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AN ANNIHILATING–BRANCHING PARTICLE MODEL FOR THE
HEAT EQUATION WITH AVERAGE TEMPERATURE ZERO

BY KRZYSZTOF BURDZY1 AND JEREMY QUASTEL2

University of Washington and University of Toronto

We consider two species of particles performing random walks in a do-
main in Rd with reflecting boundary conditions, which annihilate on contact.
In addition, there is a conservation law so that the total number of particles
of each type is preserved: When the two particles of different species anni-
hilate each other, particles of each species, chosen at random, give birth. We
assume initially equal numbers of each species and show that the system has
a diffusive scaling limit in which the densities of the two species are well
approximated by the positive and negative parts of the solution of the heat
equation normalized to have constant L1 norm. In particular, the higher Neu-
mann eigenfunctions appear as asymptotically stable states at the diffusive
time scale.

1. Introduction. A branching particle system representation for the heat
equation solution with positive temperature was introduced in [4] and later studied
in [5] (see also [15] and [16]). Here is an informal description of that model and
one of the main results, proved in [5]. Suppose that D is an open set in Rd and N

Brownian particles move independently inside D. Whenever one of these particles
hits the boundary of D, it is killed and one of the other particles, randomly chosen,
splits into two particles, so that the number N of particles remains constant. When
the number of particles goes to infinity and the initial (normalized) distribution
of particles converges to a measure on D, then the particle density converges to
the solution of the heat equation for every time t ≥ 0, with the appropriate initial
condition, normalized so that it has a constant total mass for all times t ≥ 0.

The main purpose of this article is to study a related model that involves two
different types of particles. We call them + and − particles. The two types of par-
ticles perform independent symmetric random walks with reflection on the bound-
ary, and annihilate each other on contact. When two particles of different signs
annihilate each other, then two other particles are chosen randomly, one + parti-
cle and one − particle, and each one of these particles splits into two particles of
the same type as the parent particle, so that the numbers of + and − particles are
conserved.
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The reader might have noticed that we have changed the Brownian particles to
symmetric random walks. This is because, except in dimension 1, the Brownian
particles would not meet, so one would have to have them annihilate when they
came within some ε > 0 of each other. So we might as well just put the particles on
a discrete lattice. Hence, particles in our new model will be represented by random
walks on the lattice εZd ∩ D, with ε−d comparable to the number of particles. We
will assume that particles reflect from the boundary of D in a way to be described
precisely later.

One can easily generalize the model to have more than two types of particles.
Particles of different types annihilate on collision and two other particles, from
those two types, are chosen at random to split into new particles. The main effect
in these systems is segregation of types. At a macroscopic scale one sees the re-
gion D decomposed into disjoint regions D1(t), . . . ,Dm(t), each occupied by one
of the types. The density of type i evolves on Di by the heat equation with cre-
ation, with Dirichlet boundary conditions on boundaries internal to D, and Neu-
mann boundary conditions on boundaries coincident with the boundary of D. The
regions Di themselves evolve according to the behavior of the type densities on
either side of the boundary. In general, the boundary dynamics are not simple. At
the present time the probabilistic picture is based purely on simulations and in-
formal calculations. See [4, 9, 10] and [11] for details. One expects deterministic
evolution on the macroscale, as described above. Note that related limiting equa-
tions for segregation can be derived in the scaling limit of appropriate systems of
reaction–diffusion equations (see [6, 7] and references therein). These problems
are quite difficult because, unlike most problems in hydrodynamic limits, the in-
variant measures of these systems are either unknown or not well understood. Of
course, well inside the regions where each individual species resides, one expects a
product of Poisson distributions. However, it is not a priori clear that such regions
exist, and anyway, all the interesting behavior in the system is at the boundaries
between the species.

In this article we consider the special case of two types, and assume, in addi-
tion, that the number of each type is the same, say, N , where N is proportional
to the number of lattice sites, so that the densities are of order 1. Our main re-
sult is that, as N → ∞, the densities of the two types of particles converge to
the positive and negative parts of the solution ρ of the heat equation normalized
to have the correct total masses. Letting D+(t) and D−(t) denote the supports
of positive and negative parts of the solution, we can see that this corresponds to
the general picture just described, with a particular, nontrivial, evolution of the
boundary between D+ and D−. The evolution is in the normal direction ν to the
boundary and proportional to (� + V )ρ+/∂νρ+ = (� + V )ρ−/∂νρ− there. Here
V = ∫

D δ(ρ = 0)|∇ρ|2 dx/
∫
D |ρ|dx is the creation term at time t needed to keep

the masses conserved.
The method we use is not standard in hydrodynamic limits. The main methods

known in hydrodynamic limits are based on entropy or attractiveness. The model
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is not attractive, and in problems like this one, where the object of interest is a
boundary separating two regions on which live mutually singular local equilibrium
measures, entropy methods do not seem to be useful. So it is important to develop
new methods that can be used for such problems.

The proof is based on an observation that the microscopic evolution of the den-
sity η of the difference between the occupation numbers of the two types of par-
ticles takes a particularly simple form dη = (� + V )η dt + dM , where M are
martingales, � is the discrete Laplace operator, and V = V (t) is the rate of annihi-
lation. Some calculus and the particular form of the equation allow us to control V .
Because the proof depends on the particular form of the equation, it does not gen-
eralize in an obvious way to systems with more than two types or with unequal
numbers of particles. However, it does suggest the precise form the result should
take in other, more complicated, cases.

2. Preliminaries. We collect in this section a few results that may be known
but we could not find a ready reference for them.

We start with a discussion of a single particle model—reflected random walk on
a lattice region approximating a region D ⊂ Rd . Let D be a bounded connected
open set in Rd , d ≥ 2, and let Dε = εZd ∩ D for ε > 0. We want to construct a
nearest-neighbor continuous time random walk Wε

t on Dε . Moreover, we want Wε
t

to converge to reflecting Brownian motion in D as ε → 0. A natural choice for Wε
t

would be a process that jumps to one of its neighbors with equal probabilities, after
a suitable time delay. In the main part of our project, such a process is somewhat
inconvenient to deal with. We will use a different model for a “reflecting random
walk” on Dε , described below.

The process Wε
t is a finite state continuous time Markov process so it is fully

described by the jump distribution and holding time at each state. We start by
describing its jump distribution. Let ∂Dε be the set of x ∈ Dε which have fewer
than 2d neighbors in Dε . If x ∈ Dε \ ∂Dε , then the random walk Wε

t will jump
from x to any of its neighbors with equal probabilities.

We will assume from now on that D has an analytic boundary. This is used
later to get some easy estimates on the lattice Laplacian of eigenfunctions of the
true Laplacian. One expects the results of this article to hold with much weaker
assumptions on the boundary, but we have not pursued this here.

If ε is very small and x ∈ ∂Dε has fewer than d neighbors in Dε , then this
implies that the normal vector to the boundary close to x is almost parallel to one
of the axes. It is not hard to see that by removing from Dε all x ∈ ∂Dε with fewer
than d neighbors in Dε , we obtain a set D′

ε with the property that all x ∈ ∂D′
ε have

at least d neighbors in D′
ε . By abuse of notation, we will refer to this set as Dε .

Note that every point in ∂Dε lies at a distance from ∂D not exceeding 2ε.
For x ∈ ∂Dε , let x′ ∈ ∂D be the closest point to x on ∂D and let n(x′) be

the inward unit normal vector at x′. Let {e1(x
′) df= n(x′), e2(x

′), . . . , ed(x′)} be an
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orthonormal basis, depending on x. Let pxy denote the probability that Wε makes
the next jump from x to y (assuming it is at x now) and note that, by assumption,∑

y∈Dε,|x−y|=ε

pxy = 1.(2.1)

We want to find pxy for x ∈ ∂Dε so that, for some c1 > 0,∑
y∈Dε,|x−y|=ε

pxy(y − x) = c1n(x′).(2.2)

Note that equations (2.2) impose only d −1 constraints because c1 > 0 is arbitrary.
Hence, (2.1) and (2.2) effectively form a set of only d equations, and we have at
least d unknowns pxy . It is not hard to see that (2.1)–(2.2) have a solution.

Next we choose the holding times. For x ∈ Dε \ ∂Dε , we let the holding time
at x have the mean hε(x) = ε2. This corresponds to the usual space–time scaling
for Brownian motion. For x ∈ ∂Dε , the mean hε(x) of the holding time at x is
chosen so that

lim
s↓0

1

s

∑
1≤j≤d

E
((

(Wε
t+s − Wε

t ) · ej (x
′)

)2|Wε
t = x

) = 1.(2.3)

The discrete Laplacian �ε , that is, the generator of the process Wε is given by

�εf (x) = h−1
ε (x)

∑
y∈Dε,|y−x|=ε

pxy

(
f (y) − f (x)

)
.(2.4)

The following lemma provides an intuitive basis for the interpretation of our
main results. Since the lemma is not used later in the paper, we only observe that
it can be derived from Theorem 6.3 of [21] and we do not supply a formal proof.

LEMMA 2.1. Suppose that xε ∈ Dε and xε → x0 ∈ D as ε → 0. If Wε
0 = xε ,

then {Wε
t , t ≥ 0} converge weakly to the reflecting Brownian motion on D starting

from x0, as ε → 0.

We have assumed that D has an analytic boundary. This implies that D has a
discrete spectrum for the Laplacian with Neumann boundary conditions; see, for
example, Section 2 of [1]. In the Dirichlet case, the spectrum is discrete for any
bounded open connected set D. In the Neumann case, the spectrum is not necessar-
ily discrete if D is bounded but has a nonsmooth boundary; see, for example, [17].
It is quite easy to see that the spectrum is discrete for the Neumann Laplacian
when ∂D can be represented locally by a Lipschitz function; see, for example,
Section 2 of [1]. This condition on the boundary can be substantially relaxed—it
is enough to suppose that the boundary is locally represented by a function which
is Hölder continuous with sufficiently small exponent, see, for example, [19]. As
we said, our assumptions on the smoothness of ∂D are much stronger than that,
for technical reasons.
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Let −λn, n = 0,1,2, . . . , be the eigenvalues of the Laplacian on D with the
Neumann boundary conditions, and let φn be the corresponding eigenfunctions.
We list the same eigenvalue more than once, if it has a multiplicity greater than 1.
For a measure µ on D, we let µ̂n = ∫

D φn dµ.
The following review of random measures is based on Section 3 of [12]. A se-

quence of finite measures µn on a space 
 converges weakly to µ if for any
bounded continuous function f , we have

∫

 f (x)dµn(x) → ∫


 f (x)dµ(x) as
n → ∞. Let MF (
) denote the space of all finite measures on 
 equipped with
the topology of weak convergence, let M1(
) be the subspace of MF (
) consist-
ing of probability measures, and let MF,c(
) denote the subspace of MF (
) con-
sisting of measures with total variation less than or equal to c. Let B(D) denote the
family of Borel subsets of D. Suppose that, for some probability space (�,F ,P ),
the function µ :B(D)×� → R has the following two properties: (i) for a fixed ω,
µ(·,ω) is a finite measure on D, and (ii) for a fixed A ∈ B(D), µ(A, ·) is a ran-
dom variable. Then the distribution of µ is an element of M1(MF (D)). We will
refer to µ as a “random measure.” If 
 is a metric space, then the space of right-
continuous functions with left limits, f : (0,∞) → 
, equipped with the Skorohod
topology (see Section 3.6 of [12]) will be denoted by S((0,∞),
). We will use
the space M1(S((0,∞),MF (D))) to state our main results. To give a meaning to
this symbol, we have to specify a metric on MF (D). We will use the Prohorov
metric which induces a topology on MF (D) equivalent to weak convergence of
measures (see [13], Chapter 3, Sections 1 and 3). In this article we will be con-
cerned with the convergence of processes on the open half-line (0,∞), not the
usual semi-closed half-line [0,∞). The convergence in the Skorohod topology on
(0,∞) is defined as the convergence in the Skorohod topology on every compact
subinterval of (0,∞).

LEMMA 2.2. Suppose that f :D → R is a continuous (and, hence, bounded)
function and let an = ∫

D f (x)φn(x) dx. Suppose that c1 < ∞ and µk , k ≥ 1, are
random measures (possibly defined on different probability spaces), with distribu-
tions in M1(MF,c1(D)). Assume that, for every fixed n, limk→∞ µ̂k

n = an in distri-
bution. Then the distributions of µk converge weakly in M1(MF (D)) to δµ, where
µ(dx) = f (x) dx.

PROOF. Let dνk(x) = dµk(x) − f (x) dx and note that ν̂k
n → 0 in distribution

as k → ∞, for every n. It will suffice to show that the distributions of νk converge
weakly in M1(MF (D)) to δ0, where 0 is the measure identically equal to 0. Since
D is compact, so is MF,c1(D) and it follows that the sequence νk is tight and con-
tains a convergent subsequence. Let ν be the weak limit of a subsequence of νkj .
It will be enough to show that ν = δ0.

Let Gn :MF (D) → R be defined by Gn(σ) = | ∫D φn(x) dσ(x)| ∧ 1. The func-
tionals Gn are continuous and bounded, and distributions of νkj converge weakly
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to ν in M1(MF (D)), so for every fixed n, EGn(ν
kj ) → EGn(ν) as j → ∞. By as-

sumption, ν̂k
n → 0 in distribution for every n, so EGn(ν) = limj→∞ EGn(ν

kj ) = 0
for every n. Hence, ν is supported on measures σ ∈ MF (D) with the property that
σ̂n = 0 for all n. It will suffice to show that every measure with this property and
finite total variation is identically equal to 0.

Fix a nonrandom measure σ on D with a finite total variation and such that
σ̂n = 0 for all n. Fix any Borel set A ⊂ D. It will be enough to show that∫
D 1A(x) dσ(x) = 0.

According to the Weyl formula, λn ∼ n2/d (see [8], Vol. I, Chapter VI, Sec-
tion 4.4; or see [19] for a recent strong version of this theorem). By Theorem 1
of [14], ‖φn‖∞ ≤ c2λ

(d−1)/4
n , so ‖φn‖∞ ≤ c3n

(d−1)/2d .
Let Pt be the transition semigroup for the reflected Brownian motion in D

and for some fixed t > 0, let g(x) = Pt1A(x). Then g(x) = ∑
n(1̂A)nφn(x)e−λnt ,

where (1̂A)n = ∫
D 1A(x)φn(x) dx. If we write g(x) = ∑

n ĝnφn(x), then

|ĝn| ≤ |D|‖φn‖∞e−λnt ≤ c4n
(d−1)/2de−c5n

2/d t .

Without loss of generality, assume that the total variation of σ is not greater
than 1 and note that∫

D
|φn(x)|d|σ(x)| ≤ |D|‖φn‖∞ ≤ c6n

(d−1)/2d .

This and other estimates obtained so far imply that∑
n

∫
D

|ĝn||φn(x)|d|σ(x)| ≤ ∑
n

c4n
(d−1)/2de−c5n

2/d t c6n
(d−1)/2d < ∞.

Hence, we can change the order of integration and summation in the following
formula:∫

D
g(x)dσ(x) =

∫
D

∑
n

ĝnφn(x) dσ(x) = ∑
n

ĝn

∫
D

φn(x) dσ(x) = 0.

We have proved that
∫
D Pt1A(x) dσ(x) = 0 for every t > 0. Clearly, |Pt1A(x)| ≤ 1

for all x, and Pt1A(x) → 1A(x) for almost every x ∈ D, so by the dominated
convergence, ∫

D
1A(x) dσ(x) = lim

t→0

∫
D

Pt1A(x) dσ(x) = 0. �

The following result can be proved using standard methods, so we leave its
proof to the reader.

LEMMA 2.3. Suppose that, for every ε > 0, we have a real-valued process
{Rε(t), t > 0} which is equal to Rε

1(t)+Rε
2(t)+Rε

3(t), and these processes satisfy
the following conditions:
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(i) For every ε > 0, t → Rε
1(t) is right-continuous and nondecreasing a.s.

(ii) For every fixed t > 0, the family {Rε
1(t), ε > 0} is tight.

(iii) For every fixed t > 0, sup0≤s≤t |Rε
2(s)| converges to 0 in distribution, as

ε → 0.
(iv) For every t > 0,

lim sup
δ1,δ2→0

lim sup
ε→0

P

(
sup

0≤t1,t2≤t,|t1−t2|≤δ1

|Rε
3(t2) − Rε

3(t1)| ≥ δ2

)
= 0.

Then the family {Rε, ε > 0} is tight in M1(S((0,∞),R)).

3. Main results. We will now describe the main object of our study, a particle
system. Our description will be partly informal because this will make it more
accessible without loss of rigor.

The state of the particle system at time t ≥ 0 will be encoded as an integer-
valued random function η(t) = ηx(t) on Dε . We will often suppress t in the no-
tation and write ηx , with the convention that if ηx > 0, then there are ηx particles
of type + at x ∈ Dε , and ηx < 0 signifies the presence of |ηx | particles of type −
at x. Obviously, ηx = 0 means that there are no particles at x. Since + and −
particles annihilate each other instantaneously, we do not have to have a notation
representing both types of particles at the same site of Dε . We assume that there
are N particles of type + and N particles of type − for every t .

The easiest way to describe the evolution of η is to use the particle picture.
Each particle performs continuous time symmetric simple random walk (defined
in Section 2), independent of other particles, until one of the particles hits a particle
of the other type. When a particle jumps to a site occupied by at least one particle of
the different sign, two particles of opposite signs annihilate each other. At the same
time, one particle is chosen uniformly from the family of + particles and one −
particle is chosen uniformly as well. Each of the two chosen particles splits into
two offspring of the same type as the parent, so that the number of particles of each
type remains constant. The particles move independently until the next annihilation
and birth event, and the evolution continues in the same manner. From the point
of view of the mathematical description of the model, it is more convenient to
represent the “annihilation and birth” event as a jump of the annihilated + particle
to a randomly chosen + particle, and the same for the annihilated − particle.

In the above description of the dynamics of the system, when we say that a
particle is chosen “uniformly,” it means that we choose one of the N particles
with the same probability 1/N ; in other words, a particle that is annihilated may
be the one that splits into two offspring. In such a case, the offspring are born at
the site where the annihilated particle resided just before the jump that lead to its
annihilation. This is a different convention than in [5], but this convention will
simplify some formulas and, of course, it makes little difference when N is large.

The informal description given above can be rigorously expressed in terms of
the generator L = Lε for the process. Let a+ = max(a,0) and a− = max(−a,0).
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The configuration η such that ηx = 1 and ηy = 0 for y �= x will be denoted Ix . The
formula for the generator L of the process η is

Lf (η)

= ∑
x,y∈Dε

h−1
ε (x)pxy

{
η+

x 1{ηy≥0}
(
f (η − Ix + Iy) − f (η)

)

+ η−
x 1{ηy≤0}

(
f (η + Ix − Iy) − f (η)

)
+ η+

x 1{ηy<0}N−2

× ∑
u,v∈Dε

η+
u η−

v

(
f (η − Ix + Iy + Iu − Iv) − f (η)

)

+ η−
x 1{ηy>0}N−2

× ∑
u,v∈Dε

η−
u η+

v

(
f (η + Ix − Iy − Iu + Iv) − f (η)

)}
.

We would like to point out that the first sum in the above formula extends over
only those x, y ∈ Dε that satisfy |x − y| = ε. This extra condition is enforced
automatically by the presence of the factor pxy . A similar remark applies to other
formulas in this paper.

The normalized particle density u(x, t) = uN,ε(x, t) is defined by u(x, t) =
N−1ε−dηx for x ∈ Dε . Typically, we will be interested in the population size
of order N ∼ εd . Let Pt denote the heat semigroup on D, corresponding to the
reflecting Brownian motion, and for a measure µ on D, let Ptµ denote the mea-
sure with the density

∫
D Pt(x, ·) dµ(x). When µ = ∑

x∈Dε
εduN,ε(x,0)ix and ix

denotes the probability measure with the unit mass at x (by abuse of notation),
then we will write Ptu

N,ε(0) to denote Ptµ. In other words, Ptu
N,ε(0) dy =∑

x∈Dε
uN,ε(x,0)Pt (x, y) dy.

For a nonzero measure µ on D of finite total variation, we define µ to be cµ,
where c = c(µ) is a normalizing constant chosen so that the total variation of µ is
equal to 2. For definiteness, we let µ ≡ 0 if µ ≡ 0.

For the meaning of M1(S((0,∞),MF (D))), see Section 2.

THEOREM 3.1. Suppose that ε → 0 and N → ∞ in such a way that c1ε
−d ≤

N ≤ c2ε
−d for some constants 0 < c1 < c2 < ∞. Assume that D has an analytic

boundary, uN,ε(x,0) are nonrandom, and for some signed measure µ on D which
does not vanish identically,

∑
x∈Dε

εduN,ε(x,0)ix → µ in MF (D) as ε → 0. Then,
as ε → 0,∑

x∈Dε

εduN,ε(x, ·)ix − P·µ → δ0 in M1
(
S
(
(0,∞),MF (D)

))
.
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The symbol δ0 in the last formula refers to the process identically equal to the
null measure.

Note that we have not assumed that the total variation of µ is equal to 2. The
total variation of µ cannot be larger than 2, but it can be smaller than 2 when
the particles are tightly interspersed at time 0. If the total variation of µ is less
than 2, then for small ε, the particle configuration has an almost instantaneous
jump at time 0 to a configuration that approximates µ. For this reason, we obtain
convergence only in M1(S((0,∞),MF (D))), not in M1(S([0,∞),MF (D))). If
the total variation of µ is equal to 2, our arguments show that the convergence
holds in M1(S([0,∞),MF (D))).

The assumption that uN,ε(x,0) are nonrandom measures is easy to remove—we
added it for technical convenience only.

Theorem 3.1 is a special case of Theorem 3.2 below. We need some more nota-
tion to present this more general result.

Recall from Section 2 that −λn, n = 0,1,2, . . . , are the eigenvalues of the
Laplacian on D with the Neumann boundary conditions, and φn are the corre-
sponding eigenfunctions. For a measure µ on D, we write µ̂n = ∫

D φn dµ. For a
function f :Dε → R, we let 〈f,g〉 = εd ∑

x∈Dε
f (x)g(x). The Fourier coefficients

for the “density” u(x, t) will be denoted ûn = ûn(t) = 〈u(t), φn〉. In other words,
ûn is the nth Fourier coefficient for the measure

∑
x∈Dε

εduN,ε(x, t)ix .
Note that if

∑
x∈Dε

εduN,ε(x,0)ix → µ in MF (D) as ε → 0, where µ is a
signed measure that is not identically equal to 0, then, for some n, there exists
a > 0 such that |ûn(0)| ≥ a for sufficiently small ε > 0 (see Lemma 2.2 and its
proof).

THEOREM 3.2. Suppose that ε → 0 and N → ∞ in such a way that c1ε
−d ≤

N ≤ c2ε
−d for some constants 0 < c1 < c2 < ∞. Assume that D has an analytic

boundary and for some n, there exists a > 0 such that infN,ε |ûn(0)| = a. Then, as
ε → 0,∑

x∈Dε

εduN,ε(x, ·)ix − P·uN,ε(0) → δ0 in M1
(
S
(
(0,∞),MF (D)

))
.

The remainder of the paper is devoted to the proof of this theorem. We start with
a very informal overview. The proof will be divided into several steps.

In Step 1 we observe that the density field, u, of + particles minus − particles,
satisfies a particularly simple, linear equation at the microscopic scale,

duε = [�∗
ε + Vε]uε + dMε,

where �∗
ε is the adjoint of the random walk generator, V = V (t) is the particle

annihilation rate, and M is a field of martingales.
This is based on the following elementary observation. Let A be the generator of

a continuous time Markov process with state space S. Let L denote the generator
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of a system of particles of two types, on S, performing this dynamics, and, in
addition, annihilating on contact. Let ηx denote the number of the first type minus
the number of the second type, at x ∈ S. Then

L(ηx) = (A∗η)x.

Adding the particle creation term, which is clearly of mean field type, gives the
preceding linear equation.

Now our problem is to show that uε(t, x) is close to v(t, x) = Ptuε(0, x).
v(t, x) satisfies a similar looking equation ∂tv = [� + W ]v, where the job of
W = W(t) is to maintain the total mass of v. Formally differentiating

∫
D |v|dx

gives W(t) = ∫
D δ(v = 0)|∇v|2 dx/

∫
D |v|dx. So there are two key things to

prove: First, that the martingale terms vanish in the limit. Second, that Vε looks
like W on the macroscale. Note that control of Mε itself is not enough. One really
needs to control martingale terms like

∫ t
0 e

∫ t
s Vε(u) du dMε(s). The Vε are the main

unknowns, and this is the key difficulty of the problem.
The linear form of the equation suggests the use of Fourier analysis. In Step 2 we

rewrite the equation as a system of stochastic differential equations for the Fourier
coefficients of the density field [see (3.6) and (3.7)]. A simple observation is that,
because of the conservation law, and well-known bounds on the eigenfunctions of
the Laplacian, the Fourier coefficients themselves are bounded. A bit of calculus,
and the particular form of the system, then allow us to obtain an a priori estimate
on Vε [see (3.15)]. Once this is done, a preliminary form of the limiting equation
can be obtained [see (3.16)].

(3.16) tells us that what we see macroscopically at time t is the evolution of the
density field by the heat equation, as long as we are willing to multiply by some
scaling factor. At first glance, this would appear to imply the full result, because
the scaling factor is fixed by the conservation law. However, there is still a lot of
work to show that this is in fact the case. What could be happening is that the
two type of particles are coexisting on some mesoscopic scale. All we would see
on the macroscale is a net decrease in the total mass. In Step 3 we show that this
cannot happen. The reason is that such a situation would lead to a very large rate
of annihilation, as + and − particles would find themselves unnaturally close to
each other. So Vε would get very large. But we already have a bound (3.15) which
prevents this. Finally, in Steps 4 and 5 similar ideas are used to show the required
tightness.

We now proceed with the proof.

PROOF OF THEOREM 3.2. Step 1. In this step we will show that, for z ∈ Dε

and f (η) = ηz,

Lεf (η) = �∗
εηz + V ηz,(3.1)
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where V = V (ε,N,η) is the (normalized, instantaneous) jump intensity for the
particle system in state η, defined by

V = 2N−1
∑

x,y∈Dε

h−1
ε (x)pxy

(
η+

x 1{ηy<0} + η−
x 1{ηy>0}

)

and

�∗
εf (x) = ∑

y∈Dε

(
h−1

ε (y)pyxf (y) − h−1
ε (x)pxyf (x)

)
.

This operator is the adjoint of the discrete Laplacian �ε given by

�εf (x) = h−1
ε (x)

∑
y∈Dε

pxy

(
f (y) − f (x)

)
.

Fix some z ∈ Dε and let f (η) = ηz. Then

Lf (η) = ∑
x,y∈Dε

h−1
ε (x)pxy

{
η+

x 1{ηy≥0}
(
1{y=z} − 1{x=z}

)

+ η−
x 1{ηy≤0}

(
1{x=z} − 1{y=z}

)
+ η+

x 1{ηy<0}N−2

× ∑
u,v∈Dε

η+
u η−

v

(
1{y=z} + 1{u=z}

(3.2)
− 1{x=z} − 1{v=z}

)
+ η−

x 1{ηy>0}N−2

× ∑
u,v∈Dε

η−
u η+

v

(
1{x=z} + 1{v=z}

− 1{y=z} − 1{u=z}
)}

.

The sum of the terms in (3.2) with the indicators 1{x=z} is equal to

∑
y∈Dε

h−1
ε (z)pzy

[
−η+

z 1{ηy≥0} + η−
z 1{ηy≤0}

− η+
z 1{ηy<0}N−2

∑
u,v∈Dε

η+
u η−

v

+ η−
z 1{ηy>0}N−2

∑
u,v∈Dε

η−
u η+

v

]
(3.3)
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= ∑
y∈Dε

h−1
ε (z)pzy

[−η+
z 1{ηy≥0} + η−

z 1{ηy≤0}

− η+
z 1{ηy<0}N−2N2 + η−

z 1{ηy>0}N−2N2]
= − ∑

y∈Dε

h−1
ε (z)pzyηz.

A similar calculation shows that the sum of the terms in (3.2) with the indica-
tors 1{y=z} is equal to ∑

x∈Dε

h−1
ε (x)pxzηx.(3.4)

The sum of the terms in (3.2) with the indicators 1{u=z} is equal to

∑
x,y∈Dε

h−1
ε (x)pxy

[
η+

x 1{ηy<0}N−2
∑

v∈Dε

η+
z η−

v

− η−
x 1{ηy>0}N−2

∑
v∈Dε

η−
z η+

v

]

(3.5)
= ∑

x,y∈Dε

h−1
ε (x)pxy

[
η+

x 1{ηy<0}N−2η+
z N − η−

x 1{ηy>0}N−2η−
z N

]

= (1/2)V ηz.

Similarly, the sum of the terms in (3.2) with the indicators 1{v=z} is equal to
(1/2)V ηz. Combining this and (3.2)–(3.5), we obtain (3.1).

Step 2. We will now derive estimates for the Fourier coefficients of u. Note that
η is a finite state continuous time Markov process. Therefore (see [13], Chapter 4,

Proposition 1.7 and Chapter 4, Section 2), Mn(t)
df= ûn(t) − ∫ t

0 Lûn(s) ds is a mar-
tingale. In other words, the Fourier coefficient ûn satisfies the following stochastic
differential equation:

dûn = Lûn dt + dMn.(3.6)

Since φn is the nth eigenfunction, �φn = −λnφn, where � is the Laplacian on D

with the Neumann boundary conditions. Recall that we have assumed that D has
an analytic boundary. It was pointed out in [2] that, in view of Theorem 5.7.1 on
page 169 of [18], if the coefficients of a second-order elliptic equation are real an-
alytic on a bounded analytic domain D up to the boundary, then, for every point z

on ∂D, there exists a ball B centered at z such that solutions of the elliptic equation
can be extended to be real analytic functions on B . Hence, for every point x ∈ D,
φn(x) is equal to its power series in a neighborhood of x. The radius of conver-
gence of the series is strictly positive for every x ∈ D and continuous as a function
of x. Since the domain D is bounded, the radius of convergence is bounded below
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for all x ∈ D by a strictly positive constant. The coefficients of the power series
are continuous as functions of x. We will estimate

∑
y∈Dε

pxy(φn(y) − φn(x)) us-
ing power series expansion at x. Since the normal derivative of φn vanishes on the
boundary, (2.2) implies that the sum of linear terms vanishes. The sum of quadratic
terms is equal to ε2�φn(x) + o(ε3) because of (2.3). The contribution of higher
terms is o(ε3). Hence, the sum in question is equal to ε2�φn(x)+ o(ε3). It is easy
to check using the definition (2.3) that hε(x) is of order ε2. All these estimates
imply that we have

�εφn(x) = �φn(x) + ψε(x) = −λnφn(x) + ψε(x),

where |ψε(x)| ≤ c(n)ε. We have Lηx = �∗
εηx + V ηx and

ûn = 〈u,φn〉 = εd
∑

x∈Dε

N−1ε−dηxφn(x) = N−1
∑

x∈Dε

ηxφn(x),

so

Lûn = N−1
∑

x∈Dε

(Lηx)φn(x)

= N−1
∑

x∈Dε

(�∗
εηx)φn(x) + N−1

∑
x∈Dε

(V ηx)φn(x)

= N−1
∑

x∈Dε

( ∑
y∈Dε

(
h−1

ε (y)pyxηy − h−1
ε (x)pxyηx

))
φn(x)

+ N−1V
∑

x∈Dε

ηxφn(x)

= N−1
∑

x∈Dε

( ∑
y∈Dε

(
h−1

ε (x)pxyφn(y) − h−1
ε (x)pxyφn(x)

))
ηx(3.7)

+ N−1V
∑

x∈Dε

ηxφn(x)

= N−1
∑

x∈Dε

ηx(�εφn(x)) + V N−1
∑

x∈Dε

ηxφn(x)

= N−1
∑

x∈Dε

ηx

(−λnφn(x) + ψε(x)
) + V N−1

∑
x∈Dε

ηxφn(x)

= (V − λn)ûn + �ε,n,

where |�ε,n| ≤ c(n)ε.
The process η has only a finite number of states, so Lûn is uniformly bounded.

The process ûn jumps after an exponential waiting time. These facts and the for-
mula Mn(t) = ûn(t) − ∫ t

0 Lûn(s) ds imply that

lim
s→0

E[(Mn(t + s) − Mn(t))
2]

E[(ûn(t + s) − ûn(t))2] = 1.
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It follows that

E[M2
n(t)] =

∫ t

0
E[An(s)]ds,(3.8)

where An = An(t, η) is given by the following formula:

An = lim
s→0

(1/s)E
[(

ûn(t + s) − ûn(t)
)2|η(t)

]

= N−2
∑

x,y∈Dε

h−1
ε (x)pxy

{
η+

x 1{ηy≥0}
(
φn(y) − φn(x)

)2

+ η−
x 1{ηy≤0}

(
φn(x) − φn(y)

)2

+ η+
x 1{ηy<0}N−2

∑
u,v∈Dε

η+
u η−

v

(
φn(y) − φn(x)

+ φn(u) − φn(v)
)2

+ η−
x 1{ηy>0}N−2

∑
u,v∈Dε

η−
u η+

v

(
φn(x) − φn(y)

− φn(u) + φn(v)
)2

}
.

This implies the following bound for An, for small ε:

An ≤ c1N
−1V (ε2‖∇φn‖2∞ + ‖φn‖2∞) ≤ βnN

−1V,(3.9)

where βn < ∞ depends on φn, and ∇ stands for the usual gradient acting on func-
tions defined on Rd . It follows from (3.6) and (3.7) that

ûn(t) = e
∫ t

0 (V (r)−λn)dr

(
ûn(0) +

∫ t

0
e− ∫ s

0 (V (r)−λn)dr dMs

+
∫ t

0
e− ∫ s

0 (V (r)−λn)dr�ε,n(s) ds

)

= ûn(0)e
∫ t

0 (V (r)−λn)dr +
∫ t

0
e

∫ t
s (V (r)−λn)dr dMs(3.10)

+
∫ t

0
e

∫ t
s (V (r)−λn)dr�ε,n(s) ds

df= ûn(0)e
∫ t

0 (V (r)−λn)dr + Rn,1(t) + Rn,2(t).

Since Rn,1(t) = ∫ t
0 e

∫ t
s (V (r)−λn)dr dMs , (3.8) and [20], Chapter II, Section 6, Corol-

lary 3 and Theorem 29, show that

E[R2
n,1(t)] = E

[∫ t

0
e2

∫ t
s (V (r)−λn)drAn(s) ds

]
.
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In view of (3.9),

E[R2
n,1(t)] ≤ βnN

−1E

[∫ t

0
V (s)e2

∫ t
s (V (r)−λn)dr ds

]
.

We have ∫ t

0
V (s)e2

∫ t
s (V (r)−λn)dr ds

= λn

∫ t

0
e2

∫ t
s (V (r)−λn)dr ds + (1/2)

(
e2

∫ t
0 (V (r)−λn)dr − 1

)
≤ c2e

2
∫ t

0 V (r) dr ,

where c2 depends on t and n. Thus, for some c3 that depends on t and n,

E[R2
n,1(t)] ≤ c3βnN

−1E

[∫ t

0
e2

∫ t
s V (r) dr ds

]
.

For the second remainder, we have the following estimate, using the Cauchy–
Schwarz inequality:

E[R2
n,2(t)] ≤ t2

(
sup
s≤t

�2
ε,n(s)

)
E

[∫ t

0
e2

∫ t
s (V (r)−λn)dr ds

]

≤ c(n)2ε2t2E

[∫ t

0
e2

∫ t
s (V (r)−λn)dr ds

]
.

Hence,

E
[(

Rn,1(t) + Rn,2(t)
)2]

(3.11)
≤ 2

(
c3βnN

−1 + c(n)2ε2t2)
E

[
e2

∫ t
0 V (r) dr].

Recall that, for some n, there exists a > 0 such that infN,ε |ûn(0)| = a. Let n0 be
the smallest n satisfying this condition. It follows from (3.10) and (3.11) that

E
[(

ûn0(t) − ûn0(0)e
∫ t

0 (V (r)−λn0 ) dr)2]
(3.12)

≤ 2
(
c3βn0N

−1 + c(n0)
2ε2t2)

E
[
e2

∫ t
0 V (r) dr].

Suppose that N is large enough (and, consequently, ε is small) so that

4
(
c3βn0N

−1 + c(n0)
2ε2t2) ≤ (1/2)a2e−2λn0 t .(3.13)

Since ‖φn0‖∞ < ∞ and εd ∑
x |u(x, t)| = 2, we obtain

∣∣ûn0(t)
∣∣ =

∣∣∣∣∣εd
∑

x∈Dε

u(x, t)φn0(x)

∣∣∣∣∣ ≤ c4.(3.14)
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By (3.12), (3.13) and (3.14),

a2e−2λn0 tE
[
e2

∫ t
0 V (r) dr]

≤ E
[(

ûn0(0)e
∫ t

0 (V (r)−λn0 ) dr)2]
≤ 2E

[(
ûn0(t) − ûn0(0)e

∫ t
0 (V (r)−λn0 ) dr)2] + 2E

[(
ûn0(t)

)2]
≤ 4

(
c3βn0N

−1 + c(n0)
2ε2t2)

E
[
e2

∫ t
0 V (r) dr] + 2c2

4

≤ (1/2)a2e−2λn0 tE
[
e2

∫ t
0 V (r) dr] + 2c2

4,

so

E
[
e2

∫ t
0 V (r) dr] ≤ 4c2

4a
−2e2λn0 t .(3.15)

Note that P̂tu(0)n = e−λnt ûn(0) and let v(x, t) = e
∫ t

0 V (r)dr (Ptu
N,ε(0))(x).

We combine (3.10), (3.11) and (3.15) to see that if N → ∞ (and, therefore,
ε → 0), then, for every fixed n and t > 0, ûn(t) − v̂n(t) → 0 in distribution. Then
Lemma 2.2 shows that∑

x∈Dε

εduN,ε(x, t)ix − e
∫ t

0 V (r) drPtu
N,ε(0) → δ0 in M1(MF (D)).(3.16)

Step 3. It is not obvious that the normalization of Ptu
N,ε(0) in (3.16) is the same

as in the statement of Theorem 3.2. It is conceivable that a sizeable proportion of
positive and negative particles are tightly interspersed so that their masses cancel
each other in the limit. We will show that this is not the case—intuitively, the two
populations occupy disjoint parts of D.

Let Bδ(x) denote a hypercube in Dε , centered at x, with side length δ. We will
consider only δ > ε. We set


δ(t, x) = min

( ∑
y∈Bδ(x)

η+
y ,

∑
y∈Bδ(x)

η−
y

)
.

Note that if ε < δ/2 and x ∈ Dδ , then Bδ(x) contains at least (δ/2ε)d sites
y ∈ Dε . Fix an arbitrarily small c0 > 0. Suppose that, for some Bδ(x), we have

δ(t, x) ≥ c0(δ/2ε)d . Given this assumption, we will show that the number of
(+ and −) particles that are located in Bδ(x) at time t and collide with a particle
of the opposite sign before time t + δ2 has expectation greater than c1
δ(t, x).
Suppose, without loss of generality, that there are fewer + than − particles in
Bδ(x) at time t , that is, 
δ(t, x) = ∑

y∈Bδ(x) η
+
x . Consider independent continuous

time reflecting random walks Yk , 1 ≤ k ≤ 
δ(t, x), starting from the same points
as the locations of the + particles at time t in Bδ(x). The distribution of a process
{Yk(s), s ≥ t} is the same as for a single particle in our process η, except that Yk’s
do not interact with other particles. For k < (1/2)(δ/2ε)d ∧ 
δ(t, x),

P
(
Yk(t + δ2) �= Yj (t + δ2),1 ≤ j ≤ k − 1

)
> p1 > 0,
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where p1 depends only on the dimension d . This implies that, with probability p2,
the number of different sites occupied by Yk(t + δ2), 1 ≤ k ≤ 
δ(t, x), is greater
than c2(δ/ε)

d , where p2, c2 > 0 depend only on d and c0.
Choose 
δ(t, x) locations of the − particles at time t in Bδ(x). From each of

these points, start a continuous time reflecting random walk Zk . Assume that Zk’s,
1 ≤ k ≤ 
δ(t, x), are independent, and they are independent of Yk’s. Suppose that
the number of different sites occupied by Yk(t + δ2), 1 ≤ k ≤ 
δ(t, x), is greater
than c2(δ/ε)

d and call the set of these sites �. Then it is easy to see that, with
probability greater than p3 > 0, the number of distinct sites in � occupied by
Zk(t + δ2), 1 ≤ k ≤ (c2/2)(δ/ε)d , is greater than c3(δ/ε)

d .
Suppose that there are at least c2(δ/ε)

d sites in � and the number of distinct
sites in � occupied by Zk(t + δ2), 1 ≤ k ≤ (c2/2)(δ/ε)d , is greater than c3(δ/ε)

d .
Find the first time t1 > t when some Yk and Zj occupy the same site and call these
particles “eliminated.” Then, by induction, find the smallest tm > tm−1 when some
noneliminated Yk and Zj occupy the same site and eliminate this pair of particles.
Note that the total number of eliminated pairs by the time t + δ2 cannot be smaller
than (c3/2)(δ/ε)d .

Now we return to our original model, with interactions between particles. Con-
sider the set of + and − particles in η that reside at the same locations as
Yk’s and Zk’s at time t in Bδ(x). Choose from this set a pair (Q+,Q−) consist-
ing of a + and a − particle and suppose that it would have been “eliminated” in
the scheme described above, that is, if these two particles had been Yk and Zj

for some k and j . If Q+ and Q− do not meet before time t + δ2, it means that
one of these particles must have met a particle of the opposite sign (different from
Q+ and Q−) before time t + δ2, and hence, at least one of particles Q+ and Q−
has a jump before time t + δ2. Thus, with probability greater than p2p3 > 0, there
will be at least (c3/4)(δ/ε)d jumps between times t and t + δ2, by particles that
are located in Bδ(x) at time t , assuming that 
δ(t, x) ≥ c0(δ/2ε)d .

Let K(t) be the number of collisions before t . Then EK(t) = (N/2)E
∫ t

0V (s)ds.
Let Hδ(t) = {x ∈ Dδ :
δ(t, x) ≥ c0(δ/2ε)d}. We see that, for some c1 depending
on c0,

EK(t) ≥
[t/δ2]−1∑

k=0

E
∑

x∈Hδ(kδ2)

c1[
δ(kδ2, x)].

For the same reason, for s ∈ [0, δ2],

EK(t) ≥
[(t−s)/δ2]−1∑

k=0

E
∑

x∈Hδ(kδ2)

c1[
δ(kδ2 + s, x)].

Hence,

EK(t) ≥
∫ t−2δ2

δ2
δ−2E

∑
x∈Hδ(s)

c1[
δ(s, x)]ds.(3.17)
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For a function f on Dε , let �(x, δ, f ) = ∑
y∈Bδ(x) f (y). Recall that ut =

u(x, t) = N−1ε−dηx . We have

�(x, δ, |ut |) − |�(x, δ, ut )| = 2N−1ε−d
δ(t, x).(3.18)

If x /∈ Hδ(s), then either∑
y∈Bδ(x)

η+
y ≤ c0(δ/2ε)d or

∑
y∈Bδ(x)

η−
y ≤ c0(δ/2ε)d .

Hence, ∑
x /∈Hδ(s)

(
�(x, δ, |us |) − |�(x, δ, us)|) ≤ ∑

x /∈Hδ(s)

c0(δ/2ε)d

(3.19)
≤ ∑

x∈Dδ

c0(δ/2ε)d ≤ c0c4ε
−d,

where c4 is a constant depending only on D. Recall that N ≥ c5ε
−d . In view

of (3.15), (3.17), (3.18) and (3.19),

E

[∫ t−2δ2

δ2

(
2 − ∑

x∈Dδ

|�(x, δ, εdus)|
)

ds

]

= E

[∫ t−2δ2

δ2

∑
x∈Dδ

(
�(x, δ, |εdus |) − |�(x, δ, εdus)|)ds

]

= εdE

[∫ t−2δ2

δ2

∑
x∈Dδ

(
�(x, δ, |us |) − |�(x, δ, us)|)ds

]

= εdE

[∫ t−2δ2

δ2

∑
x /∈Hδ(s)

(
�(x, δ, |us |) − |�(x, δ, us)|)ds

]

(3.20)

+ εdE

[∫ t−2δ2

δ2

∑
x∈Hδ(s)

(
�(x, δ, |us |) − |�(x, δ, us)|)ds

]

≤ c0c4t + 2εdE

[∫ t−2δ2

δ2

∑
x∈Hδ(s)

N−1ε−d
δ(s, x) ds

]

≤ c0c4t + 2c6N
−1δ2EK(t)

= c0c4t + 2c6δ
2E

[∫ t

0
V (s) ds

]

≤ c0c4t + c7δ
2,

where c7 depends on c0. For a fixed t > 0 and n > 0, we can find c0 > 0 and
δn ∈ (0,2−n) so small that the right-hand side of (3.20) is less than 2−n. Let Tn be
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the set of s ∈ [0, t] such that, for ε < δn,

E

[
2 − ∑

x∈Dδn

|�(x, δ, εdus)|
]

≥ n22−n.

Then, by (3.20), |Tn| ≤ n−2. Choose arbitrarily small c∗ > 0 and let n0 be so large
that

∑
n≥n0

|Tn| < c∗. Let T∗ = (0, t] \ ⋃
n≥n0

Tn. For s ∈ T∗, and ε < δn,

P

(
2 − ∑

x∈Dδn

|�(x, δ, εdus)| ≥ n32−n

)
≤ n−1.(3.21)

By passing to a subsequence, if necessary, we may assume that
∑

x∈Dε
εduN,ε(x,

s)ix converges in M1(MF (D)). It follows from (3.21) that any limit of
∑

x∈Dε
εd ×

uN,ε(x, s)ix is supported on measures with the total variation 2, for every s ∈ T∗.
Since c∗ > 0 in the definition of T∗ is arbitrarily small, we obtain the same con-
clusion for almost every s ∈ [0, t]. This and (3.16) imply that, for almost every
s > 0, ∑

x∈Dε

εduN,ε(x, s)ix − PsuN,ε(0) → δ0 in M1(MF (D)).(3.22)

Step 4. We will next show that, for large N , the process r → ∫ r
0 V (s) ds is close

to being continuous, in the sense that

lim sup
δ1,δ2→0

lim sup
ε→0

P

(
sup

0≤t1,t2≤t,|t1−t2|≤δ1

∫ t2

t1

V (s) ds ≥ δ2

)
= 0.

We need the above claim in the last step of the proof.
Let C(s) be such that C(s)Psu

N,ε(0) = PsuN,ε(0). Note that C(s) ∈ (0,∞)

for all s because the solution to the heat equation in D with Neumann boundary
conditions and nonzero initial condition with finite total variation is never iden-
tically zero and for all s, it has a finite variation. It is easy to see that C(s) is
a nondecreasing function. By assumption, C(0) = 1. Recall that, for some n,
there exists a > 0 such that infN,ε |ûn(0)| = a and P̂su(0)n = e−λnsûn(0). Since

P̂su(0)n = ∫
φn dPsu(0) and φn is bounded (see the proof of Lemma 2.2), it fol-

lows that the total variation of Ptu(0) is bounded below and, therefore, C(t) is
bounded above by a constant depending on D,n,a and t .

By Theorem 2.1 of [3], for any 0 < s1 < s2 < ∞, the Neumann heat kernel
ps(x, y) is Hölder continuous jointly in (s, x, y) on [s1, s2] × D × D. Let f (s, x)

be the density of Psu(0) at x ∈ D. We see that, for any 0 < s1 < s2 < ∞, the
family of densities {f (s, x)} corresponding to all measures uN,,ε(0) satisfying our
assumptions is equicontinuous on [s1, s2]×D. This implies that the family of func-
tions {C(s),0 ≤ s ≤ t} is equicontinuous. Since the family {f (s, x)} is equicontin-
uous and the total variation of Psu(0) is bounded below on [s1, s2] × D, it follows
that the Prohorov distance of Psu(0) from the measure identically equal to 0 is
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bounded below on [s1, s2] by a constant depending only on D,n,a, s1 and s2. By
(3.16) and (3.22), for almost every s > 0,(

C(s) − e
∫ s

0 V (r) dr)Psu
N,ε(0) → δ0 in M1(MF (D)).

We see that C(s)− e
∫ s

0 V (r) dr must converge to 0 in distribution for almost every s.
Since C(s) are uniformly continuous and nondecreasing, and e

∫ s
0 V (r) dr is non-

decreasing, it is easy to see that C(s) − e
∫ s

0 V (r) dr converges to 0 uniformly on
compact intervals, in distribution, as N → ∞. This implies the claim stated at the
beginning of Step 4.

Step 5. Next we will show that the convergence holds not only for every fixed
t > 0, but also in the Skorohod topology on M1(S((0,∞),MF (D))). Fix a smooth
function ϕ on D and let wε

t = wt = 〈ut , ϕ〉. We will show that the family of
processes {wε, ε > 0} is tight in M1(S((0,∞),R)). In order to prove that, we will
first derive some estimates for wt similar to the estimates for ûn. We have

dwt = Lwt dt + dMϕ(t),(3.23)

where Mϕ(t) is a martingale. Since ϕ is smooth, there exists a series expansion
for ϕ that yields

�εϕ(x) = �ϕ + ψε(x),

where |ψε(x)| ≤ cϕε. We have Lηx = �∗
εηx + V ηx and

wt = 〈u,ϕ〉 = εd
∑

x∈Dε

N−1ε−dηxϕ(x) = N−1
∑

x∈Dε

ηxϕ(x),

so

Lw = N−1
∑

x∈Dε

(Lηx)ϕ(x)

= N−1
∑

x∈Dε

(�∗
εηx)ϕ(x) + N−1

∑
x∈Dε

(V ηx)ϕ(x)

= N−1
∑

x∈Dε

( ∑
y∈Dε

(
h−1

ε (y)pyxηy − h−1
ε (x)pxyηx

))
ϕ(x)

+ N−1V
∑

x∈Dε

ηxϕ(x)

= N−1
∑

x∈Dε

( ∑
y∈Dε

(
h−1

ε (x)pxyϕ(y) − h−1
ε (x)pxyϕ(x)

))
ηx

+ N−1V
∑

x∈Dε

ηxϕ(x)

= N−1
∑

x∈Dε

ηx(�εϕ(x)) + V N−1
∑

x∈Dε

ηxϕ(x)(3.24)
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= N−1
∑

x∈Dε

ηx

(
�ϕ(x) + ψε(x)

) + V N−1
∑

x∈Dε

ηxϕ(x)

= 〈u,�ϕ〉 + �ε + V w,

where |�ε| ≤ cϕε. Note that

E[M2
ϕ(t)] =

∫ t

0
E[Aϕ(s)]ds,(3.25)

where Aϕ = Aϕ(t, η) is given by the following formula:

Aϕ = lim
s→0

(1/s)E
[(

w(t + s) − w(t)
)2|η(t)

]

= N−2
∑

x,y∈Dε

h−1
ε (x)pxy

{
η+

x 1{ηy≥0}
(
ϕ(y) − ϕ(x)

)2

+ η−
x 1{ηy≤0}

(
ϕ(x) − ϕ(y)

)2

+ η+
x 1{ηy<0}N−2

∑
u,v∈Dε

η+
u η−

v

(
ϕ(y) − ϕ(x)

+ ϕ(u) − ϕ(v)
)2

+ η−
x 1{ηy>0}N−2

∑
u,v∈Dε

η−
u η+

v

(
ϕ(x) − ϕ(y)

− ϕ(u) + ϕ(v)
)2

}
.

We obtain the following bound for Aϕ , for small ε:

Aϕ ≤ c1N
−1V (ε2‖∇ϕ‖2∞ + ‖ϕ‖2∞) ≤ βN−1V,(3.26)

where β < ∞ depends on ϕ.
It follows from (3.23) and (3.24) that

w(t) = e
∫ t

0 V (r) dr

(
w(0) +

∫ t

0
e− ∫ s

0 V (r) dr dMϕ(s)

+
∫ t

0
e− ∫ s

0 V (r) dr(〈u,�ϕ〉(s) + �ε(s)
)
ds

)

= w(0)e
∫ t

0 V (r) dr +
∫ t

0
e

∫ t
s V (r) dr dMϕ(s)(3.27)

+
∫ t

0
e

∫ t
s V (r) dr�ε(s) ds +

∫ t

0
e

∫ t
s V (r) dr〈u,�ϕ〉(s) ds

df= w(0)e
∫ t

0 V (r) dr + R1(t) + R2(t) + R3(t).
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In view of (3.25), (3.26) and (3.15), we have

E[R2
1(t)] = E

[∫ t

0
e2

∫ t
s V (r) drAn(s) ds

]

≤ c2βN−1E

[∫ t

0
V (s)e2

∫ t
s V (r) dr ds

]

= c2βN−1E
[
(1/2)

(
e2

∫ t
0 V (r) dr − 1

)]
≤ c3βN−1E

[
e2

∫ t
0 V (r) dr]

≤ c4e
2λn0 tN−1.

Since R1(t) = ∫ t
0 e

∫ t
s V (r) dr dMϕ(s) and Mϕ(t) is a martingale, so is R1(t). Hence,

by Doob’s inequality,

E

[
sup

0≤s≤t

R2
1(s)

]
≤ 4E[R2

1(t)] ≤ 4c4e
2λn0 tN−1.

A similar calculation and (3.15) show that

E

[
sup

0≤s≤t

R2
2(s)

]
≤ t2

(
sup

0≤s≤t

�2
ε (s)

)
E

[∫ t

0
e2

∫ t
s V (r) dr ds

]
≤ c5ε

2t2.

Hence,

E

[
sup

0≤s≤t

(
R1(s) + R2(s)

)2
]

≤ c6(N
−1 + ε2t2),(3.28)

where c6 depends on t and ϕ.
For the last term on the right-hand side of (3.27), we observe that, for 0 ≤ t1 <

t2 ≤ t ,

|R3(t2) − R3(t1)| =
∣∣∣∣
∫ t2

t1

e
∫ t2
s V (r) dr〈u,�ϕ〉(s) ds

+
∫ t1

0

(
e

∫ t2
s V (r) dr − e

∫ t1
s V (r) dr)〈u,�ϕ〉(s) ds

∣∣∣∣
=

∣∣∣∣
∫ t2

t1

e
∫ t2
s V (r) dr〈u,�ϕ〉(s) ds

+
∫ t1

0
e

∫ t1
s V (r) dr(e∫ t2

t1
V (r) dr − 1

)〈u,�ϕ〉(s) ds

∣∣∣∣
≤ sup

0≤s≤t

e
∫ t
s V (r) dr

∫ t2

t1

|〈u,�ϕ〉(s)|ds

+ (
e

∫ t2
t1

V (r) dr − 1
)

sup
0≤s≤t

e
∫ t
s V (r) dr

∫ t1

0
|〈u,�ϕ〉(s)|ds
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≤ c7e
∫ t

0 V (r) dr‖�ϕ‖∞|t2 − t1|
+ c8

(
e

∫ t2
t1

V (r) dr − 1
)
te

∫ t
0 V (r) dr‖�ϕ‖∞.

In view of (3.15) and the first claim in Step 4,

lim sup
δ1,δ2→0

lim sup
ε→0

P

(
sup

0≤t1,t2≤t,|t1−t2|≤δ1

|R3(t2) − R3(t1)| ≥ δ2

)
= 0.

This, (3.27), (3.28) and Lemma 2.3 show that {wε, ε > 0} is a tight family of
processes in M1(S((0,∞),R)). Since smooth functions are dense in the set of
continuous functions on D and the sum of two smooth functions is smooth, Theo-
rem 3.7.1 of [12] shows that the family of processes {∑x∈Dε

εduN,ε(x, ·)ix, ε > 0}
is tight in M1(S((0,∞),MF (D))). Since {P0u

N,ε(0), ε > 0} are tight and the
process t → PtuN,ε(0) is a continuous function with values in MF (D), completely
determined by P0u

N,ε(0), we conclude that{ ∑
x∈Dε

εduN,ε(x, ·)ix − P·uN,ε(0), ε > 0

}

is tight in M1(S((0,∞),MF (D))). By (2.13), any convergent subsequence of this
family must be identically equal to δ0, by the right continuity. �
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