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1. Mixing vs. weak dependence

For a long time mixing conditions have been the dominating type of condi-
tions for imposing a restriction on the dependence between time series data.
Such conditions were introduced at the end of the fifties by Rosenblatt (1956)
and by the Saint Petersburg school, due to Ibragimov (1962). The notion was
mainly used in a systematic way by statisticians since this notion fits quite well
with nonparametric techniques; see for example Rosenblatt (1985) for details.
The monograph edited by Eberlein and Taqqu (1986) describes the state of the
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art at that time, perhaps with the omission of some Russian and French au-
thors. Doukhan and Portal (1987) obtained strong convergence results for the
empirical process. Many examples of mixing processes are discussed in Doukhan
(1994) and this monograph also includes previous results by Doukhan, León and
Portal (see the citations included). Furthermore, Dehling and Philipp (2002)
related several anterior work concerned with the strong invariance principle.
However, the greatest advance in the theory occured after Rio (1993)’s work;
his covariance inequality yields indeed sharp central limit results, see for this
the monograph by Rio (2000) as well as Doukhan, Massart and Rio (1994). We
would like to mention also contributions by Shao (1988) (who obtained sharp
results under ρ-mixing), Shao and Yu (1996) (improved on the empirical CLTs)
and Merlevède and Peligrad (2002) who tightened and precised several of the
previous results involved with the strong coupling conditions. A summary of the
state of the art is given in the very recent monograph by Bradley (2007); see
also the nice review paper, Bradley (2005).

On the other hand, it turns out that certain classes of processes which are of
interest in statistics are not mixing although a successive decline of the influence
of past states takes place; see for example Dedecker et al. (2007). The simplest
example of such a process is an AR(1)-process, Xt = θXt−1 + εt, where the
innovations are independent and identically distributed with P(εt = 1) = P(εt =
−1) = 1/2 and 0 < |θ| ≤ 1/2; see also Rosenblatt (1980). It is clear that this
process has a stationary distribution supported on [−2, 2], and for a process
in the stationary regime, it can be seen from the equality Xt = εt + θεt−1 +
· · · + θt−s−1εs+1 + θt−sXs that a past state Xs can always be recovered from
Xt. (Actually, since |εt| > |θ||εt−1| + · · · + |θ|t−s−1|εs+1| + |θ|t−s|Xs| it follows
that Xt has always the same sign as εt which means that we can recover εt

and therefore Xt−1 from Xt. Continuing in this way we can finally compute
Xs.) This, however, excludes any of the commonly used mixing properties to
hold. On the other hand, Xs loses its impact on Xt as t → ∞. Another simple
example of a non-mixing process is the Galton-Watson model with immigration;
see Dedecker et al. (2007).

Besides the somehow artificial example above, there are many other processes
of this type which are of great interest in statistics. For example, for bootstrap-
ping a linear autoregressive process of finite order, it is most natural to estimate
first the distribution of the innovations by the empirical distribution of the (pos-
sibly re-centered) residuals and to generate then a bootstrap process iteratively
by drawing independent bootstrap innovations from this distribution. Now it
turns out that commonly used techniques to prove mixing for autoregressive
processes fail; because of the discreteness of the bootstrap innovations it is in
general impossible to construct a coupling of two processes with different initial
values.

Inspired by such problems, Doukhan and Louhichi (1999) and
Bickel and Bühlmann (1999) introduced alternative notions called weak depen-
dence and ν-mixing, respectively. Actually, these two concepts are similar; in-
stead of considering all bounded test functions (as for mixing) they proposed to
weaken the condition by considering regular functions only which then includes
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many processes which are not mixing. Borovkova, Burton and Dehling (2001) is
also an interesting advance in this area, those authors deal with functions of mix-
ing sequences. A slightly simplified version of Doukhan and Louhichi (1999)’s
definition is given here:

Definition 1.1. A process (Xt)t∈Z is called ψ-weakly dependent if there exists
a universal null sequence (ǫ(r))r∈N such that, for any k-tuple (s1, . . . , sk) and
any l-tuple (t1, . . . , tl) with s1 ≤ · · · ≤ sk < sk + r = t1 ≤ · · · ≤ tl and arbitrary
measurable functions g : R

k → R, h : R
l → R with ‖g‖∞ ≤ 1 and ‖h‖∞ ≤ 1,

the following inequality is fulfilled:

|cov (g(Xs1
, . . . , Xsk

), h(Xt1 , . . . , Xtl
))| ≤ ψ(k, l,Lipg,Liph) ǫ(r).

Here Liph denotes the Lipschitz modulus of continuity of h, that is,

Liph = sup
x 6=y

|h(x)− h(y)|
‖x− y‖l1

,

where ‖(z1, . . . , zl)‖l1 =
∑

i |zi|, and ψ : N
2 × R

2
+ → [0,∞) is an appropriate

function.

Remark 1.

(i) In Bickel and Bühlmann (1999), another type of weak dependence, called
ν-mixing, was introduced. Similarly to Definition 1.1, uniform covariance
bounds over classes of functions with smooth averaged modulus of con-
tinuity are required. Usually, examples of processes obey both notions of
weak dependence. We think that it is sometimes easier to verify a con-
dition of weak dependence as in Definition 1.1 which we prefer for this
reason.

(ii) Dedecker and Prieur (2005) introduced another related notion, called ϕ̃-
weak dependence, which is particularly adapted to expanding dynamical
systems.

(iii) For the special case of causal Bernoulli shifts with i.i.d. innovations, that is
Xt = g(εt, εt−1, . . .), Wu (2005) introduced other measures of dependence
which are somewhat connected to the coupling idea below. The notion of
weak dependence considered here is more general and seems also to include
processes which cannot be represented as Bernoulli shifts (e.g. associated
processes perhaps cannot be written as Bernoulli shifts).

Remark 2. (Some classes of weak dependence)
Specific functions ψ yield variants of weak dependence appropriate to describe
various examples of models:

• κ-weak dependence for which ψ(u, v, a, b) = uvab; in this case we simply
denote ǫ(r) as κ(r).

• κ′ (causal) weak dependence for which ψ(u, v, a, b) = vab; in this case we
denote ǫ(r) as κ′(r). This is the causal counterpart of κ coefficients which
we recall only for completeness.
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• η-weak dependence, ψ(u, v, a, b) = ua+vb; in this case we write ǫ(r) = η(r)
for brevity.

• θ-weak dependence is a causal dependence which refers to ψ(u, v, a, b) =
vb; we write ǫ(r) = θ(r) (Dedecker and Doukhan (2003)) for this causal
counterpart of η coefficients.

• λ-weak dependence ψ(u, v, a, b) = uvab + ua + vb; in this case we write
ǫ(r) = λ(r) (Doukhan and Wintenberger (2007)). Besides the fact that it
includes η- and κ-weak dependence, this new notion of λ-weak dependence
is convenient, for example, for Bernoulli shifts with associated inputs.

It turns out that the notion of weak dependence is more general than mixing
and allows to treat, for example, also Markovian processes driven by discrete
innovations as they appear with time series bootstrap. In the next section we
consider as an instructive example linear autoregressive processes of finite order
and a corresponding bootstrap version thereof. We will demonstrate that the
desired property of weak dependence readily follows from a contraction property
which is typical for such models under standard conditions on the parameters.
The approach described there is also applicable to proving weak dependence for
many other classes of processes. Section 3 contains further examples of processes
for which some sort of weak dependence has been proved. In Section 4 we give
an overview of available tools under weak dependence. In particular, we pro-
vide a Donsker invariance principle and asymptotics for the empirical process.
Furthermore, we also give Lindeberg Feller central limit theorems for triangular
arrays. Finally, we provide probability and moment inequalities of Rosenthal
and Bernstein type. Proofs of the new results in Section 2 are deferred to a final
Section 5.

2. Autoregressive processes and their bootstrap analogues

In this section we intend to give a brief introduction to the basic ideas commonly
used for verifying weak dependence. Most parts in this section are specialized
to autoregressive processes of finite order and their bootstrap analogues.

We consider first a general real-valued stationary process (Xt)t∈Z. A simple
and in many cases the most promising way of proving a property of weak de-
pendence is via contraction arguments. For probability distributions P and Q
on (Rd,Bd) with finite mean, we define the metric

d(P,Q) = inf
(X,Y ): X∼P,Y ∼Q

E‖X − Y ‖l1 ,

For d = 1 and the L2 instead of the L1 distance, we obtain Mallows dis-
tance; see Mallows (1972). It is well known that such distances are suitable
for metrizing weak convergence, that is, d(Pn, P ) −→

n→∞
0 implies Pn =⇒ P ; see

e.g. Bickel and Freedman (1981). Similar distances have also been used in the
context of Markov processes to derive convergence of stationary distributions
from convergence of the conditional distributions; see e.g. Dobrushin (1970) and
Neumann and Paparoditis (2007). The following lemma shows that closeness of
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the conditional distributions in the above metric gives rise to estimates for co-
variances.

Lemma 2.1. Suppose that (Xt)t∈Z is a real-valued stationary process. Fur-
thermore, let s1 ≤ · · · ≤ sk ≤ t1 ≤ · · · ≤ tl be arbitrary and let g : R

k → R and
h : R

l → R be measurable functions. Let (X′
t)t∈Z be any other version of the pro-

cess, where X
′
sk

= (X′
sk
, X′

sk−1, . . .) is independent of Xsk
= (Xsk

, Xsk−1, . . .).
If g is bounded and E|h(Xt1 , . . . , Xtl

)| <∞, then

|cov (g(Xs1
, . . . , Xsk

), h(Xt1 , . . . , Xtl
))|

≤ ‖g‖∞ Liph Ed
(
P

Xt1
,...,Xtl

|Xsk ,PX′

t1
,...,X′

tl
|X′

sk

)
.

This lemma shows that a property of weak dependence follows from a con-
vergence of the conditional distributions as the time gap to the lagged variables
tends to infinity. The latter property can often be shown by appropriate cou-
pling arguments. To get reasonably tight bounds for the covariances, one has to
construct versions of the process, (Xt)t∈Z and (X′

t)t∈Z where the ‘sk-histories’
Xsk

and X
′
sk

are independent but where the corresponding next process values
Xt and X′

t are close; see the example below. Note that there is a close connec-
tion to the notion of τ -dependence introduced by Dedecker and Prieur (2004).
According to their Lemma 5, the infimum of Ed(PXt|Xs ,PX′

t|X′

s) is actually equal
to their coefficient τ (t− s). Dedecker and Prieur (2004) used such coupling ar-
guments to derive exponential inequalities and other interesting results, with
applications to density estimation.

In the rest of this section we restrict our attention to a real-valued autore-
gressive process (Xt)t∈Z, which obeys the equation

Xt = θ1Xt−1 + · · · + θpXt−p + εt, t ∈ Z. (2.1)

The innovations (εt)t∈Z are assumed to be independent and identically dis-
tributed with Eεt = 0. Furthermore, we make the standard assumption that the
characteristic polynomial θ(z) = 1 − θ1z − · · · − θpz

p has no zero in the unit
circle. It is well known that there exists then a stationary solution to the model
equation (2.1). We will assume that the process (Xt)t∈Z is in the stationary
regime. Then this process can be represented as a causal linear process,

Xt =

∞∑

k=0

αkεt−k, (2.2)

where αk =
∑

j≤k

∑
k1+···+kj=k θk1

· · ·θkj
. Denote by ξ1, . . . , ξp the roots of the

characteristic polynomial θ and let ρ = min{|ξ1|, . . . , |ξp|}. Then, for any ǫ > 0,
there exists a Kǫ <∞ such that, with ρǫ = (1 + ǫ)/ρ,

|αk| ≤ Kǫ ρ
k
ǫ ∀k ∈ N; (2.3)

see e.g. Brockwell and Davis (1991, p. 85).
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Convergence of Ed(PXt1
,...,Xtl

|Xsk ,PX′

t1
,...,X′

tl
|X′

sk ) as t1 − sk → ∞ can now
be shown by a simple coupling argument. For this purpose, we consider a sec-
ond (stationary) version of the autoregressive process, (X′

t)t∈Z, where X
′
sk

is
independent of Xsk

. Note that (X′
t)t∈Z can also be written as a linear process,

X′
t =

∞∑

k=0

αkε
′
t−k.

Independence of X
′
sk

and Xsk
is equivalent to the fact that εsk

, εsk−1, . . . and
ε′sk

, ε′sk−1, . . . are independent. On the other hand, we have some freedom to
couple the innovations after time sk. Here we only have to take care that both
sequences (εt)t∈Z and (ε′t)t∈Z consist of independent random variables. A reason-
ably good coupling is obtained by feeding both processes after time sk with one
and the same sequence of innovations, that is, ε′sk+1 = εsk+1, ε

′
sk+2 = εsk+2 , . . . .

This gives, for t ≥ sk, that

Xt − X′
t =

∞∑

l=0

αt−sk+l(εsk−l − ε′sk−l). (2.4)

Since d(PXt1
,...,Xtl

|Xsk ,PX′

t1
,...,X′

tl
|X′

sk ) ≤ E
(∑l

j=1 |Xtj
− X′

tj
|
∣∣Xsk

,X′
sk

)
we ob-

tain, in conjunction with (2.3), the following assertion:

Lemma 2.2. Let (Xt)t∈Z and (X′
t)t∈Z be two versions of the autoregressive

process as described above. If E|ε0| <∞, then, for sk ≤ t1 ≤ . . . ≤ tl,

Ed
(
P

Xt1
,...,Xtl

|Xsk ,PX′

t1
,...,X′

tl
|X′

sk

)
≤ 2 l Kǫ

1

1 − ρǫ
ρt1−sk

ǫ E|ε0|.

Lemma 2.1 and Lemma 2.2 imply the following weak dependence property.

Corollary 2.1. Suppose that (Xt)t∈Z is a stationary process satisfying the
above conditions. Furthermore, let s1 ≤ · · · ≤ sk ≤ t1 ≤ · · · ≤ tl be arbitrary
and let g : R

k −→ R and h : R
l −→ R be measurable functions. If g is bounded

and E|h(Xt1, . . . , Xtl
)| <∞, then

|cov (g(Xs1
, . . . , Xsk

), h(Xt1 , . . . , Xtl
))| ≤ ‖g‖∞ Liph K1 l ρ

t1−sk
ǫ ,

where K1 = 2 1
1−ρǫ

Kǫ E|ε0|.

Now we define the autoregressive bootstrap. We assume that observations
X1−p, . . . , Xn are available. Let θ̂n = (θ̂n,1, . . . , θ̂n,p)

′ be any consistent estima-

tor of θ = (θ1, . . . , θp)
′, that is, θ̂n

P−→ θ, as n→ ∞. (The least squares and the
Yule-Walker estimator are even

√
n-consistent.) Let Xt = (Xt−1, . . . , Xt−p)

′ be
the vector of the p lagged observations at time t. We define residuals

ε̃t = Xt − X
′
tθ̂n

and re-center them as

ε̂t = ε̃t − 1

n

n∑

t=1

ε̃t.
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Now we draw independent bootstrap innovations ε∗t from the empirical distri-
bution Pn given by the ε̂t. A bootstrap version of the autoregressive process is
now obtained as

X∗
t = θ̂n,1X

∗
t−1 + · · · + θ̂n,pX

∗
t−p + ε∗t . (2.5)

For simplicity, we assume that (X∗
t )t∈Z is in its stationary regime. (This will

be justified by (i) of the next lemma.) Before we state weak dependence of the
bootstrap process, we show that it inherits those properties from the initial
process which were used for proving weak dependence.

Lemma 2.3. Suppose that Eε20 <∞ and θ̂n
P−→ θ are fulfilled.

(i) With a probability tending to 1, (X∗
t )t∈Z can be written as a stationary

causal linear process,

X∗
t =

∞∑

k=0

α̂n,kε
∗
t−k,

where, for all ǫ > 0, there exists a K̃ǫ <∞ such that, with ρǫ = (1 + ǫ)/ρ,

P

(
|α̂n,k| ≤ K̃ǫρ

k
ǫ ∀k ∈ N

)
−→

n→∞
1.

(ii) E(ε∗t
2 | X1−p, . . . , Xn)

P−→ Eε2t .

Armed with the basic properties stated in Lemma 2.3, we can now easily
derive properties of weak dependence of the bootstrap process just by imitating
the proof for the initial process. In complete analogy to Lemma 2.2 above, we
can state the following result.

Lemma 2.4. Suppose that the initial process (Xt)t∈Z satisfies the above con-
ditions and that the bootstrap process (X∗

t )t∈Z is in its stationary regime. Let
(X∗′

t )t∈Z be another version of the bootstrap process, where X
∗
sk

= (X∗
sk
, X∗

sk−1, . . .)

is (conditionally on X1−p, . . . , Xn) independent of X
∗′

sk
= (X∗′

sk
, X∗′

sk−1, . . .). For

any ǫ > 0, let ρǫ = (1 + ǫ)/ρ and
˜̃
Kǫ < ∞ be an appropriate constant. Then

there exists a sequence of events Ωn such that P(Ωn) −→
n→∞

1 and if Ωn occurs,

then

E

(
d
(
P

X∗

t1
,...,X∗

tl
|X∗

sk ,PX∗
′

t1
,...,X∗

′

tl
|X∗

′

sk

)∣∣X1−p, . . . , Xn

)
≤ 2 l

˜̃
Kǫ ρ

t1−sk
ǫ

√
Eε20.

From Lemma 2.1 and Lemma 2.4 we can now derive the desired property of
ψ-weak dependence for the bootstrap process.

Corollary 2.2. Suppose that the conditions of Lemma 2.4 are fulfilled. If the
event Ωn occurs, then the following assertion is true:
Let s1 ≤ · · · ≤ sk ≤ t1 ≤ · · · ≤ tl be arbitrary and let g : R

k −→ R and h :
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R
l −→ R be measurable functions. If g is bounded and E|h(X∗

t1 , . . . , X
∗
tl
)| <∞,

then
∣∣cov

(
g(X∗

s1
, . . . , X∗

sk
), h(X∗

t1 , . . . , X
∗
tl
)
)∣∣ ≤ ‖g‖∞ Liph K2 l ρ

t1−sk
ǫ ,

where K2 = 2
˜̃
Kǫ

√
Eε20.

Besides the useful property of weak dependence of the bootstrap process,
asymptotic validity of a bootstrap approximation requires that the (multivari-
ate) stationary distributions of the bootstrap process converge to those of the
initial process. Often, and in the case of the autoregressive bootstrap in par-
ticular, one has no direct access to these stationary distributions. However, ac-
cording to Lemma 4.2 in Neumann and Paparoditis (2007), convergence of the
stationary distributions can be derived from an appropriate convergence of con-

ditional distributions. The latter, however, follows directly from θ̂n
P−→ θ and

ε̂∗t
d−→ εt. Therefore, consistency of the autoregressive bootstrap can be shown

by simple arguments which were already used for proving weak dependence of
the bootstrap; for details see Section 4.2 in Neumann and Paparoditis (2007).

Remark 3. Motivated by the desire to have some sort of mixing for a smoothed
sieve bootstrap for linear processes, Bickel and Bühlmann (1999) considered a
condition called ν-mixing which is similar to the notion of weak dependence in
our Definition 1.1. Although strong mixing follows for linear processes from a
result of Gorodetskii (1977), it seems to be unclear whether even a smoothed
version of the bootstrap process has such a property. However, it was shown
in Theorems 3.2 and 3.4 in Bickel and Bühlmann (1999) that it is ν-mixing
with polynomial or exponential bounds on the corresponding coefficients to
hold in probability. In the proofs of these theorems, however, they make use
of the property of decaying strong mixing coefficients which holds at least for
sufficiently large time lags; see in particular their Lemma 5.3.

In contrast, the approach described here is fundamentally different. We intend
to prove weak dependence for processes driven by innovations with a possibly
discrete distribution and achieve this goal by exploiting a contraction property
of the initial and the bootstrap process.

Remark 4. Arguing in the same way as above we could also establish the prop-
erty of ψ-weak dependence for nonlinear autoregressive processes,

Xt = m(Xt) + εt, t ∈ Z,

where (εt)t∈Z is a sequence of independent and identically distributed innova-
tions. If Lipm < 1, then we have obviously a contraction property being fulfilled
which immediately yields ψ-weak dependence.

It is interesting to note that such a contraction property can still be proved
if Lipm < 1 is not fulfilled. To this end, define the local Lipschitz modulus of
continuity

∆(x) = sup
y 6=x

|m(y) −m(x)|
|y − x|
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and assume that
ρ = sup

x
E [∆(m(x) + ε0)] < 1.

Then
d
(
P

Xt+k |Xt=x,PXt+k|Xt=y
)
≤ ρk−1 · ∆(x) · |x− y|, (2.6)

which implies weak dependence by Lemma 2.1.

3. Some examples of weakly dependent sequences

Note first that sums of independent weakly dependent processes admit the com-
mon weak dependence property where dependence coefficients are the sums of
the initial ones. We now provide a non-exhaustive list of weakly dependent se-
quences with their weak dependence properties. Further examples may be found
in Doukhan and Louhichi (1999). Let X = (Xt)t∈Z be a stationary process.

1. If this process is either a Gaussian process or an associated process and
limt→∞ | cov(X0, Xt)| = 0, then it is a κ-weakly dependent process such

that κ(r) = O
(
sup
t≥r

| cov(X0, Xt)|
)
. It is also κ′-weakly dependent with

κ′(r) = O
(∑

t≥r

| cov(X0, Xt)|
)

.

2. ARMA(p, q) processes and more generally causal or non-causal linear pro-
cesses: X = (Xt)t∈Z are defined by the model equation

Xt =

∞∑

k=−∞
akξt−k for t ∈ Z,

where (ak)k∈Z ∈ R
Z and (ξt)t∈Z is a sequence of independent and identi-

cally distributed random variables with Eξt = 0. If ak = O(|k|−µ) with

µ > 1/2, thenX is an η-weakly dependent process with η(r) = O
( 1

rµ−1/2

)
.

In the general case of dependent innovations, properties of weak depen-
dence are proved in Doukhan and Wintenberger (2007).

3. GARCH(p, q) processes and more generally ARCH(∞) processes: X =
(Xt)t∈Z is a such that

Xt = ρt · ξt with ρ2
t = b0 +

∞∑

k=1

bkX
2
t−k for k ∈ Z,

with a sequence (bk)k depending on the initial parameters in the case of
a GARCH(p, q) process and a sequence (ξt)t∈Z of independent and iden-
tically distributed innovations. Then, if E(|ξ0|m) <∞, with the condition

of stationarity, ‖ξ0‖2
m ·

∞∑

j=1

|bj| < 1, and if:
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• there exists C > 0 and µ ∈]0, 1[ such that ∀j ∈ N, 0 ≤ bj ≤ C · µ−j,

then X is a θ-weakly dependent process with θ(r) = O(e−c
√

r) and
c > 0 (this is the case of GARCH(p, q) processes).

• there exists C > 0 and ν > 1 such that ∀k ∈ N, 0 ≤ bk ≤ C ·
k−ν , then X is a θ-weakly dependent process with θ(r) = O

(
r−ν+1

)

(Doukhan, Teyssière and Winant (2006) introduce vector valued
LARCH(∞) models including the previous ones).

4. Causal bilinear processes were introduced by Giraitis and Surgailis (2002)
and their dependence properties are proved in Doukhan, Madre and Rosen-
baum (2007):

Xt = ξt

(
a0 +

∞∑

k=1

akXt−k

)
+ c0 +

∞∑

k=1

ckXt−k, for k ∈ Z.

Assume that there exists m ≥ 1 with ‖ξ0‖m <∞ and ‖ξ0‖m ·
(∑∞

k=1 |ak|+∑∞
k=1 |ck|

)
< 1. Then, if:

•
{

∃K ∈ N such that ∀k > K, ak = ck = 0, or,
∃µ ∈]0, 1[ such that

∑
k |ck|µ−k ≤ 1 and ∀k ∈ N, 0 ≤ ak ≤ µk ,

then X is a θ-weakly dependent process with θ(r) = O(e−c
√

r), for
some c > 0;

• ∀k ∈ N, ck ≥ 0, and ∃ν1 > 2 and ∃ν2 > 0 such that ak = O(k−ν1) and∑
k ckk

1+ν2 < ∞, then X is a θ-weakly dependent process

with θ(r) = O
(( r

log r

)d)
, d = max

{
− (ν1 − 1);− ν2 · δ

δ + ν2 · log 2

}
(see

Doukhan, Teyssière and Winant (2006)).

5. Non-causal LARCH(∞) processes X = (Xt)t∈Z satisfying

Xt = ξt ·
(
a0 +

∑

k∈Z\{0}
akXt−k

)
, t ∈ Z,

where ‖ξ0‖∞ <∞ (bounded random variables) and (ak)k∈Z is a sequence
of real numbers such that λ = ‖ξ0‖∞ ·∑j 6=0 |aj| < 1 (stationarity con-

dition). Assume that the sequence (ak)k∈Z satisfies ak = O(|k|−µ) with

µ > 1, then X is an η-weakly dependent process with η(r) = O
( 1

rµ−1

)
(see

Doukhan, Teyssière and Winant (2006)).

6. Causal and non-causal Volterra processes write as Xt =
∑∞

p=1 Y
(p)

t with

Y
(p)
t =

∑

j1 < j2 < · · · < jp
j1, . . . , jp ∈ Z

aj1,...,jp
ξt−j1 · · ·ξt−jp

, for t ∈ Z.
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Assume

∞∑

p=0

∑

j1 < j2 < · · · < jp
j1, . . . , jp ∈ Z

∣∣aj1,...,jp

∣∣m ‖ξ0‖p
m <∞, with m > 0, and

that there exists p0 ∈ N \ {0} such that aj1,...,jp
= 0 for p > p0. If

aj1,...,jp
= O

(
max
1≤i≤p

{|ji|−µ}
)

with µ > 0, then X is an η-weakly depen-

dent process with η(r) = O
( 1

rµ+1

)
(see Doukhan (2002)).

Finite order Volterra processes with dependent inputs are also considered
in Doukhan and Wintenberger (2007): again, η-weakly dependent innova-
tions yield η-weak dependence and λ-weakly dependent innovation yields
λ-weak dependence of the process.

7. Very general models are the causal or non-causal infinite memory processes
X = (Xt)t∈Z such that

Xt = F (Xt−1, Xt−2, . . . ; ξt), and Xt = F (Xs, s 6= t; ξt),

where the functions F defined either on R
N\{0} × R or R

Z\{0} × R satisfy

‖F (0; ξ0)‖m < ∞,

‖F ((xj)j; ξ0) − F ((yj)j ; ξ0)‖m ≤
∑

j 6=0

aj|xj − yj|,

with a =
∑

j 6=0 aj < 1. Then, works in progress by Doukhan and Win-
tenberger as well as Doukhan and Truquet, respectively, prove that a so-
lution of the previous equations is stationary in Lm and either θ-weakly
dependent or η-weakly dependent with the following decay rate for the
coefficients:

inf
p≥1

{
ar/p +

∑

|j|>p

aj

}
.

This provides the same rates as those already mentioned for the cases of
ARCH(∞) or LARCH(∞) models.

4. Some probabilistic results

In this section, we present results derived under weak dependence which are
of interest in probability and statistics (see also Dedecker et al. (2007) for ref-
erence). This collection clearly shows that this notion of weak dependence, al-
though being more general than mixing, allows one to prove results very similar
to those in the mixing case.

4.1. Donsker invariance principle

We consider a stationary, zero mean, and real valued sequence (Xt)t∈Z such that

µ = E|X0|m < ∞, for a real number m > 2. (4.1)
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We also set

σ2 =
∑

t∈Z

cov(X0, Xt) =
∑

t∈Z

EX0Xt, (4.2)

W denotes standard Brownian motion and

Wn(t) =
1√
n

[nt]∑

i=1

Xi, for t ∈ [0, 1], n ≥ 1. (4.3)

We now present versions of the Donsker weak invariance principle under weak
dependence assumptions.

Theorem 4.1 (Donsker type results). Assume that the zero mean station-
ary process (Xt)t∈Z satisfies (4.1). Then σ2 ≥ 0 given by (4.2) is well defined
and the Donsker invariance principle

Wn(t) →n→∞ σW (t), in distribution in the Skorohod space D([0, 1]),

holds if one of the following additional assumptions is fulfilled:

• κ-dependence. The process is κ-weakly dependent and satisfies κ(r) =
O(r−κ) (as r ↑ ∞) for some κ > 2 + 1/(m− 2).

• κ′-dependence. The process is κ′-weakly dependent and satisfies κ′(r) =
O(r−κ) (as r ↑ ∞) for some κ > 1 + 1/(m− 2).

• λ-dependence. The process is λ-weakly dependent and satisfies λ(r) =
O(r−λ) (as r ↑ ∞) for λ > 4 + 2/(m− 2).

• θ-dependence. The process is θ-weakly dependent and satisfies θ(r) =
O(r−θ) (as r ↑ ∞) for θ > 1 + 1/(m− 2).

Remark 5. The result for κ′-weak dependence is obtained in Bulinski and
Shashkin (2005). Results under κ- and λ-weak dependences are proved in
Doukhan and Wintenberger (2007); note that η-weak dependence implies λ-
weak dependence and the Donsker principle then holds under the same decay
rate for the coefficients. The result for θ-weak dependence is due to Dedecker
and Doukhan (2003). A few comments on these results are now in order:

• The difference of the above conditions under κ and κ′ assumptions is
natural. The observed loss under κ-dependence is explained by the fact

that κ′-weakly dependent sequences satisfy κ′(r) ≥
∑

s≥r

κ(s). This simple

bound directly follows from the definitions.
• Actually, it is enough to assume the θ-weak dependence inequality for any

positive integer u and only for v = 1. Hence, for any 1-bounded function
g from R

u to R and any 1-bounded Lipschitz function h from R to R

with Lipschitz coefficient Lip(h), it is enough to assume that the following
inequality is fulfilled:

∣∣cov
(
g
(
Xi1 , . . . , Xiu

)
, h
(
Xiu+i

))∣∣ ≤ θ(i)Lip(h), for
any u-tuple i1 ≤ i2 ≤ · · · ≤ iu.



P. Doukhan and M.H. Neumann/ψ-weak dependence 158

4.2. Empirical process

Let (Xt)t∈Z a real-valued stationary process. We use a quantile transform to
obtain that the marginal distribution of this sequence is the uniform law on
[0, 1]. The empirical process of the sequence (Xt)t∈Z at time n is defined as
1√
n
En(x) where

En(x) =

n∑

k=1

(
I1(Xk≤x) − P(Xk ≤ x)

)
.

Note that En = n (Fn − F ) if Fn and F denote the empirical distribution func-
tion and the marginal distribution function, respectively. We consider the fol-
lowing convergence result in the Skohorod space D([0, 1]) when the sample size n
tends to infinity:

1√
n
En(x)

d−→ B̄(x).

Here (B̄(x))x∈[0,1] is the dependent analogue of a Brownian bridge, that is B̄
denotes a centered Gaussian process with covariance given by

EB̄(x)B̄(y) =

∞∑

k=−∞

(
P(X0 ≤ x, Xk ≤ y) − P(X0 ≤ x)P(Xk ≤ y)

)
. (4.4)

Note that for independent sequences with a marginal distribution function F ,
this turns into B̄(x) = B(x) for some standard Brownian bridge B; this justifies
the name of generalized Brownian bridge. We have:

Theorem 4.2. Suppose that the stationary sequence (Xt)t∈Z has a uniform
marginal distribution and is η-weakly dependent with η(r) = O(r−15/2−ν), or
κ-weakly dependent κ(r) = O(r−5−ν), for some ν > 0. Then the following
empirical functional convergence holds true in the Skohorod space of real-valued
càdlàg functions on the unit interval, D([0, 1]):

1√
n
En(x)

d−→ B̄(x).

Remark 6. Under strong mixing, the condition
∑∞

r=0 α(r) <∞ implies conver-
gence of the finite-dimensional distributions. The empirical functional conver-
gence holds if, in addition, for some a > 1, α(r) = O(r−a) (see Rio (2000)). In an
absolutely regular framework, Doukhan, Massart and Rio (1995) obtain the em-
pirical functional convergence when, for some a > 2, β(r) = O(r−1(log r)

−a
).

Shao and Yu (1996) and Shao (1995) obtain the empirical functional conver-
gence theorem when the maximal correlation coefficients satisfy the condition
∞∑

n=0

ρ (2n) <∞.

To prove the result, we introduce the following dependence condition for a
stationary sequence (Xt)t∈Z:

sup
f∈F

|cov (f(Xt1 )f(Xt2 ), f(Xt3)f(Xt4 ))| ≤ ǫ(r), (4.5)
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where F = {x 7→ I1s<x≤t, for s, t ∈ [0, 1]}, 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 and r = t3 − t2
(in this case a weak dependence condition holds for a class of functions R

u → R

working only with the values u = 1 or 2).

Proposition 4.1. Let (Xn) be a stationary sequence such that (4.5) holds.
Assume that there exists ν > 0 such that

ǫ(r) = O(r−5/2−ν). (4.6)

Then the sequence of processes

({
1√
n
En(t); t ∈ [0, 1]

})

n>0

is tight in the Sko-

horod space D([0, 1]).

4.3. Central limit theorems

First central limit theorems for weakly dependent sequences were given by Corol-
lary A in Doukhan and Louhichi (1999) and Theorem 1 in Coulon-Prieur and
Doukhan (2000). While the former result is for sequences of stationary random
variables, the latter one is tailor-made for triangular arrays of asymptotically
sparse random variables as they appear with kernel density estimators. Using
their notion of ν-mixing Bickel and Bühlmann (1999) proved a CLT for linear
processes of infinite order and their (smoothed) bootstrap counterparts. Below
we state a central limit theorem for general triangular schemes of weakly depen-
dent random variables. Note that the applicability of a central limit theorem to
bootstrap processes requires some robustness in the parameters of the underly-
ing process since these parameters have to be estimated when it comes to the
bootstrap. A result for a triangular scheme is therefore appropriate since the
involved random variables have themselves random properties. An interesting
aspect of the following results is that no moment condition beyond Lindeberg’s
is required. The proof of the next theorem uses the variant of Rio of the classical
Lindeberg method.

Theorem 4.3. (Theorem 6.1 in Neumann and Paparoditis (2007)) Suppose
that (Xn,k)k=1,...,n, n ∈ N, is a triangular scheme of (row-wise) stationary ran-
dom variables with EXn,k = 0 and EX2

n,k ≤ C < ∞. Furthermore, we assume
that

1

n

n∑

k=1

EX2
n,kI(|Xn,k|/

√
n > ǫ) −→

n→∞
0 (4.7)

holds for all ǫ > 0 and that

var(Xn,1 + · · ·+Xn,n)/n −→
n→∞

σ2 ∈ [0,∞). (4.8)

For n ≥ n0, there exists a monotonously nonincreasing and summable sequence
(θ(r))r∈N such that, for all indices s1 < s2 < · · · < su < su + r = t1 ≤ t2,
the following upper bounds for covariances hold true: for all measurable and
quadratic integrable functions g : R

u → R,

|cov (g(Xn,s1
, . . . , Xn,su

), Xn,t1)| ≤
√

Eg2(Xn,s1
, . . . , Xn,su

) θ(r), (4.9)
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for all measurable and bounded functions g : R
u −→ R,

|cov (g(Xn,s1
, . . . , Xn,su

), Xn,t1Xn,t2)| ≤ ‖g‖∞ θ(r), (4.10)

where ‖g‖∞ = supx∈Ru |f(x)|. Then

1√
n

(Xn,1 + · · ·+Xn,n)
d−→ N (0, σ2).

Remark 7. (i) Conditions (4.7) to (4.10) can be easily verified for autoregres-
sive processes under the standard condition that the characteristic polyno-
mial has no zero within the unit circle and if Eε20 <∞, that is, finiteness
of second moments actually suffices here; see Neumann and Paparoditis
(2007) for details.

(ii) If we have in the nth stage a two-sided sequence of random variables
(Xn,k)k∈Z rather than (Xn,k)k=1,...,n only, then it can be easily seen that
condition (4.8) follows from EXn,k = 0, EX2

n,k ≤ C < ∞, (4.9), and∑
k∈Z

cov(Xn,0, Xn,k) −→
n→∞

σ2 ∈ [0,∞).

(iii) Condition (4.9) is also related to Gordin (1969)’s condition under which
central limit theorems are often proved for stationary processes. Such a
theorem for a sequence of stationary ergodic random variables was proved
by Hall and Heyde (1980, pp. 136–138); see also Esseen and Janson (1985)
for the correction of a detail.

The following very simple multivariate central limit theorem, easily appli-
cable to triangular schemes of weakly dependent random vectors, was derived
in Bardet, Doukhan, Lang and Ragache (2007). In view of condition (4.11), it
is applicable in cases where dependence between the observations declines as
n → ∞. This is a common situation in nonparametric curve estimation where
the so-called “whitening-by-windowing” principle applies.

Theorem 4.4. (Theorem 1 in Bardet, Doukhan, Lang and Ragache (2007))
Suppose that (Xn,k)k∈N, n ∈ N, is a triangular scheme of zero mean random
vectors with values in R

d. Assume that there exists a positive definite matrix Σ
such that

n∑

k=1

Cov(Xn,k) −→
n→∞

Σ

and that, for each ǫ > 0,

n∑

k=1

E(‖Xn,k‖2 I1{‖Xn,k‖>ǫ}) −→
n→∞

0,

where ‖ · ‖ denotes the Euclidean norm. Furthermore, we assume the following
condition is satisfied:

n∑

k=2

∣∣∣cov(eit′(Xn,1+···+Xn,k−1), eit′Xn,k)
∣∣∣ −→

n→∞
0. (4.11)
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Then, as n → ∞,

n∑

k=1

Xn,k
d−→ Nd(0d,Σ).

Remark 8. One common point of these two results is the use of the classical
Lindeberg assumption. Note that this assumption is often verified by using a
higher order moment condition. A main difference between the two results is
that the first one yields direct applications to partial sums while the second one
is more adapted to triangular arrays where the limit does not write as a sum. In
this setting Doukhan and Wintenberger (2007) use Bernstein blocks to prove a
CLT for partial sums.

4.4. Probability and moment inequalities

In this section we state inequalities of Bernstein and Rosenthal type. In the case
of mixing, such inequalities can be easily derived by the well-known technique
of replacing dependent blocks of random variables (separated by an appropriate
time gap) by independent ones and then using the classical inequalities from the
independent case; see for example Doukhan (1994) and Rio (2000). The notion
of ψ-weak dependence is particularly suitable for deriving upper estimates for
the cumulants of sums of random variables which give rise to rather sharp
inequalities of Bernstein and Rosenthal type which are analogous to those in
the independent case.

Based on a Rosenthal-type inequality, a first inequality of Bernstein-type was
obtained by Doukhan and Louhichi (1999), however, with

√
t instead of t2 in

the exponent. Dedecker and Prieur (2004) proved a Bennett inequality which
can possibly be used to derive also a Bernstein inequality. A first Bernstein
inequality with var(X1 + · · · + Xn) in the asymptotically leading term of the
denominator of the exponent has been derived in Kallabis and Neumann (2006),
under a weak dependence condition tailor-made for causal processes with an
exponential decay of the coefficients of weak dependence. The following result is
a generalization which is also applicable to possibly non-causal processes with
a not necessarily exponential decay of the coefficients of weak dependence.

Theorem 4.5. (Theorem 1 in Doukhan and Neumann (2007)) Suppose that
X1, . . . , Xn are real-valued random variables with zero mean, defined on a prob-
ability space (Ω,A,P). Let Ψ : N

2 → N be one of the following functions:

(a) Ψ(u, v) = 2v,
(b) Ψ(u, v) = u+ v,
(c) Ψ(u, v) = uv,
(d) Ψ(u, v) = α(u+ v) + (1 − α)uv, for some α ∈ (0, 1).

We assume that there exist constants K,M,L1, L2 < ∞, µ, ν ≥ 0, and a
nonincreasing sequence of real coefficients (ρ(n))n≥0 such that, for all u-tuples
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(s1 , . . . , su) and all v-tuples (t1, . . . , tv) with 1 ≤ s1 ≤ · · · ≤ su ≤ t1 ≤ · · · ≤
tv ≤ n the following inequalities are fulfilled:

|cov (Xs1
· · ·Xsu

, Xt1 · · ·Xtv
)| ≤ K2 Mu+v−2 ((u + v)!)ν Ψ(u, v) ρ(t1 − su),

(4.12)
where ∞∑

s=0

(s+ 1)kρ(s) ≤ L1 L
k
2 (k!)µ ∀k ≥ 0, (4.13)

and
E|Xt|k ≤ (k!)ν Mk ∀k ≥ 0. (4.14)

Then, for all t ≥ 0,

P (Sn ≥ t) ≤ exp

(
− t2/2

An + B
1

µ+ν+2

n t
2µ+2ν+3

µ+ν+2

)
, (4.15)

where An can be chosen as any number greater than or equal to σ2
n and

Bn = 2 (K ∨M) L2

((24+µ+ν nK2 L1

An

)
∨ 1

)
.

A first Rosenthal-type inequality for weakly dependent random variables was
derived by Doukhan and Louhichi (1999) via direct expansions of the moments
of even order. Unfortunately, the variance of the sum did not explicitly show
up in their bound. Using cumulant bounds in conjunction with Leonov and
Shiryaev’s formula the following tighter moment inequality was obtained in
Doukhan and Neumann (2007).

Theorem 4.6. (Theorem 3 in Doukhan and Neumann (2007)) Suppose that
X1, . . . , Xn are real-valued random variables on a probability space (Ω,A,P) with
zero mean and let p be a positive integer. We assume that there exist constants
K,M < ∞, and a non-increasing sequence of real coefficients (ρ(n))n≥0 such
that, for all u-tuples (s1 , . . . , su) and all v-tuples (t1, . . . , tv) with 1 ≤ s1 ≤
· · · ≤ su ≤ t1 ≤ · · · ≤ tv ≤ n and u + v ≤ p, condition (4.12) is fulfilled.
Furthermore, we assume that

E|Xi|p−2 ≤ Mp−2.

Then, with Z ∼ N (0, 1),
∣∣∣∣∣E
(

n∑

k=1

Xk

)p

− σp
nEZp

∣∣∣∣∣ ≤ Bp,n

∑

1≤u<p/2

Au,p K
2u (M ∨K)p−2u nu,

where Bp,n = (p!)22p max
2≤k≤p

{ρp/k
k,n}, ρk,n =

n−1∑

s=0

(s+ 1)k−2ρ(s) and

Au,p =
1

u!

∑

k1+···+ku=p, ki≥2∀i

p!

k1! · · ·ku!
.
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To avoid any misinterpretation, we note that condition (4.12) with u + v ≤ p
and E|Xi|p−2 ≤ Mp−2 only requires finiteness of moments of order p. This is
in contrast to the conditions imposed in Theorem 4.5 where in particular all
moments of the involved random variables have to be finite.

5. Proofs

Proof of Lemma 2.1.
Let, for simplicity of notation, sk = 0. Then

cov (g(Xs1
, . . . , Xsk

), h(Xt1 , . . . , Xtl
))

= E [g(Xs1
, . . . , Xsk

) (E(h(Xt1 , . . . , Xtl
) | Xs1

, . . . , Xsk
) − Eh(Xt1 , . . . , Xtl

))] .

Now we obtain by Jensen’s inequality for conditional expectations that

|cov (g(Xs1
, . . . , Xsk

), h(Xt1 , . . . , Xtl
))|

≤ E [|g(Xs1
, . . . , Xsk

)| · |E(h(Xt1 , . . . , Xtl
) | X0) − Eh(Xt1 , . . . , Xtl

)|]
≤ E

[
|g(Xs1

, . . . , Xsk
)| ·
∣∣E(h(Xt1 , . . . , Xtl

) | X0) − E(h(X′
t1 , . . . , X

′
tl
) | X

′
0)
∣∣]

≤ Liph E

[
|g(Xs1

, . . . , Xsk
)| · E

(
l∑

j=1

|Xtj
−X′

tj
| | X0,X

′
0

)]
.

The assertion follows now immediately.

Proof of Lemma 2.2.
The assertion follows immediately from (2.3) and (2.4).

Proof of Lemma 2.3.

(i) Let ξ̂n,1, . . . , ξ̂n,p be the roots of the characteristic polynomial θ̂n(z) =

1− θ̂n,1z− · · ·− θ̂n,pz
p of the bootstrap process. Since θ̂n

P−→ θ we obtain
by Theorem 1.4 in Marden (1949) that

min{|ξ̂n,1|, . . . , |ξ̂n,p|} P−→ ρ = min{|ξ1|, . . . , |ξp|}.
Therefore, we have, for any ǫ > 0, that

P

(
min{|ξ̂n,1|, . . . , |ξ̂n,p|} ≥ ρ/(1 + ǫ/2)

)
−→
n→∞

1. (5.1)

Thus there exists a stationary solution to equation (2.5) which can also
be written as a causal linear process,

X∗
t =

∞∑

k=0

α̂n,kε
∗
t−k.

It follows from (5.1) that, for all ǫ > 0, there exist some Kǫ < ∞ such
that, with ρǫ = (1 + ǫ)/ρ,

P
(
|α̂n,k| ≤ Cǫρ

k
ǫ ∀k

)
−→

n→∞
1.
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(ii) To prove (ii), we first split up

1

n

n∑

t=1

ε̃2t =
1

n

n∑

t=1

ε2t +
1

n

n∑

t=1

(ε̃t − εt)
2 +

2

n

n∑

t=1

(ε̃t − εt)εt

= Tn,1 + Tn,2 + Tn,3,

say. It follows from the strong law of large numbers that

Tn,1
a.s.−→ Eε20.

Since (Xt)t∈Z is ergodic we obtain from Birkhoff (1931)’s ergodic theorem

(see also Corollary 3.5.1 in Stout (1974)) that 1
n

∑n
t=1 XtX

′
t

a.s.−→ EX0X
′
0.

Using ε̃t − εt = X
′
t(θ − θ̂n) we therefore obtain that

Tn,2 = (θ̂n − θ)′
1

n

n∑

t=1

XtX
′
t(θ̂n − θ)

P−→ 0.

Finally, we conclude by the Cauchy-Schwarz inequality that Tn,3
P−→ 0,

which gives that

1

n

n∑

t=1

ε̃2t
P−→ Eε20.

Since by the strong law of large numbers ε· = (1/n)
∑n

t=1 εt
a.s.−→ 0 and by

Jensen’s inequality (ε̃· − ε·)2 ≤ (1/n)
∑n

t=1(ε̃t − εt)
2 we also obtain that

ε̃·
P−→ 0. This implies that

E (ε∗t | X1−p, . . . , Xn) =
1

n

n∑

t=1

ε̂2t =
1

n

n∑

t=1

ε̃2t − ε̃2·
P−→ Eε20.

Proof of inequality (2.6).
We prove this result by a simple coupling argument. Let (Xt)t∈Z and (X′

t)t∈Z be
two versions of the autoregressive process with Xt = x and X′

t = y. We contruct
a coupling simply by feeding both processes after time t with the same sequence
of innovations εt+1, εt+2, . . ., that is, we have Xt+l+1 = m(Xt+l) + εt+l+1 and
X′

t+l+1 = m(X′
t+l) + εt+l+1 (l ≥ 0). It follows from this construction that

|Xt+k − X′
t+k| ≤ ∆(Xt+k−1)|Xt+k−1 − X′

t+k−1|
≤ · · ·
≤ ∆(Xt+k−1) · · ·∆(Xt+1)∆(x)|x− y|.

Therefore, we obtain that

d
(
P

Xt+k |Xt=x,PXt+k|Xt=y
)

≤ E|Xt+k − X′
t+k|

≤ E (∆(Xt+k−1) · · ·∆(Xt+1)|Xt = x) · ∆(x) · |x− y|.
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Using the Markov property we see that

E (∆(Xt+k−1) · · ·∆(Xt+1)|Xt = x)

= E [E(∆(Xt+k−1) | Xt+k−2) · · ·E(∆(Xt+1) | Xt = x)]

≤ ρk−1,

which yields the assertion.
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Bickel, P. J. and Bühlmann, P. (1999). A new mixing notion and functional
central limit theorems for a sieve bootstrap in time series. Bernoulli 5 413–
446. MR1693612

Bickel, P. J. and Freedman, D. A. (1981). Some asymptotic theory for the
bootstrap. Ann. Statist. 9 1196–1217. MR0630103

Billingsley, P. (1968). Convergence of Probability Measures. New-York: Wi-
ley. MR0233396

Birkhoff, G. D. (1931). Proof of the ergodic theorem. Proc. Natl. Acad. Sci.
USA 17 656–660.

Borovkova, S., Burton, R. and Dehling, H. (2001). Limit theorems for
functionals of mixing processes with application to U -statistics and dimension
estimation. Trans. Amer. Math. Soc. 353 4261–4318. MR1851171

Bradley, R. C. (2005). Basic properties of strong mixing conditions. A survey
and some open questions. Probab. Surv. 2 107–144. MR2178042

Bradley, R. C. (2007). Introduction to Strong Mixing Conditions (in 3 vol-
umes). Kendrick Press, Heber City, Utah.

Brockwell, P. J. and Davis, R. A. (1991). Time Series: Theory and Meth-
ods, 2nd edition. Springer, New York. MR1093459

Bulinski, A. and Shashkin, A. (2005). Strong invariance principle for depen-
dent multi-indexed random rariables. Doklady Mathematics 72 (1) 503–506.

Coulon-Prieur, C. and Doukhan, P. (2000). A triangular central limit
theorem under a new weak dependence condition. Statist. Probab. Lett. 47
61–68. MR1745670

Dedecker, J., Doukhan, P., Lang, G., León, J. R., Louhichi, S.,

Prieur, C. (2007). Weak Dependence: Models, Theory and Applications. Lec-
ture Notes in Statistics 190, Springer-Verlag. MR2338725

Dedecker, J. and Doukhan, P. (2003). A new covariance inequality and
applications. Stoch. Process. Appl. 106 (1) 63–80. MR1983043

http://www.ams.org/mathscinet-getitem?mr=2374636
http://www.ams.org/mathscinet-getitem?mr=1693612
http://www.ams.org/mathscinet-getitem?mr=0630103
http://www.ams.org/mathscinet-getitem?mr=0233396
http://www.ams.org/mathscinet-getitem?mr=1851171
http://www.ams.org/mathscinet-getitem?mr=2178042
http://www.ams.org/mathscinet-getitem?mr=1093459
http://www.ams.org/mathscinet-getitem?mr=1745670
http://www.ams.org/mathscinet-getitem?mr=2338725
http://www.ams.org/mathscinet-getitem?mr=1983043


P. Doukhan and M.H. Neumann/ψ-weak dependence 166

Dedecker, J. and Prieur, C. (2004). Coupling for τ -dependent sequences
and applications. J. Theor. Probab. 17 861–885. MR2105738

Dedecker, J. and Prieur, C. (2005). New dependence coefficients. Examples
and applications to statistics. Probab. Theory Related Fields 132 203–236.
MR2199291

Dedecker, J. and Rio, E. (2000). On the functional central limit theorem
for stationary processes. Ann. Inst. H. Poincaré Probab. Statist. 36 1–34.
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Neumann, M. H. and Paparoditis, E. (2007). Goodness-of-fit tests for
Markovian time series models: Central limit theory and bootstrap approx-
imations. Bernoulli 14 14–46.

Pitt, L. (1982). Positively correlated normal variables are associated. Ann.
Probab. 10 496–499. MR0665603

Rio, E. (1993). Covariance inequalities for strongly mixing processes. Ann. Inst.
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