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COUPLING ALL THE LÉVY STOCHASTIC AREAS OF
MULTIDIMENSIONAL BROWNIAN MOTION

BY WILFRID S. KENDALL

University of Warwick

It is shown how to construct a successful co-adapted coupling of two
copies of an n-dimensional Brownian motion (B1, . . . ,Bn) while simultane-
ously coupling all corresponding copies of Lévy stochastic areas

∫
Bi dBj −∫

Bj dBi . It is conjectured that successful co-adapted couplings still exist
when the Lévy stochastic areas are replaced by a finite set of multiply iter-
ated path- and time-integrals, subject to algebraic compatibility of the initial
conditions.

1. Introduction. A probabilistic coupling of two random processes is a con-
struction of both processes on the same probability space, building in useful depen-
dence between the two processes. This paper discusses couplings of two Markov
processes with the same law of evolution, begun at different points, and con-
structed so as to join together (to couple) at some random time; the coupling is
said to be successful if the two processes couple within finite time almost surely.
There are other kinds of couplings relating to monotonicity, or to approximation;
successful couplings are useful for probabilistic gradient estimates, for studying
the rate of convergence to statistical equilibrium, for relating behavior of random
processes to the geometry of the state-space, and (in more developed formulations)
as a key component in perfect simulation algorithms. The present paper focuses
on a particular question to do with coupling constructions for Euclidean Brownian
motions: namely, whether one can couple successfully not only the Brownian mo-
tions themselves, but also sets of path functionals. We shall show that one can cou-
ple successfully not only two copies of a Brownian motion (B1, . . . ,Bn), but at the
same time all the corresponding pairs of Lévy stochastic areas

∫
Bi dBj −∫

Bj dBi

of the two copies. This appears quite remarkable to the author: one is able to cou-
ple so much despite controlling only the correlations between the two copies of
the Brownian motion.

Extensive treatments of probabilistic coupling can be found in [16] and [22],
so a short summary of the relevant history will suffice. Lindvall [15] was the first
to consider coupling for Brownian motion; he described the classic reflection cou-
pling (couple two n-dimensional Brownian motions by making one of them to be
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the reflection of the other until they meet). This was followed up by Lindvall and
Rogers [17], who discussed generalizations to the case of diffusions. There is a
significant distinction to be drawn here. It is typically very much easier to find
explicit descriptions of couplings when the two processes in question are required
both to be co-adapted to the same filtration of σ -algebras, in particular when the
driving Brownian motions have increments which are independent of their com-
mon past. In [17] (and throughout the present paper) the search is for co-adapted
couplings, and therefore stochastic calculus can be used to provide very explicit
descriptions.

Ben Arous, Cranston and Kendall [1] were the first to consider the possibility of
what one might call exotic couplings, in which one seeks to couple co-adaptively
and simultaneously certain path functionals as well as the processes. They de-
scribed co-adapted couplings for the single stochastic area of planar Brownian mo-
tion, and also for the time-integral of scalar Brownian motion

∫
B dt . Price [20]

showed in her thesis how to extend the second case to couple the twice-iterated
time-integral

∫ ∫
B ds dt , and Kendall and Price [13] used a different method to

show the existence of a successful co-adapted coupling for B and any finite set of
iterated time-integrals

∫ · · · ∫ B ds · · · dt . The present paper continues this theme
by extending the first result of [1] to n-dimensional Brownian motion and all pos-
sible Lévy stochastic areas

∫
Bi dBj − Bj dBi . It now seems reasonable to for-

mulate a general conjecture that successful co-adapted exotic coupling is possible
for any finite combination of multiply iterated path- and time-integrals of Brown-
ian motion (for compatible initial conditions), though it is clear that new ideas
will be required to make further progress. The theory of Lie group symmetries
of stochastic differential equations supports the expectation that resolution of the
general conjecture would lead quickly to coupling constructions for wide classes
of hypoelliptic diffusions.

At present the main motivation for studying exotic coupling lies in the impor-
tance of coupling as a general concept, and the consequent desirability of under-
standing how far one can go in coupling large sets of path functionals. However, it
does seem not unreasonable to hope for future useful interactions with rough path
theory [18], where stochastic areas play a central role, and conceivably also for
its use in lifting restrictions on the new methods of exact simulation of stochastic
differential equations [2].

It should be noted that there is significant theory concerning nonco-adapted
couplings. If the co-adapted constraint is lifted, then one may construct maxi-
mal couplings [7, 8, 19] which couple at the maximum rate permitted by the to-
tal variation bound of the coupling inequality. These couplings have strong rela-
tionships with potential theory, and will in general be hard to construct (but see
the striking results of Rogers [21] on random walks). Hairer [9] used a restricted
kind of nonco-adapted coupling at time ∞ to study hypoelliptic diffusions, Hayes
and Vigoda [10] used finite look-ahead couplings to gain definite improvements
on coupling rate in an application to randomized algorithms, while Burdzy and
Kendall [4] studied the cost of the co-adapted property. In our case it is a sim-
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ple matter to demonstrate the possibility of successful nonco-adapted coupling of
Lévy stochastic areas as a consequence of Hörmander regularity of the correspond-
ing n + n(n − 1)/2-dimensional hypoelliptic diffusion. The point of the present
paper is to deliver an explicit successful co-adapted coupling construction; the
existence of this is not implied by regularity theory.

The paper is organized as follows. Section 2 addresses some general consider-
ations related to stochastic control, which help to focus the problem on specific
coupling strategies and to introduce notation. Section 3 gives a new approach to
the two-dimensional problem treated by [1]; this prepares the way for the main
results of the paper which are stated and proved in Section 4: namely, that success-
ful co-adapted coupling is achievable for n-dimensional Brownian motion and its
n(n − 1)/2 associated Lévy stochastic areas. The concluding Section 5 considers
a couple of complementary issues, and formulates a general question concerning
coupling of sets of iterated path integrals, for which the answer is conjectured to
be in the affirmative.

2. Coupling, control and convexity. It is helpful to bear in mind a sto-
chastic control-theoretic perspective for coupling problems concerning co-adapted
Brownian motions (see Borkar [3] for a useful survey on stochastic control;
Chen [5] elicits some connections between control and coupling, while Jansons
and Metcalfe [12] carry out some numerical investigations). As remarked above, a
co-adapted coupling of two n-dimensional Brownian motions A and B means that
A and B are both adapted as Brownian motions to the same filtration of σ -algebras
{Ft : t ≥ 0} (thus in particular both increments At+s − As and Bt+s − Bs are inde-
pendent of Ft ). The most general co-adapted coupling can be specified using Itô
stochastic calculus:

dA = JT dB + J̃T
dC,(1)

where J, J̃ are predictable (n × n)-matrix-valued processes, and C is a further
n-dimensional Brownian motion adapted as a Brownian motion to the filtration
{Ft : t ≥ 0} and independent of B.

Thus the coupling is specified by giving a control in the form of a pair of pre-
dictable matrix-valued processes J, J̃. These must satisfy certain conditions if (1)
is indeed to define an n-dimensional Brownian motion A: multiplying stochas-
tic differentials to obtain differentials of quadratic variation (following [11]), and
bearing in mind the independence of B and C, it follows that A is a Brownian
motion if and only if the following matrix-valued random measure equation is sat-
isfied:

Idt = (dA) × (dA)T

= (
JT (dB) × (dB)T J

) + (̃
JT

(dC) × (dC)T J̃
)

(2)

= (JT J + J̃T J̃) dt,



938 W. S. KENDALL

where I is the n × n identity matrix.
The matrix process J expresses the infinitesimal correlation of C with B:

from (2) it follows that such matrix processes are characterized by lying (almost)
always in the convex compact set defined by

0 ≤ JT J ≤ I,(3)

where 0 is the (n × n) zero matrix, and the inequalities are to be interpreted using
the usual spectrally based partial ordering for symmetric matrices. An application
of the Cauchy–Schwarz inequality to vT JT J v shows that the set of extreme points
of this compact convex set can be identified as the topological group of orthogonal
matrices O(n).

Our coupling problem will be solved by designing a predictable process J
such that A and B couple at some finite random time simultaneously with all
their stochastic areas (

∫
Ai dAj − ∫

Aj dAi coupling with
∫

Bi dBj − ∫
Bj dBi ,

etc.). Suppose that it is possible to arrange this in terms of a stochastic control
problem which is regular enough to possess an objective function leading to a
bounded value function V (t,A,B) (where perhaps t is replaced by some other ad-
ditive functional such as time spent in a specified region). Being a value function,
V (t,A,B) is a supermartingale in general and is a martingale exactly, when the
control J is optimal. If V (t,A,B) is appropriately smooth, then Itô’s formula may
be applied. This together with the Brownian nature of A and B shows

dV (t,A,B) = V0 dt + VT
1 dA + VT

2 dB

+ 1
2 tr(V

11
) dt + 1

2 tr(V
22

) dt + tr(JV
12

) dt

(for a fixed orthonormal basis v1, . . . , vn, and first- and second-order derivatives
V0, V1, V2, V

11
, V

12
, V

22
with dependence on t , A and B suppressed). Thus

processes J which are optimal controls for such a regular problem must maximize

tr(JV
12

),

which is linear in J. It follows that smoothness of an appropriate value function
implies that optimal control processes J must (almost surely, for almost all time)
lie in the region of extreme points of the convex compact region of controls, and
so must satisfy the orthogonality condition

JT J = I;(4)

in brief, almost surely J(t) ∈ O(n) for almost all times t (and hence J̃ = 0).
The impact of these considerations for our coupling problem is entirely heuris-

tic, since we do not have any particular objective function in mind other than desir-
ing to show that it is possible to couple Brownian motions together with their sto-
chastic areas. (Indeed we will not even check that our resulting coupling strategy
is admissible, in the sense of being optimal for some objective function: it is not
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a priori at all clear whether a successful coupling exists and therefore optimality
with respect to some arbitrary objective function is of less value than conceptual
simplicity!) The above remarks encourage a search for simple couplings among
those which use O(n)-valued processes J to construct A = ∫

JT dB in terms of B,
without any need of further randomness from C. Since O(n) has two topological
components, made up of SO(n) and the coset of rotated reflections, it also follows
that we should expect to consider coupling strategies which involve discontinuous
transitions between one control and another; and this is indeed what may be ob-
served for the successful coupling strategies described in Theorem 4 (for the planar
case) and Corollary 7 (for the general case) below.

3. The planar case. We first review the planar case (dimension n = 2), which
permits a simpler treatment than the general n-dimensional case but introduces
most of the key ideas. The planar case was first dealt with in [1], using controls J
not all lying in O(2), though it was noted in passing that there was a possibility
of coupling using only reflection and synchronous coupling (as defined in Defi-
nitions 2 and 3, J is a reflection matrix or is an identity matrix). Ben Arous and
Lyons have shown in unpublished work how to implement reflection/synchronous
coupling for the planar case in a rather direct way, which resembles the low-
dimensional case of the Ben Arous et al./Kendall and Price treatment of Kol-
mogorov diffusions (time-integrals and twice-iterated time-integrals together with
scalar Brownian motion). Here we show how reflection/synchronous coupling may
be set up using simple and largely state-dependent coupling rules.

First recall from [1] that it is sufficient to couple (B1,B2) and (A1,A2) together
with the invariant difference of their stochastic areas,

A =
∫

(A1 dA2 − A2 dA1) −
∫

(B1 dB2 − B2 dB1) + A1B2 − A2B1.(5)

In fact A then has a geometric interpretation: it measures the stochastic area swept
out by moving first along the A path, then linearly from the end of the A path to
the end of the B path, and then back along the B path to its starting point. It turns
out to be natural to think of A as the (1,2) coordinate of an antisymmetric matrix

A =
(

0 A

−A 0

)
.

Consider the summary quantities

V =
√

(A1 − B1)2 + (A2 − B2)2,
(6)

U = sgn(A)
√

tr(AT A) = √
2A.

These are semimartingales at least until one of them vanishes. Stochastic calcu-
lus can therefore be used to compute the stochastic differential drifts DriftdU

and DriftdV (the differentials of the locally bounded variation components of the
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Doob–Meyer semimartingale decompositions of U , V ) and the products of dif-
ferentials (dU)2, (dV )2 and (dV ) × (dU) (the differentials of the corresponding
quadratic variation and covariation processes). In doing this, it is convenient to
define the quantities S11, S22 and A12 from the symmetrization and the antisym-
metrization of the control J: working in orthonormal coordinates based on the
vector A − B and its perpendicular,

1
2(J + JT ) =

(
S11 S12
S21 S22

)
, 1

2(J − JT ) =
(

0 A12
−A12 0

)
.(7)

The results of these computations are summarized in the following lemma:

LEMMA 1.

(dV )2 = 2(1 − S11) dt, DriftdV = (1 − S22)

V
dt,

(dV ) × (dU) = −2
√

2A12V dt,(8)

(dU)2 = 4(1 + S22)V
2 dt, DriftdU = 2

√
2A12 dt.

Details of the calculations are left as an exercise for the reader, who may alter-
natively view them as a special case of the multidimensional case treated in detail
in Lemma 5.

Here are two important coupling strategies, defined by specifying the corre-
sponding control J.

DEFINITION 2. Reflection coupling is defined by choosing J to be the orthog-
onal matrix giving reflection in the line normal to the vector A−B; thus S11 = −1,
S22 = 1, A12 = 0 in our chosen coordinate system.

Using Lemma 1, reflection coupling yields

(dV )2 = 4dt, DriftdV = 0,

(dV ) × (dU) = 0,(9)

(dU)2 = 8V 2 dt, DriftdU = 0,

so that V moves as a scalar Brownian motion at least until it hits 0, and U moves
as a scalar Brownian motion subject to a V -dependent time-change.

DEFINITION 3. Synchronous coupling is defined by choosing J to be the iden-
tity matrix; thus S11 = S22 = 1, A12 = 0.
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Using Lemma 1, synchronous coupling yields

(dV )2 = 0, DriftdV = 0,

(dV ) × (dU) = 0,(10)

(dU)2 = 8V 2 dt, DriftdU = 0,

so that V is held constant, while U continues to move as a scalar Brownian motion
with rate dependent on V in the same way as for reflection coupling.

Under both these strategies U and V remain semimartingales for all time.
It is possible to derive these results for both couplings without making ex-

plicit use of stochastic calculus, simply by considering the geometry of the planar
Brownian paths and their invariant difference of areas.

The considerations of Section 2 suggest that if coupling is at all possible for the
planar case using only symmetric J, then it should be achievable by combining
these two controls, since (8) shows that the other two extreme controls (S11 = ±1,
S22 = −1) lead to positive drifts for V without apparent gains for U .

Since U scales as V 2, and since it is desirable for coupling purposes to reduce
the size of U if ever it gets large relative to V , it is natural to consider coupling
strategies described loosely as follows: for fixed κ > 0,

while U2 < κ2V 4, use reflection coupling;
while U2 ≥ κ2V 4, use synchronous coupling.

This involves a discontinuous change of regime as (U,V ) crosses over the bound-
ary U2 = κ2V 4. The discussion in Section 2 has prepared us to expect such discon-
tinuities. A precise description of a successful strategy of this kind is formulated
in the following theorem, which is the principal result of this section.

THEOREM 4. Suppose that initially U0 = 0 but V0 > 0 (this can always be
arranged by first using reflection coupling to make V positive, and then using a
session of synchronous coupling to reduce U to zero). Fix a small ε > 0; consider
the control which alternates between reflection and synchronous couplings using
“down-crossings”:

- if U2/V 4 has not yet visited κ2, then use reflection coupling;
- if U2/V 4 has attained the level (κ − ε)2 since most recently visiting κ2, then use

reflection coupling;
- otherwise use synchronous coupling.

This coupling is almost surely successful in finite time: (U,V ) visits (0,0) in finite
time.

Clearly one could consider the limiting case ε → 0 and use local time and ex-
cursion theory; however, it turns out to be simpler to analyze the process as given.



942 W. S. KENDALL

PROOF OF THEOREM 4. Define the indicator process N(ε) by N(ε) = 1 when
either U2/V 4 has not yet visited κ2, or U2/V 4 has attained the level (κ −ε)2 since
most recently visiting κ2, and otherwise set N(ε) = 0. Then the coupling strategy
prescribed in the theorem statement corresponds to the stochastic differential sys-
tem

(dV )2 = 4N(ε) dt, DriftdV = 0,

(dV ) × (dU) = 0,(11)

(dU)2 = 8V 2 dt, DriftdU = 0.

This is solvable up to the time when U and V both vanish: one may piece together
solutions of the smooth systems defined by (9) and (10). Under this stochastic dif-
ferential system the process V evolves as a Brownian motion of rate 4 interrupted
only when U2/V 4 makes down-crossings from κ2 to (κ − ε)2, and during these
interruptions V is frozen. These down-crossings each take a finite amount of time,
and only finitely many occur in bounded closed time intervals before U and V

both vanish; consequently V either hits 0 at a finite time or converges to 0 at
time ∞. Since V is constant when U2/V 4 ≥ κ2, continuity considerations show
that U/V 2 → 0 as V → 0, and therefore coupling must occur when V hits 0. Thus
the crux of the matter is, will V → 0 at a finite time?

To analyze this question, apply Lamperti’s [14] observation (as used to great
effect in [23], e.g.) to the stochastic differential system (11). Consider a random
time-change under which K = log(V ) behaves as an (interrupted) Brownian mo-
tion with constant negative drift. The time-change τ(t) is defined by

4dt = V 2 dτ.(12)

Writing W = U/V 2, the stochastic system for K and W then follows by Itô’s
formula:

(dK)2 = N(ε) dτ, DriftdK = −1
2N(ε) dτ,

(dK) × (dW) = 2N(ε)W dτ,(13)

(dW)2 = 2
(
1 + 2N(ε)W 2)

dτ, DriftdW = 3N(ε)W dτ.

It is required to show that elapsed t-time until K → −∞ (equivalently V = 0) is
finite, which is equivalent to showing∫ ∞

0
e2K dτ < ∞.(14)

Since V diffuses as Brownian motion of rate 4 when N(ε) = 1 and is otherwise
frozen, it follows that the integral

∫ ∞
0 N(ε)e2K dτ is a Brownian first-passage time

and therefore is finite. Accordingly, it is enough to show∫ ∞
0

(
1 − N(ε))e2K dτ < ∞.(15)
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Let σ s
n < σ

f
n be the start and finish times (in τ -time-scale) of the nth down-

crossing of W 2 = U2/V 4 from κ2 to (κ − ε)2. But N
(ε)
τ = 0 exactly when τ lies

in the union of the stopping-time intervals [σ s
n, σ

f
n ], so therefore∫ ∞

0

(
1 − N(ε))e2K dτ =

∞∑
n=1

e
2Kσs

n (σ f
n − σ s

n),(16)

since V = eK remains constant for τ ∈ [σ s
n, σ

f
n ].

Conditional on Kσs
n
: n = 1,2, . . . , the durations σ

f
n − σ s

n are independent
Brownian first-passage times of different rates. Consequently

E

[
exp

(
−

∞∑
n=1

e
2Kσs

n (σ f
n − σ s

n)

)∣∣∣Kσs
n

: n = 1,2, . . .

]
(17)

= exp

(
−

∞∑
n=1

e
Kσs

n × ε

)
,

using the formula for the moment-generating function of a Brownian first-passage
time.

Consider now the times σ s
2 − σ

f
1 , σ s

3 − σ
f
2 , . . . between successive down-

crossings. These are independent, identically distributed, and of finite mean, since
their common distribution is the τ -time for the regular real-line diffusion W (with
N(ε) = 1) to hit one of ±κ when started at κ − ε. Thus by the strong law of large
numbers it follows that almost surely

1

n

n∑
m=1

(σ s
m − σ

f
m−1) → E[σ s

2 − σ
f
1 ] > 0

(defining σ
f
0 = 0).

But equally K is a Brownian motion with constant drift of −1
2 on the interrupted

τ -time-scale
∫

N(ε) dτ , and therefore almost surely

Kσs
n∫ σ s

n

0 N(ε) dτ
= Kσs

n∑n
m=1(σ

s
m − σ

f
m−1)

→ −1

2
.

It follows that almost surely

Kσs
n

n
→ −1

2
E[σ s

2 − σ
f
1 ] < 0,(18)

and hence
∑∞

n=1 e
Kσs

n is almost surely finite.
Consequently (17) shows that

E

[
exp

(
−

∞∑
n=1

e
2Kσs

n (σ f
n − σ s

n)

)∣∣∣Kσs
n
: n = 1,2, . . .

]
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is almost surely positive, and so

∞∑
n=1

e
2Kσs

n (σ f
n − σ s

n)

has a positive chance of being finite, even when conditioned on Kσs
n
: n = 1,2, . . . .

But the e
2Kσs

n (σ
f
n − σ s

n) are independent under this conditioning, and so by the
Kolmogorov zero-one law and (16) it follows that∫ ∞

0
(1 − N(ε))e2K dτ < ∞(19)

with probability 1. It follows that coupling under this strategy almost surely suc-
ceeds after a finite time. �

Further development of this line of reasoning delivers an explicit construction
of the limiting case ε → 0 using local time and excursion theory, a single elliptic
partial differential equation for the moment-generating function

E[exp(−pT )]
of the coupling time T for all p using scaling, and estimates for exceedance prob-
abilities of the coupling time. We do not consider these topics here, but instead
proceed to the multidimensional case.

4. The n-dimensional case. The first step is to establish the stochastic dif-
ferential system (6) for Euclidean separation and invariant difference of stochastic
areas, working in general n-space (n > 2). First introduce new coordinates based
on X = A − B and Y = A + B, where A and B are co-adapted n-dimensional
Brownian motions satisfying (1). Using Itô calculus for the vectors dX and dY,

dXdXT = 2(I − S) dt, DriftdX = 0,

dYdXT = 2Adt,(20)

dYdYT = 2(I + S) dt, DriftdY = 0,

where S = 1
2(J+JT ) and A = 1

2(J−JT ) are the symmetrized and antisymmetrized
matrices corresponding to J.

Applying the Itô formula to V 2 = XT X (the square of the length of X), it follows
that while V remains positive

(dV )2 = 2(1 − νT Sν) dt, DriftdV = n − 1 − (tr S − νT Sν)

V
dt,(21)

where ν = X/V is a normalized configuration vector defined by X = A − B.
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Now consider the antisymmetric matrix A determined by invariant differences
of stochastic areas of the form of (5):

Aij =
∫

(Ai dAj − Aj dAi) −
∫

(Bi dBj − Bj dBi) + AiBj − AjBi.

Since A = 1
2(Y + X) and B = 1

2(Y − X), calculation shows

dAij = Xi dYj − Xj dYi − 2Aij dt.(22)

Hence

dAij × dArs

= XiXr dYj dYs − XjXr dYi dYs − XiXs dYj dYr + XjXs dYi dYr(23)

= 2
(
XiXr(I + S)js − XjXr(I + S)is

− XiXs(I + S)jr + XjXs(I + S)ir
)
dt.

Setting U = tr(AT A), since

d(U2) = 2U dU + (dU)2 = ∑
i

∑
j

(
2Aij dAij + (dAij )

2)
(24)

it follows

4U2(dU)2 = 4
∑
i

∑
j

∑
r

∑
s

AijArs dAij dArs

= 32
∑
i

∑
j

∑
r

∑
s

AijArsXiXr(I + S)js dt(25)

= 32XT AT (I + S)AX dt = 32νT ZT (I + S)ZνU2V 2 dt.

Here Z = A/U is a normalized configuration matrix [with tr(ZT Z) = 1, antisym-

metric so ZT = −Z and νT Zν = 0]. The second line of (25) follows from the first
by applying (23) and then exploiting the symmetry of I + S and the antisymmetry
of A.

On the other hand, from (24),

2U DriftdU

= Driftd(U2) − (dU)2

= Drift
∑
i

∑
j

(
2Aij dAij + (dAij )

2) − (dU)2

= 4 tr(AT A) dt − (dU)2

+ ∑
i

∑
j

(
X2

i (dYj )
2 + X2

j (dYi)
2 − 2XiXj dYj dYi

)
dt(26)
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= 4 tr(AT A) dt − (dU)2

+ 2
∑
i

∑
j

(
2X2

i (I + S)jj − 2XiXj (I + S)ij
)
dt

= 4 tr(AT A) dt − (dU)2 + 4
(
tr(I + S) − νT (I + S)ν

)
V 2 dt

= 4 tr(AT A) dt + 4
(
n − 1 + tr S − νT Sν − 2νT ZT (I + S)Zν

)
V 2 dt,

where the last line is derived from (25), evaluating tr I = n, νT Iν = 1.
From(25) and (26) taken together,

(dU)2 = 8νT ZT (I + S)ZνV 2 dt,

DriftdU = 2 tr(ZT A) dt(27)

+ 2
(
n − 1 + tr S − νT Sν − 2νT ZT (I + S)Zν

)V 2

U
dt.

Finally, using the antisymmetry of A,

d(U2) d(V 2) = 4V U dV dU

= 4
∑
i

Xi dXi

∑
r

∑
s

Ars dArs

= −16νT ZT Aν UV 2 dt

and so finally

dU dV = −4νT ZT AνV dt.(28)

Following the procedure of the planar case, now consider the behavior of K =
log(V ). As in Section 3, define W = U/V 2; however, we will consider the behav-
ior of K together with that of H = log(U) rather than that of W = exp(H − 2K).
The next lemma follows from the calculations in this section so far.

LEMMA 5. For a general control J (with symmetric and antisymmetric com-

ponents S and A), and defining a new (τ -)time-scale by 4dt = V 2 dτ as in Sec-
tion 3,

(dK)2 = 1
2(1 − νT Sν) dτ,

DriftdK = 1
4

(
n − tr S − 2(1 − νT Sν)

)
dτ,

(dK) × (dH) = −(νT ZT Aν)
1

W
dτ,

(dH)2 = 2νT ZT (I + S)Zν
1

W 2 dτ,(29)
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DriftdH = 1

2
tr(ZT A)

1

W
dτ

+ 1

2

(
n − 1 + tr S − νT Sν − 4νT ZT (I + S)Zν

) 1

W 2 dτ.

PROOF. Use (21), (27) and (28), and Itô’s formula. �

The special cases of reflection and synchronous coupling now follow directly.
Reflection coupling is defined by

Jreflection = I − 2ννT ,(30)

which implies

S = Jreflection, A = 0,

tr S = n − 2, νT Sν = −1, SZν = Zν,

and consequently

(dK)2 = dτ, DriftdK = −1
2 dτ,

(dK) × (dH) = 0,(31)

(dH)2 = 4‖Zν‖2 dτ

W 2 , DriftdH = (n − 1 − 4‖Zν‖2)
dτ

W 2 .

Synchronous coupling is defined by

Jsynchronous = I,(32)

which implies

S = Jsynchronous, A = 0,

tr S = n, νT Sν = 1, SZν = Zν,

and consequently

(dK)2 = 0, DriftdK = 0,

(dK) × (dH) = 0,(33)

(dH)2 = 4‖Zν‖2 dτ

W 2 , DriftdH = (n − 1 − 4‖Zν‖2)
dτ

W 2 .

Note that ‖Zν‖2 is bounded above by 1/2, since the nonzero eigenvalues of the
antisymmetric matrix Z all have multiplicity 2 and the sum of squared eigenvalues

is tr(ZT Z) = 1. So if n ≥ 3, then H is a nonconstant submartingale under both
controls; it follows that there is no hope of coupling higher-dimensional stochastic
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areas by using only synchronous and reflection coupling. Instead we analyze the
more complicated case of general orthogonal-matrix controls.

Consider the case of a rotation coupling defined adaptively by a matrix expo-
nential

Jrotation(θJ) = exp(θJ).(34)

Here J is an antisymmetric matrix satisfying tr(JT J) = 1, so that Jrotation(θJ) is
indeed a rotation matrix, and moreover a finite Taylor series expansion produces
an approximation which can be bounded:

S = cosh(θJ) = 1
2

(
Jrotation(θJ) + Jrotation(−θJ)

) = I − θ2

2
JT J + θ4O(1),

A = sinh(θJ) = 1
2

(
Jrotation(θJ) − Jrotation(−θJ)

) = θJ + θ3O(1).

Here the O(1) terms in the errors signify matrices which vary from line to line but
which can be bounded uniformly in θ and J. Hence

tr S = n − θ2

2
+ θ4O(1), νT Sν = 1 − θ2

2
‖Jν‖2 + θ4O(1),

tr(ZT A) = θ tr(ZT J) + θ3O(1), νT ZT Aν = θ〈Zν,Jν〉 + θ3O(1),

νT ZT (I + S)Zν = 2‖Zν‖2 + θ2O(1),

where again the O(1) terms in the errors (both here and in the following exposi-
tion) vary from line to line but are bounded uniformly in θ , J and the configuration
matrix Z. For the sake of simplicity we choose θ = −γ /W , J = Z, and consider

the effects of applying the adaptive rotational control J = Jrotation(−γZ/W):

(dK)2 = γ 2

4
‖Zν‖2 dτ

W 2 + γ 4

W 4 O(1) dτ,

DriftdK = γ 2

8
(1 − 2‖Zν‖2)

dτ

W 2 + γ 4

W 4 O(1) dτ,

(dK) × (dH) = γ ‖Zν‖2 dτ

W 2 + γ 3

W 4 O(1) dτ,(35)

(dH)2 = 4‖Zν‖2 dτ

W 2 + γ 2

W 4 O(1) dτ,

DriftdH = −
(

γ

2
− (n − 1 − 4‖Zν‖2)

)
dτ

W 2 + γ 2 + γ 3

W 4 O(1) dτ.

The antisymmetric component of the control contributes a crucial −γ dτ

2W 2 term to
the drift of H . This can be used to make H a supermartingale. (Incidentally, the
choice J = Z maximizes this particular term.)
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This motivates a direct construction of a successful coupling strategy, using a
mixture of Jreflection and Jrotation(−γZ/W) with adaptive choices of parameters.
This delivers a positive chance of successful coupling for large initial values W0
of W :

THEOREM 6. Consider the adaptively mixed coupling

J = δ

W 2 Jreflection +
(

1 − δ

W 2

)
Jrotation

(
− γ

W
Z

)
,

δ = δ(Z, ν) = 2
(
µK + γ 2

8
(1 − 2‖Zν‖2)

)
,(36)

γ = γ (Z, ν) = 2(µH + n − 1 − 4‖Zν‖2),

defined so long as

W 2 > δ0 = 2µK + (µH + n − 1)2.

This coupling strategy has a positive probability of being successful within finite
time if W 2

0 > w(ε), where W0 is the initial value of W at time 0 and w(ε) is a certain
finite threshold defined by (39) below, so long as we choose

0 < µK < µH < µK.(37)

Moreover, the coupling strategy will succeed almost surely if W stays above the
threshold w(ε) for all time.

Recall from the discussion after (33) that ‖Zν‖2 is bounded above by 1/2. So
δ − 2µK as given above is always nonnegative (as is γ − 2µH if n ≥ 3).

PROOF OF THEOREM 6. The effect of the mixed control can be evaluated
as a convex combination of the systems of reflection coupling (30) and rotation
coupling (35):

(dK)2 = (
2µK + (µH + n − 1 − 4‖Zν‖2)2(1 − ‖Zν‖2)

) dτ

W 2

+ O(1)

W 4 dτ,

DriftdK = −µK

dτ

W 2 + O(1)

W 4 dτ,

(38)

(dK) × (dH) = 2(µH + n − 1 − 4‖Zν‖2)‖Zν‖2 dτ

W 2 + O(1)

W 4 dτ,

(dH)2 = 4‖Zν‖2 dτ

W 2 + O(1)

W 4 dτ,

DriftdH = −µH

dτ

W 2 + O(1)

W 4 dτ.
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The O(1) terms here may be taken to be bounded uniformly in the configuration
vector ν and matrix Z, and in W . Choose ε so that 2µK − µH > ε > 0 and set

dτ̃ = dτ/W 2, and use the bounds on the O(1) terms to define w(ε) < ∞ as the
smallest level w such that∣∣∣∣DriftdK

dτ̃
+ µK

∣∣∣∣ ≤ ε

3
,

∣∣∣∣DriftdH

dτ̃
+ µH

∣∣∣∣ ≤ ε

3
,(39)

whenever W ≥ w. Recall that ln(W) = H − 2K , so the calculations of (38) show
that (d lnW)2/dτ̃ is bounded, while∣∣∣∣Driftd lnW

dτ̃
− (2µK − µH)

∣∣∣∣ ≤ ε(40)

whenever W ≥ w(ε). Now ε was chosen so that 2µK − µH > ε > 0, so it follows
by consideration of the law of the iterated logarithm that if initially W0 > w(ε), then
there is a positive chance that W > w(ε) for all time; moreover, this probability
increases to 1 as W0 increases. In case W > w(ε) for all time, W will grow at
least linearly with rate 2µK − µH − ε > 0, and hence (by considering w(ε) for
progressively smaller ε)

lnW

τ̃
→ 2µK − µH(41)

as τ̃ → ∞.
On this event of linear growth of W > w(ε) the approximations in (38) improve

with time. Thus as τ̃ → ∞, so the same application of the law of the iterated
logarithm leads to

K

τ̃
→ −µK,

H

τ̃
→ −µH .(42)

In summary, there is a positive probability of both (41) and (42) holding so long as
W0 > w(ε) is sufficiently large; indeed this probability increases to 1 as W0 → ∞.
If µK and µH are both positive, then this ensures that V = exp(H) and U =
exp(K) both hit zero (delivering coupling of both position and all stochastic areas)
at τ̃ = ∞.

In principle the coupling might still happen at t-time ∞, in which case it would
not succeed at finite time. However,

dτ̃ = dτ

W 2 =
(

V

U

)2

dt = exp
(
2(K − H)

)
dt(43)

and therefore the coupling will occur at t-time∫ ∞
0

exp
(−2(K − H)

)
dτ̃ .(44)

This will be finite on the event of linear growth of W if the positive µK and µH

are chosen not only to ensure that (42) holds but also so that µK < µH .
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Consequently there is positive probability of coupling occurring at finite time
so long as we have arranged for µK and µH to satisfy (37). �

COROLLARY 7. The adaptive mixed coupling of Theorem 6 can be modified
by adding a synchronous coupling regime so as to ensure successful coupling in
finite time with probability 1.

PROOF. We have already dealt with n = 2 in Section 3 above. If n ≥ 3 and if
W falls below w(ε), so that the above procedure breaks down, then we can revert to
pure synchronous coupling (33) [which holds K constant and allows H to evolve
as a nonconstant submartingale as noted after (33)] until W does exceed w(ε),
and restart the procedure. Consequently the above can be converted into a strategy
which produces coupling at finite time almost surely. �

The coupling strategy described in Corollary 7 involves discontinuous transi-
tions between synchronous and mixture strategies, fulfilling the expectations of
the heuristics at the end of Section 2. Provided we resort to time-dependent strate-
gies, we can of course replace the mixed strategy by a time-dependent variation
between reflection and rotation strategies; hence coupling can be achieved using
only orthogonal controls.

5. Complements and conclusion. It is natural to ask whether anything might
be gained by considering the full coset of coupling strategies alternate to the rota-
tion strategies: what we might call the rotated reflection couplings

Jrot-refl(θJ) = (I − 2νT ν) exp(θJ).(45)

Applying the same reasoning as led to (35), we find that Jrot-refl(− γ
W

J) has the
following effect:

(dK)2 =
(

1 − γ 2

4W 2 ‖Jν‖2
)

dτ + γ 4

W 4 O(1) dτ,

DriftdK = −
(

1

2
− γ 2

8W 2

)
dτ + γ 4

W 4 O(1) dτ,

(dK) × (dH) = γ

W
νT ZT Jν dτ + γ 3

W 4 O(1) dτ,

(46)

(dH)2 = 4‖Zν‖2 dτ

W 2 + γ 2

W 4 O(1) dτ,

DriftdH = −
(

γ

2
tr

(
ZT (I − 2ν νT )J

)
− (n − 1 − 4‖Zν‖2)

)
dτ

W 2 + γ 2 + γ 3

W 4 O(1) dτ.
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This analysis would lead to a rather transparent coupling strategy if we could en-
sure that H was always a supermartingale under a suitable rotated reflection cou-
pling for small γ /W ; however, this is not possible for n > 3 since it can be shown
that ∣∣tr(ZT (I − 2ν νT )J

)∣∣ ≤
√

tr(ZT

0
Z

0
)(47)

for Z
0

= (I − ννT )Z(I − ννT ) with the maximum being achieved when J = Z
0
.

This maximum vanishes when Z is of rank 2 and ν is a nonzero eigenvector of Z,
so the evolution of the configuration (ν,Z) unavoidably affects whether or not the
drift of H is negative.

It is also natural to ask whether a more direct analysis can be made using the
Carnot–Carathéodory distance for the relevant nilpotent Lie group. Recall that
the Carnot–Caratheodory distance between the origin 0 and a point x with spec-
ified stochastic areas A is obtained by minimizing the Euclidean length of paths
from 0 to x which produce the specified matrix of stochastic areas. A variational
analysis shows that in general these paths are Cartesian products of circular arcs.
A direct but laborious computation can be made of the stochastic calculus for the
Carnot–Caratheodory distance in the two-dimensional case; unfortunately no use-
ful picture seems to emerge from these computations.

There are various further questions to be addressed about stochastic area cou-
plings. Certainly it is possible to use the methods described here to derive estimates
on coupling rates; these are not pursued for reasons of space and also because there
is a much more substantial open question:

Can one co-adaptively couple not just the Brownian motions and their stochastic areas,
but also all possible iterated path and time-integrals up to a fixed order of iteration?

Here of course it is necessary to suppose compatibility of the initial conditions, to
avoid obstructions caused by algebraic relationships between the various iterated
integrals (see, e.g., the algebraic remarks of Gaines [6]). Kendall and Price [13]
answer this question affirmatively for the one-dimensional case by using an im-
plicit approach; the work of this paper shows that all singly iterated path-integrals
can be coupled co-adaptively, since these can all be expressed as linear combina-
tions of Lévy stochastic areas and quadratic functions of Brownian coordinates.
The general n-dimensional case is much more involved. We conjecture neverthe-
less that there is an affirmative answer to the full multidimensional question given
above. However, it is clear that new approaches will have to be tried here as in the
one-dimensional case: the structure which facilitates the matrix-based approach of
Section 4 is no longer available for higher-order iterated integrals.
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