B and let B ′ denote a cube adjacent to B

in CL. Then, by construction, B ′ contains at least one point y ∈ ξL. Therefore,
w2

x ≥ e−|x−y|α ≥ e−C =: c for every x ∈ U ∩ S. It follows that W 2(U) ≥ W 2(S ∩
U) ≥ cK−d |S|. Finally, for i = 3, simply use the fact that W 3(U) ≥ W 1(U). This
proves (2.22).

Since |S#| ≤ |S|, using (2.22) and (2.21), we arrive at the bound

I i
U ≥ κδ(1 − a)

γ a
min

{
1

CWi(U)1/d
,

1

(logL)d/(d−1)

}
.(2.23)

This proves the claim (2.18) under the assumption |S| ≤ a|CL|.
We must now remove the latter restriction. In particular, nothing prevents our

set S from coinciding with CL. Suppose, then, that |S| > a|CL|. Let T denote
the set defined by (2.8) and assume that |T | ≥ 2(1 − a)|CL|. Then, |CL \ T | ≤
(2a − 1)|CL| and |S| ≤ |S ∩ T | + (2a − 1)|CL|. Therefore, in this case,

|S ∩ T | ≥ (1 − a)|CL|.(2.24)

Clearly, any cube By ∈ S ∩T contains at least one point of U and at least one point
of Uc. Therefore, ∑

x∈U,y∈Uc

e−|x−y|α ≥ δ1|S ∩ T |,(2.25)

where δ1 = δ1(d,K,α) is a positive constant. Now, Wi(U) ≤ γ |S| ≤ γ |CL| and,
therefore, (2.24) and (2.25) imply that

I i
U ≥ δ1

γ
(1 − a).(2.26)

The bound (2.26) was obtained using |T | ≥ 2(1 − a)|CL|. If, on the contrary,
|T | < 2(1 − a)|CL|, then observe that, as in (2.22), we have the bound Wi(ξL) ≥
c|CL| for some positive constant c and therefore

Wi(Uc) ≥ 1

2
Wi(ξL) ≥ c

2
|CL| > c

4

1

(1 − a)
|T |.(2.27)
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Therefore, Wi(Uc) > γ |T | if a is sufficiently close to 1, where γ was fixed in
Lemma 2.2.

Now, since Wi(U) ≤ Wi(Uc) [because Wi(U) ≤ 1
2Wi(ξL), by assumption], we

have I i
U ≥ I i

Uc . Moreover, the collection of K-cubes T is, for the set Uc, exactly
what S is for U ; see (2.7) and (2.8). As discussed in Remark 2, we can repeat the
argument of Lemma 2.2 with U replaced by Uc and S replaced by T since that
argument applies, despite the fact that we now have Wi(Uc) ≥ 1

2Wi(ξL). Using
the bound Wi(Uc) > γ |T |, we can therefore estimate

I i
U ≥ I i

Uc ≥ L−ε.(2.28)

This completes the proof of Lemma 2.3. �

2.2.3. Conclusion. To finish the proof of Theorem 1.1, we need only gather
the estimates in Lemmas 2.2 and 2.3 to obtain that, for every i = 1,2,3, for ar-
bitrary ε > 0, there exists c > 0 such that, P -a.s., for all L sufficiently large, we
have

I i
U ≥ c min{L−ε,Wi(U)−1/d}(2.29)

for any set U ⊂ ξL with Wi(U) ≤ 1
2Wi(ξL). Passing to the function ϕi

L defined in
(1.11), we arrive at the almost sure estimate

ϕi
L(t) ≥ c min

{
1

Lε
,

1

t1/dWi(ξL)1/d

}
.(2.30)

Since, from Assumption (A2), we know that Wi(ξL) ≤ cLd almost surely, (2.30)
immediately implies the estimate in Theorem 1.1.

REMARK 4. For further applications related to the Palm distribution (see Sec-
tion 5.5), we point out that the proof given above can easily be adapted to show
that for every ε > 0, there exists δ > 0 such that, P -a.s., for all 0 < t ≤ 1/2,

inf
z∈�1

inf
U⊂ξz,L−1 : Wi(U)≤tW i(�z,L−1)

1

Wi(U)

∑
x∈U,y∈ξz,L−1\U

e−|x−y|α

(2.31)

≥ δ min
{

1

Lε
,

1

t1/dL

}
for L sufficiently large, where

ξz,L−1 := ξ ∩ �z,L−1, �z,L−1 := �L−1 + z.

We sketch below the argument needed to derive (2.31).
Fix z ∈ �1, consider U ⊂ ξz,L−1 with Wi(U) ≤ 1

2Wi(ξz,L−1) and set Uc :=
ξz,L−1 \U . Replace, in the previous proof, CL with CL−2 and keep all the remain-
ing notation (up to the above substitutions). Note that ξz,L−1 ⊂ �z,L−1 ⊂ �L and
that, due to (1.5),

c1L
d ≤ #(ξL−2) ≤ #(ξz,L−1) ≤ #(ξL) ≤ c2L

d(2.32)
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for suitable positive constants c1, c2 which do not depend on z. Moreover, observe
that (2.1) still holds with CL replaced with CL−2 and that, by choosing CW suffi-
ciently large, every CW(logL)1/d -cube included in �L−2 must contain a point of
ξ and hence a point of ξz,L−1 [see the derivation of (2.2)].

Consider the case Wi(U) > γ |S| of Section 2.2.1. All of the arguments before
(2.15) remain valid, but the explanation of (2.11) is now as follows: every K-
cube in CL−2 contains a point in ξL−2 ⊂ ξz,L−1 and, in particular, if By is a K-
cube with By ∈ Vw ∩ CL−2, it must be By ∩ ξz,L−1 �= ∅ and By ∩ Uc = ∅, hence
By ∩ U �= ∅ and therefore By ∈ S. In order to establish (2.15), we need to show
that each strong special cube Vs contains points x, y such that x ∈ U , y ∈ Uc and
|x − y| ≤ c(d)CW(logL)1/d . The arguments given in the proof of Theorem 1.1
need to be slightly modified by defining {Wi} as the family of CW(logL)1/d -cubes
included in �L−2 and observing that each Wi must contain a point of ξz,L−1,
while the set Vs \ �L−2 is very thin since it is included in �L \ �L−2. Having
(2.15), (2.17) is derived as in the proof of Theorem 1.1. Neither the case Wi(U) ≤
γ |S| of Section 2.2.1 nor the conclusions of Section 2.2.3 need any additional
modification.

3. Upper bounds on mixing times. We are going to prove Theorem 1.2. We
start by recalling the so-called spectral profile function and its use in bounding
mixing times [11]. For models i = 1,2,3, for any U ⊂ ξL, define

λi(U) = inf
f ∈c+

0 (U)

Ei (f )

Vari (f )
,(3.1)

where c+
0 (U) denotes the set of functions f : ξL → R such that f ≥ 0 and

f (x) = 0 for all x ∈ Uc = ξL \ U . Recall that νi∗ := minx∈ξL
νi(x). The spectral

profile function �i : [νi∗,∞) → R is defined by

�i(r) = inf
U⊂ξL : νi∗≤νi(U)≤r

λi(U).(3.2)

The main result in [11] can be restated as follows.

LEMMA 3.1. For every i = 1,2,3, the mixing time τ i(L) satisfies

τ i(L) ≤ 2
∫ 4e

4νi∗

dr

r�i(r)
.(3.3)

Lemma 3.1 is contained in Theorem 1.1 of [11], which is a general result for
continuous-time Markov chains with finite state space. The next step is to bound
the spectral profile in terms of our isoperimetric profile ϕi

L. Namely, we need a
bound of the form

�i(r) ≥ δϕi
L(r)2, r ∈ [νi∗,1).(3.4)

We shall obtain this bound for models 2 and 3. There is a technical difficulty in
obtaining the same estimate for model 1, so we shall treat this case separately.
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3.1. Models 2 and 3. The estimate (3.4) is derived in Lemma 2.4 of [11] for
the case of Markov chains with generator L of the form K − 1, where K is a
stochastic matrix. Note that Li is of this form for models i = 2,3. We shall give
the details in the next lemma for the reader’s convenience.

LEMMA 3.2. For i = 2,3, we have

�i(r) ≥ 1
2ϕi

L(r)2, r ∈ [νi∗,1).(3.5)

Moreover,

γ i(L) ≤ 2(�i
L)−2, i = 2,3.(3.6)

PROOF. Let f : ξL → R+ be a nonnegative function. Set Ft = {x ∈ ξL :f (x) ≥
t}. Then,

νi(f ) = ∑
x∈ξL

νi(x)f (x) =
∫ ∞

0
νi(Ft ) dt.(3.7)

Set Qi(x, y) := νi(x)Li (x, y) and Qi(U,V ) := ∑
x∈U,y∈V Qi(x, y) for any

U,V ⊂ ξL. Note that, for any i = 1,2,3, Qi(x, y) = Qi(y, x). We then have∑
x,y∈ξL

|f (x) − f (y)|Qi(x, y)

= 2
∑

x,y∈ξL : f (x)>f (y)

[f (x) − f (y)]Qi(x, y)

(3.8)
= 2

∑
x,y∈ξL : f (x)>f (y)

Qi(x, y)

∫ ∞
0

1{f (x)≥t>f (y)} dt

= 2
∫ ∞

0
Qi(Ft ,F

c
t ) dt.

Now, recall that

I i
Ft

= Qi(Ft ,F
c
t )

νi(Ft )
.

If f (x) = 0 for all x ∈ Uc, then Ft ⊂ U for all t > 0 and therefore I i
Ft

≥
ϕi

L(νi(U)). From (3.8) and (3.7), we have thus obtained∑
x,y∈ξL

|f (x) − f (y)|Qi(x, y) ≥ 2ϕi
L(νi(U))

∫ ∞
0

νi(Ft ) dt

(3.9)
= 2ϕi

L(νi(U))νi(f )
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for all f ∈ c+
0 (U). For any such f , we may apply (3.9) to f 2 ∈ c+

0 (U) to obtain

2ϕi
L(νi(U))νi(f 2) ≤ ∑

x,y∈ξL

|f (x)2 − f (y)2|Qi(x, y)

= ∑
x,y∈ξL

|f (x) − f (y)||f (x) + f (y)|Qi(x, y)

≤
( ∑

x,y∈ξL

(
f (x) − f (y)

)2
Qi(x, y)

)1/2

×
( ∑

x,y∈ξL

(
f (x) + f (y)

)2
Qi(x, y)1x �=y

)1/2

≤ (2Ei (f ))1/2

(
4

∑
x,y∈ξL

f (x)2Qi(x, y)1x �=y

)1/2

,

where we use Schwarz’ inequality and the symmetry of Qi .
Now, observe that, for i = 2,3, we have

∑
y∈ξL : y �=x Li (x, y) ≤ 1 for every x,

so ∑
x,y∈ξL

f (x)2Qi(x, y)1x �=y ≤ νi(f 2)

in these cases. This shows that, for i = 2,3,

2ϕi
L(νi(U))νi(f 2) ≤ (2Ei (f ))1/2(4νi(f 2))1/2.(3.10)

Therefore, from (3.1) and (3.10), we see that

λi(U) ≥ inf
f ∈c+

0 (U)

Ei (f )

νi(f 2)
≥ 1

2
ϕi

L(νi(U))2.(3.11)

Returning to the profile functions, we have �i(r) ≥ 1
2ϕi

L(r)2 for any r ∈ [νi∗,1).
In a similar way (see Remark 2.1 in [11]), one proves that the Poincaré constants
γ i(L) satisfy (3.6) for i = 2,3. �

REMARK 5. The only difficulty in obtaining the same type of estimates for
i = 1 is that the sum

∑
y∈ξL : y �=x L1(x, y) cannot be given a uniform upper bound.

This is where the third model (i = 3) becomes useful; see Section 3.2 below.

We are now able to prove Theorem 1.2 for i = 2,3. When r > 1
2 , we can use

the simple bound �i(r) ≥ (γ i(L))−1 ≥ 1
2(�i

L)2 (the first bound follows from the
definitions, while the latter is implied by Lemma 3.2). Therefore, as a corollary of
Lemma 3.2 and Lemma 3.1, we obtain that for any L ∈ N, the mixing times satisfy

τ i(L) ≤ 4
∫ 4e

4νi∗

dt

tϕ̄i
L(t)2

,(3.12)
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where ϕ̄i
L(t) := ϕi

L(t) for t ≤ 1
2 and ϕ̄i

L(t) := �i
L for t > 1

2 .
To complete the proof, we take ε = 1

2 in Theorem 1.1 and observe that, ne-
glecting multiplicative constants, the integral in (3.12) can be bounded from above
by ∫ L−d/2

4νi∗

dt

tL−1 +
∫ 1/2

L−d/2

dt

t1−2/dL−2 +
∫ 4e

1/2

dt

tL−2 .(3.13)

Note that νi∗ ≥ CL−d−ε . Indeed, from Assumption (A1), we know that every cube
Wx contains at least one point of ξL [see (2.2)] and therefore, for every x ∈ ξL, we
have

w3
x ≥ w2

x ≥ e−C(logL)α/d ≥ L−ε

for α < d . On the other hand, from Assumption (A2), we know that W 2,3(ξL) ≤
CLd . It follows that ν2,3(x) ≥ CL−d−ε for every x ∈ ξL. This shows that the first
term in (3.13) contributes at most O(L logL). The second and third terms are both
O(L2). This completes the proof.

3.2. Model 1. We define the hybrid conductance profile

ψL(t) := inf
U⊂ξL : #(U)≤t#(ξL)

I 3
U(ξ).(3.14)

Note that (3.14) uses the conductance of model 3, but the infimum is over sets U

such that ν1(U) ≤ t .

LEMMA 3.3. The estimate (1.12) of Theorem 1.1 holds for the hybrid profile
ψL(t).

PROOF. We repeat the proof of Theorem 1.1. From Lemma 2.2, we know
that if W 3(U) > γ |S|, then I 3

U ≥ L−ε . Let γ, ε be the two constants introduced
above. All we then have to prove is the result of Lemma 2.3 adapted to our case.
Namely, we need to show that for every U ⊂ ξL such that #(U) ≤ 1

2#(ξL) and
W 3(U) ≤ γ |S|, we have

I 3
U ≥ δ min{L−ε,#(U)−1/d}.(3.15)

To prove (3.15), observe that we can again use the bound (2.21). Moreover,
thanks to (2.22), we know that |S| ≤ C#(U). Therefore, under the assumption
|S| ≤ a|CL|, we have

I 3
U ≥ κδ(1 − a)

γ a
min

{
1

C#(U)1/d
,

1

(logL)d/(d−1)

}
.

It remains the case that |S| > a|CL|. Here in the subcase |T | ≥ 2(1−a)|CL|, things
are handled exactly as in Lemma 2.3 and we have the bound I 3

U ≥ δ1(1−a)/γ as in
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(2.26). In the subcase |T | < 2(1 −a)|CL|, we use the fact that W 3(Uc) ≥ #(Uc) ≥
1
2#(ξL) ≥ δ|CL|. Therefore, we obtain W 3(Uc) > γ |T | for a sufficiently close to 1
[see (2.27)]. Now, observe that by Assumptions (A1), (A2) [see (1.5)] and the
bound W 3(Uc) ≥ 1

2#(ξL) as above, we have the uniform almost sure bound

W 3(Uc)

W 3(U)
≥ #(ξL)

2W 3(ξL)
≥ c.

In particular, I 3
U ≥ cI 3

Uc , and the claim follows as in the proof of Lemma 2.3; see
(2.28). �

We turn to the proof of Theorem 1.2 for model 1. Using Lemmas 3.1, 3.3 and
the arguments in (3.12) and (3.13), it will be sufficient to establish the following
lemma.

LEMMA 3.4. There exists c > 0 such that, P -a.s., for L sufficiently large,

�1(r) ≥ cψL(r)2, r ∈ [ν1∗,1).(3.16)

Moreover, there exists C > 0 such that, P -a.s., for L sufficiently large,

γ 1(L) ≤ CL2.(3.17)

PROOF. The proof of (3.16) is similar to the proof of (3.5). We shall use the
same notation below. Namely, as in (3.8), we have, for f ∈ c+

0 (U),∑
x,y∈ξL

|f (x) − f (y)|Q1(x, y) = 2
∫ ∞

0
Q1(Ft ,F

c
t ) dt.

Now, observe that

Q1(Ft ,F
c
t ) = Q3(Ft ,F

c
t )

W 3(ξL)

#(ξL)
≥ Q3(Ft ,F

c
t ) = I 3

Ft
ν3(Ft ).

It follows from definition (3.14) that

Q1(Ft ,F
c
t ) ≥ I 3

Ft
ν3(Ft ) ≥ ψL(ν1(Ft ))ν

3(Ft ) ≥ ψL(ν1(U))ν3(Ft ).

Therefore, (3.9) becomes∑
x,y∈ξL

|f (x) − f (y)|Q1(x, y) ≥ 2ψL(ν1(U))ν3(f ).

Next, repeating the argument after (3.9), we obtain that for any f ∈ c+
0 (U),

2ψL(ν1(U))ν3(f 2) ≤ (2E1(f ))1/2

(
4

∑
x,y∈ξL

f (x)2Q1(x, y)1x �=y

)1/2

.(3.18)
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Using Assumptions (A1), (A2) [see (1.5)] and the definitions (1.6), we have∑
y∈ξL

Q1(x, y)1x �=y = w2
x

#(ξL)
≤ w3

x

#(ξL)
≤ Cν3(x).(3.19)

Moreover, there exists C1 > 0 such that for any x ∈ ξL, we have

ν1(x) ≤ C1ν
3(x), x ∈ ξL,(3.20)

P -a.s., for L sufficiently large. Indeed, note that ν1(x)/ν3(x) is given by
1

w3
x

W 3(ξL)
#(ξL)

. Since w3
x ≥ 1, the claim (3.20) follows from W 3(ξL)

#(ξL)
≤ C1, which is

a consequence of Assumptions (A1) and (A2). From (3.20), we have ν1(f 2) ≤
C1ν

3(f 2) for any f . In particular, combining (3.18) and (3.19), we have obtained
the estimate

ψL(ν1(U)) ≤ C

√
E1(f )

ν1(f 2)
(3.21)

for any f 2 ∈ c+
0 (U). This implies our claim in (3.16).

The proof of (3.17) is a consequence of the comparison estimates

Var1(f ) ≤ C Var3(f ),(3.22)

E3(f ) ≤ CE1(f ),(3.23)

which imply that γ 1(L) ≤ C2γ 3(L) [and γ 3(L) ≤ CL2 follows from (3.6) and
Theorem 1.1]. To prove (3.22), we use (3.20):

Var1(f ) ≤ ν1[(
f − ν3(f )

)2] ≤ C1ν
3[(

f − ν3(f )
)2] = C1 Var3(f ).

The proof of (3.23) is as follows. From Assumptions (A1) and (A2), we have
#(ξL)

W 3(ξL)
≤ C. Therefore, for y �= x,

ν1(x)L1(x, y) = e−|x−y|α

#(ξL)
≥ C−1 e−|x−y|α

W 3(ξL)
= C−1ν3(x)L3(x, y).

This implies that E1(f ) ≥ C−1E3(f ) for any f . �

4. Proof of Theorem 1.3. We start with the subdiffusive behavior (case α > d

or α = d and ρ small). We show that, P∗,ρ-a.s.,

�i
L ≤ L−1/δ,(4.1)

for L sufficiently large, where �i
L is Cheeger’s constant and δ can be taken ar-

bitrarily small (in the case α = d , this requires that ρ is accordingly taken to be
small). The claims about the Poincaré constant (1.27) and (1.28) will then follow
from the simple bound γ i(L) ≥ 1

2(�i
L)−1, which, in turn, follows from

γ i(L) ≥ sup
U⊂ξL : νi(U)≤ 1

2

Vari (1U)

Ei (1U)
= sup

U⊂ξL : νi(U)≤ 1
2

1 − νi(U)

I i
U

.
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As we see below, the bound (4.1) is a consequence of trapping in isolated regions.
For models 1,3, this can already be achieved at single isolated points. For model 2,
we need at least two neighboring points isolated from the rest to produce a subdif-
fusive behavior. We are going to analyze these situations separately.

4.1. Case α > d . Models 1,3. To prove (4.1), we observe that, P∗,ρ-a.s., for L

sufficiently large, at least one of the CW(logL)1/d -cubes Wx ⊂ �L has the prop-
erty that there is exactly one point x∗ in ξ ∩ Wx such that d(x∗,Wc

x ) (Euclidean
distance from x∗ to the complement of Wx) is larger than 1

4CW(logL)1/d . In-
deed, let W be a given CW(logL)1/d -cube and denote by w the unit cube with the
same center as W but with volume 1. Let E denote the event that ξ(w) = 1 and
ξ(W \ w) = 0. Then,

P∗,ρ(E) = P∗,ρ

(
ξ(w) = 1

)
P∗,ρ

(
ξ(W \ w) = 0

)
≥ P∗,ρ

(
ξ(w) = 1

)
P∗,ρ

(
ξ(W) = 0

)
(4.2)

= ρe−ρe−ρCd
W logL =: q.(4.3)

Since there are Ld/Cd
W logL-cubes Wx in �L, the probability that there is no

Wx ⊂ �L with the property above is bounded from above by

(1 − q)L
d/Cd

W logL ≤ exp
(
− qLd

Cd
W logL

)
.(4.4)

For every ρ > 0, we can find sufficiently small CW such that, for example,
qLd ≥ Ld/2, which implies that (4.4) is summable. Therefore, our claim about
the existence of the point x∗ follows from the Borel–Cantelli lemma.

Once we have the point x∗ as above, we can choose U = {x∗}. It is simple to
check that νi(U) ≤ 1/2, P -a.s., for L sufficiently large. Hence, �i

L ≤ I i
U . More-

over, since W 3(U) ≥ W 1(U) = 1, we have I 3
U ≤ I 1

U . In conclusion, for i = 1,3,

�i
L ≤ I i

U ≤ I 1
U ≤ ξ(�L)e−(1/4CW (logL)1/d )α .(4.5)

Since α > d and ξ(�L) = O(Ld) almost surely [see (1.5)], this concludes the
proof of (4.1).

4.2. Case α > d . Model 2. Here, we use the fact that at least one of
the CW(logL)1/d -cubes Wx ⊂ �L has the property that there are exactly two
points x∗, y∗ in ξ ∩ Wx such that both d(x∗,Wc

x ) and d(y∗,Wc
x ) are larger than

1
4CW(logL)1/d and such that d(x∗, y∗) is bounded by

√
d . Namely, let W be a

given CW(logL)1/d -cube and denote by w the unit cube with the same center as
W , as in the argument given above. Let E′ denote the event that ξ(w) = 2 and
ξ(W \ w) = 0. Then,

P∗,ρ(E′) ≥ P∗,ρ

(
ξ(w) = 2

)
P∗,ρ

(
ξ(W) = 0

)
(4.6)

= 1
2ρ2e−ρe−ρCd

W logL =: q ′.
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For a fixed ρ, we can choose CW sufficiently small in such a way that

exp
(
− q ′Ld

Cd
W logL

)
(4.7)

becomes summable. Therefore, by the same arguments as above, the almost sure
existence of the points x∗, y∗ follows from the Borel–Cantelli lemma.

Given the points x∗, y∗ as above, we observe that, choosing U = {x∗, y∗}, we
have W 2(U) ≥ 2e−|x∗−y∗|α ≥ δ for some δ = δ(α, d). However, for z ∈ U and
z ∈ Uc, we have |z − z′| ≥ 1

4CW(logL)1/d . It is simple to check that ν2(U) ≤ 1/2,
P -a.s., for L large. Hence, we can conclude that

�2
L ≤ I 2

U ≤ 1

δ
ξ(�L)e−(1/4CW (logL)1/d )α .(4.8)

As in (4.5), this implies the subdiffusive estimate (4.1).

4.3. Case α = d at small density. Models 1,2,3. We now turn to the case
α = d . Here, the constant CW of the CW(logL)1/d -cubes Wx plays an important
role. In this case, we proceed with the same arguments leading to (4.1) in the case
α > d . Namely, however large the constant CW , using (4.3) and (4.6), we see that
if ρ is suitably small [e.g., ρ < d/(2Cd

W)], then we can find the desired point x∗ or
the couple {x∗, y∗}, as in the cases discussed above, with probability 1. Then, as in
(4.5) or (4.8), for any i = 1,2,3,

�i
L ≤ I i

U ≤ Cξ(�L)e−(Cd
W /4d ) logL.(4.9)

Since ξ(�L) = O(Ld) almost surely, (4.1) follows by taking CW sufficiently large
(and ρ sufficiently small).

4.4. Case α = d , at high density. Models 1,2,3. To prove the claim for ρ

large, we use the same argument as in the proof of Theorem 1.1. Recall that the
only place where the constant α had a role in that proof was in Lemma 2.2. As
explained in Remark 3, in the case α = d , we need to take CW sufficiently small
so that (2.9) holds with, say, ε = 1

2 . Also, note that this value of ε in the estimate
for the isoperimetric profile ϕi

L in (1.12) is sufficient to prove the desired estimates
on mixing times; see (3.13).

Therefore, we need only exploit the fact that if ρ is suitably large, then CW can
be small and we still have that, almost surely, all CW(logL)1/d -cubes Wx ⊂ �L

intersect ξL; see (2.2). This is possible because if Wx is a CW(logL)1/d -cube, then

P∗,ρ

(
ξ(Wx) = 0

) = e−ρCd
W logL.

Therefore, the probability that there exists one such cube with ξ(Wx) = 0 and
Wx ∩ �L �= ∅ is bounded above by

Lde−ρCd
W logL.

Thus, the Borel–Cantelli lemma shows that it suffices to take ρ > (d + 1)/Cd
W .

This completes the proof of Theorem 1.3.
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5. Examples. We are going to describe conditions that guarantee the pro-
cess P satisfies Assumptions (A1) and (A2). To check the stochastic domination
requirement (A1), a very useful criterion is provided by one of the main results of
[15], which can be reformulated in our setting as follows. Recall that Bx, x ∈ Z

d

are the cubes of side K and that σx is the indicator of the event ξ(Bx) ≥ 1. For
every x ∈ Z

d and D > 0, let UD,x denote the set UD,x = {y ∈ Z
d : |y − x| > D}.

LEMMA 5.1. Suppose that there exist D > 0 such that for all x ∈ Z
d ,

P (σx = 1|σ = ζ on UD,x) ≥ p(5.1)

for P -a.a. ζ ∈ {0,1}Z
d
, where p = p(D,K) is such that limK→∞ p(D,K) = 1.

Then there exists ρ = ρ(D,K) with limK→∞ ρ(D,K) = 1, such that the random
field {σx} stochastically dominates the product Bernoulli process with parame-
ter ρ.

PROOF. This is a special case of Theorem 1.3 in [15]. �

Concerning Assumption (A2), we know that it is satisfied by any process P
such that P 	 P∗,ρ for some ρ > 0. This is proved in Appendix A, Proposition
A.1. More generally, we expect that Assumption (A2) is satisfied by any P which
is stochastically dominated by a process P̃ with good mixing properties, for ex-
ample, exponential tree decay of correlations. We turn to some specific examples.

5.1. Poisson processes. Suppose that P = P∗,ρ is the homogeneous Poisson
point process with intensity ρ > 0. Assumption (A1) then is obviously satisfied
since ξ(Bx) are i.i.d. Poisson random variables with parameter ρKd and σx are
independent Bernoulli variables with p = 1 − e−ρKd

. It follows that Assump-
tion (A1) is satisfied by any P such that P 
 P∗,ρ for some ρ > 0. Moreover,
Assumption (A2) is satisfied by any P such that P 	 P∗,ρ for some ρ > 0. In
particular, if P is any process such that

P∗,ρ1 	 P 	 P∗,ρ2(5.2)

with some 0 < ρ1 < ρ2 < ∞ then both Assumptions (A1) and (A2) hold. The
domination (5.2), holds in particular, for nonhomogeneous Poisson processes with
intensity function ϕ(x) such that ρ1 ≤ ϕ(x) ≤ ρ2 (see, e.g., [12]).

5.2. Thinning of point processes with uniform bounds on the local density.
Consider a point process ξ such that, P -a.s.,

1 ≤ ξ(�x + ��) ≤ n ∀x ∈ Z
d,(5.3)

for suitable constants n, � > 0, where �� = [− �
2 , �

2 ]d . Given p ∈ (0,1], let ξ̂ be the

p-thinning of ξ , that is, ξ̂ is obtained from ξ by erasing points of ξ independently
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with probability 1 − p. Note that ξ = ξ̂ if p = 1. The process ξ̂ can model both
crystal/quasicrystal structures (p = 1) and their variants due to defects [p ∈ (0,1)].
Trivially, ξ̂ satisfies Assumptions (A1), (A2). A typical example of point process
ξ̂ is given by the diluted Z

d , defined as the p-thinning of ξ ≡ Z
d .

5.3. High-temperature/low-fugacity gas. Consider a Gibbsian random point
field described by the formal Hamiltonian function

H(ξ) = ∑
x,y∈ξ

ϕ(x − y),(5.4)

where ϕ : Rd → R is an even function (the two-body potential). It is known that
under suitable hypothesis on ϕ and for sufficiently small values of the inverse
temperature β and of the fugacity λ, one can apply cluster expansion techniques
to obtain a well-defined Gibbs field Pβ,λ in the usual DLR sense [24]. We now
consider the case of nonnegative finite range potentials in detail. We comment
briefly on other models afterward.

5.3.1. Nonnegative, finite range potential. Suppose that ϕ : Rd → R is a mea-
surable even function such that ϕ ≥ 0 and ϕ(x) = 0 for |x| > R, for some R < ∞.
A uniformly convergent cluster expansion for such functions that has been ob-
tained by several authors. In particular, at sufficiently small values of β,λ, there
exists a unique Gibbs measure P = Pβ,λ for the interaction (5.4). In [26], this
is derived, together with exponential clustering properties for the random field P
that hold uniformly in the boundary conditions outside a given region. We write
P

η
� for the Gibbs measure in a bounded Borel subset � ⊂ R

d with boundary con-
dition η as follows. Let �� denote the set of finite subsets of �, endowed with
the σ -algebra F� generated by the counting functions NA : ξ → #(ξ ∩ A), A ⊂ �.
Then, if f is a measurable function on ��, we define

EP
η
�
[f ] = 1

Z
η
�

∞∑
n=0

λn

n!
∫
�n

e−βH
η
�(ω)f (ω)dω,(5.5)

where f has been identified with a symmetric function on
⋃

n≥0 �n, Z
η
� is the

normalizing constant and, for any finite ω ⊂ � and any locally finite η ⊂ R
d ,

H
η
�(ω) = ∑

{x,y}⊂ω∪(η∩�c) :
{x,y}∩��=∅

ϕ(x − y).(5.6)

The following estimates have been established in [3], Corollary 2.4 and Corol-
lary 2.5, based on the expansion presented in [26]. We give some preliminary no-
tation. The support of f is the smallest � such that f is F� measurable and is
denoted by �f . Moreover, �̄f stands for its Euclidean enlargement by R, where
R is the range of the interaction, that is, �̄f = {x ∈ R

d :d(x,�f ) ≤ R}. For any
η, τ ∈ �, we set η�τ = (η ∪ τ) \ (η ∩ τ) for the symmetric difference. Corol-
lary 2.5 of [3] is then stated as follows.
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LEMMA 5.2. Let β,λ be such that

λε(β)

1 − 2λε(β)
< 1, ε(β) := e

∫
Rd

(1 − e−βϕ(x)) dx.(5.7)

There then exist C < ∞ and m > 0 such that for any bounded � ⊂ R
d , any local

function f and any pair of boundary conditions η, τ satisfying d(�f ,η�τ) > 3R

and |�̄f | ≤ exp [m(d(�f ,η�τ) − R)], we have

|EP
η
�
[f ] − EP τ

�
[f ]| ≤ C

(
sup
η′

E
P

η′
�

[|f |]
)
e−md(�f ,η�τ).(5.8)

The above result implies, in particular, that for β,λ satisfying (5.7), the Gibbs
field P = Pβ,λ is unique. Moreover, Pβ,λ is stationary and ergodic.

LEMMA 5.3. Assume (5.7). The Gibbs measure P = Pβ,λ then satisfies As-
sumptions (A1) and (A2).

PROOF. We start with Assumption (A2). This follows from the stochastic
domination Pβ,λ 	 P∗,λ, which is a consequence of nonnegativity of ϕ (repulsive
interaction); see [12].

We turn to the proof of Assumption (A1). We shall establish (5.1) for the Gibbs
measure P . Let us first observe that from ergodicity, it follows that P (σx = 1) → 1
as K → ∞. We then use Lemma 5.2 to obtain the desired estimate in (5.1). Note
that if |x − y| > D with D sufficiently large, then d(Bx,By) > DK/2 for all K .
Let � = �(D,K) denote the set

� = {z ∈ R
d :d(z,Bx) ≤ DK/2}.

We write

P (σx = 1|σ = ζ on UD,x) =
∫

EP
η
�
[σx]P (dη|σ = ζon UD,x).(5.9)

From (5.8), taking f = σx , �f = Bx and � = �(D,K), we see that for K suf-
ficiently large, EP

η
�
[σx] ≥ EP τ

�
[σx] − Ce−mDK/2 for any pair of boundary condi-

tions η, τ , with some independent constant C. It then follows that

EP
η
�
[σx] ≥ EP [σx] − Ce−mDK/2

uniformly in η. Therefore, using (5.9), we obtain

P (σx = 1|σ = ζ on UD,x) ≥ EP [σx] − Ce−mDK/2.(5.10)

The claim now follows from EP [σx] = P (σx = 1) → 1 as K → ∞. This com-
pletes the proof of Assumption (A1). �

REMARK 6. All of the above examples fulfill Assumptions (A1) and (A2) for
every α > 0. Hence, due to Remark 1, there exists C > 0 such that γ 1(L) ≥ CL2,
P -a.s., for L sufficiently large.
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5.4. Other examples. We expect Assumptions (A1) and (A2) to hold for Gibb-
sian fields Pβ,λ whenever one has a uniformly convergent high-temperature/low-
fugacity expansion with clustering properties that hold uniformly in the boundary
conditions, as in Lemma 5.2. The latter is known to be the case for some models
with multibody interactions under the assumption that the pair potential ϕ satisfies
ϕ(x) = +∞ for |x| < R0, for some R0 < ∞ (hard-core interactions) and under
some mild additional assumptions [23] (in particular, one can remove the positiv-
ity and finite range requirement on ϕ). For more general models with only pair in-
teraction, such as the one considered in [14], where ϕ is only assumed to be stable
and exponentially decaying at infinity, the clustering property derived in Theorem
2 of [14] is not sufficient to establish Assumptions (A1), (A2) here because of the
lack of uniformity in the boundary condition. In particular, a uniform result, as in
Lemma 5.2, is not available in this case.

Finally, it would be interesting to investigate the validity of Assumptions (A1)
and (A2) in other classes of point processes. The class of determinantal processes
received much attention recently (see, e.g., [1] and references therein). Due to the
negative association property of these processes (repulsion), the most delicate is-
sue here seems to be Assumption (A1). We are not aware of results in this direction
for determinantal point processes in the continuum. On the other hand, for lattice
determinantal processes, simple explicit criteria are known for stochastic domi-
nation from above and from below in terms of i.i.d. Bernoulli random variables
[17].

5.5. Palm distribution. In [10], the authors consider a random walk on the
support of a marked simple point process whose jump rates decay exponentially
in the jump length and depend via a Boltzmann-type factor on the (energy) marks.
The law of the process is the Palm distribution associated with a stationary er-
godic marked simple point process. Since the Boltzmann-type factor in the marks
is bounded from above and below by positive constants, the estimates of Cheeger’s
constant, spectral gap and mixing time for the random walk confined in a cubic box
of side L reduce to the case of zero energy marks and are hence covered by the
following discussion.

Recall that � denotes the Borel space of locally finite subsets ξ ⊂ R
d , endowed

with the σ -algebra F generated by the counting variables N�(ξ) = #(ξ ∩ �), and
define �0 as the Borel subset of � given by the subsets ξ containing the origin.
Given a stationary simple point process on R

d with law P and finite intensity ρ,
that is,

ρ := EP (ξ(�1)) < ∞,

the associated Palm distribution P0 is the probability measure on �0 such that

P0(A) = 1

ρ

∫
�

P (dξ)
∑
z∈ξ1

χA(τzξ) ∀A ⊂ �0 Borel,(5.11)
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where �1 = [−1
2 , 1

2 ]d , ξ1 = ξ ∩ �1, χA denotes the characteristic function of the
event A and τzξ denotes the translated subset ξ − z.

One can directly apply the results described in the Introduction to the case P0.
Since it is usually simpler to deal with the original law P than with the associated
Palm distribution P0, it is useful to obtain results for P0 under suitable assump-
tions on P instead of P0. We prove that if P satisfies Assumptions (A1) and (A2),
then the conclusions of Theorems 1.1 and 1.2 still hold for P0.

LEMMA 5.4. Suppose that P satisfies Assumptions (A1) and (A2) and that
α < d . For every ε > 0, there exists δ > 0 such that for all i = 1,2,3, P0-a.s.,

ϕi
L(t) ≥ δ min

{
1

Lε
,

1

t1/dL

}
, 0 < t ≤ 1

2
,(5.12)

for all L sufficiently large. In particular, there exists C < ∞ such that, P0-a.s.,

�i
L ≥ δL−1,(5.13)

τ i(L) ≤ CL2(5.14)

for all L sufficiently large.

PROOF. As discussed in Section 3, (5.13) and (5.14) are a consequence of
(5.12). In order to prove (5.12), consider the event Aδ,ε,L0 given by the subsets
ξ ∈ � satisfying (5.12) for L ≥ L0, L ∈ N. Due to Remark 4, given ε > 0, there
exists δ > 0 such that

P (∃L0 > 0 : τzξ ∈ Aδ,ε,L0 for all z ∈ ξ1) = 1.

In particular, due to (5.11), limL0↑∞ P0(Aδ,ε,L0) = 1, thus implying (5.12) for L

sufficiently large P0-a.s. �

APPENDIX A: ON THE VALIDITY OF ASSUMPTION (A2)

Recall that, for any bounded Borel set A ⊂ R
d ,

RA(ξ) = ∑
x∈ξ∩A

∑
y∈ξ

e−|x−y|α .(A.1)

Also, recall that �� = [− �
2 , �

2 ]d , � ∈ N, and that P∗,ρ denotes the homogeneous
Poisson point process with intensity ρ > 0.

PROPOSITION A.1. There exists a constant c1 = c1(ρ,α, d) such that for
every n ∈ N,

P∗,ρ(R��
≥ γ �d) ≤ Cn�

−nd, ∀γ > c1, � ∈ N,(A.2)

where Cn is a finite constant depending on n and ρ,α, d . In particular, Assumption
(A2) is satisfied by any P such that P 	 P∗,ρ for some ρ > 0.
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PROOF. Let us first show that Assumption (A2) is satisfied by any P 	 P∗,ρ

once we have the bound (A.2). For ε > 0, recall the definition of the cubes Vx =
Lεx + [0,Lε)d , x ∈ Z

d . Since RVx is an increasing function, it is sufficient to
establish the bound (1.4) for P∗,ρ . This, in turn, is an immediate consequence of
(A.2) since a union bound shows that the probability that at least one of the Vx in
the partition of �L is such that RVx ≥ CLεd for a sufficiently large constant C is
bounded from above by

LdCnL
−εdn.

Therefore, we can choose, for example, n = n(ε) = d+2
εd

to obtain that the proba-
bility of violating Assumption (A2) is summable in L ∈ N and the claim follows
from the Borel–Cantelli lemma.

We turn to the proof of (A.2). To simplify the notation, we shall use the conven-
tion that c, c′, c′′, . . . stand for positive constants depending only on the parameters
ρ,α, d and n (but not on �), whose values can change from line to line.

We define

S�(ξ) = ∑
u∈��∩Zd

∑
v∈Zd

e−|u−v|α ξ(Qu)ξ(Qv),

where Qu := u + [−1/2,1/2]d , u ∈ Z
d . It is simple to check that, for c = c(α, d),

R��
(ξ) ≤ cS�(ξ).

Hence, it is enough to prove Proposition A.1 with R��
replaced by S�.

Note that E∗,ρ[S�] ≤ c1�
d for some c1 depending on ρ,α, d (here and below,

E∗,ρ stands for expectation w.r.t. P∗,ρ). Therefore, for γ sufficiently large, we can
write

P∗,ρ(S� > γ �d) ≤ P∗,ρ

(
S� − E∗,ρ[S�] > (γ/2)�d)

(A.3)
≤ (γ /2)−2n�−2nd

E∗,ρ

[
(S� − E∗,ρ[S�])2n]

.

Thus, it will be sufficient to show that

E∗,ρ

[
(S� − E∗,ρ[S�])2n] ≤ c�nd .(A.4)

Let us define

Fu,v(ξ) = ξ(Qu)ξ(Qv) − E∗,ρ[ξ(Qu)ξ(Qv)].
We can then write

E∗,ρ

[
(S� − E∗,ρ[S�])2n]
= ∑∗

e−|u1−v1|α−|u2−v2|α−···−|u2n−v2n|α

× E∗,ρ[Fu1,v1(ξ)Fu2,v2(ξ) · · ·Fu2n,v2n
(ξ)],
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where the sum
∑∗ is defined as∑∗ = ∑

u1∈��∩Zd

∑
u2∈��∩Zd

· · · ∑
u2n∈��∩Zd

∑
v1∈Zd

∑
v2∈Zd

· · · ∑
v2n∈Zd

.

Note that if

E∗,ρ[Fu1,v1(ξ)Fu2,v2(ξ) · · ·Fu2n,v2n
(ξ)]

is not zero, then for each i ∈ {1, . . . ,2n}, there exists j ∈ {1, . . . ,2n} with i �= j

such that {ui, vi} ∩ {uj , vj } �= ∅. Indeed, if there is an isolated pair ui, vi , then the
expression vanishes by independence. Hence, using the simple bound [for some
c = c(n,ρ)]

|E∗,ρ[Fu1,v1(ξ)Fu2,v2(ξ) · · ·Fu2n,v2n
(ξ)]| ≤ c

∀u1, u2, . . . , u2n, v1, v2, . . . , v2n,

if we write
∑∗∗ for the sum

∑∗ restricted to u1, . . . , u2n, v1, . . . , v2n such that the
property mentioned above is satisfied, we obtain the bound

E∗,ρ

[
(S� − E∗,ρ[S�])2n] ≤ c

∑∗∗
e−|u1−v1|α−|u2−v2|α−···−|u2n−v2n|α .

In order to complete the proof, we need to show that∑∗∗
e−|u1−v1|α−|u2−v2|α−···−|u2n−v2n|α ≤ c�nd .(A.5)

Let us first observe that the contribution to the left-hand side of (A.5) of addenda
such that ‖vi‖∞ > � for some i is bounded by some constant c. In fact, suppose,
for example, that ‖v1‖∞ > �. Since ‖u1‖∞ ≤ �/2, we can bound

|u1 − v1| ≥ c‖u1 − v1‖∞ ≥ c(‖v1‖∞ − ‖u1‖∞) ≥ c′� + c′′‖v1‖∞.

Hence, ∑∗∗
χ(‖v1‖∞ > �)e−|u1−v1|α−|u2−v2|α−···−|u2n−v2n|α

≤ e−c′�α ∑
u1∈��∩Zd

∑
v1∈Zd

e−c′′‖v1‖α∞
( ∑

u∈��∩Zd

∑
v∈Zd

e−|u−v|α
)2n−1

≤ ce−c′�α

�2dn ≤ c′′′.
Using this observation, it is enough to prove (A.5) when the sum

∑∗∗ is restricted
to v1, . . . , v2n in [−�, �]d ∩ Z

d . Of course, we may also extend to u1, . . . , u2n ∈
[−�, �]d ∩ Z

d . Hence, Proposition A.1 follows from Lemma A.2 below. �

LEMMA A.2. Let
∑� denote the sum over u1, u2, . . . , u2n, v1, v2, . . . , v2n in

[−�, �]d ∩ Z
d such that for each i ∈ {1, . . . ,2n}, there exists j ∈ {1, . . . ,2n} with

i �= j and {ui, vi} ∩ {uj , vj } �= ∅. Then,∑�
e−|u1−v1|α−|u2−v2|α−···−|u2n−v2n|α ≤ c�nd .(A.6)
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FIG. 4. Example of a graph G ∈ �{1,2,...,6}.

PROOF. The proof is based on a combinatorial argument and it is convenient
to start by explaining the needed graph-theoretic notation. Given W ⊂ N+, we
denote by �W the family of oriented graphs with |W | edges (|W | is the cardinality
of the set W ) such that:

(1) each edge is oriented and labeled by a number i ∈ W (different edges are
labeled by different numbers);

(2) each connected component contains at least two edges.
See Figure 4 for an example. We shall take W ⊂ {1, . . . ,2n} and will use a graph

in �W to describe the dependence structure between points (u1, v1), . . . , (u2n,

v2n), as explained below. Graphs in �W are thought of up to isomorphisms, that
is, up to bijective maps from the vertex set of one graph to the vertex set of the
other that conserve the orientation and labeling of the edges.

To a graph G ∈ �W , with W ⊂ {1,2, . . . ,2n}, we associate the family �G of
labeled oriented graphs G satisfying the following properties:

(1) G is isomorphic to G;
(2) G has vertex set {ui}i∈W ∪ {vi}i∈W , where ui, vi ∈ [−�, �]d ∩ Z

d ;
(3) for each i ∈ W , ui is connected to vi by the oriented edge (from ui to vi )

labeled by i.
With these definitions, it becomes clear that terms in the sum

∑� defined in
Lemma A.2 can be enumerated by first enumerating all graphs G ∈ �W , with
W = {1, . . . ,2n}, and then enumerating all graphs G ∈ �G corresponding to that
G. For instance, if n = 3, the choice of the graph G given in Figure 4 corresponds
to the constraints u1 = v1 = v2 = a1, u2 = v3 = v4 = a2, u3 = u4 = a3, u5 =
a4, v5 = u6 = a5, v6 = a6, with arbitrary distinct points a1, . . . , a6 ∈ [−�, �]d ∩Z

d .
In general, the fact that G and G are isomorphic implies that ui1, ui2, . . . , uik and
vj1, vj2, . . . , vjs must all coincide whenever there exists a vertex a of the graph
G such that the oriented edges labeled by i1, . . . , ik exit from a and the oriented
edges labeled by j1, . . . , js enter in a. Given G ∈ �G, we define

F(G) = ∏
i∈W

e−|ui−vi |α .(A.7)
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In particular, in the case of Figure 4, we would obtain

∑
G∈�G

F(G) = ∑
a1,a2,...,a6∈[−�,�]d∩Zd :

ai all distinct

6∏
i=1

e−|ui−vi |αχ(u1 = v1 = v2 = a1,

u2 = v3 = v4 = a2,

u3 = u4 = a3, u5 = a4,

v5 = u6 = a5, v6 = a6).

In general, thanks to the above definitions, we can write the sum in Lemma A.2 as∑�
e−|u1−v1|α−|u2−v2|α−···−|u2n−v2n|α = ∑

G∈�{1,2,...,2n}

∑
G∈�G

F(G).(A.8)

Next, note that if G1,G2, . . . ,Gk are the connected components of a given G, then

∑
G∈�G

F(G) =
k∏

i=1

( ∑
G∈�Gi

F (G)

)
.(A.9)

By definition, each connected component of any graph G ∈ �{1,2,...,2n} must con-
tain at least two edges. Since G in (A.8) has 2n edges, the graph G has at most n

connected components. Thus, the number k in (A.9) is not larger than n. Also, note
that the number of graphs G ∈ �{1,2,...,2n} only depends on n. Thanks to (A.8) and
these last observations, in order to complete the proof, it is enough to prove that∑

G∈�G

F(G) ≤ c�d(A.10)

for each connected graph G ∈ �W , for any W ⊂ {1,2, . . . ,2n}.
Fix a connected graph G ∈ �W and let m denote the number of its vertices. Note

that if m = 1, then (A.10) follows immediately. Thus, we will assume that m ≥ 2.
Denote by G′ an arbitrary spanning tree of G, that is, a connected subgraph of G
with the same vertex set which has no cycles. Let �G′ denote the corresponding
family of graphs, as defined above. Since G′ is obtained from G by removing some
edges (if necessary), from the definition (A.7) we have∑

G∈�G

F(G) ≤ ∑
G∈�G′

F(G).

Hence, it is enough to prove (A.10) when G is a tree.
We prove this statement by induction over the number m of vertices of the

tree G. If m = 2, the statement is straightforward since∑
G∈�G

F(G) = ∑
u1,v1∈[−�,�]d∩Zd : u1 �=v1

e−|u1−v1|α = O(�d).
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Suppose, now, that m > 2. Take a leaf a of G, that is, a vertex that is connected to
only one other vertex b by an edge e = (b, a) or e = (a, b). Consider the new tree
Ĝ obtained from G by removing the vertex a and the edge e. Then,

∑
G∈�G

F(G) ≤ ∑
Ĝ∈�Ĝ

F(Ĝ)

( ∑
z∈[−�,�]d∩Zd

e−|w(Ĝ)−z|α
)
,

where w(Ĝ) is the vertex of Ĝ corresponding to the vertex b in Ĝ via the isomor-
phism between Ĝ and Ĝ. The last factor in the expression above is bounded by∑

z∈Zd e−|z|α < ∞. Therefore,∑
G∈�G

F(G) ≤ c
∑

Ĝ∈�Ĝ

F(Ĝ).

Since the number of edges in G is at most 2n, we can iterate this estimate down to
the case m = 2 and the proof is complete. �

APPENDIX B: PERCOLATION RESULTS

In this appendix, we prove some properties concerning the maximal open cluster
in a finite box for site percolation with parameter p close to 1. Similar results hold
for each supercritical p; see [22]. For the reader’s convenience, we give a simple
and essentially self-contained proof for the case of large p.

We consider site percolation on Z
d , d ≥ 2, that is, we have i.i.d. Bernoulli ran-

dom variables ω(x), x ∈ Z
d , with parameter p ∈ (0,1). As usual, a point x is said

to be open if ω(x) = 1, closed if ω(x) = 0. We denote by Bn the box {1,2, . . . , n}d
and consider the natural graph structure inherited by Z

d , that is, two points x, y ∈
Bn are joined by an edge iff |x − y| = 1, where |x − y| denotes Euclidean dis-
tance. A set A ⊂ Bn will be called Bn-connected if it is connected with respect to
this structure. Moreover, a set A ⊂ Bn is called 2-connected if for every x, y ∈ A,
there exists a path x = z1, . . . , zm = y such that zi ∈ A and |zi − zi+1| ≤ 2 for
every i = 1, . . . ,m. For A ⊂ Bn, we define d∞(A) = max{‖x − y‖∞, x, y ∈ A},
the diameter in the �∞-norm. The Bn-connected components of the set of open
vertices in Bn are called open clusters or simply clusters. We introduce the events
An, Bn and Cn(κ) as follows: An is the event that there exists at most one open
cluster C in Bn such that d∞(C) ≥ [n/10]; Bn is the event that there exists an
open crossing cluster in Bn, that is, an open cluster intersecting all of the faces of
Bn; given κ ∈ (0,1), Cn(κ) denotes the event that there exists an open cluster in
Bn with at least κnd points.

We denote by N
(j)
n the maximal number of open left-right crossings of Bn in

the j th direction, that is, for the maximal number of disjoint open paths connect-
ing B

(j,−)
n := {x ∈ Bn :xj = 1} to B

(j,+)
n := {x ∈ Bn :xj = n}. Recall (cf. Theorem
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7.68 and Lemma 11.22 in [13]) that if p is sufficiently large, then there exist posi-
tive quantities κ(p) and γ (p) such that for each j and each n ≥ 1, we have

P
(
N(j)

n < κ(p)nd−1) ≤ e−γ (p)nd−1
.(B.1)

Note that in [13], the proof is given for bond percolation, but it can be easily
adapted to site percolation. Moreover, from the proof, it is simple to derive that
limp↑1 κ(p) = 1.

LEMMA B.1. Fix κ ∈ (0,1). Then, for p < 1, sufficiently large, there exists a
positive constant c such that

P
(
An ∩ Bn ∩ Cn(κ)

) ≥ 1 − e−cn ∀n ≥ 1.

PROOF. Let us first prove that Ac
n, the complement of An, has exponentially

small probability if p < 1 is sufficiently large. To this end, thanks to (B.1), we
may assume that there exists an open cluster C1 in Bn intersecting both B

(1,−)
n

and B
(1,+)
n . Clearly, d∞(C1) > [n/10]. Suppose, then, that there exists another

open cluster C2 of diameter larger than [n/10]. By a rather standard Peierls-like
argument, we are going to show that this implies the existence of a 2-connected
closed set in Bn with cardinality larger than cn for some constant c > 0 and that
this latter event has exponentially small probability.

Consider the set Bn \ C1 and denote by A the Bn-connected component of
Bn \ C1 containing C2. We write A1,A2, . . . ,An for the remaining Bn-connected
components of Bn \ C1. Observe that Bn \ A is Bn-connected. Indeed, Bn \ A is
the disjoint union of A1, . . . ,An and C1. Since C1 is Bn-connected and each Ai is
Bn-connected to C1, it follows that Bn \ A is Bn-connected.

Define ∂intA = {x ∈ A :∃y ∈ Bn \ A, |x − y| = 1}. We first observe that every x

in ∂intA is closed. Indeed, any x ∈ ∂intA has a neighbor y ∈ C1 such that |y − x| =
1, so ω(x) = 1 would imply that x ∈ C1.

Since A and Bn \ A are both Bn-connected, we have that ∂intA is 2-connected.
The proof of this fact can be derived, for example, from the arguments in Appendix
A of [20].

Next, we claim that

d∞(∂intA) ≥ [n/10].(B.2)

Since C2 ⊂ A, we have d∞(A) ≥ d∞(C2) ≥ [n/10], that is, there exist a direction j

and points x, y ∈ A such that yj −xj = d∞(A) ≥ [n/10] where xj = min{x′
j :x′ ∈

A} and yj = max{x′
j : x′ ∈ A}. If 1 < xj and yj < n, then we must have x, y ∈

∂intA and (B.2) follows. Suppose, now, that xj = 1, that is, x ∈ B
(j,−)
n (the case

yj = n is handled in the same way). If B
(j,−)
n \ A �= ∅, then there must exist a

point z ∈ B
(j,−)
n \ A and a point x′ ∈ B

(j,−)
n ∩ A such that |x′ − z| = 1. In this

case, x′ ∈ ∂intA, x′
j = xj = 1 so that d∞(∂intA) ≥ ‖y − x′‖∞ ≥ yj − xj and (B.2)
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follows. It remains to check the case xj = 1 with B
(j,−)
n ⊂ A. Note that since C1

intersects B
(1,±)
n , we must have j �= 1. Hence, we can exhibit points x′, y′ ∈ A with

x′, y′ ∈ B
(j,−)
n and such that x′

1 = 1 and y′
1 = n. Therefore, we are in the case that

we just considered above since now x′
1 = 1 and B

(1,−)
n \ A �= ∅. This completes

the proof of (B.2).
The above observations prove that there must exist a closed 2-connected set

in Bn with �∞-diameter at least [n/10]. In particular, there exists a closed 2-
connected set with cardinality at least cn for some constant c > 0. A union bound
therefore gives that the probability of this event is, for p < 1 and n ∈ N sufficiently
large, bounded above by

nd
∑

m≥cn

e−β(p)meα(d)m ≤ e−(c/2)β(p)n,

where we use the facts that the number of 2-connected subsets of Bn with car-
dinality m is bounded from above by ndeα(d)m for a d-dependent constant α(d)

and that the probability that a given subset of Bn with cardinality m is closed is
e−β(p)m with β(p) → ∞ as p → 1. In conclusion, we have shown that Ac

n has
exponentially small probability if p < 1 is sufficiently large.

We turn to the events Bn and Cn(κ). In what follows, we take p < 1 sufficiently
large so that κ(p) ≥ κ . Let Wn be the event that N

(j)
n ≥ κnd−1 for all j , 1 ≤ j ≤ d .

Due to (B.1) and since d ≥ 2, we have that P(W c
n) ≤ de−γ (p)n. Note that the event

An implies that all of the open left-right crossings of Bn must belong to the same
open cluster of Bn. If the event Wn is also verified, then this common cluster has
cardinality at least κnd and is a crossing cluster. Hence, for p < 1 sufficiently
large,

P
(
An ∩ Bn ∩ Cn(κ)

) ≥ P(An ∩ Wn) ≥ 1 − P(Ac
n) − P(W c

n) ≥ 1 − e−cn

for a suitable positive constant c. �

REMARK 7. A set of diameter m ∈ N has less than (2m)d points. Hence, a
set of at least κnd points has diameter larger than nκ1/d/2. In particular, taking
(1/5)d < κ < 1 in the above lemma and applying the Borel–Cantelli lemma, one
obtains that if p < 1 is sufficiently large, then, a.s., there exists a unique maximal
open cluster in Bn for n sufficiently large. Moreover, this unique maximal open
cluster is crossing and has at least κnd points.

In what follows, in order to simplify the notation, we assume that given an
integer n ≥ 1, the number c1 logn is an integer and n is a multiple of c1 logn. It is
simple to adapt the result to the general case.

PROPOSITION B.2. Given n ≥ 1, partition Bn into cubes Cj , j ∈ J , of side
length c1 logn. Consider a maximal cluster M(n) in Bn. The following then holds
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for p < 1 sufficiently large: there exist positive constants κ , c′ such that if c1 ≥ c′,
then, a.s.,

|M(n) ∩ Cj | ≥ κ|Cj | ∀j ∈ J,

for n sufficiently large.

PROOF. Let us consider the family {Qi, i ∈ I } of cubes of side length c1 logn

included in Bn given by the cubes Cj , j ∈ J , and by the cubes included in Bn

obtained my translating each Cj by a distance [c1 logn/2] in all coordinate direc-
tions. Note that |I | ≤ 2d|J | = 2dnd/(c1 logn)d .

Fix κ such that (1/5)d < κ < 1. By Lemma B.1 and the Borel–Cantelli lemma,
the following then holds for p < 1 sufficiently large and c1 ≥ c∗

1(p): a.s., eventu-
ally in n, Bn has a unique maximal open cluster M(n) and, moreover, this cluster is
the unique open crossing cluster and the unique open cluster of diameter larger than
[n/10]; in addition, each cube Qi has exactly one open cluster Si of diameter larger
than [c1 logn/10], and this cluster is a crossing cluster with at least κ(c1 logn)d

points. Due to this characterization, it is simple to check that if Qi ∩ Qi′ �= ∅,
then there exists in Qi ∩Qi′ an open path of length larger than [c1 logn/10] which
must necessarily be included in both Si and in Si′ , hence Si ∩Si′ �= ∅. This implies
that all sets Si are contained in the same open cluster of Bn, which, moreover, has
diameter n. Hence, this common cluster must be M(n). Moreover,

|M(n) ∩ Qi | ≥ |Si | ≥ κ(c1 logn)d ∀i ∈ I. �
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