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ON THE OVERLAP IN THE MULTIPLE
SPHERICAL SK MODELS1
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In order to study certain questions concerning the distribution of the
overlap in Sherrington–Kirkpatrick type models, such as the chaos and ultra-
metricity problems, it seems natural to study the free energy of multiple sys-
tems with constrained overlaps. One can write analogues of Guerra’s replica
symmetry breaking bound for such systems but it is not at all obvious how
to choose informative functional order parameters in these bounds. We were
able to make some progress for spherical pure p-spin SK models where many
computations can be made explicitly. For pure 2-spin model we prove ultra-
metricity and chaos in an external field. For the pure p-spin model for even
p > 4 without an external field we describe two possible values of the over-
lap of two systems at different temperatures. We also prove a somewhat un-
expected result which shows that in the 2-spin model the support of the joint
overlap distribution is not always witnessed at the level of the free energy
and, for example, ultrametricity holds only in a weak sense.

1. Introduction and main results. Let us consider a Gaussian–Hamiltonian
(process) HN(σ ) indexed by σ ∈ R

N with covariance that satisfies∣∣∣∣ 1

N
EHN(σ 1)HN(σ 2) − ξ(R1,2)

∣∣∣∣≤ cN,(1.1)

where cN → 0, R1,2 = N−1∑
i≤N σ 1

i σ 2
i is the overlap of configurations σ 1,σ 2

and ξ is a smooth enough convex even function with ξ(0) = 0. We define θ(x) =
xξ ′(x) − ξ(x). Even though we will state some basic results for a general func-
tion ξ , our main results will deal with the pure p-spin SK Hamiltonians that cor-
respond to ξ(q) = qp/p for even p ≥ 2. For example, one can consider

HN(σ ) = 1√
pN(p−1)/2

∑
1≤i1,...,ip≤N

gi1,...,ipσi1 · · ·σip ,(1.2)

where (gi1,...,ip ) are i.i.d. Gaussian random variables. For p = 2 this is a classi-
cal SK Hamiltonian [5]. The factor p−1/2 is not important and is chosen so that
ξ ′(q) = qp−1. In this paper we will consider the spherical model when the spin
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configurations σ belong to a sphere SN of radius
√

N and the a priori distribution
of σ is the uniform measure λN on SN . Given an inverse temperature β > 0 and
an external field h ∈ R, the “free energy” is defined by

FN(β,h) = 1

N
E log

∫
SN

exp

(
βHN(σ ) + h

∑
i≤N

σi

)
dλN(σ ).

Its limit limN→∞ FN(β,h) = P (β,h) was computed in [1] and the computation
was made rigorous in [8]. The limit P (β,h) is the analogue of the Parisi formula
in the Ising SK model [6, 7]. For the spherical model it is somewhat simplified by
the fact that certain computations become more explicit. Namely, if, given k ≥ 1
and given two sequences m = (ml)0≤l≤k and q = (ql)0≤l≤k+1 such that

0 = m0 ≤ m1 ≤ · · · ≤ mk = 1,

q = q0 ≤ q1 ≤ · · · ≤ qk+1 = 1,

and given a parameter b > 1, we define for l ≤ k

dl = ∑
l≤p≤k

mp

(
ξ ′(qp+1) − ξ ′(qp)

)
and Dl = b − dl,

then

P (β,h) = inf
b,k,m,q

1

2

(
b − 1 − logb + 1

D1

(
h2 + ξ ′(q1)

)
(1.3)

+ ∑
1≤l≤k

1

ml

log
Dl+1

Dl

− ∑
1≤l≤k

ml

(
θ(ql+1) − θ(ql)

))
.

P (β,h) is also given by the Crisanti–Sommers representation (see Section 4
in [8]) as follows. If δl =∑

l≤p≤k mp(qp+1 − qp) then

P (β,h) = inf
k,m,q

1

2

(
h2δ1 + 1

δ1
q1 + ∑

1≤l≤k−1

1

ml

log
δl

δl+1
+ log δk

(1.4)

+ ∑
1≤l≤k

ml

(
ξ(ql+1) − ξ(ql)

))
.

When h = 0 we will write P (β) := P (β,0). The goal of this paper is to prove and
analyze some bounds on the free energy of multiple copies of the system, possibly
at different temperatures, coupled by constraining their overlap. Let Q be a n × n

symmetric nonnegative definite matrix with elements qj,j ′ ∈ [−1,1] and qj,j = 1.
Given ε > 0 consider a set

Qε = {
(σ 1, . . . ,σ n) ∈ Sn

N :Rj,j ′ ∈ [qj,j ′ − ε, qj,j ′ + ε] for j, j ′ ≤ n
}

(1.5)
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and given β1, . . . , βn > 0 and h1, . . . , hn ∈ R we define a “free energy” of the
n-configuration system constrained to the set Qε by

FN(Qε) = 1

N
E log

∫
Qε

exp

(∑
j≤n

βjHN(σ j ) +∑
j≤n

hj

∑
i≤N

σ
j
i

)
dλn

N .(1.6)

Obviously, FN(Qε) ≤∑j≤n FN(βj , hj ) and as a result a trivial bound would be

lim sup
N→∞

FN(Qε) ≤ ∑
j≤n

P (βj , hj ).(1.7)

We would like to construct some nontrivial bounds on FN(Qε) that would yield
some information on the support of the distribution of the overlaps (Rj,j ′) under
the product Gibbs measure by showing, for example, that for some constraints Q

lim sup
ε→0

lim sup
N→∞

FN(Qε) <
∑
j≤n

P (βj , hj ),

which by concentration of measure would imply that with high probability the
overlaps cannot be in configuration Q for the product Gibbs measure. At this mo-
ment, the only approach we could conceive for proving such bounds is based on an
analogue of Guerra’s interpolation [3] that was used in [7] for two coupled systems
at equal temperatures and external fields, and explained in more generality in [9].
It was also explained in [9] that it seems to be not obvious at all how to choose
parameters in these bounds that would at least witness the obvious inequality (1.7).
In this paper we will describe several situations when we were able to find such
parameters. The methods of the proofs are at least as interesting as the results they
imply since they shed some light on the difficulties of finding informative parame-
ters in the bounds and give some hope that, in principle, these bounds might be
“correct” and it could be only a (very difficult) technical problem to find suitable
parameters in more general situations.

The pure 2-spin SK model. The first case we will consider is the pure 2-spin
SK model in (1.2) with p = 2 without external field, that is, h = 0. What makes
this case particularly simple is that due to the proof of Proposition 2.2 in [8] the
infimum in (1.4) [and (1.3)] is achieved on the replica-symmetric choice of para-
meters, that is, for k = 1, so that (1.4) becomes

P (β) = inf
q∈[0,1]

1

2

(
q

1 − q
+ log(1 − q) + β2ξ(1) − β2ξ(q)

)
,

where ξ(q) = q2/2. It is easy to check that the infimum is achieved on q = 0 when
β ≤ 1 and q = 1−1/β when β > 1. The first case is trivial in many respects, so we
will only look at the second case β > 1 for which the free energy above becomes

P (β) = 1
2

(
2β − 3

2 − logβ
)
.(1.8)
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We will prove the following bound on FN(Qε) in (1.6) when the external fields
hj = 0, j ≤ n. Given a matrix of overlap constraints Q = (qj,j ′) let us define a
matrix

Q̃ = (√
βjβj ′qj,j ′

)
(1.9)

and let r1, . . . , rn be its eigenvalues. Consider the function

f (r) =
{

log r + 1
2r2, for 0 < r ≤ 1,

2r − 3
2 , for 1 ≤ r ,

(1.10)

and note that for 0 < r < 1,

f (r) = log r + 1
2r2 < 2r − 3

2 .(1.11)

The following theorem holds.

THEOREM 1. For any matrix of overlap constraints Q we have

lim sup
ε→0

lim sup
N→∞

FN(Qε) ≤ 1
2

∑
j≤n

(
f (rj ) − logβj

)
,(1.12)

where (rj )j≤n are the eigenvalues of (1.9) and f (r) is defined in (1.10). The right-
hand side of (1.12) is strictly less than

∑
j≤n P (βj ) if the smallest eigenvalue

min rj is < 1.

The second statement of the theorem follows from (1.11). Indeed, note that if
all eigenvalues rj of Q̃ satisfy rj ≥ 1 then the bound (1.12) becomes∑

j≤n

1
2

(
2rj − 3

2 − logβj

)= ∑
j≤n

1
2

(
2βj − 3

2 − logβj

)= ∑
j≤n

P (βj )

by (1.8) and since
∑

j≤n rj = Tr(Q̃) =∑
j≤n βj . By (1.11), the bound (1.12) will

be strictly less than
∑

j≤n P (βj ) if the smallest eigenvalue min rj < 1. Let us look
at some consequences of this.

EXAMPLE 1. Let n = 2, β1, β2 > 1. For R1,2 ≈ u ∈ [−1,1],
Q =

(
1 u

u 1

)
	⇒ Q̃ =

(
β1

√
β1β2u√

β1β2u β2

)
(1.13)

and

r1, r2 = 1
2

(
β1 + β2 ±

√
(β1 − β2)2 + 4β1β2u2

)
.

It is easy to check that r2 ≥ 1 if and only if

|u| ≤
√(

1 − 1

β1

)(
1 − 1

β2

)
= √

q1q2
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and Theorem 1 (together with standard concentration of measure) implies that the
overlap of the coupled system can not exceed

√
q1q2. In the case of two equal

temperatures β1 = β2 = β this means that the absolute value of the overlap can not
exceed q = 1 − 1/β , which could also be obtained by methods of [8], “breaking”
replica symmetric choice of parameters. In Lemma 2 below we will give a general
statement that says that if for j ≤ 2 the overlap of the system j does not exceed
qj than the overlap of a coupled system does not exceed

√
q1q2. Thus, Example 1

could be obtained without the application of Theorem 1. However, (1.12) provides
an explicit constructive bound.

Our next example will be less trivial, but before we proceed let us make one
observation. Using the fact that for β > 1, h = 0,

lim
N→∞FN(β) := lim

N→∞
1

N
E log

∫
SN

expβHN(σ ) dλN(σ ) = P (β)

given by (1.8) and since both FN(β) and P (β) are convex in β , we have

lim
N→∞F ′

N(β) = lim
N→∞

1

2
β(1 − E〈R2

1,2〉) = P ′(β) = 1 − 1

2β
,

where 〈·〉 denotes the Gibbs average. This implies that

lim
N→∞ E〈R2

1,2〉 =
(

1 − 1

β

)2

= q2.

Example 1 for two equal temperatures implies that for any ε > 0,

lim
N→∞ E〈I {|R1,2| ≥ q + ε}〉 = 0.

These observations combined, of course, imply that for any ε > 0,

lim
N→∞ E〈I {|R2

1,2 − q2| ≥ ε}〉 = 0,(1.14)

that is, the overlap can take only values close to ±q .

EXAMPLE 2 (Ultrametricity). Let us consider three copies of the system
(n = 3) with the same β > 1. Ultrametricity means that with high probability in
the disorder (randomness of the Hamiltonian HN ), for any ε > 0, the Gibbs mea-
sure of the event

R2,3 ≥ min(R1,2,R1,3) − ε

is close to one. By (1.14), the overlaps Rj,j ′, j = j ′ can only take values ±q and,
thus, the only possible nonultrametric overlap configuration is described by the
constraint matrix

Q =

 1 q q

q 1 −q

q −q 1


 .
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It is easy to check that for this matrix

r1 = r2 = β(1 + q) and r3 = β(1 − 2q).

First of all, the matrix Q is positive definite only if 1−2q > 0, that is, β < 2. Also,
for β > 1 we have r3 = β(1−2q) = 2−β < 1 and, therefore, such a configuration
Q is not in the support of the Gibbs measure and we have ultrametricity. Some
intuition for the fact that the overlap takes two values ±q is that the Gibbs measure
is dominated by two symmetric “states” such that the typical overlap of two spin
configurations within each state is equal to q and the overlap of spin configurations
from different states is −q . Of course, such a picture naturally excludes the overlap
configuration given by Q above, but a rigorous proof is another matter.

Let us now go back to the Example 1 for β1 = β2 = β . For the value of the over-
lap R1,2 ≈ u such that |u| ≤ q , Theorem 1 provides only a trivial bound 2P (β) of
the type (1.7) while, on the other hand, (1.14) proves that the overlap cannot take
values between −q and q . At the level of large deviations the bound (1.12) does
not detect this and one might ask whether (1.12) is simply not sharp in this case.
A similar question may be asked about Example 2 which proves ultrametricity only
in the weak sense since due to (1.14) we only had to consider one nonultramet-
ric configuration. However, there are nonultrametric configurations Q = (qj,j ′),
that is, q2,3 < min(q1,2, q1,3), for which Theorem 1 will only give a trivial bound
3P (β). Again, could it be that (1.12) is simply not sharp in that case? The answer
to both of these questions is negative as shown by the following theorem. This
result is surprising because it shows that in this model the ultrametricity (and the
chaos) cannot be proved at the level of large deviations and, therefore, it is possible
that in other models, for example, in the Ising SK model, a similar situation occurs
and one should be cautious in one’s efforts to prove ultrametricity at the level of
free energy.

THEOREM 2. In the notation, of Theorem 1, if βj = β > 1, j ≤ n and min rj ≥
1 then

lim
ε→0

lim
N→∞FN(Qε) = nP (β),(1.15)

that is, in this case the bound (1.12) is sharp.

The proof of this theorem is an extension of the methodology in [7]. It relies on
certain a priori estimates, Theorem 6 below, which generally become much more
difficult to prove for multiple copies of the system compared to a single system.
For example, we do not know how to do this for the Ising SK model or even for
the spherical p-spin model for even p > 2. In the setting of Theorem 2 we were
able to prove these estimates using a special “diagonalization” trick developed in
Theorem 1.
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Finally, we will prove some facts about the overlap of two pure 2-spin systems
in the presence of external fields. If hj = 0, we will assume that βj > 1 and let
qj = 1 − 1/βj . If hj = 0, let βj > 0 and let qj ∈ [0,1] be a unique solution of

h2
j + β2

j qj = qj

(1 − qj )2 .

Then the following theorem holds.

THEOREM 3. Let u0 = 0 if h1 = 0 and h2 = 0 and let

u0 = h1h2(1 − q1)(1 − q2)

1 − β1β2(1 − q1)(1 − q2)

if both h1 = 0, h2 = 0. Then, for any ε > 0,

lim
N→∞ E〈I {|R1,2 − u0| ≥ ε}〉 = 0.

Pure p-spin model, for even p ≥ 4, without external field. Next we will con-
sider the pure p-spin Hamiltonian (1.2) for even p ≥ 4, which corresponds to
ξ(q) = qp/p, without external field, that is, h = 0. It was proven (following an ar-
gument of [1]) in Proposition 2.2. in [8] that whenever ξ ′′(q)−1/2 is convex, which
is the case here, the infimum in (1.3) or (1.4) is achieved for k = 2. When h = 0
one can argue that q1 = 0 and, thus, the free energy is

inf
q,m∈[0,1]

1

2

(
β2ξ(1) + (m − 1)β2ξ(q)

(1.16)

+
(

1 − 1

m

)
log(1 − q) + 1

m
log
(
1 − q(1 − m)

))
.

Proposition 2.3 in [8] states that the infimum will be achieved on q = 0 if and only
if

sup
s≤0

(
β2ξ(s) + log(1 − s) + s

)≤ 0.(1.17)

The case where the infimum is achieved on q = 0 corresponds to the trivial case
when the overlap can take only the value zero, so, we will only consider the case
of β large enough, where q = 0. We will prove the following result concerning the
overlap of two pure p-spin systems.

THEOREM 4. Suppose that βj , j ≤ 2 are such that the infimum in (1.16) is
achieved on qj = 0, that is, (1.17) fails. Then for any ε > 0,

lim
N→∞ E

〈
I
{{|R1,2| ≥ ε} ∩ {∣∣|R1,2| − √

q1q2
∣∣≥ ε

}}〉= 0,(1.18)

that is, the overlap can take only the values 0 and ±√
q1q2.
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The rest of the paper is organized as follows. In Section 2 we prove a general
bound on FN(Qε) using the analogue of Guerra’s interpolation. In Section 3 we
prove Theorems 1 and 3, in Section 4 we prove Theorem 4 and in Section 5 we
prove Theorem 2.

2. Interpolation. In this section we will describe the analogue of Guerra’s in-
terpolation for the constrained free energy (1.6). Given k ≥ 1, consider a sequence
m = (ml)l≤k such that

0 = m0 < m1 < · · · < mk = 1.

We may assume strict inequalities since otherwise in (1.3) and (1.4) we can simply
decrease the value of k. We consider a sequence for 0 ≤ l ≤ k + 1 of symmetric
n × n matrices Ql = (ql

j,j ′)j,j ′≤n such that Q0 = 0 and such that if we define

Q̂l = (βjβj ′ξ ′(ql
j,j ′))(2.1)

then the matrices

�l := Q̂l+1 − Q̂l(2.2)

are nonnegative definite for 0 ≤ l ≤ k. Let zl = (z1
l , z

2
l , . . . , z

n
l ) be a Gaussian vec-

tor with covariance �l and let zl be independent for l ≤ k. Finally, let (zl,i)l≤n be
independent copies of (zl)l≤n for i ≤ N . For 0 ≤ t ≤ 1 we define an interpolating
Hamiltonian by

Ht(σ
1, . . . ,σ n) = √

t
∑
j≤n

βjHN(σ j )

(2.3)

+∑
j≤n

∑
i≤N

σ
j
i

(√
1 − t

∑
0≤l≤k

z
j
l,i + hj

)
.

Let

Xk+1,t (Qε) = log
∫
Qε

expHt dλn
N,(2.4)

where for simplicity of notations we keep the dependence of Ht and λn
N on

(σ 1, . . . ,σ n) implicit. Recursively for 1 ≤ l ≤ k we define

Xl,t (Qε) = 1

ml

log El expmlXl+1,t (Qε),(2.5)

where El denotes the expectation in (z
j
p,i) for p ≥ l. We define

ϕ(t) = 1

N
EX1,t (Qε).(2.6)

Clearly ϕ(1) = FN(Qε). From now on R will denote a quantity such that

lim sup
ε→0

lim sup
N→∞

|R| = 0.

The following holds.
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THEOREM 5. We have

ϕ′(t) = 1
2

∑
j,j ′≤n

βjβj ′
(
ξ(qj,j ′) − qj,j ′ξ ′(qk+1

j,j ′ ) + θ(qk+1
j,j ′ )

)
(2.7)

− 1
2

∑
1≤l≤k

ml

∑
j,j ′≤n

βjβj ′
(
θ(ql+1

j,j ′ ) − θ(ql
j,j ′)

)− R(t) + R,

where the remainder R(t) ≥ 0.

PROOF. The proof of this theorem is a straightforward generalization of
Guerra’s interpolation for a single system [3] and was explained in detail for cou-
pled copies in [7]. We will not reproduce it here. �

REMARK (Remainder for k = 1). The remainder R(t) can be written explic-
itly but we will omit its rather complicated definition in the general case k ≥ 1
since we will only need the exact form of R(t) in the proof of Theorem 2 for
k = 1. If k = 1, let us define a Hamiltonian

ht (σ
1, . . . ,σ n) = √

t
∑
j≤n

βjHN(σ j ) +∑
j≤n

∑
i≤N

σ
j
i

(√
1 − tz

j
0,i + hj

)
(2.8)

and let 〈·〉t denote the Gibbs average on Qε (and its products) with respect
to this Hamiltonian. Then given two systems of spins (σ 1, . . . ,σ n) ∈ Qε and
(ρ1, . . . ,ρn) ∈ Qε we have

R(t) = 1
2

∑
j,j ′≤n

βjβj ′E〈ξ(Rj,j ′
) − Rj,j ′

ξ ′(q1
j,j ′) + θ(q1

j,j ′)〉t(2.9)

where Rj,j ′ = N−1∑
i≤N σ

j
i ρ

j ′
i is the overlap between σ j and ρj ′

.

Theorem 5 provides an upper bound for FN(Qε) since

FN(Qε) = ϕ(1) = ϕ(0) +
∫ 1

0
ϕ′(t) dt

and the integral can be bounded using (2.7). Consider a symmetric positive definite
n × n matrix A = (aj,j ′)j,j ′≤n, define Ak+1 = A and recursively for l ≤ k define

Al = Al+1 − ml�l = Al+1 − ml(Q̂
l+1 − Q̂l).(2.10)

Below we will always assume that A is chosen so that A1 is also positive definite.
We will denote by |A| the determinant of A. The following holds.

LEMMA 1. If h = (h1, . . . , hn) then for any matrix A and the sequence (Al)

defined by (2.10), we have

2ϕ(0) ≤ Tr(Ak+1Q) − n + (A−1
1 h,h) + Tr(A−1

1 �0)
(2.11)

+ ∑
1≤l≤k

1

ml

log
|Al+1|
|Al| − log |Ak+1| + R.
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REMARK. In fact, one can prove that limε→0 limN→∞ 2ϕ(0) is equal to the
infimum of the right-hand side of (2.11) over all choices of A, that is, the bound is
sharp. We will give a proof of this statement in the replica symmetric case k = 1
which will be needed in the proof of Theorem 2, but the proof of the general case
k ≥ 1 is different only in that the notation is more complicated.

PROOF OF LEMMA 1. To simplify the notation, for j ≤ n let

zj =
( ∑

0≤l≤k

z
j
l,1 + hj , . . . ,

∑
0≤l≤k

z
j
l,N + hj

)
.

Then, since on the set Qε we have Rj,j ′ = N−1(σ j ,σ j ′
) = qj,j ′ + O(ε), we have

1

N
Xk+1,0(Qε)

= 1

N
log
∫
Qε

exp
∑
j≤n

(σ j , zj ) dλn
N

(2.12)
≤ ∑

j<j ′
aj,j ′qj,j ′

+ 1

N
log
∫
Sn

N

exp

(∑
j≤n

(σ j , zj ) − ∑
j<j ′

aj,j ′(σ j ,σ j ′
)

)
dλn

N + O(ε).

We proceed as in Lemma 7.1 in [8]. Let νaj,j
(σ ) be a Gaussian measure on R

N of
density

(
aj,j

2π

)N/2

exp
(
−aj,j

2
‖σ‖2

)
.

Let us write ρ ∈ R
N as ρ = sσ where σ ∈ SN so that by rotational invariance the

law of σ under νaj,j
is λN and σ and s are independent. Let γj be the law of s. Let

us define cj by

1 = γj ({s ≥ cj })
∫ ∞
cj

s dγj (s),(2.13)

which, obviously, implies that cj ≤ 1. Therefore,

γj ({s ≥ cj }) ≥ γj ({s ≥ 1}) = νaj,j

({‖ρ‖ ≥ √
N
})= exp(−NτN(aj,j ))(2.14)
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and it is easy to check (classical large deviations) that

lim
N→∞ τN(aj,j ) = τ(aj,j ) := 1

2(aj,j − 1 − logaj,j ).(2.15)

By Jensen’s inequality and (2.13),

∏
j≤n

γj ({sj ≥ cj })
∫
Sn

N

exp

(∑
j≤n

(σ j , zj ) − ∑
j<j ′

aj,j ′(σ j ,σ j ′
)

)
dλn

N

≤
∫
⋂{sj≥cj }

∫
Sn

N

exp

(∑
j≤n

(sjσ
j , zj )

− ∑
j<j ′

aj,j ′(sjσ
j , sj ′σ j ′

)

)
dλn

N dγ1(s1) · · · dγn(sn)

(2.16)

=
∫
⋂{‖ρj‖≥cj

√
N}

exp

(∑
j≤n

(ρj , zj )

− ∑
j<j ′

aj,j ′(ρj ,ρj ′
)

)
dνa1,1(ρ

1) · · · dνan,n(ρ
n)

≤
∫

RNn
exp

(∑
j≤n

(ρj , zj ) − ∑
j<j ′

aj,j ′(ρj ,ρj ′
)

)
dνa1,1(ρ

1) · · · dνan,n(ρ
n).

In the last line, all N coordinates are now decoupled. Let ν be a Gaussian measure
on R

n with covariance Diag(a1,1, . . . , an,n) and define for i ≤ N

zi =
(∑

l≤k

z1
l,i + h1, . . . ,

∑
l≤k

zn
l,i + hn

)
=∑

l≤k

zl,i + h.

Then the last line in (2.16) can be rewritten as exp
∑

i≤N Yk+1,i where

expYk+1,i =
∫

Rn
exp

(
(x, zi) − ∑

j<j ′
aj,j ′xjxj ′

)
dν(x)

=
(∏

aj,j

(2π)n

)1/2 ∫
Rn

exp

(
(x, zi) − ∑

j<j ′
aj,j ′xjxj ′ − 1

2

∑
j≤n

aj,j x
2
j

)
dx

(2.17)

=
(∏

aj,j

(2π)n

)1/2 ∫
Rn

exp
(
(x, zi) − 1

2
(Ax,x)

)
dx

=
(∏

aj,j

|A|
)1/2

exp
(

1

2
(A−1zi , zi )

)
.
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Combining this with (2.12), (2.14), (2.15) and (2.16) we get

1

N
Xk+1,0(Qε)

≤ ∑
j<j ′

aj,j ′qj,j ′ +∑
j≤n

τ (aj,j ) + 1

2
log

∏
aj,j

|A|
(2.18)

+ 1

N

∑
i≤N

1

2
(A−1zi , zi) + R

= 1

2

(
Tr(AQ) − n − log |A|)+ 1

N

∑
i≤N

1

2
(A−1zi , zi ) + R,

where R = O(ε) + cN for some cN → 0. This bound will propagate in the recur-
sion (2.5) and since zi are all independent we only need to compute what happens
with one of the terms (A−1zi , zi)/2. Namely, if

yk+1 = 1

2
(A−1zi , zi), yl = 1

ml

log El expmlyl+1 for l ≤ k,

then by induction over l it should be obvious that

ϕ(0) ≤ 1
2

(
Tr(AQ) − n − log |A|)+ Ey1 + R.(2.19)

To compute the sequence (yl) we use the fact that for a Gaussian vector g with
covariance C, parameter m > 0 and a symmetric positive definite matrix A such
that A − mC is also positive definite, we have

1

m
log E exp

m

2

(
A−1(x + g),x + g

)

= 1

2m
log

|A|
|A − mC| + 1

2

(
(A − mC)−1x,x

)
,

which is a simple exercise. Since the covariance of zl,i is �l , using (2.10) we get
by induction over l ≤ k that

y1 = 1

2

(
A−1

1 (z0,i + h), z0,i + h
)+ 1

2

∑
1≤l≤k

1

ml

log
|Al+1|
|Al|

and, therefore,

Ey1 = 1

2
Tr(A−1

1 �0) + 1

2
(A−1

1 h,h) + 1

2

∑
1≤l≤k

1

ml

log
|Al+1|
|Al| .

Plugging this back into (2.19) completes the proof. �

Combining Theorem 5 and Lemma 1 gives an upper bound on FN(Qε). From
now on we will always set

Qk+1 = Q(2.20)
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in which case the first sum on the right-hand side of (2.7) disappears and the bound
becomes

2FN(Qε) ≤ Tr(Ak+1Q) − n + (A−1
1 h,h) + Tr(A−1

1 �0)

+ ∑
1≤l≤k

1

ml

log
|Al+1|
|Al| − log |Ak+1|(2.21)

− ∑
1≤l≤k

ml

∑
j,j ′≤n

βjβj ′
(
θ(ql+1

j,j ′ ) − θ(ql
j,j ′)

)+ R.

It will often be convenient to think of Ak as a free parameter and think of Ak+1 as
Ak + �k and write (2.21) as

2FN(Qε) ≤ Tr(�kQ) + Tr(AkQ) − n + (A−1
1 h,h)

+ Tr(A−1
1 �0) + ∑

1≤l≤k−1

1

ml

log
|Al+1|
|Al| − log |Ak|(2.22)

− ∑
1≤l≤k

ml

∑
j,j ′≤n

βjβj ′
(
θ(ql+1

j,j ′ ) − θ(ql
j,j ′)

)+ R.

In general, it is not clear how to choose the parameters in this bound that would
witness the trivial bound (1.7). In the next section we will show how this can be
done for the pure 2-spin model.

3. Pure 2-spin model.

PROOF OF THEOREM 1. We will first prove Theorem 1 by constructing the
sequence (Ql) and A in a special way. Let us mention that in order to prove The-
orem 1 it would be enough to consider the bound (2.21) only for k = 1. However,
to illustrate the general idea we will look at any k ≥ 1 and at the end of our argu-
ment it will be clear why for 2-spin model one should take k = 1. Note that now
ξ(q) = θ(q) = q2/2 and ξ ′(q) = q . Let

Q̃k+1 = (q̃k+1
j,j ′ ) := (√

βjβj ′qk+1
j,j ′

)= (√
βjβj ′qj,j ′

)
and let

Q̃k+1 = OT Rk+1O

be its Jordan decomposition for some Rk+1 = Diag(r1, . . . , rn) and orthogonal
matrix O . We now consider a nondecreasing sequence

0 = R0 ≤ R1 ≤ · · · ≤ Rk ≤ Rk+1

of diagonal matrices Rl = Diag(rl
1, . . . , r

l
n) which means that each sequence

(rl
j )l≤k+1 is nondecreasing and define

Q̃l = (q̃l
j,j ′) = (√

βjβj ′ql
j,j ′
)= OT RlO,(3.1)
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which also defines Ql and Q̂l , in particular,

q̂ l
j,j ′ = βjβj ′ql

j,j ′ =
√

βjβj ′ q̃ l
j,j ′ .

Next, for B = Diag(b1, . . . , bn) where each bj > 0 we let

D = (dj,j ′) = OT BO and A = (√
βjβj ′dj,j ′

)
.(3.2)

Then by (2.10) the elements of the matrix Al are

√
βjβj ′

(
dj,j ′ − ∑

l≤p≤k

mp(q̃
p+1
j,j ′ − q̃

p

j,j ′)

)

=
√

βjβj ′

(
D − ∑

l≤p≤k

mp(Q̃p+1 − Q̃p)

)
j,j ′

=
√

βjβj ′

(
OT

(
B − ∑

l≤p≤k

mp(Rp+1 − Rp)

)
O

)
j,j ′

.

It is obvious that for any matrix M = (mj,j ′) we have

∣∣(√βjβj ′mj,j ′
)∣∣= |M| ∏

j≤n

βj

and, therefore,

|Al| = |Bl|
∏
j≤n

βj for Bl = B − ∑
l≤p≤k

mp(Rp+1 − Rp).(3.3)

Similarly,

Tr(A−1
1 �0) = lim

m→0

1

m
log

|A1|
|A1 − m�0|

(3.4)

= lim
m→0

1

m
log

|B1|
|B1 − mR1| = Tr(B−1

1 R1) = ∑
j≤n

r1
j

b1
j

,

where we denoted by b1
j the j th element on the diagonal of B1. Next,

Tr(Ak+1Q) =∑
j,j ′

aj,j ′qj,j ′ =∑
j,j ′

√
βjβj ′dj,j ′qj,j ′ = Tr(DQ̃k+1)

(3.5)
= Tr(OT Bk+1OOT Rk+1O) = Tr(BRk+1) = ∑

j≤n

bj rj .
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Finally,∑
l≤k

ml

∑
j,j ′≤n

βjβj ′
(
θ(ql+1

j,j ′ ) − θ(ql
j,j ′)

)

= 1
2

∑
l≤k

ml

∑
j,j ′≤n

(
(q̃l+1

j,j ′ )2 − (q̃l
j,j ′)2)(3.6)

= 1
2

∑
l≤k

ml

∑
j≤n

(
(rl+1

j )2 − (rl
j )

2)=∑
l≤k

ml

∑
j≤n

(
θ(rl+1

j ) − θ(rl
j )
)
,

since Q̃l = OT RlO and the Frobenius norm of the matrix is preserved by an or-
thogonal transformation, that is,∑

j,j ′≤n

(q̃l
j,j ′)2 = ∑

j≤n

(rl
j )

2.

When h = 0, (3.3)–(3.6) result in a bound (2.21) being transformed into

2FN(Qε) ≤ Tr(BRk+1) − n + Tr(B−1
1 R1) + ∑

1≤l≤k

1

ml

log
|Bl+1|
|Bl|

(3.7)
− log |B| − log

∏
j≤n

βj − ∑
1≤l≤k

ml

∑
j≤n

(
θ(rl+1

j ) − θ(rl
j )
)+ R.

Obviously, if we denote the diagonal elements of Bl by bl
1, . . . , b

l
n so that

bl
j = bj − ∑

l≤p≤k

mp(r
p+1
j − r

p
j )

then (3.7) decouples into the sum of n terms

r1
j

b1
j

+ bj r
k+1
j − 1 − logbj − logβj + ∑

1≤l≤k

1

ml

log
bl+1
j

bl
j

(3.8)
− ∑

1≤l≤k

ml

(
θ(rl+1

j ) − θ(rl
j )
)

which was our main idea and motivation. Note that the same idea does not immedi-
ately work for p-spin model for p > 2 since (3.6) fails there. We will now explain
why minimizing this bound it is enough to look only at the case k = 1. Besides the
explicit term − logβj , (3.8) is very similar to (1.3) for β = 1 with minor differ-
ences, namely, the range of the sequence (rl

j )l≤k is between 0 and rk+1
j —the j th

eigenvalue of the matrix Q̃k+1—and we have bj r
k+1
j instead of b. Similar to (1.4),

one can repeat the proof of the Crisanti–Sommers formula in Section 4 in [8] to
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show that the infimum of (3.8) over bj and the sequence (rl
j )l≤k is equal to the

infimum of

r1
j

δ1
j

+ ∑
1≤l≤k−1

1

ml

log
δl
j

δl+1
j

+ log δk
j +∑

l≤k

ml

(
ξ(rl+1

j ) − ξ(rl
j )
)− logβj ,(3.9)

where δl
j =∑

l≤p≤k mp(r
p+1
j − r

p
j ). (This is especially easy to check for k = 1.)

The proof of Proposition 2.2 in [8] yields that the infimum of (3.9) is achieved on
the replica symmetric choice of parameters when k = 1,

inf
r1
j ∈[0,r2

j ]

(
log(r2

j − r1
j ) + r1

j

r2
j − r1

j

+ 1

2

(
(r2

j )2 − (r1
j )2)− logβj

)
.

It is easy to check that the infimum is achieved on

r1
j =

{
r2
j − 1, if r2

j ≥ 1,

0, if r2
j < 1,

(3.10)

and the infimum is equal to f (r2
j ) − logβj which proves Theorem 1. �

REMARK. In Theorem 2 we will prove that the bound of Theorem 1 is sharp
in when βj = β > 1 for j ≤ n and when the bound is nP (β). The proof of Theo-
rem 1 shows that this happens when all r2

j ≥ 1 and (3.10) implies that r1
j = r2

j − 1.
Definition (3.1) then gives that

Q2 − Q1 = β−1OT (R2 − R1)O = β−1I

and

Q1 = Q2 − β−1I and �1 = β2(Q2 − Q1) = βI.(3.11)

The diagonal elements of Q1 are q1
j,j = 1 −β−1 = q and off-diagonal element are

q1
j,j ′ = q2

j,j ′ = qj,j ′ . It is also easy to check that the infimum in (3.8) is achieved
for bj = 2, that is, B = 2I and definition (3.2) implies that A = 2βI . In fact,
instead of checking that the proof of Theorem 1 produces these parameters Q1

and A, one could simply use these parameters in (2.21) and see that they result in
a bound FN(Qε) ≤ nP (β) + R. Clearly, the condition min rj ≥ 1 that gives the
bound nP (β) is equivalent to saying that Q1 = Q−β−1I is nonnegative definite.

PROOF OF THEOREM 3. We already mentioned that for ξ(q) = q2/2 the infi-
mum in (1.4) [and (1.3)] is achieved for k = 1,

P (β,h) = inf
q∈[0,1]

1

2

(
h2(1 − q) + q

1 − q
(3.12)

+ log(1 − q) + β2ξ(1) − β2ξ(q)

)
.



MULTIPLE SPHERICAL SK MODEL 2337

The critical point condition for q is

h2 + β2ξ ′(q) = h2 + β2q = q

(1 − q)2 .(3.13)

If hj = 0, let qj be the unique solution of (3.13) that corresponds to the choice
of parameters βj ,hj . If hj = 0, we will assume as before that βj > 1 and qj =
1 − 1/βj . For k = 1, (2.22) is

2FN(Qε) ≤ Tr(A1Q) + Tr(�1Q) − 2 + (A−1
1 h,h) + Tr(A−1

1 �0)

− log |A1| −
∑

j,j ′≤2

βjβj ′
(
θ(qj,j ′) − θ(q1

j,j ′)
)+ R.

When R1,2 ≈ q1,2 = u for |u| ≤ √
q1q2, we will take

Q1 =
(

q1 u

u q2

)
and A1 =

(
a1 λ

λ a2

)
,

and the bound becomes 2FN(Qε) ≤ U + R for

U := β2
1

2
(1 − q1)

2 + β2
2

2
(1 − q2)

2 + a1 + a2 − 2 + 2λu − log(a1a2 − λ2)

(3.14)

+ 1

a1a2 − λ2

(
a2(β

2
1q1 + h2

1) + a1(β
2
2q2 + h2

2) − 2(β1β2u + h1h2)λ
)
.

It is easy to see that for aj = 1/(1 − qj ) = βj and λ = 0

1
2U = P (β1, h1) + P (β2, h2).(3.15)

The derivative of (3.14) in λ at λ = 0 and aj = 1/(1 − qj ) = βj is

1

2

∂U

∂λ

∣∣∣∣
λ=0

= u − 1

a1a2
(β1β2u + h1h2) = u − (1 − q1)(1 − q2)(β1β2u + h1h2).

If both hj = 0 then since βj = 1/(1 − qj ) this derivative is equal to 0 for all
|u| ≤ √

q1q2 which means that we can not improve upon (3.15) by fluctuating λ

around zero. Suppose that h1 = 0 and h2 = 0. Then again β1 = 1/(1 − q1) and
by (3.13), β2 = 1/(1 − q2). The derivative

1

2

∂U

∂λ

∣∣∣∣
λ=0

= u
(
1 − β2(1 − q2)

)
is equal to zero only if u = u0 = 0. Therefore, for |u| ≤ √

q1q2 and u = 0, by
fluctuating λ around zero we can prove that FN(Qε) < P (β1, h1)+P (β2, h2)+R
and by concentration of measure this means that the overlap can take only the value
0 between ±√

q1q2. If both hj = 0 then (3.13) implies that βj (1−qj ) < 1 and thus
the derivative is equal to zero only at one point

u0 = h1h2(1 − q1)(1 − q2)

1 − β1β2(1 − q1)(1 − q2)
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and again the overlap can take only the value u0 between ±√
q1q2. To finish the

proof of Theorem 3 we need to show that the overlap can not take values |u| >√
q1q2 which will be done in Lemma 2 below. �

LEMMA 2. For j ≤ 2 let 〈·〉j denote the Gibbs average of the (random) Gibbs
measure Gj on SN (and its products) and let 〈·〉1,2 denote the Gibbs average with
respect to the product Gibbs measure G1 ⊗ G2 on S2

N . If for any ε > 0

lim
N→∞ E〈I {|R1,2| ≥ qj + ε}〉j = 0

then for any ε > 0

lim
N→∞ E

〈
I
{|R1,2| ≥ √

q1q2 + ε
}〉

1,2 = 0.

PROOF. For any integer k ≥ 1 we can write

E〈Rk
1,2〉1,2 = N−k

∑
i1,...,ik

E〈σ 1
i1

· · ·σ 1
ik
σ 2

i1
· · ·σ 2

ik
〉1,2

= N−k
∑

i1,...,ik

E〈σ 1
i1

· · ·σ 1
ik
〉1〈σ 2

i1
· · ·σ 2

ik
〉2

≤ N−k
∑

i1,...,ik

(E〈σ 1
i1

· · ·σ 1
ik
〉2
1)

1/2(E〈σ 2
i1

· · ·σ 2
ik
〉2
2)

1/2

≤
(
N−k

∑
i1,...,ik

E〈σ 1
i1

· · ·σ 1
ik
〉2
1

)1/2(
N−k

∑
i1,...,ik

E〈σ 2
i1

· · ·σ 2
ik
〉2
2

)1/2

=
√

E〈Rk
1,2〉1E〈Rk

1,2〉2

and the result is obvious. �

REMARK. Another approach to proving the above results, as well as Theo-
rem 2, for p = 2 model would be diagonalizing the system from the beginning by
writing the Hamiltonian after orthogonal transformation as

∑
i≤N λiσ

2
i , where λi

are the eigenvalues of the matrix (gij )i,j≤N . In [2], a large deviation principle was
proved for (

1

N

∑
i≤N

σ 2
i ,

1

N

∑
i≤N

λiσ
2
i

)

and one can similarly prove large deviation principles for several copies of the
system by including a vector of overlaps. This approach would, probably, yield
simpler proofs of our results for p = 2 model but in the present paper we are
trying to develop a methodology that could potentially be used for p > 2 models
or mixed p-spin models in which case the diagonalization idea would not work. In
the next section we apply our methodology to the case of two copies, n = 2, of the
pure p-spin model for p > 2.
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4. Pure p-spin model. In this section we will prove Theorem 4. Unfortu-
nately, the argument of the previous section does not work because for p > 2
equation (3.6) does not hold anymore. Consequently, we were unable to prove a
general result for all n ≥ 2. However, for pure p-spin model without external field
the parameters (m,q) that achieve a minimum in the free energy formula (1.16)
satisfy certain special properties that will give us enough information to find the
informative parameters in the bound (2.22) for n = 2. These properties are given
in Lemma 3 below.

We assume that h = 0 and in order to avoid trivial situations we consider only
β > 0 such that (1.17) fails. First we will gather important information about the
parameters (m,q) that achieve the infimum in (1.16). The critical point conditions
for (m,q) are given by

β2ξ ′(q) = 1

m

(
1

1 − q
− 1

1 − q + mq

)
,

(4.1)

β2ξ(q) = 1

m2 log
(

1 − q + qm

1 − q

)
− q

m

1

1 − q + qm

and from now on we assume that (m,q) satisfy (4.1). Let x > 0 be a unique solu-
tion of

1

p
= 1 + x

x2 log(1 + x) − 1

x
.(4.2)

It is easy to check that the right-hand side is a convex function decreasing from 1/2
to 0 as x increases from 0 to ∞ and, hence, for p ≥ 2 there is, indeed, a unique
solution x. Define

δ = x

1 + x
, γ = p − 1

p

x2

1 + x
.(4.3)

Then the following holds.

LEMMA 3. For all β such that (1.17) fails we have

qm = x(1 − q), mβ2ξ ′(q)(1 − q) = δ, m2β2θ(q) = γ.(4.4)

PROOF. Introducing the notation A = 1 − q,B = qm, (4.1) can be rewritten
as

β2 ξ ′(q)

q
= 1

B

(
1

A
− 1

A + B

)
= 1

A(A + B)
,

β2 ξ(q)

q2 = 1

B2 log
(

1 + B

A

)
− 1

B(A + B)
.

Since for ξ(q) = qp/p we have

ξ(q)

q2 = 1

p

ξ ′(q)

q
,
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the above equations imply that

1

pA(A + B)
= 1

B2 log
(

1 + B

A

)
− 1

B(A + B)
.

This shows that B/A satisfies (4.2) and, therefore, B = xA. From the equations
above we get

mβ2ξ ′(q)(1 − q) = B

A + B
= x

1 + x
= δ(4.5)

and since θ(q) = (1 − 1/p)qξ ′(q),

m2β2θ(q) = p − 1

p
m2qβ2ξ ′(q) = p − 1

p
B

(
1

A
− 1

A + B

)
(4.6)

= p − 1

p

x2

1 + x
= γ. �

Even though we established Lemma 2 by looking at the Crisanti–Sommers rep-
resentation (1.4), we will use (1.3) to write P (β) := P (β,0) in order to compare
more easily with the bound (2.21), which is not written in the Crisanti–Sommers
form. [Of course, it would be possible to write (2.21) in the Crisanti–Sommers
form with extra work.] For k = 2 and q1 = 0, q2 = q , (1.3) becomes

2P (β) = inf
b,m,q

(
b − 1 + 1

m
log

D2

D1
(4.7)

− logD2 − mβ2θ(q) − β2(θ(1) − θ(q)
))

.

Since D2 = b − β2(ξ ′(1) − ξ ′(q)) we can minimize over D2 instead of b and to
simplify the notations we will simply make the change of variable

b → b + β2(ξ ′(1) − ξ ′(q)
)
.

Then, since D1 = D2 − mβ2ξ ′(q), we have

2P (β) = inf
b,m,q

(
β2ξ ′(1) − β2ξ ′(q) + b − 1 − logb

(4.8)

− 1

m
log
(

1 − 1

b
mβ2ξ ′(q)

)
− mβ2θ(q) − β2(θ(1) − θ(q)

))
.

The infimum is achieved on (m,q) as in (4.1) and b = 1/(1 − q). Using (4.4), we
get

2P (β) = β2ξ ′(1) − β2ξ ′(q) + b − 1 − logb − 1

m
log(1 − δ) − γ

m
(4.9)

− β2(θ(1) − θ(q)
)
.
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PROOF OF THEOREM 4. Given βj , j ≤ 2 as in Theorem 4, let mj and qj

be the corresponding solutions of (4.1) and bj = 1/(1 − qj ) so that P (βj ) is
given by (4.9). Let us first consider the overlap R1,2 ≈ u for |u| ≤ √

q1q2. De-
fine c by |u| = c

√
q1q2. We are going to use the bound (2.22) for k = 4 with

m = (0,m,m1,m2,1) for some m > 0 that will be specified later and

A4 =
(

b1 0
0 b2

)
, Q1 =

(
cq1 u

u cq2

)
,

Q2 =
(

q1 u

u cq2

)
, Q3 =

(
q1 u

u q2

)
.

With these parameters the right-hand side of (2.22) becomes U(m,c) + R for

U(m,c) := −β2
1
(
θ(1) − θ(q1)

)− β2
2
(
θ(1) − θ(q2)

)+ β2
1
(
ξ ′(1) − ξ ′(q1)

)
+ β2

2
(
ξ ′(1) − ξ ′(q2)

)
+ b1 − 1 − logb1 + b2 − 1 − logb2 + I + II,

where

I = −(m1β
2
1θ(q1) + m2β

2
2θ(q2)

)
(1 − cp)

− m
(
β2

1θ(q1) + β2
2θ(q2) + 2β1β2θ

(√
q1q2

))
cp

and

II = − 1

m1
log
(

1 − 1

b1
m1β

2
1ξ ′(q1)(1 − cp−1)

)

− 1

m2
log
(

1 − 1

b2
m2β

2
2ξ ′(q2)(1 − cp−1)

)
− 1

m
log(1 − mS)

for

S =∑
j≤2

β2
j ξ ′(qj )c

p−1

bj − mjβ
2
j ξ ′(qj )(1 − cp−1)

.

Since θ(
√

q1q2) = √
θ(q1)θ(q2), Lemma 4.4 implies that

I = −
(

1

m1
+ 1

m2

)
γ (1 − cp) − m

(
1

m1
+ 1

m2

)2

γ cp

and

II = − 1

m1
log
(
1 − δ(1 − cp−1)

)− 1

m2
log
(
1 − δ(1 − cp−1)

)

− 1

m
log
(

1 − m

(
1

m1
+ 1

m2

)
δcp−1

1 − δ(1 − cp−1)

)
.
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If we define m0 by

1

m0
= 1

m1
+ 1

m2
(4.10)

then for m = m0

I + II = −
(

1

m1
+ 1

m2

)
γ −

(
1

m1
+ 1

m2

)
log(1 − δ).

Therefore, comparing with (4.9), for all c

U(m0, c) = 2P (β1) + 2P (β2).

The derivative

d(c) = ∂U(m, c)

∂m

∣∣∣∣
m=m0

= 1

m2
0

(
−γ cp + log

1 − δ

1 − δ(1 − cp−1)
+ δcp−1

1 − δ

)

= 1

m2
0

(
−p − 1

p

x2

1 + x
cp − log(1 + xcp−1) + xcp−1

)

satisfies

d(0) = d(1) = 0 and d(c) < 0 for 0 < c < 1.(4.11)

The equality d(1) = 0 is equivalent to (4.2) and the fact that d(c) < 0 for 0 < c < 1
is a consequence of the following. The derivative d ′(c) is equal to 0 if c = 0, c = 1
or if

1 + xcp−1 = (1 + x)cp−2.

Making a change of variable a = cp−2 gives

1 + xa(p−1)/(p−2) = (1 + x)a.

The left-hand side is convex in a, the right-hand side is linear and two sides are
equal at a = 1. Therefore, there is at most one solution on the interval (0,1) and
d ′(c) = 0 has at most one solution on (0,1). However, since d(0) = d(1) = 0,
d ′(c) = 0 has exactly one solution on (0,1). Thus, d(c) cannot change sign inside
(0,1) which proves (4.11). For 0 < |u| <

√
q1q2, fluctuating m near m0 proves

that

FN(Qε) ≤ 1
2 inf

m
U(m, c) + R < P (β1) + P (β2) + R.

Therefore, by concentration of measure the overlap cannot take values u with 0 <

|u| <
√

q1q2. Lemma 2 will finish the proof of Theorem 4 if we can show that
the overlap of two systems at the same β cannot take values |u| > q = 1 − 1/β .
This can be shown by the usual replica symmetry breaking as in [8], which we
will explain here for completeness. For specificity, let us assume that u > q . We
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are going to use the bound (2.22) for k = 3 with m = (0,m/2, n/2,1) for some n

such that m ≤ n ≤ 2 and

A3 =
(

a 0
0 a

)
, Q1 =

(
q q

q q

)
, Q2 =

(
u u

u u

)
.

With this choice of parameters, (2.22) becomes FN(Qε) ≤ U(n, a) + R where

U(n, a) = −β2(θ(1) − θ(q)
)− nβ2(θ(u) − θ(q)

)− mβ2θ(q)

+ β2(ξ ′(1) − ξ ′(u)
)+ a − 1 − loga

− 1

n
log

a − nβ2(ξ ′(u) − ξ ′(q))

a

− 1

m
log

a − nβ2(ξ ′(u) − ξ ′(q)) − mβ2ξ ′(q)

a − n(ξ ′(u) − ξ ′(q))
.

First of all, if we take n = 1 and

a = a0 = b + β2(ξ ′(u) − ξ ′(q)
)= 1

1 − q
+ β2(ξ ′(u) − ξ ′(q)

)
we get U(1, a0) = 2P (β) by comparing with (4.8). Furthermore,

d(u) = ∂U(n, a0)

∂n

∣∣∣∣
n=1

= −β2(θ(u) − θ(q)
)+ (1 − 1

m

)
β2(ξ ′(u) − ξ ′(q)

)
(1 − q)

+ 1

m

β2(ξ ′(u) − ξ ′(q))(1 − q)

1 − mβ2ξ ′(q)(1 − q)
− log

(
1 + β2(ξ ′(u) − ξ ′(q)

)
(1 − q)

)
and we will show that d(u) < 0 for u > q . In order to prove this, we will notice
that d(q) = 0 and show that d ′(u) < 0 for u > q . Indeed,

d ′(u) = β2ξ ′′(u)

(
−u + β2(ξ ′(u) − ξ ′(q))(1 − q)2

1 + β2(ξ ′(u) − ξ ′(q))(1 − q)
+ β2ξ ′(q)(1 − q)2

1 − mβ2ξ ′(q)(1 − q)

)
.

The last term can be simplified using the fact that the first equation in (4.1) is
equivalent to

β2ξ ′(q)(1 − q)2

1 − mβ2ξ ′(q)(1 − q)
= q

and then some simple algebra gives that for u > q , d ′(u) < 0 if and only if

β2ξ ′(u) − β2ξ ′(q) <
1

1 − u
− 1

1 − q
.
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Since two sides are equal for u = q it is enough to show that for u > q

β2ξ ′′(u) <
1

(1 − u)2 .

If we consider the function

F(u) = β2ξ ′(u) + 1

m

(
1

1 − q + mq
− 1

1 − q + m(q − u)

)

then it is easy to check that the critical point conditions (4.1) are equivalent to

F(0) = F(q) = 0,

∫ q

0
F(u)du = 0.

Therefore,

F ′(u) = β2ξ ′′(u) − 1

(1 − q + m(q − u))2 = 0

has at least two solutions on [0, q]. But this equation can be rewritten as

(β2ξ ′′(u))−1/2 = 1 − q + m(q − u)

and since the right-hand side is convex in u, this equation has at most two solutions.
Therefore, for u ≥ q ,

(β2ξ ′′(u))−1/2 ≥ 1 − q + m(q − u) ≥ 1 − u,

which implies

β2ξ ′′(u) <
1

x̂2(u)
= 1

(1 − u)2 .

This finally proves that for u > q by fluctuating parameter n around 1 we get that
FN(Qε) < 2P (β) + R and this completes the proof of Theorem 4. �

5. Proof of Theorem 2. Let us first recall the main steps in the proof of The-
orem 1 for Q such that min rj ≥ 1 when (1.12) becomes FN(Qε) ≤ nP (β) + R.
The remark following the proof of Theorem 1 states that we use interpola-
tion (2.3) with k = 1, Gaussian random vectors (z1

0,i , . . . , z
n
0,i) with covariance

�0 = β2Q1 where Q1 = Q−β−1I is defined in (3.11) and Gaussian random vec-
tors (z1

1,i , . . . , z
n
1,i) with covariance �1 = βI . Then for the function ϕ(t) defined

in (2.6), Theorem 5 gives

ϕ′(t) = −n

2
β2(θ(1) − θ(q)

)− R(t) + R,(5.1)

where the remainder R(t) was defined in (2.9). For ξ(q) = q2/2

R(t) = 1
4β2

∑
j,j ′≤n

E〈(Rj,j ′ − q1
j,j ′)2〉t .(5.2)
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In order to show that the upper bound of Theorem 1 is sharp we need to control
R(t) and also prove that the bound on ϕ(0) given in Lemma 1 is sharp. Since

E

(∑
j≤n

∑
i≤N

σ
j
i z

j
1,i

)2

= Nnβ

we have

ϕ(0) = 1

N
E log E1

∫
Qε

exp
∑
j≤n

∑
i≤N

σ
j
i (z

j
0,i + z

j
1,i ) dλn

N

= nβ

2
+ 1

N
E log

∫
Qε

exp
∑
j≤n

∑
i≤N

σ
j
i z

j
0,i dλn

N .

On the other hand, (2.11) gives, using A1 as a parameter as in (2.22), that is, writing
A2 = A1 + �1,

ϕ(0) ≤ 1

2

(
Tr(Q�1) + Tr(A1Q) + Tr(A−1

1 �0) − n − log |A1|)+ R

(5.3)

= nβ

2
+ 1

2

(
Tr(A1Q) + Tr(A−1

1 �0) − n − log |A1|)+ R.

Therefore, in order to show that this bound is sharp, we need to prove the follow-
ing.

LEMMA 4. We have

lim
ε→0

lim
N→∞

1

N
E log

∫
Qε

exp
∑
j≤n

(σ j , zj ) dλn
N

= inf
A

1

2

(
Tr(AQ) + Tr(A−1�0) − n − log |A|),

where zj = (z
j
0,1, . . . , z

j
0,N ).

The statement of the lemma will be proved for any Q and �0, but for specific
choices in the above interpolation it is easy to check that the infimum of (5.3) is
achieved on

A1 = βI and lim
ε→0

lim
N→∞ϕ(0) = n

2
(3β − 2 − logβ).(5.4)

PROOF OF LEMMA 4. The upper bound is given by (5.3). To prove the lower
bound we will first replace integration over the sphere by a Gaussian integral con-
strained to the small neighborhood of the sphere. Let ν be a standard Gaussian
distribution on R

N . If we write ρ ∈ R
N as ρ = sσ for σ ∈ SN then σ and s
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are independent and the law of σ is λN . Denote by γ the law of s. Clearly,
γ ([1 − ε,1 + ε]) → 1 for any ε > 0. Let us consider a set

�ε = {
(ρ1, . . . ,ρn) :∀j ≤ n, sj ∈ [1 − ε,1 + ε], (σ 1, . . . ,σ n) ∈ Qε

}
.(5.5)

First of all, for (ρ1, . . . ,ρn) ∈ �ε ,∣∣∣∣∣
∑
j≤n

(
(ρj , zj ) − (σ j , zj )

)∣∣∣∣∣≤ ε
√

N
∑
j≤n

‖zj‖.

Therefore,∫
Qε

exp
∑
j≤n

(σ j , zj ) dλn
N

≥ γ ([1 − ε,1 + ε])−n exp

(
−ε

√
N
∑
j≤n

‖zj‖
)

×
∫
[1−ε,1+ε]n

∫
Qε

exp
∑
j≤n

(sjσ
j , zj )

dλN(σ 1) · · · dλN(σ n) dγ (s1) · · · dγ (sn)

= γ ([1 − ε,1 + ε])−n exp

(
−ε

√
N
∑
j≤n

‖zj‖
)

×
∫
�ε

exp
∑
j≤n

(ρj , zj ) dνn(ρ1, . . . ,ρn)

and
1

N
E log

∫
Qε

exp
∑
j≤n

(σ j , zj ) dλn
N ≥ 1

N
E log

∫
�ε

exp
∑
j≤n

(ρj , zj ) dνn − R.

We can now replace the set �ε by the set defined in terms of the overlaps of ρj ,
j ≤ n. Let us consider a set

�δ = {(ρ1, . . . ,ρn) :R(ρj ,ρj ′
) ∈ [qj,j ′ − δ, qj,j ′ + δ] for j, j ′ ≤ n}.

Then, clearly, if we choose δ = δ(ε) small enough then �δ ⊆ �ε and, therefore,

1

N
E log

∫
Qε

exp
∑
j≤n

(σ j , zj ) dλn
N ≥ 1

N
E log

∫
�δ

exp
∑
j≤n

(ρj , zj ) dνn − R.

Thus, we replaced integration over the sphere by a Gaussian integral. Given a set
V ⊆ (RN)n and a symmetric n × n matrix A such that A + I is positive definite
we define

�A(V ) := 1

N
E log

∫
V

exp

(∑
j≤n

(ρj , zj ) − 1

2

∑
j,j ′≤n

aj,j ′(ρj ,ρj ′
)

)
dνn.
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First of all,

�A((RN)n) = F(A) := 1
2

(
Tr
(
(A + I )−1�0

)− log |A + I |),(5.6)

which is easy to show by decoupling the coordinates and proceeding as in (2.17).
Using the definition of �δ , we have

1

N
E log

∫
�δ

exp
∑
j≤n

(ρj , zj ) dνn ≤ 1

2
Tr(AQ) + �A((RN)n) + R

= 1

2
Tr(AQ) + F(A) + R,

which, of course, coincides with the upper bound by making the change of variable
A → A+ I . Let A0 be a matrix that minimizes Tr(AQ)/2 +F(A). Such A0 exists
and is unique since F(A) is convex in A by Hölder’s inequality, the set A + I > 0
is convex and F(A) → +∞ when |A + I | → 0. The critical point condition for
A0 is

∂

∂x

(
1

2
Tr
(
(A0 + xB)Q

)+ F(A0 + xB)

)∣∣∣∣
x=0

= 0(5.7)

for any symmetric matrix B . Let us consider the sets

V +
j,j ′ = {R(ρj ,ρj ′

) ≥ qj,j ′ + δ}, V −
j,j ′ = {R(ρj ,ρj ′

) ≤ qj,j ′ − δ}(5.8)

for j, j ′ ≤ n, so that

(RN)n = �δ ∪
( ⋃

j,j ′≤n

V +
j,j ′

)
∪
( ⋃

j,j ′≤n

V −
j,j ′

)
.(5.9)

We will show below that if V is any one of the sets (5.8) then for some c > 0

�A0(V ) ≤ �A0((R
N)n) − c = F(A0) − c.(5.10)

This implies that

lim
N→∞�A0(�δ) = lim

N→∞�A0((R
N)n) = F(A0).(5.11)

Suppose this is not the case. Then for some positive c > 0 and N large enough we
would have

�A0(�δ) ≤ �A0((R
N)n) − c.(5.12)

Then by concentration of measure (5.10) and (5.12) would imply that with proba-
bility exponentially close to one for V equal to �δ or one of the sets in (5.8)∫

V
exp

(∑
j≤n

(ρj , zj ) − 1
2

∑
j,j ′≤n

aj,j ′(ρj ,ρj ′
)

)
dνn

≤ exp(−N/L)

∫
(RN)n

exp

(∑
j≤n

(ρj , zj ) − 1
2

∑
j,j ′≤n

aj,j ′(ρj ,ρj ′
)

)
dνn.
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Adding up all these inequalities and using (5.9) we arrive at a contradiction, prov-
ing (5.11), which in turn implies that

1

N
E log

∫
�δ

exp
∑
j≤n

(ρj , zj ) dνn = 1

2
Tr(A0Q) + �A0(�δ) + R

= 1

2
Tr(A0Q) + F(A0) + R

and this will finishes the proof of the lemma. It remains only to prove (5.10). The
proof is the same for all V +

j,j ′ and V −
j,j ′ so we will only consider the case V = V −

j,j ′
for j = j ′. On the set V −

j,j ′ for any x ≥ 0,

xRj,j ′ ≤ x(qj,j ′ − δ)

and, therefore, if we consider a matrix B with two nonzero entries bj,j ′ = bj ′,j = 1,
then

�A0(V
−
j,j ′) ≤ x(qj,j ′ − δ) + �A0+xB(V −

j,j ′) ≤ x(qj,j ′ − δ) + F(A0 + xB)

= U(x)

:= −xδ − 1
2 Tr(A0Q) + 1

2 Tr
(
(A0 + xB)Q

)+ F(A0 + xB).

We have U(0) = F(A0) and using (5.7), U ′(0) = −δ. Therefore, by slightly in-
creasing x we get (5.10) and this completes the proof of lemma. �

Next, we need to learn how to control the remainder term (5.2). The general
approach is the same as in the proof of the Parisi formula in [7] (and in [8] or [4]),
but the a priori estimates are now performed on 2n coupled copies of the system
and will be similar in spirit to Theorem 1. Let us consider two 2n × 2n block
matrices

G1 =
(

Q1 Q1

Q1 Q1

)
and G2 =

(
Q2 Q1

Q1 Q2

)

and let (z1
0,i , . . . , z

2n
0,i) and (z1

1,i , . . . , z
2n
1,i) be independent Gaussian vectors with

covariances

�0 = β2G1 and �1 = β2(G2 − G1) = β2(1 − q)I = βI

correspondingly, independent for i ≤ N . Consider

Ht(σ
1, . . . ,σ 2n) = √

t
∑
j≤2n

βHN(σ j ) + √
1 − t

∑
j≤2n

∑
i≤N

σ
j
i (z

j
0,i + z

j
1,i)(5.13)

and

ht (σ
1, . . . ,σ 2n) = √

t
∑
j≤2n

βHN(σ j ) + √
1 − t

∑
j≤2n

∑
i≤N

σ
j
i z

j
0,i .(5.14)
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The Gibbs average 〈·〉t in (5.2) can be rewritten as

〈f (σ 1, . . . ,σ 2n)〉t =
∫
Qε×Qε

f expht dλ2n
N

/∫
Qε×Qε

expht dλ2n
N

and the remainder (5.2) can be rewritten as

R(t) = 1
4β2

∑
1≤j≤n

∑
n<j ′≤2n

E〈(Rj,j ′ − g1
j,j ′)2〉t .(5.15)

Given a set A ⊆ S2n
N , consider

�(A, t) = 1

N
E log E1

∫
A

expHt dλ2n
N

(5.16)

= nβ2(1 − q) + 1

N
E log

∫
A

expht dλ2n
N .

Consider n × n matrix E = (ej,j ′) with elements ej,j ′ ∈ [−1,1] such that

U =
(

Q2 E

E Q2

)

is a nonnegative definite matrix and consider the set

Uε = {(σ 1, . . . ,σ 2n) ∈ S2n
N :Rj,j ′ ∈ [uj,j ′ − ε,uj,j ′ + ε] for j, j ′ ≤ 2n}.(5.17)

Let us define

ψ(t) = n

2

(
3β − 2 − logβ − β2t

(
θ(1) − θ(q)

))
(5.18)

= n

2

(
3β − 2 − logβ − t (β − 1/2)

)
.

Theorem 2 will then follow from the following a priori estimate.

THEOREM 6. For any t0 < 1 and for any t ≤ t0, for N large enough,

�(Uε, t) ≤ 2ψ(t) − 1

K

∑
j,j ′≤n

(ej,j ′ − q1
j,j ′)2 + R(5.19)

where a constant K does not depend on N, t and U .

Let us first show how Theorem 6 implies Theorem 2.

PROOF OF THEOREM 2. First of all,

ψ(1) = n

2

(
2β − 3

2
− logβ

)
= nP (β).(5.20)

Let us take K as in (5.19) and for ε1 > 0 let us define a set

V =
{
E = (ej,j ′) ∈ [−1,1]n2

:
∑

j,j ′≤n

(ej,j ′ − q1
j,j ′)2 ≥ 2K

(
ψ(t) − ϕ(t)

)+ 2Kε1

}
.
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For any E ∈ V , (5.19) implies that

�(Uε, t) ≤ 2ψ(t) − 1

K

(
2K
(
ψ(t) − ϕ(t)

)+ 2Kε1
)+ R ≤ 2ϕ(t) − ε1(5.21)

for large enough N and small enough ε. Everywhere below let L denote a constant
that might depend on ε1 and K denote a constant independent of ε1. Since

2ϕ(t) = �(Qε × Qε, t),

(5.21) and concentration of measure imply that

E〈I (Uε)〉t ≤ L exp(−N/L)(5.22)

and the constant L here does not depend on E. Let us consider the set

� =
{ ∑

1≤j≤n

∑
n<j ′≤2n

(Rj,j ′ − g1
j,j ′)2 ≥ 2K

(
ψ(t) − ϕ(t)

)+ 2Kε1

}
∩ (Qε × Qε).

We can choose a sequence Ei ∈ V for i ≤ K(ε) and large enough K(ε) such that

� ⊆ ⋃
i≤K(ε)

Uε(Ei),

where we made the dependence of Uε on E explicit. Inequality (5.22) implies that

E〈I (�)〉t ≤ LK(ε) exp(−N/L).(5.23)

Using the definition of ψ in (5.18) and (5.1),(
ψ(t) − ϕ(t)

)′ = R(t) + R.(5.24)

On the complement �c of � we have∑
1≤j≤n

∑
n<j ′≤2n

(Rj,j ′ − g1
j,j ′)2 ≤ 2K

(
ψ(t) − ϕ(t)

)+ 2Kε1,

and (5.23) implies that

R(t) ≤ K
((

ψ(t) − ϕ(t)
)+ ε1 + E〈I (�)〉t )

≤ K
(
ψ(t) − ϕ(t)

)+ Kε1 + LK(ε) exp(−N/L).

The relation (5.24) now implies that(
ψ(t) − ϕ(t)

)′ ≤ K
(
ψ(t) − ϕ(t)

)+ Kε1 + LK(ε) exp(−N/L) + R.

Since by Lemma 4 we have limε→0 limN→∞ ϕ(0) = ψ(0), solving this differential
inequality and then letting N → ∞, ε → 0 and ε1 → 0 implies that

lim
ε→0

lim
N→∞ϕ(t) = ψ(t) for t ≤ t0.
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Since the derivatives ψ ′(t) and ϕ′(t) are both bounded we have

lim sup
ε→0

lim sup
N→∞

|ϕ(1) − ψ(1)| ≤ K(1 − t0).

Using (5.20),

lim sup
ε→0

lim sup
N→∞

|ϕ(1) − nP (β)| ≤ K(1 − t0)

and letting t0 → 1 completes the proof of Theorem 2. �

PROOF OF THEOREM 6. Let U2 = U and let U1 be a symmetric nonnegative
definite matrix that will be specified later such that U2 − U1 is also nonnegative
definite. Let

�′
0 = β2U1 and �′

1 = β2(U2 − U1).

Let (y1
0,i , . . . , y

2n
0,i) and (y1

1,i , . . . , y
2n
1,i) be Gaussian vectors with covariances �′

0
and �′

1 correspondingly, independent for i ≤ N . For 0 ≤ s ≤ 1, consider

Hs(σ
1, . . . ,σ 2n) = √

st
∑
j≤2n

βHN(σ j )

+ √
1 − s

√
t
∑
j≤2n

∑
i≤N

σ
j
i (y

j
0,i + y

j
1,i )(5.25)

+ √
1 − t

∑
j≤2n

∑
i≤N

σ
j
i (z

j
0,i + z

j
1,i)

and let

φ(s) = 1

N
E log E1

∫
Uε

expHs dλ2n
N .

By a straightforward computation as in Theorem 5 one can show that

φ′(s) = − tβ2

2

∑
j,j ′≤2n

(
θ(u2

j,j ′) − θ(u1
j,j ′)

)− R(s) + R

where the remainder R(s) ≥ 0. The analogue of the first line in (2.7) is not present
here because U2 = U , that is, the covariance parameters match the constraints on
the overlaps. Therefore,

�(Uε, t) = φ(1) ≤ φ(0) − tβ2

2

∑
j,j ′≤2n

(
θ(u2

j,j ′) − θ(u1
j,j ′)

)+ R.(5.26)

Note that

H0(σ
1, . . . ,σ 2n) = ∑

j≤2n

∑
i≤N

σ
j
i (x

j
0,i + x

j
1,i )
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where x
j
l,i = √

ty
j
l,i + √

1 − tz
j
l,i and, therefore, the vectors (x1

0,i , . . . , x
2n
0,i) and

(x1
1,i , . . . , x

2n
1,i) have covariances

�t
0 = (1 − t)�0 + t�′

0 and �t
1 = (1 − t)�1 + t�′

1.

Lemma 1 now implies that for any 2n × 2n symmetric positive definite matrix A

such that A1 = A − �t
1 is also positive definite we have

2φ(0) ≤ Tr(�t
1U) + Tr(A1U) − 2n + Tr(A−1

1 �t
0) − log |A1| + R

and combining with (5.26)

2�(Uε, t) ≤ Tr(�t
1U) + Tr(A1U) − 2n + Tr(A−1

1 �t
0) − log |A1|

(5.27)
− tβ2

∑
j,j ′≤2n

(
θ(u2

j,j ′) − θ(u1
j,j ′)

)+ R.

We proceed by a diagonalization procedure as in the proof of Theorem 1. Let
U2 = OT R2O for R2 = Diag(r2

1 , . . . , r2
2n) and orthogonal matrix O . Take R1 =

Diag(r1
1 , . . . , r1

2n) > 0 such that R2 −R1 is positive definite and let U1 = OT R1O .
Take B = Diag(b1, . . . , b2n) and let A1 = OT BO . Since �1 = β2(1 − q)I , we
have �1 = OT �1O . Let C be a matrix such that �0 = β2OT CO . Then

�t
0 = β2OT ((1 − t)C + tR1)O

and

�t
1 = β2OT ((1 − t)(1 − q)I + t (R2 − R1)

)
O.

Since for θ(q) = q2/2 ∑
j,j ′≤2n

θ(ul
j,j ′) = ∑

j≤2n

θ(rl
j ),

the bound (5.27) becomes

2�(Uε, t) ≤ ∑
j≤2n

(
β2(t (r2

j − r1
j ) + (1 − t)(1 − q)

)
r2
j + bj r

2
j − 1

+ 1

bj

β2(tr1
j + (1 − t)cj,j

)− logbj − tβ2(θ(r2
j ) − θ(r1

j )
))

(5.28)

+ R.

We will take

bj = 1

r2
j − r1

j

(5.29)
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and the bound (5.28) becomes

2�(Uε, t) ≤ ∑
j≤2n

(
1

2
β2t

(
(r2

j )2 − (r1
j )2)+ r2

j

r2
j − r1

j

− 1

+ β2(1 − t)
(
(1 − q)r2

j + (r2
j − r1

j )cj,j

)+ log(r2
j − r1

j )

)
(5.30)

+ R.

Let

r1
j =




r2
j − 1

β
, if r2

j ≥ 1

β
,

0, if r2
j <

1

β
.

(5.31)

In the first case the j th term in the sum (5.30) becomes

f1(r
2
j ) = βtr2

j − t

2
+ βr2

j − 1 + β2(1 − t)(1 − q)r2
j + β(1 − t)cj,j − logβ

= βtr2
j − t

2
+ βr2

j − 1 + β(1 − t)r2
j + β(1 − t)cj,j − logβ

since 1 − q = 1/β , and in the second case it becomes

f2(r
2
j ) = β2t

2
(r2

j )2 + β(1 − t)r2
j + β2(1 − t)r2

j cj,j + log r2
j .

It is easy to check that

f1(β
−1) = f2(β

−1) and f ′
2(β

−1) − f ′
1(β

−1) = β2(1 − t)cj,j ≥ 0

since C is nonnegative definite. Also,

f ′′
2 (r2

j ) = β2t − 1

(r2
j )2

≤ −β2(1 − t) ≤ 0 for r2
j ≤ 1

β

and f ′′
1 (r2

j ) = 0 and, therefore,

f2(r
2
j ) < f1(r

2
j ) for r2

j <
1

β
.(5.32)

Therefore,

2�(Uε, t) ≤ ∑
j≤2n

f1(r
2
j ) + R(5.33)

and this bound is achieved by taking r1
j = r2

j −1/β in (5.30). It is important to note

that in this bound we no longer have to assume that r2
j ≥ 1/β and even though for
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r2
j < 1/β parameter r1

j = r2
j − 1/β becomes negative, due to (5.32) we can simply

treat (5.33) as a formula. Since∑
j≤2n

r2
j = Tr(R2) = Tr(U2) = 2n and

∑
j≤2n

cj,j = Tr(C) = Tr(G1) = 2nq

we have∑
j≤2n

f1(r
2
j ) = 2nβt − nt + 2nβ − 2n + 2nβ(1 − t) + 2nβ(1 − t)q − 2n logβ

= 2n(3β − 2 − logβ) − 2nt (β − 1/2) = 4ψ(t)

by comparing with (5.18). Therefore, (5.33) implies that

�(Uε, t) ≤ 2ψ(t) + R.(5.34)

However, we can improve upon (5.34) by slight fluctuations of A1 in (5.27).
Our choice of r1

j = r2
j − 1/β and (5.29) imply that bj = β , that is, B = βI

and, therefore, in (5.27) we have A1 = βI . Also, R2 − R1 = β−1I and, hence,
U1 = U2 − β−1I . Let us take the derivative of (5.27) in A1 at A1 = βI . If A1 was
not constrained to be symmetric, we would have

∂

∂A1
r.h.s. of (5.27)

∣∣∣
A1=βI

= (
U − (A−1

1 )T − (A−1
1 �t

0A
−1
1 )T

)∣∣∣
A1=βI

= U2 − β−1I − β−2�t
0

= U1 − (1 − t)G1 − tU1 = (1 − t)(G1 − U1),

where we used some well-known formulas for derivatives of matrix determinants
and inverses. However, since A1 = (aj,j ′) is symmetric, aj,j ′ = aj ′,j , the deriva-
tive in the off-diagonal element will simply be doubled, that is, for j = j ′,

dj,j ′ = ∂

∂aj,j ′
r.h.s. of (5.27)

∣∣∣
A1=βI

= 2(1 − t)(G1 − U1)j,j ′ .

Since

G1 − U1 = (G2 − β−1I ) − (U2 − β−1I ) = G2 − U2

=
(

0 Q1 − E

Q1 − E 0

)
,

for 1 ≤ j ≤ n and n < j ′ ≤ 2n we have

dj,j ′ = 2(1 − t)(g1
j,j ′ − u1

j,j ′) = 2(1 − t)(q1
j,j ′−n − ej,j ′−n).

Also, since the second derivatives in aj,j ′ are bounded in some neighborhood of
A1 = βI , this implies that

�(Uε, t) ≤ 2ψ(t) − 1

K

∑
j,j ′≤n

(q1
j,j ′ − ej,j ′)2 + R(5.35)

and this completes the proof of Theorem 6. �
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