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HARNACK INEQUALITY AND APPLICATIONS
FOR STOCHASTIC GENERALIZED POROUS

MEDIA EQUATIONS1

BY FENG-YU WANG

Beijing Normal University

By using coupling and Girsanov transformations, the dimension-free
Harnack inequality and the strong Feller property are proved for transition
semigroups of solutions to a class of stochastic generalized porous media
equations. As applications, explicit upper bounds of the Lp-norm of the den-
sity as well as hypercontractivity, ultracontractivity and compactness of the
corresponding semigroup are derived.

1. Introduction. The dimension-free Harnack inequality, first introduced by
the author in [19] for diffusions on Riemannian manifolds, has been applied and
extended intensively in the study of finite- and infinite-dimensional diffusion semi-
groups; see, for example, [16, 17, 20, 22] for applications to contractivity proper-
ties and functional inequalities, [1, 2, 11] for applications to short-time behaviors
of infinite-dimensional diffusions, and [7, 8] for applications to the transportation-
cost inequality and heat kernel estimates.

To establish the dimension-free Harnack inequality, the gradient estimate of the
type |∇Ptf | ≤ eKtPt |∇f | has played a key role in the above mentioned refer-
ences, where the gradient is induced by the underlying diffusion coefficient. On
the other hand, however, in many cases the semigroup is not regular enough to sat-
isfy this gradient estimate; indeed, this gradient estimate is equivalent to Bakry–
Emery’s curvature condition for a very general framework as in [5]. To establish
the dimension-free Harnack inequality on manifolds with unbounded below cur-
vatures, a new approach is developed in the recent work [3] by using coupling and
Girsanov transformations.

In this paper, we intend to study the transition semigroup for solutions to a
class of stochastic generalized porous media equations, for which the semigroup is
merely known to be Lipschitzian in the natural norm rather than in the intrinsic dis-
tance (cf. [6]). So, we are not able to prove the Harnack inequality by using intrin-
sic gradient estimates. On the other hand, since the intrinsic distance is usually too
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big to be exponential integrable w.r.t. the underlying reference measure, we pre-
fer to establish a Harnack inequality depending only on the natural norm. Such a
stronger inequality will provide more information including the strong Feller prop-
erty and the ultracontractivity of the semigroup. To modify the argument in [3], we
shall construct a new coupling which only depends on the natural distance rather
than the intrinsic one between the marginal processes (see Section 2 below).

Strong solutions of the stochastic generalized porous medium equation have
been studied intensively in recent years; see [6] for the existence, uniqueness and
long-time behavior of some stochastic generalized porous media equations with
finite reference measures, see [12] for the stochastic porous media equation on Rd

where the reference (Lebesgue) measure is infinite; and see [18] for large deviation
principles. Recently, a general result concerning existence and uniqueness was
presented in [15] for strong solutions of stochastic generalized porous media and
fast diffusion equations.

Let (E,M,m) be a separable probability space and (L,D(L)) a negative defi-
nite self-adjoint linear operator on L2(m) having discrete spectrum. Let

(0 <)λ1 ≤ λ2 ≤ · · ·
be all eigenvalues of −L with unit eigenfunctions {ei}i≥1.

To state our equation, we first introduce the state space of the solutions. Let H

be the completion of L2(m) under the inner product

〈x, y〉H :=
∞∑
i=1

1

λi

〈x, ei〉〈y, ei〉,

where 〈 ·, · 〉 is the inner product in L2(m). It is well known that H is the dual
space of the Sobolev space H 1 := D((−L)1/2) and hence, is often denoted by
H−1 in the literature. Let LHS denote the space of all Hilbert–Schmidt operators
from L2(m) to H . Let Wt be the cylindrical Brownian motion on L2(m) w.r.t.
a complete filtered probability space (�,Ft ,P); that is, Wt := {Bi

t ei}i≥1 for a
sequence of independent one-dimensional Ft -Brownian motions {Bi

t }. Let

�,� : [0,∞) × R × � → R

be progressively measurable and continuous in the second variable, and let

Q : [0,∞) × � → LHS

be progressively measurable such that

E
∫ T

0
‖Qt‖2

LHS
dt < ∞, T > 0.(1.1)

We consider the equation

dXt = {
L�(t,Xt) + �(t,Xt)

}
dt + Qt dWt .(1.2)
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In particular, if � = 0,Q = 0 and �(t, s) := |s|r−1s for some r > 1, then (1.2)
reduces back to the classical porous medium equation (see, e.g., [4]).

In general, for a fixed number r ≥ 1, we assume that there exist functions
δ, η, γ, σ ∈ C([0,∞)) with δ > 0 such that

|�(t, s)| + |�(t, s) − σts| ≤ ηt (1 + |s|r ), s ∈ R, t ≥ 0,

2〈�(t, x) − �(t, y), y − x〉 − 2〈�(t, x) − �(t, y),L−1(x − y)〉(1.3)

≤ −δ2
t ‖x − y‖r+1

r+1 + γt‖x − y‖2
H , x, y ∈ Lr+1(m), t ≥ 0,

where and in the sequel, ‖·‖p denotes the norm in Lp(m) for p ≥ 1. A very simple
example satisfying (1.3) is that �(t, s) := |s|r−1s and �(t, s) := γt s.

By the first inequality in (1.3), the first term in the left-hand side of the second
inequality makes sense for any x, y ∈ Lr+1(m). Since L−1 is bounded in L2(m),
if |�(t, s)| ≤ σt (1 + |s|(r+1)/2) for some positive σ ∈ C([0,∞)), then the another
term 〈�(t, x) − �(t, y),L−1(x − y)〉 makes sense too. Otherwise, since the first
condition in (1.3) only implies |�(t, s)| ≤ ηt (1+|s|r ), in general, to make the sec-
ond condition in (1.3) meaningful, we should and do assume that L−1 is bounded
in Lr+1(m). In particular, this assumption holds automatically if L is a Dirichlet
operator (cf., e.g., [14]).

Recall that an adapted continuous process Xt is called a solution to (1.2) if
(cf. [6])

E
∫ T

0
‖Xt‖r+1

r+1 dt < ∞, T > 0,

and for any f ∈ Lr+1(m),

〈Xt,f 〉H = 〈X0, f 〉H −
∫ t

0
m

(
f �(s,Xs) + �(s,Xs)L

−1f
)
ds

+
∫ t

0
〈Q(s,Xs) dWs,f 〉H , t ≥ 0.

Due to (1.1), (1.3) and Theorems II.2.1 and II.2.2 in [13], for any X0 ∈ L2(� →
H ;F0,P) the equation (1.2) has a unique solution (cf. Theorem A.2 below). For
any x ∈ H , let Xt(x) be the unique solution to (1.2) with X0 = x. Define

PtF (x) := EF(Xt(x)), x ∈ H,

for any bounded measurable function F on H .
We first study Harnack inequalities for Pt . To this end, we assume that Qt(ω)

is nondegenerate for t > 0 and ω ∈ �; that is, Qt(ω)x = 0 implies x = 0. Let

‖x‖Qt :=
{‖y‖2, if y ∈ L2(m),Qty = x,

∞, otherwise.

We call ‖ · ‖Qt the intrinsic distance induced by Qt .
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THEOREM 1.1. Assume (1.1) and (1.3). If there exists a nonnegative constant
θ ∈ r − 3 such that

‖x‖r+1
r+1 ≥ ξ2

t ‖x‖2+θ
Qt

‖x‖r−1−θ
H , x ∈ Lr+1(m), t ≥ 0,(1.4)

holds on � for some strictly positive function ξ ∈ C([0,∞)), then for any t > 0,
Pt is strong Feller and for any positive bounded measurable function F on H, any
α > 1 and any x, y ∈ H ,

(PtF )α(y) ≤ (PtF
α(x)) exp

[
αc(θ, t)‖x − y‖2(3−r+θ)/(2+θ)

H

(α − 1)

]
,(1.5)

where

c(θ, t) :=
(

2(4 + θ)(6+2θ)/(2+θ)

(∫ t

0
δ2
s ξ

2
s exp

[
−3 − r + θ

4 + θ

∫ s

0
γu du

]
ds

)θ/(2+θ))

×
(
(3 − r + θ)(6+2θ)/(2+θ)

×
(∫ t

0
δsξs exp

[
−3 − r + θ

4 + θ

∫ s

0
γu du

]
ds

)2)−1
.

Unlike known Harnack inequalities established in [1, 2, 11] where the involved
distance is almost surely infinite, (1.5) only includes the usual norm on the state
space H . This enables one to derive stronger regularity properties of the semi-
group, such as the strong Feller property of Pt and estimates of its transition den-
sity pt(x, y). Moreover, as was done in [16, 19, 20], this inequality can also be
applied to derive the hypercontractivity and ultracontractivity of the semigroup
(cf. Theorem 1.2 below).

To apply Theorem 1.1 to contractivity properties of Pt , we consider the follow-
ing time-homogenous case.

THEOREM 1.2. Assume (1.1), (1.3) and (1.4) for some nonnegative constant
θ > r − 3. Furthermore, let �,� and Q be deterministic and time-free such that
ξ, δ > 0 and γ are constant with γ 1{r=1} < δ2λ1.

(1) The Markov semigroup Pt has an invariant probability measure µ with full

support on H and µ(eε0‖·‖r+1
H + ‖ · ‖r+1

r+1) < ∞ for some ε0 > 0. If in addition
γ ≤ 0, then the invariant probability measure is unique.

(2) For any x ∈ H, any t > 0 and any α > 1, the transition density pt(x, y) of
Pt w.r.t. µ satisfies

‖pt(x, ·)‖Lp(µ)

≤
{∫

H
exp

[
−(

αc(θ)‖x − y‖2(3−r+θ)/(2+θ)
H

)
(1.6)

×
({

1

γ

(
1 − exp

[
−3 − r + θ

4 + θ
γ t

])}(4+θ)/(2+θ))−1]
µ(dy)

}−(α−1)/α

,
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where c(θ) := 2(4 + θ)/(3 − r + θ)(ξδ)4/(4+θ) and when γ = 0, the right-hand
side means its limit as γ ↓ 0.

(3) If r = 1, then Pt is hyperbounded (i.e., ‖Pt‖L2(µ)→L4(µ) < ∞) and compact
on L2(µ) for some t > 0. If moreover γ ≤ 0, then Pt is hypercontractive, that is,
‖Pt‖L2(µ)→L4(µ) ≤ 1 for large t > 0.

(4) If r > 1, then Pt is ultracontractive and compact on L2(µ) for any t > 0.
More precisely, there exists c > 0 such that

‖Pt‖L2(µ)→L∞(µ) ≤ exp
[
c
(
1 + t−(1+r)/(r−1))], t > 0.(1.7)

To apply Theorems 1.1 and 1.2, one has to verify condition (1.4). To this end,
we present below some simple sufficient conditions for (1.4) to hold.

COROLLARY 1.3. Let Qei := qiei for i ≥ 1 with
∑∞

i=1
q2
i

λi
< ∞, so that Q

is Hilbert–Schmidt from L2(m) to H. If infi q2
i > 0, then (1.4) holds for any

nonnegative constant θ ∈ (r − 3, r − 1] and a constant function ξ > 0. Con-
sequently, if moreover � and � are deterministic and time-free such that (1.3)

holds with γ 1{r=1} < λ1δ
2, then all assertions in Theorems 1.1 and 1.2 hold for

θ ∈ (r − 3, r − 1] ∩ [0,∞).

PROOF. Simply note that ‖ · ‖2
r+1 ≥ ‖ · ‖2

2 ≥ 1
infi q2

i

‖ · ‖2
Q. �

REMARK 1.1. In Corollary 1.3 there are two conditions on qi , where∑
i≥1

q2
i

λi
< ∞ means that {q2

i } should be small enough as i → ∞ but the other
says that the sequence should be at least uniformly positive. In particular, such se-
quence exists if the spectrum of L is discrete enough such that

∑
i≥1

1
λi

< ∞. This
is the case if, for example, L = � on a bounded domain in R with the Dirichlet
boundary condition, or more generally, L is the Laplace operator on a post-critical
finite self-similar fractal with s > 0 the Hausdorff dimension of the fractal in the
effective resistance metric (see [10]). In the first case it is well known that λi ≥ ci2

for some c > 0 and all i ≥ 1, while according to Theorem 2.11, for the second case
one has λi ≥ ci(s+1)/s for some c > 0 and all i ≥ 1. See Section 3 below for more
examples of L in an abstract framework including high-order elliptic differential
operators on Rd .

Complete proofs of the above two theorems will be presented in Section 2.
Assertions in Theorem 1.2 are direct consequences of Theorem 1.1 as soon as
the desired concentration of µ is confirmed. To prove the first theorem, we adopt
the coupling method and Girsanov transformations as in [3]. Comparing to the
argument developed in [19], this method enables one to avoid verifying (intrinsic)
gradient estimates of the semigroup.
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In Section 3, concrete sufficient conditions for Corollary 1.3 to hold are pro-
vided for a large class of linear operators L in a rather abstract framework. Finally,
in the Appendix we confirm the existence and uniqueness of the solution to (1.2) as
well as the existence and uniqueness of our coupling constructed below [cf. (2.2)].

2. Proofs of Theorems 1.1 and 1.2.

2.1. The main idea. To make the proofs easy to follow, let us first briefly ex-
plain the main idea to obtain a Harnack inequality using coupling. Let x �= y be
two fixed points in H , and let T > 0 be a fixed time. Let Xt(x) and Xt(y) be the
solutions to (1.2) with initial data x and y, respectively. If

τ(x, y) := inf{t ≥ 0 :Xt(x) = Xt(y)} ≤ T a.s.,(2.1)

then by the uniqueness of the solution, we have XT (x) = XT (y) a.s. Thus, for any
nonnegative measurable function F on H ,

PT f (x) := EF(XT (x)) = EF(XT (y)) = PT F(y).

This is much more than the Harnack inequality we wanted. Of course, in gen-
eral (2.1) is wrong since it is so strong that PT maps any bounded function to
constant. What we can hope is that τ(x, y) ≤ T happens in a high probability
(for x and y close enough). This is, however, not sufficient to imply the Harnack
inequality.

To ensure that τ(x, y) ≤ T happens in probability 1, we shall add a strong
enough drift term which forces Xt(y) to move to Xt(x). To this end, let us take a
constant ε ∈ (0,1) and a reference function β ∈ C([0,∞);R+), and consider the
modified equation

dYt =
{
L�(t, Yt ) + �(t,Yt ) + βt(Xt − Yt )

‖Xt − Yt‖ε
H

1{t<τ }
}

dt + Qt dWt,(2.2)

Y0 = y,

where Xt := Xt(x) and τ := inf{t ≥ 0 :Xt = Yt }.
By Theorem A.2 below, (2.2) has a unique solution. Moreover, by the unique-

ness, we have Xt = Yt for t ≥ τ.

Now, to derive the desired Harnack inequality, we need only to find out ε > 0
and nonnegative function βt such that:

(i) τ ≤ T a.s.

(ii) E exp[∫ T
0

β2
t

2 ‖Xt − Yt‖−2ε
H ‖Xt − Yt‖2

Qt
dt] < ∞.

Let

ζt := βtQ
−1
t (Xt − Yt )

‖Xt − Yt‖ε
H

1{t<τ }.
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Once (i) and (ii) are confirmed, we may rewrite (2.2) as

dYt = (
L�(t, Yt

) + �(t,Yt )) dt + Qt dW̃t , Y0 = y,

where

W̃t := Wt +
∫ t

0
ζs ds, t ∈ [0, T ].

By (ii) and Girsanov’s theorem, it is easy to see that {W̃t }t∈[0,T ] is a cylindrical
Brownian motion on L2(m) under the weighted probability measure RP, where

R := exp
[∫ T

0
〈dWt, ζt 〉 − 1

2

∫ T

0
‖ζt‖2

2 dt

]
.

Thus, by the uniqueness of the solution, the distribution of {Yt }t∈[0,T ] under RP
coincides with that of {Xt(y)}t∈[0,T ] under P. Therefore, combining this with (i)
we arrive at

PT F(y) = ERF(YT ) = ERF(XT )

≤ (
ERα/(α−1))(α−1)/α

(EF(XT )α)1/α(2.3)

= (
ERα/(α−1))(α−1)/α

(PT Fα(x))1/α.

Then the desired Harnack inequality follows by estimating the moments of R.

2.2. Proofs. We first study (i). By (1.3) and the Itô formula due to [13], The-
orem I.3.2, we have

d‖Xt − Yt‖2
H

≤ (−δ2
t ‖Xt − Yt‖r+1

r+1 + γt‖Xt − Yt‖2
H − βt‖Xt − Yt‖2−ε

H ) dt, t ≤ T .

Then

d
{‖Xt − Yt‖2

He− ∫ t
0 γsds}

(2.4)
≤ −(δ2

t ‖Xt − Yt‖r+1
r+1 + βt‖Xt − Yt‖2−ε

H )e− ∫ t
0 γsds dt, t ≤ T .

LEMMA 2.1. If β satisfies∫ T

0
exp

[
−ε

2

∫ t

0
γs ds

]
βt dt ≥ 2

ε
‖x − y‖ε

H ,(2.5)

then XT = YT .

PROOF. By (2.4),

2

ε
d
{‖Xt − Yt‖2

He− ∫ t
0 γsds}ε/2 ≤ −βte

−ε/2
∫ t

0 γsds dt, t ≤ τ.
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If T < τ , then it follows from this and (2.5) that
{‖XT − YT ‖2

He− ∫ T
0 γsds}ε/2 − ‖x − y‖ε

H ≤ −ε

2

∫ T

0
βte

−ε/2
∫ t

0 γs ds dt

≤ −‖x − y‖ε
H .

This implies XT = YT and hence, is contradictory to T < τ. �

PROOF OF THEOREM 1.1. By (2.4), (1.4) and letting ε := (3− r + θ)/(4+ θ)

which is in (0,1) since θ > r − 3, we obtain

d
{‖Xt − Yt‖2

He− ∫ t
0 γsds}ε

≤ −εδ2
t ‖Xt − Yt‖2(ε−1)

H e−ε
∫ t

0 γsds‖Xt − Yt‖r+1
r+1 dt

(2.6)
≤ −εδ2

t ξ
2
t ‖Xt − Yt‖2+θ

Qt
e−ε

∫ t
0 γsds‖Xt − Yt‖2(ε−1)+r−1−θ

H dt

= −εδ2
t ξ

2
t e−ε

∫ t
0 γsds

‖Xt − Yt‖2+θ
Qt

‖Xt − Yt‖(2+θ)ε
H

dt.

Let

β2
t := c2δ2

t ξ
2
t e−ε

∫ t
0 γsds, c := 2‖x − y‖ε

H

ε
∫ T

0 δt ξt exp[−ε
∫ t

0 γs]ds
.(2.7)

Then (2.5) holds so that XT = YT according to Lemma 2.1. So, (2.6) implies

ε

c2

∫ T

0

β2
t ‖Xt − Yt‖2+θ

Qt

‖Xt − Yt‖(2+θ)ε
H

dt ≤ ‖x − y‖2ε
H .

By this and the Hölder inequality,∫ T

0

β2
t ‖Xt − Yt‖2

Qt

‖Xt − Yt‖2ε
H

dt

≤
(∫ T

0

β2
t ‖Xt − Yt‖2+θ

Qt

‖Xt − Yt‖(2+θ)ε
H

dt

)2/(2+θ)(∫ T

0
β2

t dt

)θ/(2+θ)

(2.8)

≤ (ε−1c2‖x − y‖2ε
H )2/(2+θ)

(∫ T

0
β2

t dt

)θ/(2+θ)

.

This implies, for α′ := α/(α − 1), that

ERα′ = E exp
[
α′

∫ T

0
〈dWt, ζt 〉 − α′

2

∫ T

0
‖ζt‖2

2 dt

]

= E exp
[
α′(α′ − 1)

2

∫ T

0
‖ζt‖2

2 dt

]
(2.9)

≤ exp
[
α′(α′ − 1)

2
(ε−1c2‖x − y‖2ε

H )2/(2+θ)

(∫ T

0
β2

t dt

)θ/(2+θ)]
.
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Combining (2.9) with (2.3), we arrive at

(PT F (y))α

≤ (PT Fα)(x) exp
[

α

2(α − 1)
(ε−1c2‖x − y‖2ε

H )2/(2+θ)

(∫ T

0
β2

t dt

)θ/(2+θ)]
.

Taking (2.7) into account, we obtain (1.5).
We now prove the strong Feller property. Since

PT F(y) = ERF(YT ) = ERF(XT ),

we have

|PT F(y) − PT F(x)| = |E(R − 1)F (XT )| ≤ ‖F‖∞E|R − 1|.(2.10)

From (2.9) we know that R is uniformly integrable for bounded ‖x − y‖H . There-
fore, by (2.8) and the dominated convergence theorem we obtain

lim
y→x

E|R − 1| = E lim
y→x

|R − 1| = 0.

Combining this with (2.10) we see that PT F ∈ Cb(H). Thus, PT is strong Feller.
�

PROOF OF THEOREM 1.2(1). (a) The existence of µ. Let Xt(0) be the solu-
tion to (1.2) with X0 = 0, and let

µn := 1

n

∫ n

0
δ0Pt dt, n ≥ 1,

where δ0Pt is the distribution of Xt(0), t ≥ 0. Since by Theorem 1.1 Pt is a (even
strong) Feller Markov semigroup, to prove the existence of the invariant prob-
ability measure, we only need to verify the tightness of {µn :n ≥ 1}. Indeed, if
µnk

→ µ weakly for some subsequence nk → ∞, then for any F ∈ Cb(H) one
has PtF ∈ Cb(H) and thus,

(µPt)(F ) = lim
k→∞µnk

(PtF ) = lim
k→∞

1

nk

∫ nk+t

t
PsF (0) ds

= lim
k→∞

1

nk

∫ nk

0
PsF (0) ds = µ(F), t ≥ 0.

By (1.3) with δ > 0 and γ 1{r=1} < λ1δ
2, we have

−2〈�(x), x〉 − 2〈�(x),L−1x〉
≤ −δ2‖x‖r+1

r+1 + 2|�(0)|‖L−1‖r+1‖x‖r+1 + 2|�(0)|‖x‖r+1 + γ ‖x‖2
H

≤ θ2 − θ1‖x‖r+1
r+1, x ∈ Lr+1(m)
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for some θ1, θ2 > 0. Combining this with the Itô formula for the square of the
norm, we obtain

d‖Xt‖2
H ≤ (c − θ‖Xt‖r+1

r+1) dt + 2〈QdWt,Xt 〉H(2.11)

for some c, θ > 0. Then

µn(‖ · ‖r+1
r+1) := 1

n

∫ n

0
E‖Xt(0)‖r+1

r+1 dt

≤ c

θ
− 1

n
‖Xn(0)‖2

H ≤ c

θ
, n ≥ 1.

Hence, to prove the tightness of {µn}, it suffices to prove that ‖ · ‖r+1 is a com-
pact function, that is, KN := {‖ · ‖r+1 ≤ N} is relatively compact in H for any
N > 0. Since the embedding Lr+1(m) ⊂ H is continuous, it follows that ‖ · ‖Q is
bounded on KN . Moreover, since Q is Hilbert–Schmidt from L2(m) to H , ‖ · ‖Q

is a compact function on H . Therefore, KN is relatively compact in H .
(b) The uniqueness and full support of µ. By (1.3) with γ ≤ 0 and the Itô for-

mula, there exist δ, θ > 0 such that

d‖Xt(x) − Xt(y)‖2
H ≤ −δ2‖Xt(x) − Xt(y)‖r+1

r+1 dt

≤ −θ‖Xt(x) − Xt(y)‖r+1
H dt, x, y ∈ H.

Thus, limt→∞ ‖Xt(x)−Xt(y)‖H = 0, x, y ∈ H. This implies that µ is the unique
invariant probability measure of Pt .

Next, since µ is the invariant probability measure of Pt , by (1.5) with α := 2,

(Pt1A(x))2
∫
H

e−2c(θ,t)‖x−y‖2(3−r+θ)/(2+θ)
H µ(dy)

≤
∫
H

Pt1A(y)µ(dy) = µ(A), A ∈ M.

Then the transition kernel Pt(x, dy) is absolutely continuous w.r.t. µ so that it has a
density pt(x, y). Thus, if supp µ �= H , then there exist x0 ∈ H and r > 0 such that
B(x0, r) := {y ∈ H :‖x0 −y‖H ≤ r} is a null set of µ. Hence, Pt(x0,B(x0, r)) = 0.

Therefore, letting Xt(x0) be the solution to (1.2) with X0(x0) = x0, we obtain

P
(‖Xt(x0) − x0‖H ≤ r

) = 0, t > 0.

Since Xt(x0) is a continuous process on H , this implies P(‖X0(x0)−x0‖H ≤ r) =
0 which is impossible. So, µ has full support on H .

(c) Concentration of µ. By (2.11), for c′ := (r + 1)ε0/2 we have

deε0‖Xt‖r+1
H + dMt

(2.12)
≤ (c − θ‖Xt‖r+1

r+1 + 2c′‖Q‖2
LHS

‖Xt‖r+1
H )c′‖Xt‖r−1

H eε0‖Xt‖r+1
H dt
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for some local martingale Mt . Since ‖ · ‖r+1 ≥ c0‖ · ‖H for some constant c0 > 0,
when ε0 > 0 is small enough there exist c1, θ1 > 0 such that

deε0‖Xt‖r+1
H ≤ (

c1 − θ1‖Xt‖r+1
r+1e

ε0‖Xt‖r+1
H

)
dt + dMt .

This implies

µn

(
eε0‖·‖r+1

H
) ≤ 1

θ1n
+ c1

θ1
, n ≥ 1.

Hence, µ(eε0‖·‖r+1
H ) < ∞ since µ is the weak limit of a subsequence of µn.

Finally, by (2.11) we have∫ 1

0
Pt‖ · ‖r+1

r+1(x) dt ≤ c2(1 + ‖x‖2
H ), x ∈ H,

for some c2 > 0. Thus, µ(‖ · ‖r+1
r+1) ≤ c2(1 + µ(‖ · ‖2

H )) < ∞. �

PROOF OF THEOREM 1.2(2). For any p > 1 and any nonnegative measurable
function f with µ(f p/(p−1)) ≤ 1, it follows from (1.5) with α := p/(p − 1) that

(Ptf (x))p/(p−1) ≤ (
Ptf

p/(p−1)(y)
)

exp
[
pct‖x − y‖2(3−r+θ)/(2+θ)

H

]
,

x, y ∈ H.

Thus,

(Ptf (x))p/(p−1)
∫
H

e−pct‖x−y‖2(3−r+θ)/(2+θ)
H µ(dy) ≤ µ

(
f p/(p−1)) ≤ 1.

Therefore,

〈pt(x, ·), f 〉µ = Ptf (x) ≤
(∫

H
e−pct‖x−y‖2(3−r+θ)/(2+θ)

H µ(dy)

)−(p−1)/p

.

This implies (1.6). �

PROOF OF THEOREM 1.2(3). Let f ∈ L2(µ) with µ(f 2) = 1. By (1.5) with
γ = 0 and constants ξ, δ > 0, there exists a constant c > 0 depending on r and θ

such that

(Ptf )2(x) exp
[
−c‖x − y‖2(3−r+θ)/(2+θ)

H

t(4+θ)/(2+θ)

]
≤ Ptf

2(y), x, y ∈ H, t > 0.

Taking integration for both sides w.r.t. µ(dy), we obtain

(Ptf )2(x)
(2.13)

≤ 1

µ(B(0,1))
exp

[
c(‖x‖H + 1)2(3−r+θ)/(2+θ)

t (4+θ)/(2+θ)

]
, x ∈ H, t > 0,
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where B(0,1) := {y ∈ H :‖y‖H ≤ 1} has positive mass of µ.
If r = 1, then by (2.13) and Theorem 1.2(1) we have∫

H
(Ptf )4(x)µ(dx)

≤ 1

µ(B(0,1))

∫
H

exp
[
c(‖x‖H + 1)2(3−r+θ)/(2+θ)

t (4+θ)/(2+θ)

]
µ(dx) < ∞

for sufficiently big t > 0. Thus, Pt is hyperbounded, that is, ‖Pt‖2→4 < ∞ for
some t > 0. Since Pt has transition density w.r.t. µ, according to, for example,
[23] it is compact in L2(µ) for large t > 0. In particular, if γ ≤ 0, then the process
is ergodic so that its generator has a spectral gap. Thus, ‖Pt − µ‖2 ≤ ce−λt for
some c > 0 and all t > 0. Therefore, by a standard argument we obtain the hyper-
contractivity from the hyperboundedness.

If r > 1, then (2.12) implies

deε0‖Xt‖r+1
H ≤ c2 − θ2‖Xt‖2r

H eε0‖Xt‖r+1
H dt + dMt

for some small ε0 > 0 and some c2, θ2 > 0. Thus, letting h(t) solve the equation

h′(t) = c2 − θ2ε
−2r/(1+r)
0 h(t){logh(t)}2r/(r+1),

(2.14)
h(0) = eε0‖x‖r+1

H ,

we have

Eeε0‖Xt (x)‖r+1
H ≤ h(t).(2.15)

Since 2r
r+1 > 1, (2.14) and (2.15) imply

Eeε0‖Xt (x)‖r+1
H ≤ exp

[
c3

(
1 + t−(r+1)/(r−1))], t > 0, x ∈ H,(2.16)

for some constant c3 > 0. Next, by (2.13) we have

‖Ptf ‖∞ = ‖Pt/2Pt/2f ‖∞
(2.17)

≤ c4 sup
x∈H

E exp
[

c4

t (4+θ)/(2+θ)
‖Xt/2(x)‖2(3−r+θ)/(2+θ)

H

]
,

t > 0,

for some c4 > 0. Since there exists c5 > 0 such that
c4

t (4+θ)/(2+θ)
u2(3−r+θ)/(2+θ) ≤ ε0u

r+1 + c5t
−(r+1)/(r−1), u, t > 0,

(1.7) follows immediately from (2.16) and (2.17). Finally, according to [23] (see
also [9], Lemma 3.1), the compactness of Pt follows immediately since Pt is uni-
form integrable in L2(µ) and has transition density w.r.t. µ. �
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3. Examples. As explained in Remark 1.1, for L := � the Dirichlet Laplace
operator, our results only apply to a space of dimension less than 2. The aim of this
section is to show that, by means of spectral representation, we have many more
choices of L to illustrate our theorems.

Let L0 be a self-adjoint operator on L2(m) with discrete spectrum

(0 ≤)λ
(0)
1 ≤ λ

(0)
2 ≤ · · ·

and the corresponding unit eigenfunctions {ei}i≥1. As in Corollary 1.3, let Qei :=
qiei for a sequence {qi �= 0}i≥1. Let, for simplicity, �(s) = −c0s and � ∈ C(R)

satisfy (
�(s1) − �(s2)

)
(s1 − s2) ≥ δ2|s1 − s2|r+1,

(3.1)
|�(s)| ≤ c(1 + |s|r ), s, s1, s2 ∈ R,

for some c0 ≥ 0 and c, δ > 0. For any positive and strictly increasing function ϕ

on [0,∞), we consider (1.2) for

L := −ϕ(−L0) = −
∞∑
i=1

ϕ(λ
(0)
i )〈ei, ·〉ei.

That is, consider

dXt = −{ϕ(−L0)�(Xt) + c0Xt }dt + QdWt.(3.2)

PROPOSITION 3.1. Let infi≥1 q2
i > 0 and � = 0, and let � satisfy (3.1). If ϕ

is strictly positive such that

∞∑
i=1

q2
i

ϕ(λ
(0)
i )

< ∞,(3.3)

then the Markov semigroup of the solution to (3.2) satisfies all assertions in Theo-
rems 1.1 and 1.2 for any θ ∈ (r − 3, r − 1] and some ξ > 0.

PROOF. Let L := −ϕ(−L0) whose eigenvalues are −λi := −ϕ(λ
(0)
i ), i ≥ 1.

Obviously, all conditions in Corollary 1.3 are satisfied for the present situation.
Thus, the proof is completed by Corollary 1.3. �

To conclude this paper, we present two examples where L0 is either the Dirichlet
Laplacian on a finite volume domain in Rd or the Ornstein–Uhlenbeck operator
on Rd , so that L can be taken as high-order differential operators on Rd or on a
domain.

EXAMPLE 3.2. Assume the situation of Proposition 3.1 but simply take
qi = 1, i ≥ 1.
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(1) Let L0 := �−x ·∇ and let m be the standard Gaussian measure on E := Rd .

It is well known that the set of eigenvalues of −L0 is Z+, and the eigenspace of
each k ≥ 0 is

span

{
d∏

i=1

Hki
(xi) : k1 + · · · + kd = k, k1, . . . , kd ≥ 0

}
,

where H0 ≡ 1 and

Hn(s) := (−1)n√
n! es2/2 dn

dsn
e−s2/2, s ∈ R, n ≥ 1.

Thus, there exists σ > 0 such that

λ
(0)
i ≥ σ(i − 1)1/d, i ≥ 1.

Then (3.3) holds for ϕ(s) := (ε+ s)q for any ε > 0 and q > d , so that all assertions
in Theorems 1.1 and 1.2 hold for the solution to (3.2).

(2) Let L0 := � be the Dirichlet Laplace operator on a domain D ⊂ Rd with
finite volume, and let m be the normalized volume measure on D. By the Sobolev
inequality we have (see [21], Corollaries 1.1 and 3.1)

λ
(0)
i ≥ σ i2/d, i ≥ 1,

for some σ > 0. Then (3.3) holds for ϕ(s) := sq for any q > d/2, so that all
assertions in Theorems 1.1 and 1.2 hold for the solution to (3.2).

APPENDIX: EXISTENCE AND UNIQUENESS OF SOLUTIONS

We first recall the following result due to [13], then derive the existence and the
uniqueness for the solution to generalized stochastic porous media equations.

THEOREM A.1 ([13], Theorems II.2.1, II.2.2). Let H be a real separable
Hilbert space and V and V ∗ two real Banach spaces such that the embeddings
V ⊂ H ⊂ V ∗ are dense and continuous. Let LHS be the space of all Hilbert–
Schmidt operators from some real separable Hilbert space G to H and Wt the
cylindrical Brownian motion on G. Let T > 0 be fixed and

A : [0, T ] × V × � → V ∗ and Q : [0, T ] × V × � → LHS

be progressively measurable such that

(A1) Semicontinuity of A : for any v1, v2, v ∈ V and any t ∈ [0, T ], R � λ �→V ∗
〈A(t, v1 + λv2), v〉V is continuous, where V ∗〈·, ·〉V is the duality between V ∗
and V .

(A2) Monotonicity of (A,Q): there exists a constant K > 0 such that for any
t ∈ [0, T ],

2V ∗〈A(t, v1) − A(t, v2), v1 − v2〉V + ‖Q(t, v1) − Q(t, v2)‖2
LHS

≤ K‖v1 − v2‖2
H , v1, v2 ∈ V.
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(A3) Coercivity of (A,Q): there exist two constants α,K > 0 and a positive
adapted process f ∈ L1([0, T ] × �;dt × P) such that

2V ∗〈A(t, v), v〉V + ‖Q(t, v)‖2
LHS

+ α‖v‖r+1
V ≤ ft + K‖v‖2

H

holds for all t ∈ [0, T ], v ∈ V.

(A4) Boundedness of A: there exist a constant K > 0 and a positive adapted
process f ∈ L1([0, T ] × �;dt × P) such that

‖A(t, v)‖V ∗ ≤ f
r/(r+1)
t + K‖v‖r

H , t ∈ [0, T ], v ∈ V.

Then for any X0 ∈ L2(� → H ;F0;P), (A.1) has a unique solution {Xt }t∈[0,T ]
which is an adapted continuous process on H such that E

∫ T
0 ‖Xt‖r+1

V dt < ∞
and

〈Xt, v〉H = 〈X0, v〉H +
∫ t

0
V ∗〈A(s,Xs), v〉V ds +

∫ t

0
〈Q(s,Xs) dWs, v〉H

holds for all v ∈ V, t ∈ [0, T ].

We now return to the framework in Section 1 and consider the following equa-
tion which is even more general than (1.2):

dXt = {L�(t,Xt) + �(t,Xt)}dt + Q(t,Xt) dWt,(A.1)

where

Q : [0,∞) × H × � → LHS

is a progressively measurable mapping such that

‖Q(t, x)‖2
LHS

≤ ht (1 + ‖x‖2
H ),

(A.2)
‖Q(t, x) − Q(t, y)‖2

LHS
≤ ht‖x − y‖2

H

holds for some positive function h ∈ C([0,∞)) and all x, y ∈ H.

THEOREM A.2. Assume (1.3) and (A.2) for some positive function h ∈
C([0,∞)) and all x, y ∈ H.

(1) (A.1) has a unique solution for any X0 ∈ L2(� → H ;F0;P).
(2) Let Xt solve (A.1) for X0 = x ∈ H. Then (2.2) has a unique solution.

PROOF. (1) Let

A(t, x) := L�(t, x) + �(t, x), t ≥ 0, x ∈ Lr+1(m).

To make this quantity meaningful, let V := Lr+1(m). Then the embedding V ⊂ H

is continuous. Let V ∗ be the dual space of V w.r.t. H. By (1.3) and the assumption
of L, that is, L−1 is bounded in Lr+1(m) if |�(t, s)| ≤ σt (1 + |s|(1+r)/2) does not
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hold for any positive σ ∈ C([0,∞)), we conclude that A(t, x) is well defined as
an element in V ∗ by letting

V ∗〈A(t, x), v〉V := −〈�(t, x), v〉 − 〈�(t, x),L−1v〉, v ∈ V.

It is now easy to see that under (1.3), (A.2) and the continuity of �(t, s) and �(t, s)

in s, all assumptions in the above theorem hold. Therefore, the proof is completed.
(2) By (1) we only have to prove (A1)–(A4) for Q = 0 and

A(t, x) := Xt − x

‖Xt − x‖ε
H

1{Xt �=x}

for ε ∈ (0, 1
2 ]. Since by (1.3) and the Itô formula (see [13], Theorem I.3.2) one has

d‖Xt‖2
H ≤ 2〈Q(t,Xt) dWt,Xt 〉H

− σ‖Xt(x)‖r+1
r+1 dt + (

c + ‖Q(t,Xt)‖2
LHS

)
dt

for some c, σ > 0, it follows from (A.2) that

sup
t∈[0,T ]

E‖Xt‖2
H < ∞.

Thus, A(t, x) ∈ H with

‖A(t, x)‖H = ‖Xt − x‖1−ε
H , x ∈ H.

Therefore, (A1), (A3) and (A4) hold. To verify (A2), it suffices to prove

〈A(t, x) − A(t, y), x − y〉H ≤ 0 on �,x, y ∈ H.(A.3)

Without loss of generality, for a fixed ω ∈ � we only verify (A.3) for x, y ∈ H

with

‖Xt − x‖H ≤ ‖Xt − y‖H .(A.4)

We now prove (A.3) for the following two situations, respectively.
(i) If ‖Xt − x‖H ≥ ‖x − y‖H , then by (A.3), the mean valued theorem and the

triangle inequality, we have

〈A(t, x) − A(t, y), x − y〉H
= − ‖x − y‖2

H

‖Xt − x‖ε
H

+ ‖Xt − y‖ε
H − ‖Xt − x‖ε

H

‖Xt − y‖ε
H‖Xt − x‖ε

H

〈Xt − y, x − y〉H

≤ − ‖x − y‖2
H

‖Xt − x‖ε
H

+ ε‖Xt − y‖1−ε
H ‖x − y‖2

H

‖Xt − x‖H

≤ − ‖x − y‖2
H

‖Xt − x‖ε
H

+ ε(‖Xt − x‖1−ε
H + ‖x − y‖1−ε

H )‖x − y‖2
H

‖Xt − x‖H

≤ −(1 − 2ε)‖x − y‖2
H

‖Xt − x‖ε
H

≤ 0.
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(ii) If ‖Xt − x‖H ≤ ‖x − y‖H , then by (A.3) and the triangle inequality, we
have

〈A(t, x) − A(t, y), x − y〉H
= − ‖x − y‖2

H

‖Xt − y‖ε
H

+ ‖Xt − x‖ε
H − ‖Xt − y‖ε

H

‖Xt − y‖ε
H‖Xt − x‖ε

H

〈Xt − x, x − y〉H

≤ − ‖x − y‖2
H

‖Xt − x‖ε
H

+ ‖x − y‖ε
H‖Xt − x‖H‖x − y‖H

‖Xt − x‖ε
H‖Xt − y‖ε

H

≤ − ‖x − y‖2
H

‖Xt − x‖ε
H

+ ‖x − y‖1+ε
H ‖Xt − x‖1−ε

H

‖Xt − y‖ε
H

≤ 0. �
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