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THE GROWTH OF ADDITIVE PROCESSES

BY MING YANG

Columbia University

Let Xt be any additive process in R
d . There are finite indices δi , βi , i =

1,2 and a function u, all of which are defined in terms of the characteristics
of Xt , such that

lim inf
t→0

u(t)−1/ηX∗
t =

{
0, if η > δ1,
∞, if η < δ2,

lim sup
t→0

u(t)−1/ηX∗
t =

{
0, if η > β2,
∞, if η < β1,

a.s.,

where X∗
t = sup0≤s≤t |Xs |. When Xt is a Lévy process with X0 = 0,

δ1 = δ2, β1 = β2 and u(t) = t. This is a special case obtained by Pruitt.
When Xt is not a Lévy process, its characteristics are complicated functions
of t . However, there are interesting conditions under which u becomes sharp
to achieve δ1 = δ2, β1 = β2.

1. Introduction. A process Xt with independent increments, rcll (right-
continous with left limits) paths and values in R

d is called additive if Xt is continu-
ous in probability and X0 = 0. Additive processes represent a large family of non-
homogeneous processes and intersect the entirety of Feller processes at the class of
Lévy processes. Pruitt [6] defined an index δ for each Lévy process Xt with X0 = 0
and showed that Xt satisfies the Hölder conditions: lim inft→0 t−1/ηX∗

t = 0 or ∞
a.s. according as η > δ or η < δ, where X∗

t = sup0≤s≤t |Xs |. Its lim sup analogue
was obtained by Blumenthal and Getoor [1] with an index β . Both results have
their additive process counterparts. We define in terms of the characteristics of an
additive process Xt a nondecreasing continuous function u with u(0) = 0 and four
finite indices δi, βi, i = 1,2 such that

lim inf
t→0

u(t)−1/ηX∗
t =

{
0, if η > δ1,
∞, if η < δ2,

(1.1)

lim sup
t→0

u(t)−1/ηX∗
t =

{
0, if η > β2,
∞, if η < β1,

a.s.

In the case of Lévy processes, u(t) = t, δ1 = δ2 = δ, β1 = β2 = β. Schilling [7]
studied form (1.1) with u(t) = t for a class of Feller processes. The issue of defin-
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ing u other than the indices arises when Xt is nonhomogeneous. We cannot define
u to be “t” or any particular function holding for all additive processes. For exam-
ple, continuous maps Bt : R+ → R

d are additive processes (deterministic) but it is
obvious that u(t) = B∗

t = max0≤s≤t |Bs |. Thus, u depends on Xt . We can also de-
fine two finite indices δ,β and four functions v, v,u,u (not necessarily monotone)
in terms of the characteristics of an additive process Xt such that with probabil-
ity 1

lim
t→0

t−1/ηX∗
v(t) = ∞, if η < δ,

(1.2a)
lim inf

t→0
t−1/ηX∗

v(t) = 0, if η > δ,

lim sup
t→0

t−1/ηX∗
u(t) = ∞, if η < β,

(1.2b)
lim
t→0

t−1/ηX∗
u(t) = 0, if η > β.

In many cases v/v ≤ 1, u/u ≤ 1 hold automatically. Otherwise we can always
define two functions v(η, t), u(η, t) in terms of the characteristics of Xt such that
with probability 1

lim inf
t→0

t−1/ηX∗
v(η′,t) =

{
0, if η ∧ η′ > δ,
∞, if η ∨ η′ < δ,

(1.2c)

lim sup
t→0

t−1/ηX∗
u(η′,t) =

{
0, if η ∧ η′ > β,
∞, if η ∨ η′ < β.

Equation (1.2c) is a simple consequence implied by (1.2a), (1.2b). Are there func-
tions vi, vs (not necessarily monotone) and indices δ,β ∈ (0,∞) such that

lim inf
t→0

t−1/ηX∗
vi(t)

=
{

0, if η > δ,
∞, if η < δ,

(1.3)

lim sup
t→0

t−1/ηX∗
vs(t)

=
{

0, if η > β,
∞, if η < β,

a.s.?

That is the question we are trying to get into. If δ1 = δ2, β1 = β2 in (1.1), (1.3)
follows with vi = vs = u−1 the inverse of u. If v/v ≤ 1, u/u ≤ 1, (1.3) holds for
any functions vi, vs satisfying v ≤ vi ≤ v,u ≤ vs ≤ u. Equation (1.3) is an accurate
statement that increases the degree of technicality in defining desired quantities.
Refer to the information in Section 5 for Schilling’s work on (1.3).

This paper is organized as follows. Section 2 contains the background on addi-
tive processes and some technical results needed later on. In Section 3 we begin
with the proof of (1.1) and then turn to the issue that δ1 = δ2, β1 = β2. In Section 4
we establish (1.2a), (1.2b) and find the cases in which v/v ≤ 1, u/u ≤ 1 hold. In
Section 5 we show that u in (1.1) can be represented as Ee(X∗

t ) for some bounded
function e. (e can be characterized as the benchmark function up to a log log term
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for the law of the iterated logarithm.) Finally, Section 6 leaves some existence
questions in check toward the settlement of (1.3).

Some terminology. Two positive functions f1 and f2 are said to be com-
parable, written as f1 ≈ f2, if f1/f2 is trapped inside a finite positive inter-
val. A nondecreasing right-continuous function φ with φ(t) > 0, t > 0, φ(0) = 0
is called quasiconvex (resp. moderate) if there are two constants ρ,σ ∈ (0,∞)

such that φ(t2)/φ(t1) ≥ ρ(t2/t1)
σ [resp. φ(t2)/φ(t1) ≤ ρ(t2/t1)

σ ] whenever 0 <

t1 < t2. The exponent σ is not unique. In this paper the term inverse refers
to the right-continuous inverse. φ is quasiconvex (moderate) if and only if its
inverse is moderate (quasiconvex). Typically, tp(log(1/t))κ , tp(log log(1/t))κ ,

tp(log log log(1/t))κ ,p > 0, κ ∈ R, and so on, along with their inverses are
both quasiconvex and moderate. (log(1/t))−κ , (log log(1/t))−κ , κ > 0, and so on
(their inverses) are moderate (quasiconvex) but, however, not quasiconvex (mod-
erate). A function c : (0,1) → (0,1) is called slow if lim infr→0 c(r)r−η > 0 for
all η > 0, equivalently limt→0 tη/c(t) = 0 for all η > 0. Moderate functions
(log(1/t))−p, (log log(1/t))−p,p > 0, and so on, as well as constant functions
are slow.

2. Characteristics of additive processes. Let Xt be an additive process
in R

d . There are two measures and two kernels: (the jump measure) µ =∑
t≥0 1(�Xt �= 0)δ(t,�Xt) on R+ × R

d, where δa is the Dirac point mass at
a ∈ R+ ×R

d ; (the intensity measure) ν(B) = Eµ(B),B ∈ B(R+ ×R
d); µt(A) =

µ([0, t] × A) = ∑
s≤t 1(�Xs ∈ A,�Xs �= 0), A ∈ B(Rd); νt (A) = ν([0, t] ×

A) = Eµt(A). νt is a Lévy measure for fixed t . If Ac contains an open ball
with center at 0, νt (A) is a nondecreasing continuous function in t . Thus, νt is
a nondecreasing continuous Lévy kernel. Conversely, any nondecreasing contin-
uous Lévy kernel νt gives rise to a unique additive process Xt up to an inde-
pendent continuous additive process. The characteristic function for Xt takes the
form E exp{i〈λ,Xt 〉} = e
t (λ), λ ∈ R

d, where 
t(λ) = i〈Bt, λ〉 − 2−1〈λ,Qtλ〉 +∫ [ei〈λ,x〉 − 1 − i〈λ,x〉1(|x| ≤ 1)]νt (dx). Bt = (B
(1)
t ,B

(2)
t , . . . ,B

(d)
t ) ∈ R

d is con-
tinuous with B0 = 0. Qt = (qij (t))d×d is a nonnegative definite symmetric d × d

matrix, which defines a centered Gaussian process. For fixed λ, 〈λ,Qtλ〉 is a non-
decreasing continuous function in t with 〈λ,Q0λ〉 = 0. Thus, the C

(i)
t = qii(t)

are nondecreasing continuous functions with qii(0) = 0. qij (t), i �= j, the ele-
ments off the diagonal are continuous functions of bounded variation null at 0 be-
cause they are the predictable quadratic covariation processes of a d-dimensional
continuous Gaussian martingale. The characteristics of the ith component X

(i)
t

of Xt are B
(i)
t ,C

(i)
t = qii(t), ν

(i)
t (B) = νt ({x ∈ R

d :xi ∈ B}),B ∈ B(R), respec-
tively. Let Xt be a real-valued additive process with E exp{iλXt } = e
t (λ), λ ∈ R

where 
t(λ) = iλBt − 2−1λ2Ct + ∫
(eiλx − 1 − iλx1(|x| ≤ 1))νt (dx). Define
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for r > 0, t ≥ 0

Gt(r) =
∫
|x|>r

νt (dx),

(2.1)

Kt(r) = r−2
[
Ct +

∫
|x|≤r

x2νt (dx)

]
,

Mt(r) = r−1
∣∣∣∣Bt +

∫
1<|x|≤r∨1

xνt (dx) −
∫
r∧1<|x|≤1

xνt (dx)

∣∣∣∣,
(2.2)

M∗
t (r) = max

0≤s≤t
Ms(r),

yt (r) = Gt(r) + Kt(r) + M∗
t (r).(2.3)

For any process Xt in R
d with additive components, define

yt (r) =
d∑

i=1

y
(i)
t (r),(2.4)

where the y
(i)
t (r) are given by (2.3) for their respective components X

(i)
t of Xt .

Since each X
(i)
t is continuous in probability, yt (r) is nondecreasing continuous in

t for each fixed r > 0 with y0(r) = 0. While every additive process in R
d must

have additive components, a process with additive components does not necessar-
ily have independent increments. There are an infinite number of processes with
additive components having identical marginals (B

(i)
t ,C

(i)
t , ν

(i)
t ),1 ≤ i ≤ d, some

of which are additive in R
d including the one whose components are indepen-

dent of one another. If Xt is a Lévy process in R
d , yt (r) = th(r) where h is the

same function as defined in [6]. yt (r) has a doubling property. That is, for all
θ > 1, r > 0, t ≥ 0,

(3θ2)−1yt (r) ≤ yt (θr) ≤ 2yt (r).(2.5)

The proof goes as follows: If Mt(r) in (2.2) is nondecreasing in t,Mt(r) = M∗
t (r)

in which case by (2.3) of [6] in continuous time, for all θ > 1, r > 0, t ≥ 0,

(2θ2)−1yt (r) ≤ yt (θr) ≤ 2yt (r). In the matter of a few lines one covers the general
case for arbitrary Mt(r) with a left-side constant to decrease by one-sixth.

LEMMA 2.1. Let Xt be a process in R
d with additive components and yt (r)

the function in (2.4). Then for all r > 0, t ≥ 0,

P (X∗
t ≥ r) ≤ πdyt (r), P (X∗

t ≤ r) ≤ Ak(d)yt (r)
−k/2,

(2.6)
k = 1,2, . . . ,

where πd = aK(d), a = 2−1(3+√
5),K(d) = 3d2, d > 1,K(1) = 1 and Ak(d) =

(18
√

2dk)k.
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PROOF. The proof is essentially one dimensional and similar to that of (3.2)
of [6]. Let Xt be a real additive process with the Lévy–Itô decomposition
Xt = Xr

t + Y r
t at the level r where Y r

t is the step process constituted by only
those jumps of Xt with size bigger than r . The number of such jumps up to
time t follows a Poisson distribution with mean Gt(r). Decompose Xr

t fur-
ther into an independent sum of two martingales, one continuous, one purely
discontinuous, as Xr

t = EXr
t + X

r,c
t + X

r,d
t . The quadratic variation informa-

tion shows E(X
r,d
t )2 = ∫

|x|≤r x2νt (dx) and E(X
r,c
t )2 = Ct . Thus, VarXr

t = Ct +∫
|x|≤r x2νt (dx) = r2Kt(r). Subtracting the exponents for Y r

t ,X
r,c
t ,X

r,d
t collec-

tively from 
t(r) gives EXr
t = Bt + ∫

1<|x|≤r∨1 xνt (dx) − ∫
r∧1<|x|≤1 xνt (dx), or

|EXr
t | = rMt(r).

The first inequality in (2.6). Define A = (Y r
s �= 0 for some s ∈ (0, t]), the event

that there is at least one jump with size greater than r up to time t . Then P(A) =
1 − e−Gt(r). Obviously, Ac ∩ (X∗

t ≥ r) ⊂ (Xr∗
t ≥ r). It follows that

P(X∗
t ≥ r) = P

(
(X∗

t ≥ r) ∩ A
) + P

(
(X∗

t ≥ r) ∩ Ac)
≤ P(A) + P(Xr∗

t ≥ r) = 1 − e−Gt(r) + P(Xr∗
t ≥ r)

≤ Gt(r) + P(Xr∗
t ≥ r).

By the continuous version of Kolmogorov’s inequality (a special case of Doob’s
maximal inequality),

P

(
sup

0≤s≤t

|Xr
s − EXr

s | ≥ (1 − a−1)r

)
≤ ar−2 VarXr

t = aKt(r),

where (1 − a−1)−2 = a = 2−1(3 + √
5). If M∗

t (r) ≥ a−1, P(X∗
t ≥ r) ≤ 1 ≤

aM∗
t (r) ≤ ayt (r). If M∗

t (r) < a−1, |EXr
s | = rMs(r) ≤ rM∗

t (r) < a−1r for all s ∈
[0, t], which implies that P(Xr∗

t ≥ r) ≤ P(sup0≤s≤t |Xr
s − EXr

s | ≥ (1 − a−1)r) ≤
aKt(r). Thus, P(X∗

t ≥ r) ≤ Gt(r) + aKt(r) ≤ ayt (r) = π1yt (r).

The second inequality in (2.6). Let Dr = P(X∗
t ≤ r). We show that D2r ≤

18
√

2yt (r)
−1/2 first. The concentration function for a real-valued r.v. X is defined

as Q(X; r) = supx∈R P(x ≤ X ≤ x+r), r > 0. Let X be an infinitely divisible ran-
dom variable having characteristic function E exp{iλX} = exp{iλb − 2−1λ2σ 2 +∫
(eiλx − 1 − iλx1(|x| ≤ 1))ν(dx)}, λ ∈ R and define q(r) = r−2σ 2 + ∫

(x/r)2 ∧
1ν(dx), r > 0. Then Q(X; r) ≤ √

2πq(r)−1/2. This inequality can be found
in [4], Chapter 15, page 408. Suppose that Kt(2r) ≥ 2(Gt(2r) + M∗

t (2r)). Then
Kt(2r) ≥ 2−1Kt(2r)+Gt(2r)+M∗

t (2r) ≥ 2−1yt (2r). Thus, Dr ≤ P(|Xt | ≤ r) ≤
Q(Xt ;2r) ≤ √

2πq(2r)−1/2 = √
2π(Gt(2r) + Kt(2r))−1/2 ≤ 2

√
πyt (2r)−1/2.

Suppose that Kt(2r) ≤ 2(Gt(2r) + M∗
t (2r)). Consider the Lévy–Itô decomposi-

tion Xt = X2r
t +Y 2r

t at the level 2r as well as the three events: A1 = (Y 2r
s = 0, s ∈

(0, t]),A2 = (X2r∗
t ≤ r),A3 = (X∗

t ≤ r). Suppose that Ac
1 occurs and let τ ∈ (0, t]
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be the first jump time of Y 2r
s . Then Xs = X2r

s , s ∈ [0, τ ). If sup0≤s<τ |Xs | > r ,
Ac

3 occurs. If sup0≤s<τ |Xs | ≤ r, |Xτ−| ≤ r. Therefore, |Xτ | = |Xτ− + �Xτ | ≥
|�Xτ | − |Xτ−| > 2r − r = r and hence Ac

3 occurs again. Suppose that Ac
2 occurs

and Ac
1 does not. Then X2r

s = Xs, s ∈ [0, t] and hence Ac
2\Ac

1 ⊂ Ac
3. We have

shown that Ac
1 ∪ Ac

2 ⊂ Ac
3, that is, A3 ⊂ A1 ∩ A2. Therefore, Dr = P(A3) ≤

P(A1) ∧ P(X2r∗
t ≤ r). [In fact A3 = A1 ∩ A2 and P(A3) = P(A1)P (A2) but

neither of them is needed in the proof.] If Gt(2r) ≥ cM∗
t (2r) for some number

c > 0, yt (2r) ≤ 3(1 + c−1)Gt(2r). It follows that Dr ≤ P(A1) = e−Gt(2r) ≤ (1 +
Gt(2r))−1 < Gt(2r)−1 ≤ 3(1 + c−1)yt (2r)−1. If Gt(2r) ≤ cM∗

t (2r), yt (2r) ≤
3(1 + c)M∗

t (2r) and Kt(2r) ≤ 2(1 + c)M∗
t (2r). If M∗

t (2r) ≤ a for some num-
ber a > 1, Dr ≤ 1 ≤ aM∗

t (2r)−1 ≤ 3(1 + c)ayt (2r)−1. If M∗
t (2r) ≥ a, |EX2r

t∗ | =
2rMt∗(2r) ≥ 2ra for some t∗ ∈ [0, t] satisfying Mt∗(2r) = M∗

t (2r). [Note that
Mt(2r) is continuous in t .] Thus,

Dr ≤ P(X∗
t∗ ≤ r) ≤ P(X2r∗

t∗ ≤ r) ≤ P(|X2r
t∗ | ≤ r)

≤ P
(|X2r

t∗ − EX2r
t∗ | ≥ (

1 − (2a)−1)|EX2r
t∗ |)

≤ VarX2r
t∗

(1 − (2a)−1)2|EX2r
t∗ |2 = Kt∗(2r)

(1 − (2a)−1)2Mt∗(2r)2

≤ Kt(2r)

(1 − (2a)−1)2M∗
t (2r)2

≤ 2(1 + c)M∗
t (2r)

(1 − (2a)−1)2M∗
t (2r)2 = 2(1 + c)

(
1 − (2a)−1)−2

M∗
t (2r)−1

≤ 6(1 + c)2(
1 − (2a)−1)−2

yt (2r)−1.

Here we have used Chebyshev’s inequality and inequality Dr ≤ P(X2r∗
t ≤ r)

which implies P(X∗
t∗ ≤ r) ≤ P(X2r∗

t∗ ≤ r). Next we minimize 3(1 + c−1),
3(1 + c)a,6(1 + c)2(1 − (2a)−1)−2. Just set 3(1 + c−1) = 3(1 + c)a = 6(1 +
c)2(1 − (2a)−1)−2. We find a = 7/2, c = 2/7 and 3(1 + c−1) = 13.5. Thus,
Dr ≤ 13.5yt (2r)−1. Of course, Dr ≤ √

13.5yt (2r)−1/2 since Dr ≤ 1. That also
covers the first case since 2

√
π <

√
13.5. Applying (2.5) to yt (4r)−1/2 yields

D2r ≤ 18
√

2yt (r)
−1/2.

Yt = Xt1+t −Xt1 with t1 ∈ [0,∞) fixed is also an additive process for which the
function in (2.3) equals Gt+t1(r) + Kt+t1(r) − (Gt1(r) + Kt1(r)) + M∗

t1,t+t1
(r),

where

M∗
t1,t

(r) = max
t1≤s≤t

Mt1,s(r),

Mt1,t (r) = r−1
∣∣∣∣Bt − Bt1 +

∫
1<|x|≤r∨1

xνt1,t (dx) −
∫
r∧1<|x|≤1

xνt1,t (dx)

∣∣∣∣,
for t1 ≤ t and νt1,t = νt − νt1 . Since M∗

t1,t2
≥ M∗

t2
(r) − M∗

t1
(r) for t1 ≤ t2,

P (supt1≤s≤t2
|Xs − Xt1 | ≤ 2r) ≤ 18

√
2(yt2(r) − yt1(r))

−1/2 for t1 < t2 by the re-



GROWTH OF ADDITIVE PROCESSES 779

sult that D2r ≤ 18
√

2yt (r)
−1/2. Since yt (r) is nondecreasing continuous in t , there

are points 0 < t1 < t2 < · · · < tk−1 < t such that yt (r)/k = yt2(r) − yt1(r) = · · · =
yt (r) − ytk−1(r). By independence, P(X∗

t ≤ r) ≤ P(X∗
t1

≤ r)P (supt1≤s≤t2
|Xs −

Xt1 | ≤ 2r) · · ·P(suptk−1≤s≤t |Xs − Xtk−1 | ≤ 2r) ≤ (18
√

2)k(yt1(r)(yt2(r) −
yt1(r)) · · · (yt (r) − ytk−1(r)))

−1/2 = (18
√

2k)kyt (r)
−k/2. Equation (2.6) in d = 1

has been proved.
For d > 1, we have P(X∗

t ≥ r) ≤ ∑d
j=1 P(X

(j)∗
t ≥ r/d) ≤ a

∑d
j=1 y

(j)
t (r/d) ≤

a(3d2)
∑d

j=1 y
(j)
t (r) = πdyt (r) by (2.5) and P(X∗

t ≤ r) ≤ P(max1≤j≤d{X(j)∗
t } ≤

r) ≤ min1≤j≤d{P(X
(j)∗
t ≤ r)} ≤ min1≤j≤d{(18

√
2k)ky

(j)
t (r)−k/2} ≤ (18 ×√

2dk)k(
∑d

j=1 y
(j)
t (r))−k/2 = Ak(d)yt (r)

−k/2. �

Let Xt be an additive process in R
d . There exists t̄ ∈ [0,∞] such that∫

|x|≤1 |x|νt (dx) < ∞ for t ∈ [0, t̄] and
∫
|x|≤1 |x|νt (dx) = ∞ for t > t̄ . (E.g.,

νt = f (t)ν1 for t ∈ [0, t̄] and νt = f (t̄)ν1 + (f (t) − f (t̄))ν2 for t > t̄ where∫
|x|≤1 |x|ν1(dx) < ∞,

∫
|x|≤1 |x|ν2(dx) = ∞ and f is strictly increasing.)∫

|x|≤1 |x|νt (dx) is a nondecreasing continuous function on [0, t̄]. The continu-
ous function γ0(t) = Bt − ∫

|x|≤1 xνt (dx), t ∈ [0, t̄], is called the drift of Xt . If

γ0(t) = 0, Mt(r) = r−1| ∫|x|≤r xνt (dx)|. Let γ ∗
0 (t) = max0≤s≤t |γ0(s)|. If Xt is a

process with additive components, the drift and its maximum for the j th compo-
nent X

(j)
t are denoted by γ

(j)
0 (t) and γ

(j)∗
0 (t), respectively. If X

(j)
t is monotone

on [0, ε], |γ (j)
0 (t)| is nondecreasing on [0, ε] and hence γ

(j)∗
0 (t) = |γ (j)

0 (t)|. Xt is

said to be drift-free initially if whenever
∫
|x|≤1 |x|ν(j)

ε (dx) < ∞ for some ε > 0,

there exists ε1 ∈ (0, ε) such that γ
(j)∗
0 (ε1) = 0. p(t) = νt (R

d) is also a nonde-
creasing continuous function whenever it is finite, and there exists t̂ ∈ [0,∞] such
that p(t) < ∞ for t ∈ [0, t̂] and p(t) = ∞ for t > t̂. Recall that Xt is a step
process on [0, ε], ε ≤ t̂ , so are its components, if and only if

∑d
j=1 C

(j)
ε = 0 and

γ ∗
0 (ε) = 0. In that case for t ∈ [0, ε], r > 0, yt (r) ≤ ∑d

j=1(
∫
|x|≤r |x

r
|ν(j)

t (dx) +∫
|x|≤r ((

x
r
)2 ∧ 1)ν

(j)
t (dx)) ≤ 2p(t) where p(t) = ∑d

j=1 p(j)(t),p(j)(t) = ν
(j)
t (R).

Define Gt(r) = ∑d
j=1 G

(j)
t (r) and Gt(r) = νt ({x ∈ R

d : |x| > r}) if Xt is additive

in R
d . Note that νt ({x ∈ R

d : |x| > r}) ≈ ∑d
i=1 G

(i)
t (r) where the constants in ≈

depend only on d .

LEMMA 2.2. Let Xt be any process with additive components.

(i) If Xt is a step process on an interval [0, ε], then for all t ∈ [0, ε],
limr→0 yt (r) = p(t). Otherwise, limr→0 yt (r) = ∞ for all t > 0.

(ii) limr→0 r2yt (r) = ∑d
j=1 C

(j)
t .
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(iii) If for some ε > 0,
∑d

j=1 C
(j)
ε = 0,

∑d
j=1

∫
|x|≤1 |x|ν(j)

ε (dx) < ∞, then for

every t ∈ (0, ε], limr→0 ryt (r) = ∑d
j=1 γ

(j)∗
0 (t).

(iv) If Xt is drift-free initially and
∑d

j=1 C
(j)
ε = 0 for some ε > 0, then there

exists b > 0 such that for every t ∈ (0, b], η > 0, limr→0 rηGt(r) = 0 implies
limr→0 rηyt (r) = 0.

Lemma 2.2 is standard. We omit the proof. There are also results for r ↑ ∞ anal-
ogous to (i), (ii), (iii) of Lemma 2.2: (a) limr→∞ yt (r) = 0 for all t ≥ 0. Assume
d = 1 below. (b) If Xt ∈ L2, equivalently

∫
|x|>1 x2νt (dx) < ∞, and EXs = 0,

s ∈ [0, t], that is, Xs is in L2 and centered up to time t , then limr→∞ r2yt (r) =
EX2

t = Ct + ∫
x2νt (dx). (c) If Xt ∈ L1, equivalently

∫
|x|>1 |x|νt (dx) < ∞, then

limr→∞ ryt (r) = max0≤s≤t |Bs + ∫
|x|>1 xνs(dx)| = max0≤s≤t |EXs |.

If Xt is increasing on [0, ε], then Ct = 0, νt has no mass on (−∞,0]
with

∫
x≤1 xνt (dx) < ∞, and Bt − ∫

x≤1 xνt (dx) is nondecreasing in t ∈ [0, ε].
Thus, Mt(r) = r−1(Bt − ∫

x≤1 xνt (dx) + ∫
x≤r xνt (dx)) is nondecreasing in t and

Gt(r) + Mt(r) = r−1(Bt − ∫
x≤1 xνt (dx)) + ∫

(x/r) ∧ 1νt (dx). It follows that
yt (r) ≤ 2θyt (θr) for θ > 1,M∗

t (r) = Mt(r),Mt(r) ≥ Kt(r),Gt(r) + Mt(r) ≤
yt (r) ≤ 2(Gt(r) + Mt(r)), and Gt(r) + Mt(r) is nondecreasing in t and nonin-
creasing continuous in r . For the obvious reason, we use Gt(r)+Mt(r) instead of
yt (r). For the Laplace transform of Xt , we have Ee−λXt = e−ψ(t,λ), λ > 0, where
ψ(t, λ) = λγ0(t)+ gt (λ), gt (λ) = ∫ ∞

0 (1 − e−λx)νt (dx). Clearly Gt(r)+Mt(r) =
r−1γ0(t) + ∫

(x/r) ∧ 1νt (dx). Since e−1(x ∧ 1) < 1 − e−x < x ∧ 1, x > 0,
e−1 ∫ ∞

0 (x/r) ∧ 1νt (dx) ≤ gt (r
−1) ≤ ∫ ∞

0 (x/r) ∧ 1νt (dx). Therefore, yt (r) ≈
Gt(r) + Mt(r) ≈ r−1γ0(t) + gt (r

−1). The same can be said for a decreasing
process as well as any process with monotone components. If a real Xt is sym-
metric on [0, ε], that is, E exp{iλXt } is real, then Bt = 0 and νt is symmet-
ric for t ∈ [0, ε], in which case Mt(r) vanishes, yt (r) = Gt(r) + Kt(r) and
yt (r) ≤ θ2yt (θr) for θ > 1.

yt (r) is comparable to a function that is jointly continuous and strictly decreas-
ing in r . Let

It (r) = r−1
∫ r

0
yt (x)−1 dx, ẏt (r) = It (r)

−1, t > 0, r > 0.

By (2.5), yt (x) ≥ 2−1yt (r) for x ∈ (0, r] and It (r) ≥ r−1 ∫ r
r/2 yt (x)−1 dx ≥

r−1 ∫ r
r/2 yt (r/2)−1 dx = 4−1yt (r/2)−1 ≥ 48−1yt (r)

−1, which shows that for t > 0,
r > 0,

48−1 ≤ yt (r)/ẏt (r) ≤ 2

and by (2.5), for θ > 1, t > 0, r > 0, k1θ
−2ẏt (r) ≤ ẏt (θr) ≤ k2ẏt (r), where

k1 = 288−1, k2 = 192. By (2.5), 2−1yt (r) ≤ inf0<x≤r yt (x) ≤ yt (r). If we use
inf0<x≤r yt (x) instead of yt (r), ẏt (r) is strictly decreasing in r .
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LEMMA 2.3. ẏt (r) is jointly continuous.

PROOF. It (r) is well defined since yt (r) is rcll in r , nonincreasing in t since
yt (r) is nondecreasing in t , continuous in t by the dominated convergence the-
orem since yt (x) ≥ 2−1yt (r) for x ∈ (0, r] by (2.5), and absolutely continu-
ous in r because of the way it is defined. [Hence, ẏt (r) is nondecreasing con-
tinuous in t and absolutely continuous in r .] It is enough to show that It (r)

is jointly continuous in d = 1. First we claim that given r ′ > 0, t ′ > 0, ε > 0,
there exists δ > 0 not depending on r, t1, t2 such that yt2(r) − yt1(r) < ε when-
ever r ≥ r ′, t2 − t1 < δ, t1, t2 ∈ [0, t ′]. The definition of νt and an approxi-
mation argument show that for any A ∈ B(Rd) and Borel function f satisfy-
ing

∫
A |f (x)|νt (dx) < ∞,

∫
A f (x)νt (dx) = ∫

[0,t]×A f (x)ν(ds, dx). Let Qt(r) =
Gt(r) + Kt(r). Then Qt2(r) − Qt1(r) = r−2(Ct2 − Ct1) + ∫

[t1,t2]×R
(x/r)2 ∧

1ν(ds, dx) ≤ r ′−2(Ct2 − Ct1) + ∫
[t1,t2]×R

(x/r ′)2 ∧ 1ν(ds, dx) = Qt2(r
′) −

Qt1(r
′) < ε since Qt(r

′) is uniformly continuous on [0, t ′]. It remains to show
that M∗

t2
(r) − M∗

t1
(r) ≤ M∗

t1,t2
(r) < ε. Since Bt is uniformly continuous on [0, t ′],

r−1|Bt2 − Bt1 | ≤ r ′−1|Bt2 − Bt1 | < ε. For r < 1, r−1 ∫
r<|x|≤1 |x|νt1,t2(dx) ≤

r ′−1 ∫
r ′<|x|≤1 |x|νt1,t2(dx) ≤ r ′−1 ∫

|x|>r ′ νt1,t2(dx) = r ′−1(νt2({x : |x| > r ′}) −
νt1({x : |x| > r ′})) < ε since νt ({x : |x| > r ′}) is uniformly continuous on [0, t ′].
Similarly, for r > 1, r−1 ∫

1<|x|≤r |x|νt1,t2(dx) ≤ ∫
|x|>1 νt1,t2(dx) < ε. The claim

is proved. For 0 < t ′′ < t ′, t1 < t2, t1, t2 ∈ [t ′′, t ′], yt1(r)
−1 − yt2(r)

−1 = (yt1(r) ×
yt2(r))

−1(yt2(r) − yt1(r)) ≤ (4/yt ′′(r ′)2)(yt2(r) − yt1(r)) by (2.5). It follows from
the claim above that given r ′ > 0,0 < t ′′ < t ′, ε > 0, there exists δ > 0 not de-
pending on r, t1, t2 such that yt1(r)

−1 − yt2(r)
−1 < ε whenever r ≥ r ′, t2 − t1 <

δ, t1, t2 ∈ [t ′′, t ′]. Next fix a point (t0, r0) ∈ (0,∞) × (0,∞). Since It0(r) is (ab-
solutely) continuous in r , there is δ1 > 0 such that |It0(r) − It0(r0)| < ε for
r ∈ (r0 − δ1, r0 + δ1) with r1 = r0 − δ1 > 0. On the other hand, by the fact that
It (r1) is continuous in t and by the result following the claim, there exists δ2 > 0
such that when t − t0 < δ2, t0 < t, It0(r1) − It (r1) < ε, yt0(s)

−1 − yt (s)
−1 < ε for

all s ≥ r1. Thus, for r ∈ (r0 − δ1, r0 + δ1), t − t0 < δ2, t0 < t, |It (r) − It0(r0)| ≤
|It0(r) − It0(r0)| + |It (r) − It0(r)| < ε + It0(r) − It (r) and

It0(r) − It (r)

= r−1
∫ r

0

(
yt0(s)

−1 − yt (s)
−1)

ds

≤ r−1
1

∫ r1

0

(
yt0(s)

−1 − yt (s)
−1)

ds + r−1
∫ r

r1

(
yt0(s)

−1 − yt (s)
−1)

ds

= It0(r1) − It (r1) + r−1
∫ r

r1

(
yt0(s)

−1 − yt (s)
−1)

ds

< ε + r−1(r − r1)ε < 2ε.

The treatment for t0 − t < δ2, t < t0 is completely analogous. �
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3. The quasiconvex function method. A sequence σn ↓ 0 is called the
�-sequence if σn−1

σn
· σ

η
n → 0 as n → ∞ for all η > 0, which implies that

(
σn−1
σn

)ε · ση
n → 0 and (

σn−1
σn

)ε · ση
n−1 → 0 for all ε > 0. Some of the �-sequences

are constructed from continuous slow functions c. If σn+1/σn ≥ c(σn+1), σn ↓ 0
is a �-sequence since (σn−1/σn) · ση

n ≤ σ
η
n /c(σn) → 0. [For any sn ∈ (0,1), there

is sn+1 < sn such that sn+1/c(sn+1) = sn because sn/c(sn) > sn and t/c(t) → 0.

limn→∞ sn = 0 holds also.] Let Xt be a process in R
d continuous in probability

with X0 = 0 and v a nondecreasing function. Define

δ = inf
{
η > 0 :P

(
X∗

v(tn) ≤ t1/η
n i.o.

) = 1 for some sequence tn ↓ 0
}
,

δ = sup
{
η > 0 :P

(
X∗

v(σn) ≤ σ 1/η
n i.o.

) = 0 for some �-sequence σn ↓ 0
}
.

(Both the sequence tn ↓ 0 and the �-sequence σn ↓ 0 in braces depend on η.) If
η > δ, the stronger result that lim infn→∞ t

−1/η
n X∗

v(tn) = 0 a.s. for some sequence

tn ↓ 0 holds (which implies that lim inft→0 t−1/ηX∗
v(t) = 0 a.s.). If η < δ, there ex-

ists η1 > η such that X∗
v(σn) > σ

1/η1
n for all large n. Therefore, for t ∈ [σn+1, σn],

X∗
v(t)/t1/η ≥ X∗

v(σn+1)
/σ

1/η
n > σ

1/η1
n+1 /σ

1/η
n = (σn+1/σn)

1/η1/σ
(1/η−1/η1)
n → ∞,

which implies that limt→0 t−1/ηX∗
v(t) = ∞ a.s. If we define

δ̇1 = inf
{
η > 0 : lim inf

r→0
P

(
X∗

v(r) ≥ r1/η) = 0
}
,

δ̇2 = sup
{
η > 0 :

∑
P

(
X∗

v(σn) ≤ σ 1/η
n

)
< ∞ for some �-sequence σn ↓ 0

}
,

the Borel–Cantelli lemma and Fatou’s lemma imply that δ̇2 ≤ δ and δ ≤ δ̇1. (δ ≤ δ.)
By the same token, if we define

β = sup
{
η > 0 :P

(
X∗

v(tn) ≥ t1/η
n i.o.

) = 1 for some sequence tn ↓ 0
}
,

β = inf
{
η > 0 :P

(
X∗

v(σn) ≥ σ 1/η
n i.o.

) = 0 for some �-sequence σn ↓ 0
}
,

β̇1 = sup
{
η > 0 : lim inf

r→0
P

(
X∗

v(r) ≤ r1/η) = 0
}
,

β̇2 = inf
{
η > 0 :

∑
P

(
X∗

v(σn) ≥ σ 1/η
n

)
< ∞ for some �-sequence σn ↓ 0

}
,

we have lim supt→0 t−1/ηX∗
v(t) = ∞ a.s. for η < β and limt→0 t−1/ηX∗

v(t) = 0 a.s.

for η > β while β̇1 ≤ β ≤ β ≤ β̇2. Clearly, δ̇2 ≤ β̇1, δ̇1 ≤ β̇2. To define v with
β̇2 < ∞, we fix a number κ ∈ (0,∞) along with a �-sequence σ̄n ↓ 0. There is
always a sequence vn ↓ 0 such that

∑
P(X∗

vn
≥ σ̄

1/κ
n ) < ∞. Let v be a nonde-

creasing function with values vn at σ̄n. Then β̇2 ≤ κ.

We cannot get anything better than δ, δ, β,β if v is fixed. If lim infn→∞ t
−1/η
n ×

X∗
v(tn) = 0 a.s. for some sequence tn ↓ 0, η ≥ δ. If lim inft→0 t−1/ηX∗

v(t) = 0
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a.s., then with respect to each ω ∈ �, there is a sequence tωn ↓ 0 such that
Xω∗

v(tωn )/(t
ω
n )1/η ≤ 1 for large n except for ω in a P -null set. The sequences

can be extracted technically from a fixed deterministic sequence tn ↓ 0, that is,
P(X∗

v(tn) ≤ t
1/η
n i.o.) = 1. Thus, η ≥ δ. If limt→0 t−1/ηX∗

v(t) = ∞ a.s., then for all

sequences sn ↓ 0, X∗
v(sn)/s

1/η
n ≥ 1 for large n a.s., that is, P(X∗

v(sn) ≤ s
1/η
n i.o.) = 0.

Hence, η ≤ δ. Same goes for β,β.

Let Xt be any process with additive components. Define

δ1 = inf
{
η > 0 : lim inf

r→0
yv(r)(r

1/η) = 0
}
,

δ2 = sup
{
η > 0 :

∑
yv(σn)(σ

1/η
n )−1 < ∞ for some �-sequence σn ↓ 0

}
,

β1 = sup
{
η > 0 : lim inf

r→0
yv(r)(r

1/η)−1 = 0
}
,

β2 = inf
{
η > 0 :

∑
yv(σn)(σ

1/η
n ) < ∞ for some �-sequence σn ↓ 0

}
.

Clearly, δ2 ≤ β1, δ1 ≤ β2. By Lemma 2.1, δ2 ≤ δ̇2, δ̇1 ≤ δ1, β1 ≤ β̇1, β̇2 ≤ β2.

Similarly, to define v with β2 < ∞, we can preselect a number κ ∈ (0,∞) and a
�-sequence σ̄n ↓ 0. Since yε(r) ↓ 0 as ε ↓ 0, there is a sequence vn ↓ 0 such that∑

yvn(σ̄
1/κ
n ) < ∞. If v is a nondecreasing function taking values vn at σ̄n, then

β2 ≤ κ. Of course, if β2 < ∞, v has to be defined in this way. We wish the defini-
tion of v given above to be more specific. v should have the information about the
case δ1 = δ2, β1 = β2 and should be able to equal t when Xt is a Lévy process. We
define v as follows. Select a quasiconvex function φ and a constant b ∈ (0,∞).

Equation yv(t)(b) = φ(t) defines a nondecreasing function v with continuous in-
verse u since yt (r) is nondecreasing continuous in t with y0(r) = 0. For exam-
ple, u(t) = yt (b)1/p for φ(t) = tp,p > 0 while v(t) = u(t) = t for φ(t) = h(b)t

in the case of Lévy processes. By (2.5) and quasiconvexity of φ, yv(r)(r
1/η) ≤

cyv(r)(b)r−2/η = cφ(r)r−2/η ≤ c1r
σ r−2/η, r < 1 ∧ b. Taking a �-sequence such

as σn = 2−n shows that β2 ≤ 2/σ. The result in (1.1) remains unchanged when
u(t)−1/ηX∗

t is replaced by t−1/ηX∗
v(t). We have proved

THEOREM 3.1. Let Xt be any process in R
d with additive components and

δ1, δ2, β1, β2, u as given above. Then (1.1) holds.

yv(t)(b) = φ(t) is quasiconvex. In fact, for all r ∈ (0, b), yv(t)(r) is quasicon-
vex as well with yv(t2)(r)/yv(t1)(r) ≥ ρr(t2/t1)

σ , t1 < t2, where ρr ≥ 6−1(r/b)2ρ

by (2.5). But 6−1(r/b)2ρ is not a slow function. yv(t)(r) is called quasiconvex with
respect to a nondecreasing function v > 0 if

yv(t2)(r)/yv(t1)(r) ≥ c(r)(t2/t1)
σ , 0 < t1 < t2 ≤ t0, r ∈ (0, b],(3.1)
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with a slow function c(r) and a constant σ > 0. Equation (3.1) means ρr ≥ c(r).

Conversely, any v satisfying (3.1) is valid for Theorem 3.1 since yv(t)(b) is quasi-
convex. Define

n(r) = inf
{
t > 0 :yv(t)(r) > m

}
with m ∈ (0,2−1yv(t0)(b) ∧ (aK(d))−1) held fixed. Equation (2.5) implies that
n(r) is a finitely determined function. Let

δ = inf
{
η ≥ 0 : lim inf

r→0
rηn(r)−1 = 0

}
,

β = inf
{
η ≥ 0 : lim

r→0
rηn(r)−1 = 0

}

and for any fixed constant l ∈ (0, t0],

δP = sup
{
η ≥ 0 : lim sup

r→0
r−η

∫ l

0
P

(
X∗

v(t) ≤ r
)
dt < ∞

}
,

βP = sup
{
η ≥ 0 : lim inf

r→0
r−η

∫ l

0
P

(
X∗

v(t) ≤ r
)
dt < ∞

}
,

δE = sup
{
η ≥ 0 :

∫ l

0
E

(
X∗

v(t)

)−η
dt < ∞

}
.

Note that
∫ l

0 P(X∗
v(t) ≤ r) dt = E(T v

r ∧ l) where T v
r = inf{t > 0 : |Xv(t)| > r}. In

the case of Lévy processes (v(t) = t), n(r) = mh(r)−1. n(r) is an h(r)−1 analogy.

THEOREM 3.2. In Theorem 3.1 if yv(t)(r) is quasiconvex, then δ1 = δ2 =
δ = δP = δE,β1 = β2 = β = βP . β ≤ 1/σ if

∑d
j=1

∫
|x|≤1 |x|ν(j)

τ (dx) < ∞ and∑d
j=1 C

(j)
τ = 0 for some τ > 0. If Xt is drift-free initially,

∑d
j=1 C

(j)
τ = 0 for

some τ > 0, and Gv(t2)(r)/Gv(t1)(r) ≤ c′(r)−1(t2/t1)
σ ′

for 0 < t1 < t2 ≤ t ′0,
r ∈ (0, r0) with a constant σ ′ ≤ σ and a slow function c′, then β = inf{η ≥
0 : limr→0 rηn̄(r)−1 = 0} where n̄(r) = inf{t > 0 :Gv(t)(r) > m}. If Xt is drift-free
initially with increasing components, then δ = sup{η ≥ 0 : limr→∞ rηn̂(r) = 0},
β = inf{η ≥ 0 : limr→∞ rηn̂(r) = ∞}, where n̂(r) = inf{t > 0 :gv(t)(r) > m} with

gt (r) = ∑d
i=1 g

(i)
t (r).

PROOF. (i) δ1 = δ2, β1 = β2: Define gε(r) = rσε/2, δε = inf{η > 0 :
lim infr→0 gε(r)yv(r)(r

1/η) = 0}, and βε = sup{η > 0 : lim infr→0 gε(r) ×
yv(r)(r

1/η)−1 = 0}. Notice that δε ↑ δ∗ ≤ δ2, βε ↓ β∗ ≥ β2, as ε ↓ 0. If δ∗ < δ1,

pick η ∈ (δ∗, δ1) and ε ∈ (0, δ1/η − 1). Since δε < η, there exists an η1 < η

such that gε(rn)yv(rn)(r
1/η1
n ) → 0 for some sequence rn ↓ 0. Let tn = r1+ε

n . Then

t
1/(1+ε)η1
n = r

1/η1
n . Since yv(t)(r) is quasiconvex and since c(r1/η)−1 ≤ cηr

−σε/2,
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yv(tn)(t
1/(1+ε)η1
n )/yv(rn)(r

1/η1
n ) = y

v(r1+ε
n )

(r
1/η1
n )/yv(rn)(r

1/η1
n ) ≤ c(r

1/η1
n )−1(r1+ε

n /

rn)
σ ≤ cη1r

−σε/2
n rσε

n = cη1gε(rn). Since (1+ε)η1 < δ1, yv(tn)(t
1/(1+ε)η1
n ) ≥ c > 0.

Thus, gε(rn)yv(rn)(r
1/η1
n ) ≥ c/cη1 > 0. We have a contradiction. The argument for

β∗ = β1 is similar.
(ii) δ1 = δ,β1 = β: If δ1 < δ, rηn(r)−1 ≥ c > 0 for any η ∈ (δ1, δ) and

hence rη1 ≥ n(r) for η1 ∈ (δ1, η) and r small. Since δ1 < η1, there exists an
η2 ∈ (δ1, η1) such that lim infr→0 yv(r)(r

1/η2) = 0. Since rη2 ≥ n(r) as well, by
quasiconvexity and the facts that c(r) ≥ rε for all ε > 0 and yv(n(r))(r) = m,

yv(rη2 )(r)/m = yv(rη2 )(r)/yv(n(r))(r) ≥ c(r)(rη2/n(r))σ , which implies that
lim infr→0 rη1n(r)−1 = 0 contradicting η1 < δ. If δ < δ1, r

η
nn(rn)

−1 → 0 for some
η ∈ (δ, δ1) and a sequence rn ↓ 0, which implies that r

η
n ≤ n(rn) and r

η1
n ≤

n(rn) for η1 ∈ (η, δ1). By quasiconvexity, m/y
v(r

η1
n )

(rn) ≥ c(rn)(n(rn)/r
η1
n )σ ≥

(n(rn)/r
η
n )σ . Thus, y

v(r
η1
n )

(rn) → 0 and δ1 ≤ η1. That is a contradiction. If
β1 < β, then for any η ∈ (β1, β) there exists a sequence rn ↓ 0 such that
r
−η
n n(rn) → 0. So, r

η
n ≥ n(rn) and r

η1
n ≥ n(rn) for η1 ∈ (β1, η). By quasiconvex-

ity, y
v(r

η1
n )

(rn)/m ≥ c(rn)(r
η1
n /n(rn))

σ ≥ (r
η
n/n(rn))

σ . Thus, y
v(r

η1
n )

(rn)
−1 → 0

and η1 ≤ β1 contradicting η1 > β1. Lastly, if β < β1, then for any η ∈ (β,β1),

rηn(r)−1 → 0; that is, n(r) ≥ rη. Since η < β1, there is an η1 ∈ (η,β1) and a
sequence rn ↓ 0 such that y

v(r
η1
n )

(rn)
−1 → 0. But n(r) ≥ rη1, so by quasiconvexity

we have yv(rη1 )(r) ≤ m(rη/n(r))σ → 0. That is a contradiction.
(iii) δ = δP ,β = βP and β ≤ 1/σ with the condition as stated: First we

prove that if Xt is a step process initially, then infr>0 n(r) > 0 and other-
wise limr→0 n(r) = 0. Let Xt be a step process up to time t̂ . Fix r > 0.

If y∞(r) ≤ m, then n(r) = ∞. Suppose that yv(t∗)(r) > m for some t∗ > 0.

Then n(r) < ∞. If v(n(r)) < t̂, p(v(n(r))) ≥ 2−1yv(n(r))(r) = 2−1m where

p(t) = ∑d
j=1 p(j)(t),p(j)(t) = ν

(j)
t (R). Thus, there exists a positive constant K

such that n(r) ≥ K for all r > 0. In the second case, since limr→0 yv(t)(r) =
∞ for any t ∈ (0,∞) by Lemma 2.2(i), there exists r0 > 0 depending on t

such that yv(t)(r0) > 2m. Therefore, for r < r0, yv(t)(r) ≥ 2−1yv(t)(r0) > m and
n(r) ≤ t. If limr→0 n(r) = 0 fails, there is a sequence rn ↓ 0, rn ∈ (0, r0) such
that n(rn) ≥ δ for some δ > 0 and hence yv(δ)(rn) ≤ yv(n(rn))(rn) = m < ∞ con-
tradicting limr→0 yv(δ)(r) = ∞ according to Lemma 2.2(i). Let us move on to
prove (iii) in this case. Choose r0 as above such that n(r) ≤ l for all r ∈ (0, r0).

Note that for t ∈ (0, n(r)], yv(t)(r) ≤ m and hence by the first bound in (2.6),
P(X∗

v(t) ≥ r) ≤ aK(d)yv(t)(r) ≤ aK(d)m. It follows that
∫ l

0 P(X∗
v(t) ≤ r) dt ≥∫ n(r)

0 P(X∗
v(t) ≤ r) dt = ∫ n(r)

0 (1 − P(X∗
v(t) > r)) dt ≥ (1 − aK(d)m)n(r). For

t ∈ [n(r), l], yv(t)(r)/m ≥ c(r)(t/n(r))σ by quasiconvexity. Choose an integer
k > 2/σ and let θ = kσ/2 − 1 > 0. By the second bound in (2.6), P(X∗

v(t) ≤
r) ≤ c(yv(t)(r))

−k/2 ≤ c(m−1c(r)−1)k/2(n(r)/t)1+θ = c1(r)
−1(n(r)/t)1+θ where

c1(r) is also a slow function. Thus,
∫ l

0 P(X∗
v(t) ≤ r) dt = ∫ n(r)

0 + ∫ l
n(r) ≤ n(r) +
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∫ l
n(r) c1(r)

−1(n(r)/t)1+θ dt = (1 + (θc1(r))
−1)n(r) − (lθ θc1(r))

−1n(r)1+θ <

c2(r)
−1n(r) where c2(r) is another slow function. Hence δ = δP ,β = βP .

Choose t ≤ t0 such that v(t) ≤ τ and then choose r0 such that n(r) ≤ t for all
r ∈ (0, r0). By quasiconvexity, r1/σ n(r)−1 ≤ t−1m−1/σ c(r)−1/σ (ryv(t)(r))

1/σ and

by Lemma 2.2(iii), limr→0 ryv(t)(r) = ∑d
j=1 γ

(j)∗
0 (v(t)) < ∞. Thus, β ≤ 1/σ. As-

sume that Xt is a step process initially. Then β = 0 (< 1/σ) since infr>0 n(r) > 0.
By choosing m ∈ (0,2−1yv(l)(r0) ∧ (aK(d))−1) for any r0 > 0, we redefine n(r).

Then n(r) ≤ l for all r ∈ (0, r0) and
∫ l

0 P(X∗
v(t) ≤ r) dt ≥ (1 − aK(d)m)n(r),

which shows that infr>0
∫ l

0 P(X∗
v(t) ≤ r) dt > 0. Thus, δP ≤ βP = 0.

(iv) δP = δE : Let ζt be a process taking nonnegative values. Define for l >

0, r0 > 0, g(r) = ∫ l
0 P(ζt ≤ r) dt, r ∈ (0, r0], δ′ = sup{η ≥ 0 :

∫ l
0 Eζ

−η
t dt < ∞},

δ′′ = sup{η ≥ 0 : sup0<r≤r0
r−ηg(r) < ∞} = sup{η ≥ 0 : lim supr→0 r−ηg(r) <

∞}. Then δ′ = δ′′. This is not difficult to prove. Clearly g(r) is nondecreas-
ing and bounded by l. For η > 0, Eζ

−η
t = η

∫ ∞
0 x−η−1P(ζt ≤ x)dx. There-

fore,
∫ l

0 Eζ
−η
t dt = η

∫ r0
0 x−η−1g(x) dx + η

∫ ∞
r0

x−η−1(
∫ l

0 P(ζt ≤ x)dt) dx, which

shows that
∫ l

0 Eζ
−η
t dt < ∞ if and only if

∫ r0
0 x−η−1g(x) dx < ∞. For r ≤

r0/2,
∫ r0

0 x−η−1g(x) dx ≥ ∫ 2r
r x−η−1g(x) dx ≥ g(r)

∫ 2r
r x−η−1 dx = kr−ηg(r),

k = η−1(1 − 2−η). It follows that δ′ ≤ δ′′. If η < δ′′, sup0<r≤r0
r−η1 g(r) < ∞ for

some η1 > η. Thus
∫ r0

0 x−η−1g(x) dx = ∫ r0
0 xη1−η−1x−η1g(x) dx ≤ k1 sup0<r≤r0

r−η1

g(r) < ∞ where k1 = ∫ r0
0 xη1−η−1 dx < ∞, which implies that δ′′ ≤ δ′. Take

ζt = X∗
v(t) to finish.

(v) The last two statements in the theorem: Let β̄ = inf{η ≥ 0 : limr→0 rη ×
n̄(r)−1 = 0}. Since Gt(r) ≤ yt (r), β̄ ≤ β. We prove the opposite. We may as-
sume that σ ′ = σ and yet we may also assume that Xt is not a step process ini-
tially, for otherwise β̄ = β = 0. Let b be the constant in Lemma 2.2(iv). Choose
t ≤ t0 ∧ t ′0 such that v(t) ≤ b and then choose r0 such that n(r) ≤ t for all
r ∈ (0, r0). Note that Gv(n̄(r))(r) = m = yv(n(r))(r). It follows that Gv(t)(r)

1/σ ≤
c1(r)

−1/n̄(r) by the condition on Gv(t)(r) and yv(t)(r)
1/σ ≥ c2(r)/n(r) by

quasiconvexity, where c1, c2 are both slow functions. By Lemma 2.2(iv), if
limr→0 rηn̄(r)−1 = 0, then limr→0 rη1n(r)−1 = 0 for all η1 > η. Thus, β ≤ β̄.

Let n′(r) = inf{t > 0 :gv(t)(r
−1) > m}. Since Xt does not have the drift initially,

that is,
∑d

i=1 γ
(i)
0 (ε) = 0 for some ε > 0, yt (r) ≈ Gt(r) + Mt(r) ≈ gt (r

−1). Write
c1yt (r) ≤ gt (r

−1) ≤ c2yt (r) where c1 < 1, c2 > 1. Fix r and let y−1 be the inverse
of yv(t)(r). Then n(r) = y−1(m) and y−1(c−1

2 m) ≤ n′(r) ≤ y−1(c−1
1 m). Replac-

ing ti by y−1(ti) in (3.1) yields y−1(t2)/y
−1(t1) ≤ c(r)−1/σ (t2/t1)

1/σ . Applying
this inequality, we find that (c−1

2 c(r))1/σ n(r) ≤ n′(r) ≤ (c1c(r))
−1/σ n(r). It fol-

lows from n′(r) = n̂(r−1) that δ = sup{η ≥ 0 : limr→∞ rηn̂(r) = 0}, β = inf{η ≥
0 : limr→∞ rηn̂(r) = ∞}. �
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Equation (3.1) is equivalent to yv(t2)(r)/t2 ≥ c(r)yv(t1)(r)/t1 with v(t) replaced
by v(t1/σ ). [If φ(t) = t , yv(t)(b)/t = 1.] yv(t)(r) is nearly convex in t since
yv(t2)(r)/t2 ≥ ρryv(t1)(r)/t1. Chances are ρr will drop too fast as r approaches 0.
(ρr depends on v.) Xt is said to be of class I:

if for some v, yv(t)(r) is convex in t for all r small,

that is, c(r) = σ = 1 in (3.1).

(So, β ≤ 2.) Clearly, Xt is of class I if and only if there exist functions hs(r)

nondecreasing in s and u(s) nondecreasing continuous with u(0) = 0 such that
yt (r) = ∫ t

0 hs(r)u(ds). In that case v = u−1, yv(t)(r) = ∫ t
0 hv(s)(r) ds and u(t) =∫ t

0 hs(b)−1y(b)(ds) for all b small. Here
∫ t

0 y(b)(ds) = yt (b).

Class I is very large. Let y′
t (r) = d

dt
yt (r). One of the conditions that yt (r) is dif-

ferentiable in t a.e. is that Bt,Qt (or Ct ), νt each are absolutely continuous. Xt is of
class I if and only if there exists a function g such that g(s)y′

s(r) is nondecreasing
in s a.e. for all r , in which case u(t) = ∫ t

0 g(s)−1 ds and yt (r) = ∫ t
0 g(s)y′

s(r)u(ds).

Let Xt be a continuous process with additive components. Then (1.3) holds.
The function u in the general case will be given in Section 5. For Xt, yt (r) =
B∗

t r−1 +Ctr
−2 where B∗

t = ∑d
i=1(max0≤s≤t |B(i)

s |) and Ct = ∑d
i=1 C

(i)
t . Assume

that d
dt

B∗
t > 0, d

dt
Ct > 0 exist. Xt is of class I if d

dt
Ct/

d
dt

B∗
t or d

dt
B∗

t / d
dt

Ct is non-
decreasing. u(t) = B∗

t in the first case while u(t) = Ct in the second. If B∗
t ≈ Ct

or if B∗
t ≡ 0, yt (r) ≈ Ctr

−2 for r ∈ (0,1), in which case (3.1) holds vacuously.
Hence, limt→0 C−α

t X∗
t = 0 or ∞ a.s. according as α < 1/2 or α > 1/2.

Let X3
t = X1

f1(t)
+ X2

f2(t)
where X1

t ,X
2
t are independent Lévy processes in R

d

and f1, f2 are nondecreasing continuous functions with f1(0) = f2(0) = 0. (Lo-
cally, every additive process can be characterized as X3

t .) (a) Suppose for each
r small, in vector terms either m1(r) ≥ 0,m2(r) ≥ 0 or m1(r) ≤ 0,m2(r) ≤ 0,
where mi(r) = r−1(Bi − ∫

r<|x|≤1 xνi(dx)), r ∈ (0,1), i = 1,2. Then yt (r) =
f1(t)h1(r) + f2(t)h2(r) for X3

t which is of class I if f ′
1(t) > 0, f ′

2(t) > 0 exist
and one of the quotients f ′

1(t)/f
′
2(t), f

′
2(t)/f

′
1(t) is nondecreasing. (b) If f1 ≈ f2,

then yt (r) ≈ f1(t)z(r) for X3
t and (3.1) holds.

An additive process (Xt ;Bt,Qt , νt ) in R
d is a semimartingale if and only

if Bt is of bounded variation. Fix a nondecreasing continuous function u with
u(0) = 0, a Lévy kernel κs(dx), and two R

d -valued functions bs, σ (s), where
κs(dx), bs, σ (s) are locally bounded left-continuous each. Define

ν(ds, dx) = κs(dx)u(ds),
(3.2)

Bt =
∫ t

0
bsu(ds), Ct =

∫ t

0
σ(s)2u(ds),

where σ(s)2 = (σ1(s)
2, σ2(s)

2, . . . , σd(s)2). Choose any quadratic covariation
matrix Qt with Ct as diagonal for a d-dimensional continuous Gaussian mar-
tingale. One can verify that νt (A) = ν([0, t] × A) = ∫ t

0 κs(A)u(ds) is a non-
decreasing continuous Lévy kernel and that Bt,Ct are continuous of bounded
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variation. Thus, a semimartingale additive process (Xt ;Bt,Qt , νt ) is defined. Here
M

(i)
t (r) = | ∫ t

0 m̃
(i)
s (r)u(ds)| where

m̃s(r) = r−1
(
bs −

∫
r<|x|≤1

xκs(dx)

)
, s ≥ 0, r < 1,

with components m̃
(i)
s (r),1 ≤ i ≤ d and G

(i)
t (r) + K

(i)
t (r) = ∫ t

0 (r−2σi(s)
2 +∫

(xi/r)2 ∧ 1κ
(i)
s (dxi))u(ds), where κ

(i)
s (B) = κs({x ∈ R

d :xi ∈ B}),B ∈ B(R).

Let

h(i)
s (r) = r−2σi(s)

2 +
∫

(xi/r)2 ∧ 1κ(i)
s (dxi) + ∣∣m̃(i)

s (r)
∣∣

and µu the Lebesgue–Stieltjes measure induced by u. Suppose that for every r ∈
(0, r0], s ∈ [0, t0],µu-a.e. with t0, r0 small, the two conditions hold:

(i) each m̃
(i)
s (r) has no sign change in s;

(ii)
∑d

i=1 h
(i)
s (r) is nondecreasing in s.

Condition (i) implies that | ∫ t
0 m̃

(i)
s (r)u(ds)| = ∫ t

0 |m̃(i)
s (r)|u(ds). Consequently,

M
(i)
t (r) = M

(i)∗
t (r) [i.e., M

(i)
t (r) is nondecreasing in t] and y

(i)
t (r) =∫ t

0 h
(i)
s (r)u(ds). Xt is of class I since yt (r) = ∫ t

0 (
∑d

i=1 h
(i)
s (r))u(ds) with∑d

i=1 h
(i)
s (r) nondecreasing in s thanks to condition (ii).

Semimartingale additive processes can only be defined in that way. Given any
semimartingale additive process (Xt ;Bt,Qt , νt ) in R

d , there exist a nondecreas-
ing continuous function u with u(0) = 0, a Lévy kernel κs(dx), a vector bs and
a nonnegative definite symmetric d × d matrix (cij (s)), all of which are locally
bounded left-continuous, such that (3.2) holds with qij (t) = ∫ t

0 cij (s)u(ds), that is,
cii = σ 2

i . This property is better known as disintegration. By the Radon–Nikodym
theorem, one can take u(t) = ∑

i≤d V t
0Bi + ∑

i,j≤d V t
0qij + ∫ |x|2 ∧ 1νt (dx),V t

0f

denoting the total variation of f over [0, t]. κs, bs, cij (s), u(s) are not unique.
For example, if u is absolutely continuous [which implies that y′

t (r) exists], any
absolutely continuous nondecreasing function u1 with u1(0) = 0 can replace u

since u(ds) = (du/ds)(du1/ds)−1u1(ds). For an extensive account on the general
semimartingale case, see [3], Proposition 2.9, Chapter II, page 77. The same holds
true for processes with semimartingale additive components for which disintegra-
tion holds as well, that is, there exists a common function u for all components.
The components form an additive process in R

d with components independent of
one another. Disintegration gives the representation of the characteristics of each
component with a common function u. In special cases when u1, u2, . . . , ud are all
absolutely continuous, the ui’s can be replaced by a single absolutely continuous
nondecreasing function u with u(0) = 0.

Given a semimartingale additive process Xt with M
(i)
t (r) nondecreasing in t ,

one way to argue that Xt is of class I is to look for a combination of κs, bs, cij (s)
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satisfying condition (ii). [Condition (i) is equivalent to M
(i)
t (r) = M

(i)∗
t (r).] Note

that the proof of disintegration does not include the techniques to do that. Let Xt

be a Lévy process with characteristics (B,Q,ν). There are many ways to repre-
sent (B,Q,ν) as (3.2); here, for instance, κs(dx) = ν(dx), bs = B,σi(s)

2 = qii ,
u(t) = t , or κs(dx) = 2

√
sν(dx), bs = 2

√
sB,σi(s)

2 = 2
√

sqii, u(t) = √
t .

Clearly, conditions (i), (ii) hold.
We provide examples of κs, bs, cij (s) typically satisfying conditions (i), (ii).

Let Yt be a rcll process with independent increments in R
d not necessarily contin-

uous in probability. Then the Lévy kernel κs(dx) induced by Yt is nondecreasing
left-continuous. Take a vector σ(s) = (σ1(s), σ2(s), . . . , σd(s)) with |σi(s)| each
nondecreasing left-continuous and let cii = σ 2

i . Conditions (i), (ii) follow if for

each r , m̃
(i)
s (r) is a nonnegative nondecreasing or nonpositive nonincreasing func-

tion of s ∈ (0, t0]. To make bs match up
∫
r<|x|≤1 xκs(dx) for all r , we need κs(dx)

to be more specific. There are a great many examples where bs can be determined
but a big majority of them are rather complicated and highly irregular except for
the three as follows. (Their sums are also tractable. We will see that in a mo-
ment.) (a) κ

(i)
s is symmetric for every s ∈ (0, t0]. (b) κ

(i)
s is concentrated on (0,∞)

or (−∞,0) for every s ∈ (0, t0]. (Since κ
(i)
s is nondecreasing, either (0,∞) or

(−∞,0) must be held fixed for all s ∈ (0, t0].) (c) κ
(i)
s = f (i)(s)ν(i), s ∈ (0, t0]

where f (i) is a nondecreasing function and ν(i) is a Lévy measure. In case (a),
m̃

(i)
s (r) = r−1b

(i)
s . Thus, b

(i)
s can be any nonnegative nondecreasing or nonposi-

tive nonincreasing function. In case (b), m̃(i)
s (r) = r−1(b

(i)
s − ∫ 1

r xκ
(i)
s (dx)), where

we assume that κ
(i)
s is concentrated on (0,∞). Thus, b

(i)
s can be any nonpositive

nonincreasing function. We can also take b
(i)
s = ∫ 1

0 xκ
(i)
s (dx) + a

(i)
s where a

(i)
s

is a positive nondecreasing function if
∫ 1

0 xκ
(i)
s (dx) < ∞. In case (c), m̃

(i)
s (r) =

r−1(b
(i)
s − f (i)(s)

∫
r<|x|≤1 xν(i)(dx)) and we let b

(i)
s = bif

(i)(s) where bi ∈ R.
Alternatively, we can take κs = νs, bs = Bs, (cij (s)) = Qs where Xt is any

additive process in R
d with characteristics (Bt ,Qt , νt ) for which each M

(i)
t (r)

is nondecreasing in t ∈ [0, t0] for every r ∈ (0, r0] [r0 ∈ (0,1)]. [Consider
M

(i)
s (r) as |m̃(i)

s (r)|.] X̂t with ν̂(ds, dx) = νs(dx)u(ds), B̂t = ∫ t
0 Bsu(ds), Q̂(t) =∫ t

0 Qsu(ds) as in (3.2) is of class I. Since for X̂t , M̂
(i)
t (r) remains nondecreasing

in t, we can take κs = ν̂s , bs = B̂s, (cij (s)) = Q̂s and obtain another process of
class I with the same or new function u.

M
(i)
t (r) is nondecreasing in t in the three cases: (a) X

(i)
t is symmetric on

[0, t0]. (M(i)
t (r) ≡ 0, t ∈ [0, t0], r > 0.) (b) X

(i)
t is monotone on [0, t0]. [M(i)

t (r) =
r−1(B

(i)
t − ∫ 1

r xν
(i)
t (dx)), r ∈ (0,1), is nondecreasing in t when X

(i)
t is increas-

ing.] (c) X
(i)
t = X̄

(i)
f (t) where (X̄

(i)
t ,B(i),C(i), ν(i)) is a Lévy process and f is

a nondecreasing continuous function with f (0) = 0. [M(i)
t (r) = f (t)r−1|B(i) −∫

r<|x|≤1 xν(i)(dx)|.] Given additive processes (Xi
t ;Bi

t ,C
i
t , ν

i
t ), i = 1,2,3 in R,

where X1
t ,X

2
t are independent and X3

t = X1
t + X2

t , let mi
t (r) = r−1(Bi

t −
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∫
r<|x|≤1 xνi

t (dx)), r ∈ (0,1). Then Mi
t (r) = |mi

t (r)| [the function Mt(r) in (2.2)],

m3
t (r) = m1

t (r) + m2
t (r),B

3
t = B1

t + B2
t ,C3

t = C1
t + C2

t , ν3
t = ν1

t + ν2
t . If

m1
t (r),m

2
t (r) are both nondecreasing or both nonincreasing in t for each r , then

M3
t (r) = M1

t (r) + M2
t (r) and M3

t (r) is nondecreasing in t . For example, the fol-
lowing processes have gone beyond aforementioned three types: (a)+(b), (a)+(c),
(a)+(b)+(c), (b)+(c), (c)+(c), and so on. If X2

t is (c), m2
t (r) = f (t)r−1(B −∫

r<|x|≤1 xν(dx)) = f (t)m(r). In (b)+(c), if m(r) ≥ 0 for all small r , X1
t needs

to be increasing while if m(r) ≤ 0 for all small r , X1
t needs to be decreasing. In

(c)+(c), m1(r) and m2(r) have to have identical signs for each r .
M

(i)
t (r) is nondecreasing in t in many unfamiliar cases, each of which shows

its own way ν
(i)
t charges the area {x : r < |x| ≤ 1} in order to match up the

swing of B
(i)
t . Since M

(i)
t (r) is continuous in t , we can expect for a small in-

terval [0, t0], M
(i)
t (r) is nondecreasing in t [if d

dt
M

(i)
t (r) is continuous, say] but

the interval depends on r . Here is a more general case. Let κt (dx) be a Lévy
kernel (locally bounded left-continuous) in R. Assume that there is r0 ∈ (0,1)

such that
∫
r<|x|≤1 xκs(dx) ≥ ∫

r0<|x|≤1 xκs(dx), r ∈ (0, r0], for every s ∈ [0, t0].
For a well-behaved Lévy measure κ , very often

∫
r<|x|≤1 xκ(dx) shows a ten-

dency to increase as r ↓ 0. Let bs be any locally bounded left-continuous func-
tion satisfying bs − ∫

r0<|x|≤1 xκs(dx) ≤ 0 for every s ∈ [0, t0]. It follows that

m̃s(r) = r−1(bs − ∫
r<|x|≤1 xκs(dx)) ≤ 0 for every r ∈ (0, r0], s ∈ [0, t0], which

is condition (i), and that Mt(r) = − ∫ t
0 m̃s(r)u(ds) is nondecreasing in t ∈ [0, t0]

for all r ∈ (0, r0).

We also offer an example where yt (r) ≈ f (t)z(r). Assume d = 1 first.
Since condition (i) implies that yt (r) = ∫ t

0 hs(r)u(ds), r ∈ (0, r0], t ∈ [0, t0], if
hs(r) ≈ csz(r), yt (r) ≈ f (t)z(r) where f (t) = ∫ t

0 csu(ds). Let (bs, σ (s)2, κs) be
the characteristics of a centered Lévy process in L2; that is,

∫
|x|>1 x2κs(dx) <

∞ and bs = − ∫
|x|>1 xκs(dx). Then m̃s(r) = r−1(bs − ∫

r<|x|≤1 xκs(dx)) =
−r−1 ∫

|x|>r xκs(dx) and hs(r) < 2(σ (s)2 + ∫
x2κs(dx))r−2. Thus, hs(r) ≈

σ(s)2r−2 if
∫

x2κs(dx) ≤ ĉσ (s)2. Define κs(dx) = c′
s(2 − αs)x

−(1+αs) dx, x ∈
(0,1], κs(dx) = c′′

s (2 − αs)|x|−(1+αs) dx, x ∈ [−1,0), and κs = 0 on {x : |x| > 1}
where αs, c

′
s, c

′′
s are continuous functions on [0, t0] satisfying αs ∈ [0,2], c′

s >

c′′
s > 0. Then

∫
|x|>r xκs(dx) = ∫

r<|x|≤1 xκs(dx) = (c′
s − c′′

s )B(r,αs) ≥ 0 (non-

increasing in r) where B(r,αs) = (2 − αs)|αs − 1|−1|r1−αs − 1| or B(r,αs) =
log(1/r) according as αs �= 1 or αs = 1. Thus, for each r , m̃s(r) ≤ 0 as s varies. Let
bs = 0 and σ(s) a continuous function on [0, t0] satisfying σ(s)2 ≥ ĉ(c′

s − c′′
s ) =

ĉ
∫

x2κs(dx) for some fixed constant ĉ ∈ (0,∞). The reader can verify that
νt ([r,1]) = ν([0, t] × [r,1]) = ∫ t

0 κs([r,1])u(ds) is continuous in t for every fixed
r ∈ (0,1). Thus, ν(ds, dx) = κs(dx)u(ds),Bt = 0,Ct = ∫ t

0 σ(s)2u(ds) determine
an additive process Xt (a martingale with the jump size bounded by 1) for which
yt (r) ≈ Ctr

−2, r ∈ (0,1), t ∈ [0, t0]. Clearly δ = β = 2 in this example. One can
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easily make a similar example in the case d > 1 and even an example where Xt

has large jumps. The interested reader would probably demand a more interesting
example where

∫
|x|>r xκs(dx) takes both positive and negative values as r varies,

Gaussian part is not so prominent, z(r) is sophisticated enough to force δ < β,

and so on, or even Mt(r) fails to be nondecreasing in t . Unfortunately, the new
technique for that is at present unavailable.

Let e−1 be the inverse of a continuous moderate function e. If yv(t)(r) is quasi-
convex, so too is yv◦e−1(t)(r). Thus, Theorem 3.2 holds for all functions in the form
e ◦ u. Same goes here: If yv(t)(r) is not quasiconvex for v satisfying yv(t)(b) = t ,
that is, v is the inverse of yt (b), then yv(t)(r) cannot be quasiconvex for any v sat-
isfying yv(t)(b) = φ(t) where φ is moderate. [tp(log(1/t))κ , tp(log log(1/t))κ ,

p > 0, κ ∈ R, etc. are both quasiconvex and moderate but it is not so easy to
give an example of nonmoderate nonexponential-type quasiconvex functions. If
φ is exponential, δ1 = δ2 = β1 = β2 = 0 since σ can be arbitrarily large.] In the
case that yt (r) ≈ f (t)z(r) where f is some nondecreasing continuous function
with f (0) = 0 and z is a positive function, if we let v = f −1 the inverse of
f (u = f ), then yv(t2)(r)/yv(t1)(r) ≈ t2/t1. Equation (3.1) holds tautologically.
Thus, in Theorem 3.2, u = e ◦ f with δ = inf{η ≥ 0 : lim infr→0 rη/e(z(r)−1) =
0}, β = inf{η ≥ 0 : limr→0 rη/e(z(r)−1) = 0} ≤ 2σ where σ is an exponent for e.
(δ,β do not depend on f .) Particularly, for a Lévy process Xt , Pruitt’s result
is extended from the case t−1/ηX∗

t to the general case e(t)−1/ηX∗
t with δ =

inf{η ≥ 0 : lim infr→0 rη/e(h(r)−1) = 0}, β = inf{η ≥ 0 : limr→0 rη/e(h(r)−1) =
0}. A lower function for a Lévy process Xt is a moderate function e satisfy-
ing lim inft→0 e(t)−1X∗

t = c ∈ (0,∞) a.s. Assume that Xt is not a compound
Poisson process. Then h(r)−1 ≈ k(r) = r−1 ∫ r

0 sup0<s≤t h(s)−1 dt which is a
strictly increasing absolutely continuous moderate function with k(∞) = ∞.
If the inverse k−1 is moderate, δ = β = 1 with e = k−1, which implies that
limt→0 k−1(t)−αX∗

t = 0 or ∞ a.s. according as α < 1 or α > 1. We suspect the
lower function exists only when k−1 is moderate, in which case e(t) = k−1(t)g(t)

is a lower function where g is moderate satisfying limt→0 k−1(t)pg(t)q = 0 for all
p > 0, q ∈ R.

There are also results for t → ∞ analogous to Theorems 3.1, 3.2 as long
as limt→∞ X∗

t = ∞ a.s., for if Tr = inf{t > 0 : |Xt | > r}, r > 0, is infinite for
large r , the probability that lim supt→∞ t−1/ηX∗

v(t) = ∞ will be less than 1 for
any function v and power η. For additive processes, that can happen. For example,
P(Tr = ∞) > 0, r being large for the process X

f
t = Xf (t) with f bounded and in

the case yt (r) ≈ f (t)z(r), if f is bounded, P(Tr < ∞) < 1 for large r . Techni-
cally, we need to reverse the symbols used for t → 0 to get the results for t → ∞,

including such changes as t → 0 to t → ∞, r → 0 to r → ∞, “>” to “<” and
vice versa, and “inf ” to “sup” and vice versa. Accordingly, a sequence σn ↑ ∞
is called the �-sequence if σn−1

σn
· σ

η
n → ∞ as n → ∞ for all η > 0 and yv(t)(r)

is called quasiconvex if (3.1) holds for t0 ≤ t1 < t2, r0 ≤ r with c(r) replaced by
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c(r−1). For Theorem 3.1, we assume that there is a sequence vn ↑ ∞ and some
κ ∈ (0,∞) such that

∑
yvn(σ̄

1/κ
n )−1 < ∞ (which guarantees that Tr < ∞ for all

r > 0). That holds if and only if y∞(r1) = ∞ for some r1, which is equivalent to
y∞(r) = ∞ for all r by (2.5). [That also implies that v satisfying yv(t)(b) = φ(t)

is finitely determined for all quasiconvex functions φ with φ(∞) = ∞.] The or-
der of the indices is reversed as δ1 ≤ δ2 ≤ 2/σ,β2 ≤ β1, β2 ≤ δ1, β1 ≤ δ2. As far
as Theorem 3.2 goes, we assume that yv(t)(r) is quasiconvex in the t → ∞ sense
with v(∞) = ∞. Analogously, δ = δP = δE , β = βP with

∫ l
0 replaced by

∫ ∞
l in

addition.

4. The semicontinuous function method. For b ∈ (0,∞) fixed, define

δ = inf
{
η ≥ 0 : lim inf

r→0
rηyb(r) = 0

}
, β = inf

{
η ≥ 0 : lim

r→0
rηyb(r) = 0

}
.

By (2.5), yb(r) ≤ 3r−2yb(1) for r ∈ (0,1). Thus, δ ≤ β ≤ 2. Define for t small,

v(t) = inf{s > 0 :ys(t
1/η) ≥ c(t)tyb(t

1/η) for all η ∈ [δ − ε, δ)},
v(t) = sup{s > 0 :ys(t

1/η) ≤ c(t)−1tyb(t
1/η) for all η ∈ (δ, δ + ε]},

u(t) = inf{s > 0 :ys(t
1/η) ≥ c(t)tyb(t

1/η) for all η ∈ [β − ε,β)},
u(t) = sup{s > 0 :ys(t

1/η) ≤ c(t)−1tyb(t
1/η) for all η ∈ (β,β + ε]},

where ε is a small positive constant and c(t) is a continuous slow function.
v, v,u,u are finitely determined positive (but not necessarily monotone) functions.

THEOREM 4.1. Let Xt be any process with additive components and δ, β , v,
v, u, u as given above. Then with probability 1 (1.2a), (1.2b) hold.

PROOF. Let v̂(t) = inf{s > 0 : ẏs(t
1/η) ≥ c(t)t ẏb(t

1/η) for all η ∈ [δ − ε, δ)}.
Suppose that limn→∞ v̂(sn) = x for a sequence sn → t. Since ẏv̂(sn)(s

1/η
n ) ≥

c(sn)snẏb(s
1/η
n ) and since ẏt (r) is jointly continuous by Lemma 2.3 and c(t) is

continuous, ẏx(t
1/η) ≥ c(t)t ẏb(t

1/η). Thus, x ≥ v̂(t), which shows that v̂ is lower
semicontinuous. Since ys(t

1/η) ≥ c(t)tyb(t
1/η) implies ẏs(t

1/η) ≥ kc(t)t ẏb(t
1/η)

where k ∈ (0,∞) is a constant, v ≥ v̂. [The slow function for v̂ is kc(t) not
c(t) now.] Since v̂ is lower semicontinuous, there is σn ∈ [2−(n+1),2−n] such
that v̂(σn) ≤ v̂(t) for all t ∈ [2−(n+1),2−n]. Suppose that η < η1 < η2 < δ

with η1 ≥ δ − ε. Since η2 < δ, yb(r
1/η1)−1 ≤ c1r

η2/η1 for all small r . Since
ẏv̂(t)(t

1/η) ≥ c(t)t ẏb(t
1/η) for all η ∈ [δ − ε, δ) and yt (r) ≈ ẏt (r), by the second

bound in (2.6) with k = 2, for small t , P(X∗
v̂(t)

≤ t1/η1) ≤ c2(yv̂(t)(t
1/η1))−1 ≤

c3c(t)
−1(tyb(t

1/η1))−1 ≤ c4c(t)
−1tη2/η1−1 ≤ c4t

η2/η1−1−θ with η2/η1 −1−θ > 0.

Hence,
∑

P(X∗
v̂(σn)

≤ σ
1/η1
n ) < ∞ and X∗

v̂(σn)
> σ

1/η1
n for large n a.s. by the

Borel–Cantelli lemma. Thus, for small t with t ∈ [2−(n+1),2−n], X∗
v̂(t)

≥ X∗
v̂(σn)

>
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σ
1/η1
n ≥ 2−1/η1 t1/η1, which yields limt→0 t−1/ηX∗

v̂(t)
= ∞ a.s. We obtain the

first half of (1.2a) since v ≥ v̂. For the latter half of (1.2a), let v̌(t) = sup{s >

0 : ẏs(t
1/η) ≤ c(t)−1t ẏb(t

1/η) for all η ∈ (δ, δ + ε]}. Note that v̌ is upper semicon-
tinuous and v ≤ v̌. The rest follows the first lead as always. �

Very often v/v ≤ 1, u/u ≤ 1 over a small interval (0, t0), which will be justified
below. If that is the case, (1.3) holds for vi, vs satisfying v ≤ vi ≤ v,u ≤ vs ≤ u.

v(t)/v(t), u(t)/u(t) are bounded by t−α where α ↓ 0 as ε ↓ 0. Let vθ (t) =
inf{s > 0 :ys(t

1/δ) ≥ c(t)tθ/δyb(t
1/δ)}(θ < δ), vθ (t) = sup{s > 0 :ys(t

1/δ) ≤
c(t)−1tθ/δyb(t

1/δ)}(θ > δ), uθ(t) = inf{s > 0 :ys(t
1/β) ≥ c(t)tθ/βyb(t

1/β)}(θ <

β) and uθ(t) = sup{s > 0 :ys(t
1/β) ≤ c(t)−1tθ/βyb(t

1/β)}(θ > β). If s satisfies
ys(t

1/δ) ≥ c(t)tθ/δyb(t
1/δ) for θ < δ, t < 1, then by (2.5) for all η ∈ [δ − ε, δ) and

ε small enough, ys(t
1/η) ≥ kc(t)tθ/δ+2(1/η−1/δ)yb(t

1/η) ≥ kc(t)tyb(t
1/η) where

k ∈ (0,1) is some constant. Thus, b > vθ ≥ v > 0. Similarly, b > v ≥ vθ > 0,

b > uθ ≥ u > 0, b > u ≥ uθ > 0. Equation (1.2c) follows with v(η, t) =
inf{s > 0 :ys(t

1/δ) > tη/δyb(t
1/δ)}, u(η, t) = inf{s > 0 :ys(t

1/β) > tη/βyb(t
1/β)},

t ∈ (0,1), η > 0.

PROPOSITION 4.2. Any of the three conditions below implies that v ≤ v,

u ≤ u in Theorem 4.1.

(i) ys(r2)/yb(r2) ≤ c1(r1)
−1c2(r2)

−1ys(r1)/yb(r1) for all r1 < r2 small and
s ∈ (0, b).

(ii) ys(r)/ẏs(r) − yb(r)/ẏb(r) ≤ log c(r)/ log r for all small r and s ∈ (0, b).

(iii) For some continuous function v > 0 with values v(sn) = inf{s > 0 :
ẏs(s

1/δ
n ) ≥ c(sn)snẏb(s

1/δ
n )} at a sequence sn ↓ 0, f (t, η) = [ẏv(t)(t

1/η)/c(t)t ×
ẏb(t

1/η)] ∧ 1, t > 0, η > 0 (f (t, η) = [c(t)t ẏb(t
1/η)/ẏv(t)(t

1/η)] ∧ 1) is uniformly
continuous on (0, t∗]×[δ−ε, δ] ((0, t∗]×[δ, δ+ε]). (There is a similar statement
for u,u as well.)

[Here c1(t), c2(t), c(t) are continuous slow functions.]

PROOF. ys(r)/yb(r) (s < b) and yt (r)/ẏt (r) are two interesting functions.
Neither is monotone in r . The former takes values in (0,1] while the latter
vacillates between 48−1 and 2. Since ẏt (r) is jointly continuous, f is continu-
ous (and bounded by 1) but not necessarily uniformly continuous in the region
(0, t∗] × [δ − ε, δ].

(i) For t ∈ (0,1), let s < b be such that ys(t
1/δ)/yb(t

1/δ) = t. With the
condition in (i) we have both ys(t

1/η)/yb(t
1/η) ≥ c1(t

1/η1)c2(t
1/η1)t for all

η ∈ [η1, δ)(η1 = δ − ε) and ys(t
1/η)/yb(t

1/η) ≤ (c1(t
1/η2)c2(t

1/η2))−1t for all
η ∈ (δ, η2](η2 = δ + ε), where both c1(r

1/η1)c2(r
1/η1) and c1(r

1/η2)c2(r
1/η2) are

slow functions. Thus, v ≤ v.
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(ii) Let g(η) = log(ẏs(t
1/η)/ẏb(t

1/η)) for η > 0 with s > 0, t > 0, b > 0
all fixed. Thanks to d

dr
It (r) = r−1(yt (r)

−1 − It (r)) and the mean value the-

orem, ẏs(t
1/η)/ẏb(t

1/η) = eg′(θ)(η−η′)ẏs(t
1/η′

)/ẏb(t
1/η′

) for η < η′, where θ ∈
(η, η′), g′(θ) = Cθθ

−1 log(1/t1/θ )(ys(t
1/θ )/ẏs(t

1/θ ) − yb(t
1/θ )/ẏb(t

1/θ )), and
Cθ = (ẏb(t

1/θ )ẏs(t
1/θ ))/(yb(t

1/θ )ys(t
1/θ )) ∈ [2−2,482]. For t ∈ (0,1), let s < b

be such that ys(t
1/δ)/yb(t

1/δ) = t. The assumption of (ii) implies that eg′(θ)(η−δ) ≥
c(t1/η1)482ε/η1 for all η ∈ [η1, δ)(η1 = δ − ε) and eg′(θ)(δ−η) ≥ c(t1/δ)482ε/δ for
all η ∈ (δ, δ + ε]. It follows that ys(t

1/η)/yb(t
1/η) ≥ ρc(t1/η1)482ε/η1 t for all

η ∈ [δ − ε, δ) and t ≥ ρc(t1/δ)482ε/δys(t
1/η)/yb(t

1/η) for all η ∈ (δ, δ + ε], where
ρ ∈ (0,1) is a constant and c(r1/η1)482ε/η1, c(r1/δ)482ε/δ each are slow functions.
Thus, v ≤ v.

(iii) The assumption here implies that f has a continuous extension to [0, t∗]×
[δ − ε, δ]. In particular, f is continuous at point (0, δ). By the definition of v(sn),

f (sn, δ) = 1. Hence, f (0, δ) = 1 and there is a neighborhood O = (0, t ′) × (δ −
ε′, δ) of (0, δ) such that f (t, η) ≥ c′ > 0, that is, ẏv(t)(t

1/η)/c(t)t ẏb(t
1/η) ≥ 1∧ c′,

for all points (t, η) ∈ O, which yields v ≤ v. Same goes for f and v ≤ v follows.
The proof that u ≤ u in each case (i), (ii), (iii) proceeds analogously. �

Here, for instance, in the case yt (r) ≈ f (t)z(r) including the Lévy process
case yt (r) = th(r), we can assume yt (r) = f (t)z(r). All the three conditions in
Proposition 4.2 hold, where slow functions are constants in (0,1). We see that
v ≤ f −1 ≤ v,u ≤ f −1 ≤ u, where f −1 is the inverse of f .

There seems no way to know the sign of lim supr→0 (ys(r)/ẏs(r) − yb(r)/

ẏb(r)). Part (ii) of Proposition 4.2 implies that lim supr→0(ys(r)/ẏs(r) − yb(r)/

ẏb(r)) ≤ 0. Replacing yt (r) by ẏt (r) if necessary, we can assume yt (r) is con-
tinuous in r . For each r ∈ (0,1) there is Lr ∈ (0,∞) such that ys(r)/ys(x) −
yb(r)/yb(x) < (log(1/r))−1 for x ∈ [rL−1

r +1, r). Since rp ≤ −(ep)−1(log r)−1

for p > 0, r ∈ (0,1), ys(r)/ẏs(r) − yb(r)/ẏb(r) = r−1 ∫ r
0 (ys(r)/ys(x) − yb(r)/

yb(x)) dx = r−1 ∫ rL
−1
r +1

0 + r−1 ∫ r

rL
−1
r +1

< −(2e−1Lr + 1)/ log r. Thus, (ii) of

Proposition 4.2 holds if Lr ≤ − log c(r) for some slow function c(r). Part (ii)
of Proposition 4.2 holds on a number of occasions and yet our calculations just
came up short. We are unable to pass a judgment on Lr .

Since vθ ≥ v, v ≥ vθ , v, v can be replaced by vθ , vθ , respectively, in (1.2a),
which remains valid as θ → δ while vθ ↓ vδ = limθ↑δ vθ , vθ ↑ vδ = limθ↓δ vθ ,

vδ ≤ v ≤ vδ since c(r) ∈ (0,1) where v(t) = inf{s > 0 :ys(t
1/δ) ≥ tyb(t

1/δ)}.
Thus, Theorem 4.1 is asymptotically optimal. But we are just unable to push
the argument more, that is, taking limits under (1.2a) to obtain the exact re-
sult. There is another way to obtain an asymptotically optimal result. Define
for ε ∈ (0,1/2), δε = inf{η ≥ 0 : lim infr→0 rη(1+2ε)yb(r) = 0}, δε = inf{η ≥
0 : lim infr→0 rη(1−2ε)yb(r) = 0}, vε(t) = inf{s > 0 :ys(t

1/δε
) > tyb(t

1/δε
)},

vε(t) = inf{s > 0 :ys(t
1/δε ) > tyb(t

1/δε )}. Then δ = δε(1 + 2ε) = δε(1 − 2ε). In
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the proof of Proposition 4.2 we derived ẏs(t
1/η)/ẏb(t

1/η) = t (η
′−η)θ−2Ct,θ ẏs(t

1/η′
)/

ẏb(t
1/η′

) for η < η′ where θ ∈ (η, η′), Ct,θ = ẏb(t
1/θ )/yb(t

1/θ )− ẏs(t
1/θ )/ys(t

1/θ )

with |Ct,θ | < 47.5. It follows that limt→0 t−1/ηX∗
vε(t) = ∞ a.s. if η < δε while

lim inft→0 t−1/ηX∗
vε(t)

= 0 a.s. if η > δε. But if η < δ (η > δ), η < δε < δ

(η > δε > δ) for all small ε while both vε and vε converge to v. The exact re-
sult follows if there is a function that can replace both vε and vε for a sequence
εn ↓ 0. But vε, vε′

, vε, vε′(ε �= ε′), v, v, v just do not have a ≤ or ≥ relationship
between any two of them.

δ,β are due for simplification. By (ii), (iii) of Lemma 2.2, δ = β = 2 if∑d
j=1 C

(j)
b > 0 and β ≤ 1 if

∑d
j=1 C

(j)
b = 0 and

∑d
j=1

∫
|x|≤1 |x|ν(j)

b (dx) < ∞
while δ = β = 1 if

∑d
j=1 γ

(j)∗
0 (b) > 0. It remains to consider initially drift-free

processes Xt with
∑d

j=1 C
(j)
ε = 0 for some ε > 0. By Lemma 2.2(iv), β = inf{η ≥

0 : limr→0 rηGb(r) = 0} = inf{η ≥ 0 :
∑d

j=1
∫
|x|≤1 |x|ην(j)

b (dx) < ∞}. The same
does not hold for δ. Nonetheless under the sector condition |Im
t(λ)/Re
t(λ)| ≤
c0 (which is not a sample-path type condition), δ can be defined in terms
of Re
b(λ); see [7], Example 5.5(1), page 595. If Xt is a process with in-
creasing additive components and no drift on [0, b], we have δ = sup{η ≥ 0 :
limr→∞ r−ηgb(r) = ∞}, β = inf{η ≥ 0 : limr→∞ r−ηgb(r) = 0} ≤ 1. To obtain
the result for t → ∞ analogous to Theorem 4.1, in addition to symbol reversal
we need to assume that for some constant α ∈ (0,∞) and each large t there is
s ∈ (0,∞) such that ys(t

1/δ) ≥ t1+αyb(t
1/δ) and the same holds when δ is re-

placed by β. The assumption holds vacuously if y∞(r1) = ∞ for some r1 > 0.
v, v,u,u remain the same as before except for a position switch between [δ − ε, δ)

and (δ, δ + ε] as well as between [β − ε,β) and (β,β + ε]. β, δ satisfy β ≤ δ ≤ 2
by (2.5). To simplify β, δ we follow the note for r ↑ ∞ to Lemma 2.2. Assume
that d = 1 for simplicity. If Xb ∈ L1, or equivalently

∫
|x|>1 |x|νb(dx) < ∞, then

1 ≤ β ≤ δ while β = δ = 1 if EXs �= 0 for some s ∈ (0, b] by (c). If Xt is in L2

and centered on [0, b], or equivalently
∫
|x|>1 x2νb(dx) < ∞, and EXs = 0 for all

s ∈ (0, b], then β = δ = 2 by (b). Obviously, in any event if Cb > 0, β = δ = 2.

Finally, assuming Cb = 0, if E|Xs | = ∞ for all s ∈ (0, b], or if E|Xb| < ∞
and EXs = 0 for all s ∈ (0, b], then β = sup{η ∈ [0,2] : limr→∞ rηGb(r) = 0} =
sup{η ∈ [0,2] :

∫
|x|>1 |x|ηνb(dx) < ∞}.

5. The moment method. This method is not that far away from the frame-
work of the law of the iterated logarithm for the sum of arbitrary independent r.v.’s
where the growth function u up to a log log term is chosen from the moments of
the process. Let Xt be any process in R

d with X0 = 0 and let e be a bounded
nondecreasing function with e(0) = 0. Define

ae(t) = Ee(X∗
t ), H(r) = e(r)−1, h(r) = (Eae(Tr))

−1,

where Tr = inf{t > 0 : |Xt | > r}, r > 0. By Markov’s inequality, P(X∗
t ≥ r) ≤

ae(t)H(r),P (X∗
t ≤ r) ≤ P(Tr ≥ t) ≤ (ae(t)h(r))−1. If e is absolutely continuous
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and Xt is rcll and continuous in probability, ae is a continuous function and hence
P(X∗

v(t) ≥ r) ≤ tH(r),P (X∗
v(t) ≤ r) ≤ (th(r))−1, where v is the inverse of ae. If

we define

δ1 = inf
{
η ≥ 0 : lim inf

r→0
rηH(r) = 0

}
,

δ2 = inf
{
η ≥ 0 : lim inf

r→0
rηh(r) = 0

}
,

β1 = inf
{
η ≥ 0 : lim

r→0
rηh(r) = 0

}
,

β2 = inf
{
η ≥ 0 : lim

r→0
rηH(r) = 0

}
, u = ae,

we obtain (1.1). Clearly, if H(r) ≤ c(r)−1h(r) for some slow function c(r),

then δ1 = δ2, β1 = β2. In the case of additive processes, h can be worked out
explicitly. If e is moderate, so too is e ∧ e(1). The latter is bounded. On top
of that, the strictly increasing absolutely continuous moderate function ê(t) =
t−1 ∫ t

0 e(x) dx, t > 0, ê(0) = 0, satisfies ê ≈ e where the constants in ≈ depend
only on ρ,σ . So, e will be considered as bounded [e(r) = e(1) for r > 1] ab-
solutely continuous for the time being. Clearly, for e moderate, β2 ≤ σ. de la Peña
and Eisenbaum [5] showed that for any rcll process Xt in R

d with independent in-
crements and any moderate function e,Ee(X∗

T ) ≈ Eae(T ) over all stopping times
T with the constants in ≈ depending on e only. That being said, for stopping times
Tr we have Eae(Tr) ≈ Ee(X∗

Tr
) = Ee(|XTr |). The complete result on the growth

behavior of a continuous additive process Xt in R
d is now available. Since Tr < ∞

a.s. for r small and |XTr | = r, Ee(|XTr |) = e(r) for any function e. Thus, h ≈ H

and δ1 = δ2, β1 = β2 for all moderate functions e. In particular, δi = βi = p,

i = 1,2, for e(r) = rp,p > 0 and for ap(t) = EX
∗p
t , limt→0 ap(t)−αX∗

t = 0
or ∞ a.s. according as α < 1/p or α > 1/p. The order of ap is known in spe-
cial cases. Next we relate Ee(|XTr |) to the moments of Tr . Pruitt [6] showed that
c1 ≤ EyTr (r) = ETrh(r) ≤ c2 for Lévy processes. We extend the result to the
present additive process setting. Define for r > 0, n(r) = inf{t > 0 :yt (r) > m}
where m = (2πd)−1.

LEMMA 5.1. Let Xt be a process in R
d with additive components. Then for

any nondecreasing right-continuous function ψ with ψ(0) = 0,

Eψ(Tr) ≥ 2−1ψ ◦ n(r), r > 0.(5.1)

PROOF. By the first bound in (2.6) and the definition of n(r), P(X∗
t ≥ r) ≤

πdyt (r) ≤ πdm = 1/2 for t ∈ [0, n(r)]. Thus, Eψ(Tr) = ∫ ∞
0 P(Tr ≥ t)ψ(dt) =∫ ∞

0 P(X∗
t ≤ r)ψ(dt) ≥ ∫ n(r)

0 P(X∗
t ≤ r)ψ(dt) ≥ 2−1 ∫ n(r)

0 ψ(dt) = 2−1ψ ◦ n(r).
�
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LEMMA 5.2. Let Xt be any process in R
d with additive components and let e

be any moderate function. Then there are two universal constants c1, c2 ∈ (0,∞)

depending on e and d only such that

c1 ≤ Ee
(
yTr (r)

) ≤ c2, r > 0.(5.2)

PROOF. Let ψ(t) = e(yt (r)) with r fixed. By Lemma 5.1, Ee(yTr (r)) =
Eψ(Tr) ≥ 2−1ψ ◦ n(r) = 2−1e(m) since yn(r)(r) = m. Since ψ(t)/ψ(n(r)) ≤
ρ(yt (r)/yn(r)(r))

σ for t ≥ n(r), that is, ψ(t)/e(m) ≤ ρ(yt (r)/m)σ , yt (r)
k/2 ≥

ρ−(1+δ)mk/2(ψ(t)/ e(m))1+δ where δ = k/2σ − 1 for some integer k > 2σ. The
second bound in (2.6) yields

Ee
(
yTr (r)

) = Eψ(Tr) =
∫ n(r)

0
P(X∗

t ≤ r)ψ(dt) +
∫ ∞
n(r)

P (X∗
t ≤ r)ψ(dt)

≤ e(m) + C′
∫ ∞
n(r)

(e(m)/ψ(t))1+δψ(dt)

= (1 + C′δ−1)e(m) − C′δ−1e(m)1+δψ(∞)−δ ≤ (1 + C′δ−1)e(m)

where C′ = Ak(d)ρ1+δm−k/2. �

PROPOSITION 5.3. Under the assumptions of Lemma 5.1, if there exists a
nondecreasing continuous function J with J (0) = 0, J (t) > 0, t > 0, J (∞) = ∞
such that yJ(t2)(r)/yJ (t1)(r) ≥ ρ(t2/t1)

σ whenever 0 < t1 < t2 for two constants
ρ,σ ∈ (0,∞) not depending on t1, t2, r and ψ ◦ J is moderate, then there is a
constant c ∈ (0,∞) depending only on ρ,σ,ψ ◦ J and d such that

Eψ(Tr) ≤ cψ ◦ n(r), r > 0.(5.3)

PROOF. Denote by J−1 the inverse of J. Note that J (J−1(t)) = t. Since ψ ◦J

is moderate, ψ ◦J (t2)/ψ ◦J (t1) ≤ γ (t2/t1)
θ ,0 < t1 < t2 with two constants γ, θ ∈

(0,∞). As always,

Eψ(Tr) =
∫ J−1(n(r))

0
P

(
X∗

J (t) ≤ r
)
ψ ◦ J (dt) +

∫ ∞
J−1(n(r))

P
(
X∗

J (t) ≤ r
)
ψ ◦ J (dt)

≤ ψ ◦ n(r) +
∫ ∞
J−1(n(r))

P
(
X∗

J (t) ≤ r
)
ψ ◦ J (dt).

Let δ = kσ/2θ − 1 for an integer k > 2θ/σ. The assumptions on yJ(t)(r) and

ψ ◦J imply that y
k/2
J (t)(r) ≥ c1(ψ ◦J (t)/ψ ◦n(r))1+δ, where c1 = (ρmγ −σ/θ )k/2,

for t ≥ J−1(n(r)). Thus, by the second bound in (2.6),
∫ ∞
J−1(n(r)) P (X∗

J (t) ≤ r)ψ ◦
J (dt) ≤ c2δ

−1ψ ◦ n(r), where c2 = Ak(d)γ 1+δ(ρm)−k/2. �
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PROPOSITION 5.4. Let Xt be any additive process in R
d and let e be any

moderate function. Then

Ee
(∣∣XTr

∣∣) ≈ e(r) +
∫ ∞
r

EGTr (λ)e(dλ), r > 0,(5.4)

where the constants in ≈ depend on e and d only.

PROOF. First we show that

P
(∣∣�XTr

∣∣ > λ + 2r
) = EGTr (λ + 2r), λ > 0.(5.5)

We have

P
(∣∣�XTr

∣∣ > λ + 2r, t < Tr ≤ t + dt
)

= P
(|�Xs | > λ + 2r for some s ∈ (t, t + dt],X∗

t ≤ r, |Xs | > r
)

= P
(|�Xs | > λ + 2r for some s ∈ (t, t + dt],X∗

t ≤ r
)

(if |Xs−| ≤ r and |�Xs | > λ + 2r , then |Xs | > r

by the definition of �Xs = Xs − Xs−)

= P
(|�Xs | > λ + 2r for some s ∈ (t, t + dt]) · P(X∗

t ≤ r)

(Xs − Xt is independent of Ft , s > t)

= (
1 − exp

{−(
Gt+dt (λ + 2r) − Gt(λ + 2r)

)}) · P(Tr ≥ t)(
the probability that X has at least one jump of size larger than

λ + 2r on (t, t + dt] equals

1 − exp
{−(

Gt+dt (λ + 2r) − Gt(λ + 2r)
)}

;

the quasi-left-continuity of X, especially �Xt = 0 a.s.

implies that P(X∗
t ≤ r) = P(Tr ≥ t)

)
= (

Gt+dt (λ + 2r) − Gt(λ + 2r)
) · P(Tr ≥ t) (1 − e−x ∼ x as x ↓ 0).

Taking integration yields (5.5). Observe that |XTr | + r ≥ |�XTr |. Hence,
(|�XTr | > 2r + λ) ⊂ (|XTr | − r > λ) ⊂ (|�XTr | > λ) for r > 0, λ > 0. Also note
that Ee(k|XTr |) ≈ Ee(|XTr |) for k ∈ (0,∞) where the constants in ≈ depend only
on e and k.

Lower bound:

Ee
(
3
∣∣XTr

∣∣) =
∫ ∞

0
P

(
3
∣∣XTr

∣∣ ≥ λ
)
e(dλ) = e(3r) + I1
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[since |XTr | ≥ r,P (3|XTr | ≥ λ) = 1 if λ ≤ 3r] where I1 = ∫ ∞
3r P (|XTr | ≥

λ/3)e(dλ)

≥
∫ ∞

3r
P

(∣∣XTr

∣∣ > λ/3 + r
)
e(dλ) ≥

∫ ∞
3r

P
(∣∣�XTr

∣∣ > λ/3 + 2r
)
e(dλ)

=
∫ ∞

3r
EGTr (λ/3 + 2r)e(dλ) [by (5.5)]

≥
∫ ∞

3r
EGTr (λ)e(dλ) (λ/3 + 2r ≤ λ because λ ≥ 3r).

By Lemma 5.2, EyTr (r) ≤ c′. Thus,
∫ 3r
r EGTr (λ)e(dλ) ≤ c

∫ 3r
r EyTr (λ)e(dλ) ≤

2cEyTr (r)
∫ 3r
r e(dλ) < 2cc′e(3r). It follows that e(3r) + I1 ≥ c1(e(3r) +∫ ∞

r EGTr (λ)e(dλ)).

Upper bound:

Ee
(
4−1∣∣XTr

∣∣) =
∫ r

0
P

(
4−1∣∣XTr

∣∣ ≥ λ
)
e(dλ) + I2 ≤ e(r) + I2

where I2 = ∫ ∞
r P (|XTr | ≥ 4λ)e(dλ)

≤
∫ ∞
r

P
(∣∣XTr

∣∣ > λ + 3r
)
e(dλ) ≤

∫ ∞
r

P
(∣∣�XTr

∣∣ > λ + 2r
)
e(dλ)

=
∫ ∞
r

EGTr (λ + 2r)e(dλ) [by (5.5)]

<

∫ ∞
r

EGTr (λ)e(dλ). �

We can define

h(r) =
[
e(r) +

∫ 1

r
EGTr (λ)e(dλ)

]−1

, r ∈ (0,1)

now. H(r) ≤ c(r)−1h(r) if and only if there exists some e moderate such that∫ 1

r
EGTr (λ)e(dλ) ≤ c(r)−1e(r), r ∈ (0,1),(5.6)

which is also equivalent to Ee(|XTr |) ≤ c(r)−1e(r). Note that (5.6) has trivial
solutions because many slow functions are moderate. Since

∫ 1
r EGTr (λ)e(dλ) ≤

2cEyTr (r)
∫ 1
r e(dλ) < 2cc′e(1), (5.6) holds for e(r) = c1(r), c(r) =

(2cc′c1(1))−1c1(r) where c1(r) is any slow moderate function [(log(1/r))−1, say],
which leads to δ1 = δ2 = β1 = β2 = 0. We rephrase all the above in one theorem.

THEOREM 5.5. Let Xt be any additive process in R
d and let e be any mod-

erate function. Define u = ae, h,H as above. Then (1.1) holds. If EGTr (λ) ≤
c(r)−1A(r)/A(λ),0 < r ≤ λ ≤ 1 for a moderate function A, then (5.6) holds with
e = A1/q , q > 1, and hence δ1 = δ2, β1 = β2.
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The latter part holds because
∫ 1
r EGTr (λ)e(dλ) ≤ c(r)−1e(r)q

∫ 1
r e(λ)−q ×

e(dλ) = c1c(r)
−1e(r)q (e(r)1−q − e(1)1−q).

If Xt is not a step process initially, (2.5) implies that yb(r)
−1, (EyTb

(r))−1 with
fixed constants b ∈ (0,∞) are comparable to moderate functions. Thus, we can
take e(r) = yb(r)

−1 or e(r) = (EyTb
(r))−1. For e(r) = yb(r)

−1, δ1 = δ,β2 = β

where δ,β are the indices in Theorem 4.1. If EGTr (λ) ≤ c(r)−1EyTb
(λ)/EyTb

(r)

[resp. EGTr (λ) ≤ c(r)−1yb(λ)/yb(r)], 0 < r ≤ λ ≤ 1 for some b ∈ (0,∞), then
δ1 = δ2, β1 = β2 with e(r) = (EyTb

(r))−1/q [resp. e(r) = yb(r)
−1/q ], q > 1. In the

case of Lévy processes, EGTr (λ) = ETrG(λ) ≤ ETrh(λ) ≈ h(λ)/h(r). Assume
that Xt is not a compound Poisson process and let e = h−1/q, q > 1. To obtain
Pruitt’s result, we only need to prove that ae(t) ≈ t1/q where e = k1/q . Yang [8]
showed that ae(t) ≈ e ◦ k−1(t) + t

∫ ∞
k−1

(t)
G(λ)e(dλ) for all moderate e. For e =

k1/q, t
∫ ∞
k−1

(t)
G(λ)e(dλ) ≤ t

∫ ∞
k−1

(t)
h(λ)e(dλ) ≈ t

∫ ∞
k−1

(t)
k(λ)−1e(dλ) = ct1/q .

Thus, ae(t) ≈ t1/q . In the more general case that yt (r) ≈ f (t)z(r), Ef (Tr) ≈
z(r)−1 by Lemma 5.2. Thus, EGTr (λ) ≤ c1z(λ)/z(r) with z(r)−1 comparable to
a moderate function.

Revisit the example of X3
t = X1

f1(t)
+ X2

f2(t)
with yt (r) = f1(t)h1(r) +

f2(t)h2(r) for X3
t in Section 3: By Lemma 5.2, EyTr (r) = Ef1(Tr)h1(r) +

Ef2(Tr)h2(r) ≈ c ∈ (0,∞). EGTr (λ) ≤ c1yb(λ)/yb(r) if Ef1(Tr)h2(r) +
Ef2(Tr)h1(r) ≤ C < ∞ for all small r .

Let Xt be any additive process in R
d . Disintegrating ν into ν(ds, dx) =

κs(dx)g(ds) with a Lévy kernel κs(dx) and a function g yields Qt(r) =∫
|x|>r νt (dx) + r−2 ∫

|x|≤r |x|2 νt (dx) = ∫
(|x|/r)2 ∧ 1νt (dx) = ∫ t

0
∫
(|x|/r)2 ∧

1κs(dx)g(ds). If κs satisfies c1θ(s)κ ≤ κs ≤ c2θ(s)κ for a Lévy measure κ

and a function θ, c1, c2 ∈ (0,∞) being two constants, that is, ν(ds, dx) ≈
θ(s)κ(dx)g(ds), then Qt(r) ≈ g1(t)Q(r) where Q(r) = ∫

(|x|/r)2 ∧ 1κ(dx) and
g1(t) = ∫ t

0 θ(s)g(ds). Lemma 5.2 implies that EGTr (λ) ≤ c3Q(λ)/Q(r). Q(r)−1

is continuous satisfying Q(r) ≤ C2Q(Cr) for C > 1 and is moderate if κ is not a
finite measure.

Take e(r) = rp,p > 0 in Theorem 5.5. Then δ1 = β2 = p. Note that EyTr (1) ≥
3−1r2EyTr (r) ≈ r2 for r ∈ (0,1). If EyTr (1) ≤ cr2, that is, EyTr (1) ≈ r2, δ1 =
δ2 = β1 = β2 = p for all p ∈ (0,2). If EyTr (1) ≤ crq, q ∈ (0,2), δ2 ≥ q for all
p > 2. The above can be derived from the crude estimate

∫ 1
r EGTr (λ)e(dλ) ≤

c1
∫ 1
r EyTr (λ)e(dλ) ≤ c2EyTr (1)

∫ 1
r λ−2e(dλ).

EGTr (λ) can be replaced by a function of yt (r). We have EGTr (λ) =∫ ∞
0 P(Tr ≥ t)G(λ)(dt) while P(Tr ≥ t) = P(X∗

t ≤ r) ≤ cyt (r)
−k/2. Let

ν(ds, dx) = κs(dx)g(ds). If g is absolutely continuous, G(λ)(dt) = g′(t)G̃t (λ) dt

where G̃t (λ) = ∫
|x|>λ κt (dx). Hence

∫ 1
r EGTr (λ)e(dλ) = ∫ ∞

0 P(Tr ≥ t)g′(t) ×
(
∫ 1
r G̃t (λ)e(λ)) dt. But there is only minuscule gain in information on the struc-

ture of e in (5.6) with that change. Constructing moderate functions e satisfy-
ing Ee(|XTr |) ≤ c(r)−1e(r) for small r , equivalently (5.6), remains open despite
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its enormous applications. [Obviously Ee(|XTr |) ≥ e(r).] A discrete construc-
tion method seems to be needed to tackle the problem. The case that Xt is a
step process initially can be shrugged off since inf1/2≥r>0

∫ 1
r EGTr (λ)e(dλ) > 0.

One can also solve
∫ 1
r EGTr (λ)e(dλ) ≤ e(r) or simply the integral-differential

equation
∫ 1
r EGTr (λ)e′(λ) dλ = e(r) for a moderate function e ∈ C1. Here we

have an unbounded kernel EGTr (λ). Since Ee(|XTr |) ≤ C1 + C2e(r) implies
Ee(|XTr |) ≤ C3e(r) for large r , the situation of (5.6) for large r (with

∫ 1
r replaced

by
∫ ∞
r ) is slightly better where some results are available under the moment con-

ditions.
Separately, given an additive process Xt , can we find the fully decomposed

bounds

P(X∗
t ≥ r) ≤ c(r)−1f (t)h(r), P (X∗

t ≤ r) ≤ (f (t)h(r))−1(5.7)

for some functions f,h with a slow function c(r)? This is another important ques-
tion yet to be answered. Equation (1.3) follows from (5.7) immediately. Equa-
tion (5.6) implies (5.7). Lemma 2.1 gives no information about (5.7) although
yt (r) ≈ f (t)z(r) holds in individual cases.

Schilling [7] deals with a class of Feller processes whose generators have the
Lévy–Khintchine representation similar to the one used in additive processes with
Bt,Qt , νt ,
t(λ) replaced by Bx,Qx, νx,
x(λ), respectively, where x = X0 and
is mainly about the result that P(X∗

t ≥ r) ≤ c1tH(r),P (X∗
t ≤ r) ≤ c2(th(r))−1

at X0 = x with H,h defined in terms of 
x(λ) but the second bound requires the
sector condition |Im
x(λ)/Re
x(λ)| ≤ c0, which probably can be removed if h

is defined by the characteristics not by the exponent. Schilling listed four possible
cases of 
x(λ) ([7], Example 5.5 (4), (a)–(d), page 598) in which (1.3) holds.
These cases are made with the common assumption that 
x(λ) can be decomposed
into two elements, a Lévy exponent 
(λ), and independently a function of x.

6. Problem (1.3). In the case of Lévy processes, 
t(λ) = t
(λ) and we know
the order of the function in the law of the iterated logarithm. We take u(t) = t in
(1.1) and have δ2 = δ1, β1 = β2. But for a general additive process, as changes
occur at any given point in time, 
t(λ) shows no signs of the function u in (1.1).
Since yt (b) and Ee(X∗

t ) do not miss any of these instantaneous changes as t → 0,

yt (b) and Ee(X∗
t ) are two of the most likely benchmark functions for u. For Xt of

class I, u(t) = ∫ t
0 hs(b)−1y(b)(ds) with

∫ t
0 y(b)(ds) = yt (b). We discuss below

only the δ-indices. β-indices follow suit.
Let v be the function determined by equation yv(t)(b) = φ(t) with b ∈ (0,∞)

and φ quasiconvex. Which combination of b and φ is the best? What we have is
either δ2 < δ1 or δ2 = δ1. φ is probably more important than anything else but we
do not know what kind of φ can make a change from δ2 < δ1 to δ2 = δ1 since we
are unable to calculate δ1, δ2 in general. If δ2 < δ1, δ1 − δ2, big or small, makes
no difference as long as δ2 > 0. Here, for instance, u(t) = yt (b)1/p for φ(t) =
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tp,p > 0. In this case, if δ2 < δ1 (resp. δ2 = δ1) for some p, then δ2 < δ1 (resp.
δ2 = δ1) for all p. We consider φ as acceptable if δ2 > 0. Again, this is a technical
matter. It is not easy to show that δ2 > 0. We have δε ↑ δ∗ ≤ δ2 [see (i), proof of
Theorem 3.2] and δε > 0 for some ε if and only if there exist α1, α2 ∈ (0,∞) such
that yv(r)(r

α1) ≥ r−α2, r ∈ (0, r1). One can replace δ2 by δ∗ in Theorem 3.1. δε

and δ1 look similar without �-sequences and infinite sums in their definitions.
It is almost impossible to work on infinitely often events directly. We do not

know how to do the following: Given a nondecreasing function v, decide whether
δ < δ or δ = δ. If any, find an example where δ < δ for all nondecreasing func-
tions v. (The case δ = 0 is excluded.) Other possible cases include δ2 < δ = δ,
δ2 = δ < δ, δ2 = δ̇2 < δ = δ, and so on. The only tool available is still the classical
Borel–Cantelli–Fatou argument. There are some possible ways to construct v such
that δ = δ.

(a) At this juncture, it is unclear whether or not (1.3) has anything to do with
yt (r). What is clear, though, is that (1.3) holds if yt (r) has a good structure.
Consider a function gε(r) > 0 with the two properties: For each ε there is a
�-sequence σn ↓ 0 such that

∑
gε(σn) < ∞; limε→0 gε(r) = 1 for every r ; for

example, gε(r) = rcε, c > 0. Define δε = inf{η > 0 : lim infr→0 gε(r)yv(r)(r
1/η) =

0}, where v is a nondecreasing function. The first property of gε(r) implies that
δε ≤ δ2. With the second property, to get δ1 = δ2, we need to construct the
function v and the function gε(r) from yt (r) such that limn→∞ δεn = inf{η >

0 : lim infr→0 limn→∞ gεn(r)yv(r)(r
1/η) = 0} for some sequence εn ↓ 0. Quasicon-

vex condition (3.1) makes one such case.
(b) Like the fully decomposed bounds in (5.7), the following types of bounds

also lead to δ = δ. Type I: P(X∗
t ≥ r) ≤ u(t)c(r)−1wt(r),P (X∗

t ≤ r) ≤ wt(r)
−1,

where u is a nondecreasing continuous function with u(0) = 0. Let v be the inverse
of u and define δ = inf{η > 0 : lim infr→0 rεwv(r)(r

1/η) = 0}, ε ∈ (0,1). Type II:
P(X∗

t ≤ r) ≤ g(r)c(t)−1wt(r)
−1,P (X∗

t ≥ r) ≤ wt(r), where g is a function sat-
isfying

∑
g(σn) < ∞ for some �-sequence σn ↓ 0. Let v be any nondecreasing

function satisfying wv(tn)(t
1/κ
n ) → 0 for some sequence tn ↓ 0 and κ ∈ (0,∞) and

define δ = inf{η > 0 : lim infr→0 wv(r)(r
1/η) = 0}. c(r) stands for slow functions

as always. If the bounds of the above types are obtainable, the reader can check
that lim inft→0 t−1/ηX∗

v(t) = 0 or ∞ a.s. according as η > δ or η < δ. The above

holds true for any appropriate process in R
d . Normally, the result of de la Peña

and Eisenbaum is relatively sharp in the case of additive processes. We wonder if
it can be used to obtain the bounds in Type I with u(t) = ae(t) where e is not a slow
function. To do so, it is necessary to have a new mechanism of getting around the
point where Markov’s inequality enters. The proposed bounds can be called skew
sub-decomposable. We have been unable to find a convincing number of their ex-
amples. Even in the case of Lévy processes, it is still a question that such bounds
can exist.
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(c) Again the following holds true for any process Xt in R
d continuous in prob-

ability with X0 = 0. Both P(X∗
t ≥ r) and P(X∗

t ≤ r) diverge as t, r move in tan-
dem toward 0. This is a useful fact. The more we know about P(X∗

t ≥ r) and
P(X∗

t ≤ r), the more likely to construct v such that δ = δ. Fix δ ∈ (0,∞). (i) We

can construct two sequences σ̄n ↓ 0, vn ↓ 0 such that
∑

P(X∗
vn

≤ σ̄
1/δ
n ) < ∞

and P(X∗
vn+1

≥ σ̄
1/δ
n ) → 0. (ii) For any sequence vn ↓ 0 selected, we can con-

struct a �-sequence σ̄n ↓ 0 such that
∑

P(X∗
vn

≤ σ̄
1/δ
n ) < ∞. (This time, vn ↓ 0

is the one fixed first.) Although we have assumed in (ii) that P(X∗
t ≤ ε) ↓ 0

as ε ↓ 0, there is no loss of generality because the assumption fails only when
Xt = 0 a.s. for a length of time at first, in which case (1.3) is uninteresting.
Part (ii) has also proved that there is always a strictly increasing continuous
function v with v(0) = 0 such that δ̇2 ≥ δ although there is no guarantee for
δ < ∞. If we can in (i) make {σ̄n} a �-sequence or in (ii) make {vn, σ̄n} con-
tain subsequences {vnk

, σ̄nk
} such that P(X∗

vnk+1
≥ σ̄

1/δ
nk ) → 0 as k ↑ ∞, then

lim inft→0 t−1/ηX∗
v(t) = 0 or ∞ a.s. according as η > δ or η < δ for any nonde-

creasing function v with v(σ̄n) = vn. The first result follows from the fact that

X∗
vnk+1

/σ̄
1/η
nk+1 = (X∗

vnk+1
/σ̄

1/δ
nk ) · ((

σ̄nk

σ̄nk+1
)1/ησ̄

1/δ−1/η
nk ) (η > δ) where the first fac-

tor is bounded by 1 for infinitely many k and the second tends to 0 since {σ̄n} is
a �-sequence. It is also clear from here that δ ≤ δ. The second result is obvious
because η < δ ≤ δ̇2. Hence δ̇2 = δ = δ = δ.

As this paper draws to a close, we say a few words about changing mea-
sures. It is a technique used to identify more processes for which (1.3) holds.
Let (Xt ;Bt, νt ) be an additive process in R

d and (X′
t ;B ′

t , ν
′
t ) another. Xt (resp.

X′
t ) induces a probability measure Pt (resp. P ′

t ) on the canonical space. P ′
t � Pt ,

that is, P ′
t is absolutely continuous with respect to Pt , if and only if there ex-

ists a Borel function f : [0, t] × R
d → R+ satisfying

∫
[0,t]×Rd (1 − √

f )2 dν <

∞ such that ν′(ds, dx) = f (s, x)ν(ds, dx) and B ′
s = Bs + ∫ s

0
∫
|x|≤1(f (τ, x) −

1)xν(dτ, dx), s ∈ (0, t]. This result can be found in [3], Chapter IV, and [2],
Chapter XIV. We did not take Qt into account in order to simplify the formula.
If f > 0,Pt � P ′

t as well with f replaced by 1/f , that is, P ′
t ∼ Pt . Here, for

instance,
∫
[0,t]×Rd (1 − √

f )2 dν < ∞ for f = eφ with φ : [0, t] × R
d → [−C,C]

satisfying |φ(s, x)| ≈ |x| near x = 0. Normally, one relates Bt, νt to φ. If P ′
t � Pt ,

X′
t has the sample-path behavior of Xt up to time t at least even though X′

t and
Xt are totally different in law. If P ′

t � Pt , γ ′
0(t) = γ0(t) and monotonicity of the

sample-path is preserved, that is, the drift remains nondecreasing. There are also
some other invariant properties that we omit. Therefore, P ′

t � Pt cannot occur
unless and until the two additive processes in consideration belong to the same
category. Let y′

t (r) denote the function in (2.4) for X′
t . Componentwise, y′

t (r) =
G′

t (r)+K ′
t (r)+M

′∗
t (r) with G′

t (r)+K ′
t (r) = ∫

[0,t]×R
(x/r)2 ∧1f (s, x)ν(ds, dx),

M ′
t (r) = |m′

t (r)| where m′
t (r) = mt(r) + r−1 ∫ t

0
∫
|x|≤r (f (τ, x) − 1)xν(dτ, dx)
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and Mt(r) = |mt(r)|. Usually, there are no similarities between y′
t (r) and yt (r).

If Xt satisfies (1.3), so does X′
t while vi, vs, δ, β need no change, but y′

t (r)

may not satisfy any condition for (1.3) so far developed in this paper. [In other
words, the shape of the function in (2.4) is only one piece of the puzzle.] Sim-
ilarly, if Xt is a semimartingale additive process of class I, then (1.3) holds for
X′

t where ν′(ds, dx) = κ ′
s(dx)u(ds), κ ′

s(dx) = f (s, x)κs(dx), B ′
t = ∫ t

0 b′
su(ds),

b′
s = bs + ∫

|x|≤1(f (s, x) − 1)xκs(dx), m̃′
s(r) = m̃s(r) + r−1 ∫

|x|≤r (f (s, x) −
1)xκs(dx). Conditions (i) and (ii) may fail to hold for X′

t . Still, if Xt = X̄g(t)

where (X̄;B,ν) is a Lévy process in R
d and g is a nondecreasing continu-

ous function with g(0) = 0, then (1.3) holds for X′
t (as well as for Xt ) with

vi(t) = vs(t) = g−1(t) = inf{s > 0 :g(s) > t} since yt (r) = g(t)h(r). X′
t having

characteristics ν′(ds, dx) = f (s, x)g(ds)ν(dx), B ′
t = g(t)B + ∫ t

0
∫
|x|≤1(f (s, x)−

1)xν(dx)g(ds) is a genuine nonhomogeneous process. Perhaps X′
t satisfying (1.3)

can only be recognized through changing measures. The same occurs for Lévy
processes. Let (Xt, ν) be a strictly α-stable process in R

d . For d = 1, ν takes
the form ν(dx) = s(x) dx with B determined by ν for α �= 1. Any Borel func-
tion θ > 0 satisfying

∫
(
√

θ(x) − √
s(x) )2 dx < ∞ defines a Lévy process X′

t

with ν′(dx) = f (x)ν(dx) = θ(x) dx,B ′ = B + ∫
|x|≤1(θ(x) − s(x))x dx, where

f (x) = θ(x)/s(x). X′
t nowhere near stable has exactly the same local sample-path

behavior as Xt does while many fine results on the sample paths hold for stable
processes. X′

t becomes nonhomogeneous if f (x) is replaced by f (s, x).

The measure change formula also opens up a way to prove (1.3) for Xt , that is,
to find a function f > 0 in the formula such that one of the conditions for (1.3)
can hold for y′

t (r). Take, for example, a symmetric additive process Xt in R with
yt (r) = ∫

[0,t]×R
(x/r)2 ∧ 1ν(ds, dx) = ∫ t

0
∫
(x/r)2 ∧ 1κs(dx)u(ds). Let f = eφ ,

φ(s, x) = θ(s)(|x| ∧ 1) where θ(s) = θ(s, νs, κs, u(s)) is any bounded Borel func-
tion. Then X′

t is also symmetric with y′
t (r) = ∫ t

0 k(s, r)u(ds) where k(s, r) =∫
(x/r)2 ∧ 1eθ(s)(|x|∧1)κs(dx). There are several options in constructing θ . Here,

for instance, if k(s, r) ≈ l(s)z(r), y′
t (r) ≈ g(t)z(r) with g(t) = ∫ t

0 l(s)u(ds); if
k(s, r) is nondecreasing in s, X′

t is of class I; if k(t, r)/k(t, r1) ≥ y′
t (r)/y

′
t (r1) for

r1 < r with u differentiable, y′
t (r)/y

′
t (r1) is nondecreasing in t for r1 < r , so (i) of

Proposition 4.2 holds.
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