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SECOND CLASS PARTICLES AND CUBE ROOT ASYMPTOTICS
FOR HAMMERSLEY’S PROCESS

BY ERIC CATOR AND PIET GROENEBOOM

Delft University of Technology and Vrije Universiteit Amsterdam

We show that, for a stationary version of Hammersley’s process, with
Poisson sources on the positive x-axis and Poisson sinks on the positive
y-axis, the variance of the length of a longest weakly North–East path L(t, t)

from (0,0) to (t, t) is equal to 2E(t − X(t))+, where X(t) is the location of
a second class particle at time t . This implies that both E(t − X(t))+ and the
variance of L(t, t) are of order t2/3. Proofs are based on the relation between
the flux and the path of a second class particle, continuing the approach of
Cator and Groeneboom [Ann. Probab. 33 (2005) 879–903].

1. Introduction. In an influential paper Kim and Pollard [8] show that in
many statistical contexts we are confronted with estimators which converge at rate
n1/3 instead of the usual rate n1/2 and that in this situation the limit distribution
is nonnormal. They call this phenomenon “cube root asymptotics.” A prototype
of such an estimator is the maximum likelihood estimator of a decreasing density,
which converges locally at rate n1/3 after rescaling to the (almost surely unique)
location of the maximum of Brownian motion minus a parabola. The characteriza-
tion of this limit distribution in terms of Airy functions was given in [6].

It has been conjectured that the asymptotics for longest increasing subse-
quences, which can be analyzed by studying longest North–East paths of Ham-
mersley’s process, is related to these cube root phenomena in estimation theory
and, in particular, that it should be possible to derive the asymptotics along similar
lines. However, up till now, the cube root limit theory for longest increasing subse-
quences and longest North–East paths has been based on certain analytic relations,
involving Toeplitz determinants; see, for example, [2] and [3].

In this paper we will work with Hammersley’s process with sources and sinks,
as defined in [4]. We will give a short description here, based on Figure 1. We
consider the space–time paths of particles that started on the x-axis as sources,
distributed according to a Poisson distribution with parameter λ, and we consider
the t-axis as a time axis. In the positive quadrant we have a Poisson process of what
we call α-points (denoted in Figure 1 by ×), which will have intensity 1, unless
otherwise specified. On the t-axis (which also sometimes will be called y-axis) we
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FIG. 1. Space–time paths of the Hammersley’s process, with sources and sinks.

have a Poisson process of what we call sinks of intensity 1/λ. The three Poisson
processes are independent.

At the time an α-point appears, the particle immediately to the right of it jumps
to the location of the α-point. At the time a sink appears, the leftmost particle
disappears. To know the particle configuration at time s, we intersect a line at time
s with the space–time paths. The counting process of the particle configuration at
time t is denoted by Lλ(·, t), where we start counting at the first sink on the t-axis
up to (0, t), and continue counting on the halfline (0,∞) × {t}, so Lλ(x, t) equals
the total number of sinks in the segment {0} × [0, t] plus the number of crossings
of space–time paths of the segment [0, x] × {t}.

The total number of space–time paths in [0, x]× [0, t] is called the flux at (x, t).
It is in fact equal to Lλ(x, t). If λ = 1, we will denote L1(x, t) just by L(x, t),
unless this can cause confusion. The flux Lλ(x, t) equals the length of a longest
weakly NE (North–East) path from (0,0) to (x, t), where “weakly” means that
we are allowed to pick up either sources from the x-axis or sinks from the t-axis,
before we start picking up α-points. To see this from Figure 1, trace back a longest
weakly NE path from (x, t) to (0,0), and note that one will pick up exactly one
α-point or one source or one sink from each space–time path. Note that, if 0 < x <

y, Lλ(y, t)−Lλ(x, t) is the number of particles (or crossings of space–time paths)
on the segment [x, y] × {t}.

A heuristic argument for the cube root behavior of the fluctuation of the length
of a longest weakly NE path for the stationary Hammersley process runs as fol-
lows. Suppose, for simplicity, that λ = 1. A longest weakly NE path with length
L(t, t) = L1(t, t) can pick up points from either x- or y-axis before starting on a
strictly NE path to (t, t). Furthermore, let, for −t ≤ z ≤ t ,

N(z) =
{

number of sources in [0, z] × {0}, if z ≥ 0,
number of sinks in {0} × [0, |z|], if z ≤ 0,

(1.1)
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and

At(z) =




length of longest strictly NE path from (z,0) to (t, t),

if z ≥ 0,

length of longest strictly NE path from (0, |z|) to (t, t),

if z < 0.

(1.2)

Note that the processes At and N are independent and that

L(t, t) = sup{N(z) + At(z) :−t ≤ z ≤ t}.(1.3)

The process z �→ t−1/3{N(zt2/3) − |z|t2/3}, |z| ≤ t1/3, converges in the topol-
ogy of uniform convergence on compacta to two-sided Brownian motion, originat-
ing from zero. As will be shown below, the expectation of t−1/3At(zt

2/3) has an
asymptotic upper bound (as t → ∞) of the form

2t2/3 − |z|t1/3 − 1
4z2,

which is seen by taking expectations and optimizing the choice of λ in the inequal-
ity in Lemma 4.1. This suggests that the distance to zero of the exit point where the
longest path leaves either x- or y-axis cannot be of larger order than t2/3, since oth-
erwise the Brownian motion cannot cope with the downward parabolic drift −1

4z2,
temporarily assuming that the fluctuation of At(z) is of order Op(t1/3). The latter
fact we know to be true from the analytic approach, not used in our probabilistic
approach. On the other hand, we will derive this in Section 7; see (7.7).

The limit behavior of the exit point can be compared to the behavior of the
location of the maximum of Brownian motion minus a parabola, which plays a key
role in the asymptotics for the cube root estimation theory, mentioned above. The
crucial difference, however, is that the exit point is the location of the maximum of
the sum of two independent processes instead of the maximum of just one process.

We note here that the n1/3 convergence in estimation theory (so slower con-
vergence than the usual n1/2-convergence) corresponds to the t2/3 order of the
distance to zero of the exit point, which (after a time-reversal argument, based on
Burke’s theorem for Hammersley’s process) can be called “super-diffusive” be-
havior of a second class particle. The slower convergence in estimation theory is
caused by the fact that the estimators have an interpretation in terms of the location
of a maximum, just as the exit point for a longest weakly NE path in Hammersley’s
process.

The key relation which allows us to make the heuristic argument above rigorous
is Theorem 2.1 of Section 2, which, in combination with (time-reversal) results
of Section 3, tells us that Var(L(t, t)) = 2EZ(t)+, where Z(t) is the rightmost
point where a longest weakly NE path leaves the x-axis; see (3.2), Section 3. It is
shown in Section 4 that this implies EZ(t)+ = O(t2/3). In Section 5 we compare
longest strictly NE paths with longest weakly NE paths and obtain a bound on the
difference between the lengths of these paths. This allows us to also obtain a lower
bound for EZ(t)+ in Section 6. Finally, in Section 7 we discuss tightness results
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for the original Hammersley process without sources and sinks, in connection with
results of Seppäläinen [9].

Our methods heavily rely on the ideas developed in [4], which concern, in par-
ticular, the difference in behavior below and above the path of a second class parti-
cle and Burke’s theorem for Hammersley’s process, which enables us to use time-
reversal and reflection.

2. Variance of the flux and location of a second class particle. We will need
the concept’s second class particle and dual second class particle, which also play
an important role in later sections. A “normal” second class particle is created by
putting an extra source at (0,0) (thus effectively removing the first sink), and a dual
second class particle is created by putting an extra sink at (0,0), thus effectively
removing the first source. Define X(t) as the location at time t of a second class
particle in a stationary Hammersley process with source and sink intensity equal
to 1 (the symmetric case), and X′(t) as the location at time t of a dual second class
particle for this case.

As explained in [4], a “normal” second class particle X(t) jumps to the previ-
ous position of the ordinary (“first class”) particle that exits through the first sink
at the time of exit, and successively jumps to the previous positions of particles
directly to the right of it, at times where these particles jump to a position to the
left of the second class particle. The concept of a dual second class particle was
also considered in [4], but there it is seen as a second class particle for the process
“moving from left to right.” Figure 2 shows the trajectories of a second class parti-
cle and a dual second class particle. Note that we always have X(t) ≤ X′(t), which
is evident from Figure 2.

FIG. 2. Trajectories of (X(t), t) and (X′(t), t).
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Now consider a stationary Hammersley process with α-intensity 1, source-
intensity λ and sink-intensity 1/λ. Fix x, t > 0 and consider the flux Lλ(x, t).
Denote Xλ(t) and X′

λ(t) as the locations at time t of a second class particle and
a dual second class particle, respectively. We use the subscript λ to indicate that
the distribution of the location of the (dual) second class particle depends on λ. If
λ = 1, the subscript is suppressed. We have the following result:

THEOREM 2.1.

Var
(
Lλ(x, t)

) = −λx + t

λ
+ 2λE

(
x − Xλ(t)

)
+.

REMARK 2.1. A similar relation between the variance of the flux and the
location of a second class particle has been proved for totally asymmetric simple
exclusion processes (TASEP) in [5].

REMARK 2.2. Note that taking λ = √
t/x yields

Var
(
Lλ(x, t)

) = 2λE
(
x − Xλ(t)

)
+.

PROOF OF THEOREM 2.1. For notational clarity we use the four wind direc-
tions N,E,S and W to denote the number of crossings of the four respective sides
of the rectangle [0, x] × [0, t] [so Lλ(x, t) = N + W ]. Clearly, S + E = N + W .
We also know from Burke’s theorem for Hammersley’s process (see [4]) that N

and E are independent, just like S and W . This means that

Var
(
Lλ(x, t)

) = Var(W + N)

= Var(W) + Var(N) + 2 Cov(W,N)

= Var(W) + Var(N) + 2 Cov(S + E − N,N)(2.1)

= Var(W) − Var(N) + 2 Cov(S,N)

= t

λ
− λx + 2 Cov(S,N).

We want to investigate Cov(S,N). It turns out that we can do this by varying the
source-intensity appropriately. For ε > 0, we define a source-intensity of λ + ε.
The sinks remain a Poisson process with intensity 1/λ. We denote expectations
with respect to this new source intensity by Eε . Define

an = Eε(N |S = n).

Note that an does, in fact, not depend on ε, since we condition on the number of
sources in [0, x], and the sources outside this interval do not influence N . Then

∂

∂ε

∣∣∣∣
ε=0

Eε(N) = ∂

∂ε

∣∣∣∣
ε=0

∞∑
n=0

(x(λ + ε))n

n! e−x(λ+ε)an
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= 1

λ

∞∑
n=0

(xλ)n

n! e−xλan · n − x

∞∑
n=0

(xλ)n

n! e−xλan

= 1

λ
E(NS) − xE(N).

This shows that

Cov(N,S) = E(NS) − E(N)E(S)
(2.2)

= λ
∂

∂ε

∣∣∣∣
ε=0

Eε(N),

where we use that E(S) = λx.
We will calculate this derivative in the following manner. Fix, independently,

a Poisson process of intensity 1 of α-points in (0,∞)2, a Poisson process of
sources of intensity λ on the x-axis and a process of sinks of intensity 1/λ on the
t-axis. Now we add an independent Poisson process of intensity ε to the process of
sources. Define Nε as the number of crossings of the North-side [i.e., (0, x) × {t}]
for the process with the added sources.

Note that if we add an extra source at (z,0), then N increases by 1 if and only
if Xλ(t; z) < x, where Xλ(t; z) is the location of a second class particle at time t ,
which started at (z,0). We denote Xλ(t) = Xλ(t;0). This means that

E(Nε) = E(N0) + ε

∫ x

0
E

(
1{Xλ(t;z)<x}

)
dz + O(ε2).(2.3)

Therefore, by using the stationarity of the Hammersley process,

Cov(N,S) = λ
∂

∂ε

∣∣∣∣
ε=0

E(Nε)

= λ

∫ x

0
E

(
1{Xλ(t;z)<x}

)
dz

= λ

∫ x

0
P

(
Xλ(t) < x − z

)
dz(2.4)

= λ

∫ x

0
P

(
x − Xλ(t) > z

)
dz

= λE
(
x − Xλ(t)

)
+.

Combining this with (2.1) gives

Var
(
Lλ(x, t)

) = −λx + t

λ
+ 2λE

(
x − Xλ(t)

)
+. �

Now consider a stationary Hammersley process with source (and sink) inten-
sity 1. We denoted the flux of this process at (x, t) by L(x, t), and the location of a
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(dual) second class particle at time t , which started at (0,0), by X(t) [resp. X′(t)].
Note that under the map

(x, t) �→ (x/λ,λt),

a stationary process with source intensity 1 gets transformed into a stationary
process with source intensity λ (and corresponding sink intensity 1/λ). This rescal-
ing argument shows

λXλ(t)
D= X(t/λ) and λX′

λ(t)
D= X′(t/λ),(2.5)

where D= denotes equality in distribution.
We would like to bound Var(Lλ(t, t)) in terms of Var(L(t, t)) in the case where

λ ≥ 1. Using Theorem 2.1 and (2.5), we get, using the inequality (A + B)+ ≤
A+ + B+,

Var
(
Lλ(t, t)

) = −λt + t/λ + 2E
(
λt − t/λ + t/λ − X(t/λ)

)
+

≤ (λ − 1/λ)t + 2E
(
t/λ − X(t/λ)

)
+

= (λ − 1/λ)t + Var
(
L(t/λ, t/λ)

)
.

If we show the intuitively clear result that, for λ ≥ 1,

Var
(
L(t/λ, t/λ)

) ≤ Var
(
L(t, t)

)
,(2.6)

we have proved that

Var
(
Lλ(t, t)

) ≤ (λ − 1/λ)t + Var
(
L(t, t)

)
.(2.7)

We can show (2.6) by noting that Theorem 2.1 for λ = 1 is equivalent to

Var
(
L(x, t)

) = −x + t + 2
∫ x

0
P

(
X(t) ≤ z

)
dz.(2.8)

Define

φ(x, t) = Var
(
L(x, t)

)
.

Clearly, φ is symmetric, since the source and sink intensities are equal, which gives
reflection symmetry of the process.

Furthermore, (2.8) shows that φ is a continuously differentiable function, with

∂1φ(x, t) = −1 + 2P
(
X(t) ≤ x

)
.

If we can show that P(X(t) ≤ t) ≥ 1/2, we would have proved (2.6), since
∂1φ(t, t) ≥ 0 for a symmetric function φ implies that φ(t, t) is increasing in t .

Since reflecting Hammersley’s process in the diagonal preserves the distribu-
tion, while interchanging the trajectories of X′ and X, we know that

P
(
X(t) > x

) = P
(
X′(x) < t

) ≤ P
(
X(x) < t

)
.

Choosing t = x, we see that

P
(
X(t) > t

) ≤ P
(
X(t) < t

) = P
(
X(t) ≤ t

)
,

which shows that P(X(t) ≤ t) ≥ 1/2. As noted before, this proves (2.6).
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3. Connection between second class particles and exit points. As has al-
ready been noted in the Introduction, we can view the flux Lλ(x, t) in two ways:
it is the number of space–time paths in the square [0, x] × [0, t], but is also the
length of the longest weakly NE path from (0,0) to (x, t), where “weakly NE”
means that we are allowed to pick up sources or sinks, as well as α-points, as long
as we are going North–East. To work with this latter representation, which we will
mainly use in the symmetric case when both the source- and the sink-intensity
are 1, we define, for −t ≤ z ≤ t , N(z) and At(z) by (1.1) and (1.2). Remember
that the processes At and N are independent and that

L(t, t) = sup{N(z) + At(z) :−t ≤ z ≤ t}.(3.1)

Another important aspect of this representation is the location at which a longest
path leaves either the x-axis or the y-axis. Define

Z(t) = sup{z ∈ [−t, t] :N(z) + At(z) = L(t, t)}(3.2)

and

Z′(t) = inf{z ∈ [−t, t] :N(z) + At(z) = L(t, t)}.(3.3)

We call Z(t) and Z′(t) exit points for a longest path, since there exist longest paths
that leave the axis on (Z(t),0) [or (0,−Z(t))] or on (Z′(t),0) [or (0,−Z′(t))].
From this definition and using the symmetry of the situation, we can see that

Z′(t) ≤ Z(t) and Z(t)
D= −Z′(t).(3.4)

We will need another link between the two representations. We have defined X(t)

and X′(t) as the position at time t of a second class particle, respectively dual
second class particle, that starts at (0,0). Now define

Y(t) =
{

t − X(t), if X(t) ≤ t ,
inf{s ≥ 0 :X(s) ≥ t} − t, if X(t) > t ,

and

Y ′(t) =
{

t − X′(t), if X′(t) ≤ t ,
inf{s ≥ 0 :X′(s) ≥ t} − t, if X′(t) > t .

Since X′(t) ≥ X(t), we have Y ′(t) ≤ Y(t). Figure 3 shows the relation between
X and Y .

It also shows two relations which we will be important later:

a < t 	⇒ {X(t) < a} = {Y(t) > t − a} and

{X′(t) < a} = {Y ′(t) > t − a},
(3.5)

a > t 	⇒ {X(t) > a} = {Y(a) < t − a} and

{X′(t) > a} = {Y ′(a) < t − a}.
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FIG. 3. Relating X and Y .

Now consider Figure 4. The left picture shows a realization of the Hammersley
process and two longest weakly NE paths, corresponding to Z(t) and Z′(t). The
right picture shows the same realization, but now reflected in the point (1

2 t, 1
2 t).

Note that the longest paths become trajectories of a second class and a dual
second class particle in the reflected process, and that Z(t) corresponds to Y(t),
while Z′(t) corresponds to Y ′(t). Burke’s theorem in [4] states that the reflected
process is also a realization of the stationary Hammersley process, so that we can
indeed conclude that

Z(t)
D= Y(t) and Z′(t) D= Y ′(t).

In particular, this means, using Theorem 2.1 and noting that (t − X(t))+ = Y(t)+,
that

Var
(
L(t, t)

) = 2EZ(t)+.(3.6)

FIG. 4. Longest path is distributed as trajectory of a second class particle.
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4. EZ(t)+ is of order O(t2/3). We wish to control the exit point Z(t). We
will do this by considering an auxiliary Hammersley process Lλ, coupled to the
original one, by thickening the sources to a Poisson process of intensity λ ≥ 1
and thinning the sinks to a Poisson process of intensity 1/λ. The process At then
satisfies the following inequality.

LEMMA 4.1. Let λ ≥ 1 and define Lλ(x, t) as the flux of Lλ at (x, t). Then,
for 0 ≤ z ≤ t ,

At(z) ≤ Lλ(t, t) − Lλ(z,0).

PROOF. It is clear that a strictly NE path from (z,0) to (t, t) is shorter than a
longest weakly NE path from (z,0) to (t, t), where this path is allowed to either
pick up sources of Lλ on [z, t] × {0}, or pick up crossings of Lλ with {z} × [0, t].
However, this longest weakly NE path is equal to the number of space–time paths
in [z, t] × [0, t] of Lλ, which, in turn, is equal to Lλ(t, t) minus the number of
sources on [0, z] × {0}. �

We can now show the following theorem. We use the notation a(x) � b(x) if
there exists a constant M such that, for all parameters x, a(x) ≤ Mb(x).

THEOREM 4.2. Let 0 < c ≤ t/EZ(t)+. Then

P{Z(t) > c EZ(t)+} � t2

(EZ(t)+)3

(
1

c3 + 1

c4

)
.

PROOF. Note that, for any λ ≥ 1,

P{Z(t) > u} = P{∃ z > u : N(z) + At(z) = L(t, t)}
≤ P{∃ z > u : N(z) + Lλ(t, t) − Lλ(z,0) ≥ L(t, t)}
= P{∃ z > u : N(z) − Lλ(z,0) ≥ L(t, t) − Lλ(t, t)}.

Since Lλ(·,0) is a thickening of L(·,0), we get that Ñλ−1(z) := Lλ(z,0) − N(z)

is in itself a Poisson process with intensity λ − 1. This means that

P{Z(t) > u} ≤ P{Ñλ−1(u) ≤ Lλ(t, t) − L(t, t)}.
To have a useful bound for all 0 ≤ u ≤ 3

4 t , we choose λ such that

EÑλ−1(u) − E{Lλ(t, t) − L(t, t)} = (λ − 1)u − t

(
λ + 1

λ
− 2

)

is maximal. This means that we choose

λu = (1 − u/t)−1/2.
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Some useful elementary inequalities, that hold for all 0 < u ≤ 3
4 t , are

λu ≤ 2,

EÑλu−1(u) − E
{
Lλu(t, t) − L(t, t)

} ≥ 1
4u2/t,(4.1)

λu − 1/λu ≤ 2u/t.

Note that, due to (2.7) and (3.6),

Var
{
Lλu(t, t) − L(t, t)

} ≤ 2
(
Var

{
Lλu(t, t)

} + Var{L(t, t)})
≤ 8EZ(t)+ + 2t (λu − 1/λu)

≤ 8EZ(t)+ + 4u.

Now we can use Chebyshev’s inequality:

P{Z(t) > u} ≤ P
{
Ñλu−1(u) ≤ Lλu(t, t) − L(t, t)

}
≤ P

{
Ñλu−1(u) ≤ EÑλu−1(u) − u2/(8t)

}
+ P

{
Lλu(t, t) − L(t, t) ≥ EÑλu−1(u) − u2/(8t)

}
≤ 64t2(λu − 1)u

u4(4.2)

+ P
{
Lλu(t, t) − L(t, t) ≥ E

{
Lλu(t, t) − L(t, t)

} + u2/(8t)
}

� t2

u3 + 64t2(8EZ(t)+ + 4u)

u4

� t2

u3 + t2
EZ(t)+

u4 .

If t ≥ u ≥ 3
4 t , we see that

P{Z(t) > u} ≤ P

{
Z(t) >

3

4
t

}
� t2

u3 + t2
EZ(t)+

u4 ,

where we use (4.2). This means that (4.2) is true for all 0 ≤ u ≤ t . The theorem
now follows from choosing u = cEZ(t)+. �

With this theorem we can show that EZ(t)+ = O(t2/3).

COROLLARY 4.3. Let Z(t)+ and L(t, t) be defined as in (3.6). Then

lim sup
t→∞

EZ(t)+
t2/3 = lim sup

t→∞
Var(L(t, t))

2t2/3 < +∞.
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PROOF. Using (3.6), we only have to prove the statement for EZ(t)+. Suppose
there exists a sequence tn ↑ +∞ such that

lim
n→∞

EZ(tn)+
tn2/3 = +∞.

Using Theorem 4.2, we see that

P{Z(tn)+ > cEZ(tn)+} � t2
n

(EZ(tn)+)3

(
1

c3 + 1

c4

)
∧ 1.

Using dominated convergence [note that t2
n/(EZ(tn)+)3 is a bounded sequence],

this shows that ∫ ∞
0

P{Z(tn)+ > c EZ(tn)+}dc → 0,

which would imply the absurd assertion that

E

{
Z(tn)+

EZ(tn)+

}
→ 0. �

As a corollary we get the following:

COROLLARY 4.4. Let c ≥ 1. Then

P{Z(t) > c t2/3} � 1

c3 .

PROOF. This is an immediate consequence of Theorem 4.2 and the previous
corollary. �

REMARK. This result can be compared to a result on transversal fluctuations
of a longest NE path in [7]. He shows that all longest stricly NE paths from (0,0)

to (t, t) remain in a strip along the diagonal of width tγ , with probability tending
to 1, as t → ∞, for any γ > 2/3. To this end, he uses the analytic results in [2].
Section 3, in combination with Corollary 4.4, shows that the transversal fluctuation
at time s < t of a longest weakly NE path from (0,0) to (t, t) is of order (t − s)2/3.
This is due to the fact that any longest weakly NE path lies within the reflected
trajectories of a second class particle and a dual second class particle; see Figure 4.
Our result on weakly NE paths implies the same result for strictly NE paths, as the
following short argument will show: consider the longest strictly NE path that is
to the right of all other longest strictly NE paths and suppose, at time s < t , this
path is to the right of the diagonal. Since the sources and sinks are independent of
this event, we have that, given this event, there is still a probability of at least 1/2
that Z(t) > 0. The corresponding longest weakly NE path (so the weakly NE path
that is most to the right) cannot be to the left of the considered longest strictly NE
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path (because they cannot cross), so the order of the fluctuations to the right of a
longest strictly NE path cannot be higher than the same order for longest weakly
NE paths. For fluctuations to the left, a similar argument holds. The remark at the
end of Section 6 discusses the corresponding lower bound result.

5. Strictly NE paths and restricted weakly NE paths. To get a lower bound
on EZ(t)+, we need to control the difference between a strictly NE path and
a weakly NE path in a stationary Hammersley process L1 (with source inten-
sity 1), where the weakly NE path is only allowed to pick up sources in an interval
[0, εt2/3] × {0}. To do this, we consider another independent Hammersley process
Lλ on [0, t]2 with source intensity λ, sink intensity 1/λ and α-intensity 1; for
this process, the sources, sinks and α-points are independent of the corresponding
processes for L1. Coupled to this process Lλ, we consider L0 as the correspond-
ing (nonstationary) Hammersley process that uses the same α-points, but has no
sources or sinks.

We denote L0(x, t) as the number of particles (i.e., the number of crossings of
space–time paths) of the Hammersley process without sources or sinks with the
segment [0, x] × {t}. Note that, for 0 < z < t ,

At(0) − At(z)
D= L0(t, t) − L0(t − z, t).(5.1)

This follows from the fact that L0(t −z, t) equals the length of the longest (strictly)
NE path from (0,0) to (t − z, t). Also note that {N(z) : z ∈ (0, t)} [the number of
sources of the process L1 in the interval (0, t)] and {Lλ(t, t) − Lλ(t − z, t) : z ∈
(0, t)} are two independent Poisson processes.

Define X′
λ(t) as the position at time t of a dual second class particle of the

process Lλ, that started in (0,0). Then we know that

x < y < X′
λ(t) 	⇒ Lλ(y, t) − Lλ(x, t) ≤ L0(y, t) − L0(x, t).(5.2)

This is due to the fact that if we leave out all the sources of Lλ, the space–time
paths do not change above the trajectory of X′

λ (this is one of the key ideas in [4];
the reader might want to check this fact by looking at Figure 2). This means that if
we define the process L as a Hammersley process that uses the same α-points and
sinks as Lλ, but starts without any sources, we have that

x < X′
λ(t) 	⇒ Lλ(x, t) = L(x, t).

Inequality (5.2) now follows from the fact that the set of particles of L is at all
times a subset of the set of particles of the Hammersley process L0, since this
process has no sinks, whereas L does have sinks.

THEOREM 5.1. Fix L > 0. Then

lim sup
t→∞

P

{
sup

z∈[0,εt2/3]
{N(z) + At(z)} − At(0) ≥ Lt1/3

}
= O(ε3), ε ↓ 0.
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PROOF. We will use the auxiliary Hammersley process constructed above. De-
fine

λ = 1 − rt−1/3.

If X′
λ(t) ≥ t , (5.2) tells us that, for 0 < z < t ,

Lλ(t, t) − Lλ(t − z, t) ≤ L0(t, t) − L0(t − z, t).

Using (5.1) and defining

Ñλ(z) = Lλ(t, t) − Lλ(t − z, t),

we see that (remember that N and At are independent)

P

{
sup

z∈[0,εt2/3]
{N(z) + At(z)} − At(0) ≥ Lt1/3

}
(5.3)

≤ P

{
sup

z∈[0,εt2/3]
{N(z) − Ñλ(z)} ≥ Lt1/3

}
+ P{X′

λ(t) < t}.

The second term on the right-hand side of (5.3) can be bounded using (2.5),
(3.5) and Corollary 4.4:

P{X′
λ(t) < t} = P{X′(t/λ) < λt}

= P{Z′(t/λ) > t(1/λ − λ)}
≤ P{Z(t/λ) > t(1/λ − λ)}(5.4)

= P
{
Z

(
t/(1 − rt−1/3)

)
> rt2/3(2 − rt−1/3)/(1 − rt−1/3)

}
≤ P{Z(t̃ ) > rt̃

2/3} � r−3,

for all r ∈ [1, t1/3), applying Corollary 4.4 with argument t̃ = t/(1 − rt−1/3).
The first term on the right-hand side of (5.3) concerns a hitting time for the dif-

ference of two independent Poisson processes. After rescaling, this can be written
as

P
{∃0≤z≤ε : t−1/3{N(zt2/3) − Ñλ(zt

2/3)} ≥ L
}
.

The process z �→ t−1/3{N(zt2/3)−Ñλ(zt
2/3)} converges, as t → ∞, to the drifting

Brownian motion process

Wr(z)
def= W(2z) + rz, z ≥ 0,(5.5)

in the topology of uniform convergence on compacta, where W is standard Brown-
ian motion on R+. Hence, we get, by a standard application of Donsker’s theorem,

lim
t→∞P

{∃0≤z≤ε : t−1/3{N(zt2/3) − Ñλ(zt
2/3)} ≥ L

}
(5.6)

= P

{
sup

z∈[0,ε]
Wr(z) ≥ L

}
.
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We now get, for r < L/ε,

P

{
sup

z∈[0,ε]
Wr(z) ≥ L

}
≤ P

{
sup

z∈[0,2ε]
W(z) ≥ L − εr

}

= P

{
sup

z∈[0,1]
W(2εz)/

√
2ε ≥ (L − εr)/

√
2ε

}
(5.7)

= P

{
sup

z∈[0,1]
W(z) ≥ (L − εr)/

√
2ε

}

=
√

2

π

∫ ∞
(L−εr)/

√
2ε

e−(1/2)u2
du.

Taking r = L/(2ε), we get√
2

π

∫ ∞
(L−εr)/

√
2ε

e−(1/2)u2
du

= 2
∫ ∞
L/

√
8ε

e−(1/2)u2

√
2π

du ∼ 2
√

8ε e−L2/(16ε)

L
√

2π
, ε ↓ 0,

using Mills’ ratio approximation for the tail of a normal distribution in the last
step. This means that, with this choice of r , our estimate for the second term on
the right-hand side of (5.3) is dominant, so (5.4) now proves the theorem. �

Note that we could use the proof of the theorem to show that L can even go to 0
at a certain speed when ε → 0, and still the considered probability would go to 0,
uniformly in t .

6. Lower bound for EZ(t)+. We wish to bound the probability that Z(t) ∈
[0, εt2/3]. In order to do this, we again introduce an independent auxiliary station-
ary Hammersley process Lλ, but now with intensity λ > 1. In fact, we will choose

λ = 1 + rt−1/3.

Coupled to this process, we again consider the Hammersley process L0 without
sources or sinks, but with the same α-points. This time, however, we will leave out
the sinks of the stationary process; to be more precise, we have that

y ≥ x > Xλ(t) 	⇒ L0(y, t) − L0(x, t) ≤ Lλ(y, t) − Lλ(x, t).(6.1)

The reason is that if we consider the stationary process Lλ and leave out the sinks
of this process, below the trajectory of Xλ the space–time paths do not change. The
inequality then follows from the fact that the set of particles of a process which,
like L0, has no sinks, but starts with sources and uses the same α-points, will at all
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times be a superset of the set of particles of the Hammersley process L0. Compare
this to the explanation of (5.2).

We again define

Ñλ(z) = Lλ(t, t) − Lλ(t − z, t)

and will show the following result.

THEOREM 6.1.

lim
ε↓0

lim sup
t→∞

P{0 ≤ Z(t) ≤ εt2/3} = 0.

PROOF. Let η > 0. It is enough to find ε > 0 such that

lim sup
t→∞

P{0 ≤ Z(t) ≤ εt2/3} < 3η.

For any L, r > 0 and λ = 1 + rt−1/3, we have

P{0 ≤ Z(t) ≤ εt2/3} ≤ P

{
sup

z>εt2/3

(
N(z) + At(z)

)
< sup

z∈[0,εt2/3]
(
N(z) + At(z)

)}

≤ P

{
sup

z>εt2/3

{
N(z) − (

At(0) − At(z)
)}

< Lt1/3
}

(6.2)

+ P

{
sup

z∈[0,εt2/3]
{
N(z) − (

At(0) − At(z)
)}

> Lt1/3
}
,

since for any L ∈ R, X < Y implies that either X < L or Y > L, so

P(X < Y) ≤ P({X < L} ∪ {Y > L}) ≤ P(X < L) + P(L < Y),

which allows us to “optimize” over L. For the first term of (6.2), we want to use
(6.1), which implies that, on the event {Xλ(t) ≤ t − rt2/3}, we know that, for all
z ≤ rt2/3,

L0(t, t) − L0(t − z, t) ≤ Lλ(t, t) − Lλ(t − z, t).

Therefore,

P{0 ≤ Z(t) ≤ εt2/3}
≤ P

{
sup

z∈[εt2/3,rt2/3]
{N(z) − Ñλ(z)} < Lt1/3

}
+ P{Xλ(t) > t − rt2/3}

+ P

{
sup

z∈[0,εt2/3]
{
N(z) − (

At(0) − At(z)
)}

> Lt1/3
}

(6.3)

= P

{
sup

z∈[εt2/3,rt2/3]
{N(z) − Ñλ(z)} < Lt1/3

}
+ P{X(t/λ) > λt − λrt2/3}

+ P

{
sup

z∈[0,εt2/3]
{
N(z) − (

At(0) − At(z)
)}

> Lt1/3
}
.
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Using (3.5) (note that λt − λrt2/3 ≥ t/λ when r ≤ 1
2 t1/3), Z′(t) ≤ Z(t) and

−Z′(t) D= Z(t), we get, for the second term in (6.3),

P{X(t/λ) > λt − λrt2/3} = P{Z(λt − λrt2/3) < (1/λ − λ)t + λrt2/3}
≤ P{Z′(λt − λrt2/3) < (1/λ − λ)t + λrt2/3}
= P{−Z′(λt − λrt2/3) > (λ − 1/λ)t − λrt2/3}
= P{Z(λt − λrt2/3) > (λ − 1/λ)t − λrt2/3}

= P

{
Z

(
t (1 − r2t−2/3)

)
>

rt2/3

1 + rt−1/3 − r2t1/3
}
.

This means that we can start by choosing r sufficiently large to ensure that the
second term is smaller than η, since

P

{
Z

(
t (1 − r2t−2/3)

)
>

rt2/3

1 + rt−1/3 − r2t1/3
}

= P

{
Z

(
t + O(t1/3)

)
> rt2/3 + O(t1/3)

}
= O(r−3), t → ∞,

where we use Corollary 4.4 in the last step.
Now we turn to the first term in (6.3). This term is very similar to the term we

found in the previous section. We have, as in the proof of Theorem 5.1, that the
process

z �→ t−1/3{N(zt2/3) − Ñλ(zt
2/3)}

converges, as t → ∞, to a drifting Brownian motion process

Wr(z)
def= W(2z) − rz, z ≥ 0,(6.4)

in the topology of uniform convergence on compacta, where W is standard Brown-
ian motion on R+ (this time the drift is negative instead of positive). Hence, we
get, again using Donsker’s theorem,

lim
t→∞P

{
sup

z∈[εt2/3,rt2/3]
{N(z) − Ñλ(z)} ≤ Lt1/3

}

= P

{
sup

z∈[ε,r]
Wr(z) ≤ L

}
(6.5)

= P

{
sup

z∈[0,r]
Wr(z) ≤ L

}
+ P

{
sup

z∈[ε,r]
Wr(z) ≤ L, sup

z∈[0,ε]
Wr(z) > L

}

≤ P

{
sup

z∈[0,r]
Wr(z) ≤ L

}
+ P

{
sup

z∈[0,ε]
Wr(z) > L

}
.
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Since

lim
L↓0

P

{
sup

z∈[0,r]
Wr(z) ≤ L

}
= 0,

we can choose L = L(η) > 0 sufficiently small to ensure

P

{
sup

z∈[0,r]
Wr(z) ≤ L

}
< η/2.

It is also clear from the argument of the proof of Theorem 5.1 [see (5.7)] that we
can next choose ε > 0 sufficiently small to ensure that

P

{
sup

z∈[0,ε]
Wr(z) > L

}
≤ P

{
sup

z∈[0,ε]
W(2z) > L

}
< η/2,

for this choice of L = L(η) > 0.
It is now seen from (6.5) that this bounds the first term of (6.3) from above by η

[remember that we have already fixed r > 0 to bound the second term of (6.3)].
Finally, we can choose ε > 0 so small that the third term in (6.3) is smaller than η,
using Theorem 5.1. This completes the proof. �

COROLLARY 6.2. Let Z(t)+ and L(t, t) be defined as in (3.6). Then

lim inf
t→∞

EZ(t)+
t2/3 = lim inf

t→∞
Var(L(t, t))

2t2/3 > 0.

PROOF. Using (3.6), we only have to prove the statement for EZ(t)+. Suppose
tn → ∞ such that

EZ(tn)+
t
2/3
n

→ 0.

Then

P{Z(tn) > εt2/3
n } ≤ EZ(tn)+

εt
2/3
n

→ 0.

Since −Z′(t) D= Z(t) and Z′(t) ≤ Z(t), we have that P{Z(t) ≥ 0} ≥ 1/2, for all
t > 0. This would mean that, for all ε > 0,

lim inf
n→∞ P{0 ≤ Z(tn) ≤ εt2/3

n } ≥ 1
2 ,

which would contradict Theorem 6.1. �

REMARK. We can again make a comparison with the results in [7]. Johansson
shows that the probability that all longest strictly NE paths from (0,0) to (t, t) stay
within a strip around the diagonal of width tγ does not tend to 1, as t → ∞, for all
γ < 2/3, again using the analytical results in [2]. Our Theorem 6.1 shows that the
probability that all longest weakly NE paths from (0,0) to (t, t) stay within a strip
around the diagonal of width tγ tends to 0, as t → ∞, for all γ < 2/3 (see also the
Remark at the end of Section 4).
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7. Tightness results. In the preceding sections it was shown, using the “hy-
drodynamical methods” of [4] that, for a stationary version of Hammersley’s
process, with intensity 1 for the Poisson point processes on the axes and in the
plane, the variance of the length of a longest weakly NE path L(t, t) is of order
t2/3, in the sense that

0 < lim inf
t→∞ t−2/3 Var

(
L(t, t)

) ≤ lim sup
t→∞

t−2/3 Var
(
L(t, t)

)
< ∞.(7.1)

This means, in particular, that, for any t > 0, the sequence

n−1/3{L(nt, nt) − 2nt}, n = 1, . . . ,

is tight.
As noted in [9], the distributional limit result for n−1/3{L0(nx,nt) − 2n

√
xt }

for Hammersley’s process without sources and sinks in [2] can be translated into a
limit of Yn/n1/3, where

Yn
def= znt ([nx]) − nx2/(4t),(7.2)

and znt ([nx]) is the [nx]th particle at time nt , counting particles at time nt from
the left. Theorem 3.2 in [9] gives a tightness result for a more general version of
Yn, in the context of a version of Hammersley’s process on the whole line, with a
(possibly) random initial state. The result is that, under his conditions D and E, the
sequence

Yn/(n
1/3 logn), n = 1, . . .

is tight. He conjectures that, in fact, n1/3 logn can be replaced by n1/3. The results,
derived above, are a further indication that indeed n1/3 logn might be replaced by
n1/3, and that this can be derived by hydrodynamical methods.

For the stationary version of Hammersley’s process, with intensities 1 of the
Poisson processes in the plane and on the axes, we can define znt ([2nt]) as the
location of the [2nt]th source at time nt , where we count the sources from left
to right, starting with the first source to the right of zero. Note that at time zero
the particles are just the sources. The particles, escaping through a sink, are given
location zero at times larger than or equal to the time of escape.

With this definition, our results give tightness of the sequences

n−1/3{znt ([2nt]) − nt}, n = 1,2, . . . ,(7.3)

for each t > 0. This can be seen in the following way. We have, for M > 0 and
t > 0, the “switch relation”

n−1/3{znt ([2nt]) − nt} > M ⇐⇒ L(nt + Mn1/3, nt) < [2nt].(7.4)
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Theorem 2.1 yields

Var
(
L(nt + Mn1/3, nt)

) = −nt − Mn1/3 + nt + 2E
(
nt + Mn1/3 − X1(nt)

)
+

= −Mn1/3 + 2E
(
nt + Mn1/3 − X1(nt)

)
+

≤ Mn1/3 + 2E
(
nt − X1(nt)

)
+,

where we use (Y + Z)+ ≤ Y+ + Z+ in the last step. Theorem 2.1, applied in the
opposite direction, yields

2E
(
nt − X1(nt)

)
+ = Var

(
L(nt, nt)

)
.

Hence, we get, by (7.1) and Chebyshev’s inequality,

P
{
n−1/3{znt ([2nt]) − nt} > M

}
= P{L(nt + Mn1/3, nt) − 2nt − Mn1/3 < [2nt] − 2nt − Mn1/3}

≤ Mn1/3 + Var(L1(nt, nt))

{Mn1/3 + 2nt − [2nt]}2 � Mn1/3 + O((nt)2/3)

M2n2/3 = O(M−1).

We similarly get

P
{
n−1/3{znt ([2nt]) − nt} ≤ −M

} = O(M−1),

using that, if nt − Mn−1/3 > 0,

n−1/3{znt ([2nt]) − nt} ≤ −M ⇐⇒ L(nt − Mn1/3, nt) ≥ [2nt],(7.5)

which proves the tightness of the sequences (7.3).
Although the tightness of the sequence (Yn/n1/3) for the Hammersley process

without sources or sinks, as defined in (7.2), is known from the results of [2], it
is of some interest to derive this from the results of the preceding sections. The
tightness will follow from

n−1/3{
L0(nx,nt) − 2

√
xt

} = Op(1), n → ∞,(7.6)

for all x, t > 0, where L0(nx, xt) is a strictly NE path from (0,0) to (nx, xt), and
where the intensity of the Poisson process in the first quadrant is equal to 1.

We again have a “switch relation” similar to (7.4):

n−1/3{znt ([2nt]) − nt} > M ⇐⇒ L0(nt + Mn1/3, nt) < [2nt].
From [1], we know that

L0(nx,nt)
D= L0

(
n
√

xt, n
√

xt
)
,

so if we show that, for each t > 0,

n−1/3{L0(nt, nt) − 2nt} = Op(1), n → ∞,(7.7)
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we get, for each ε > 0 and t > 0,

P
{
n−1/3{znt ([2nt]) − nt} > M

}
= P{L0(nt + Mn1/3, nt) − 2nt − Mn1/3 < [2nt] − 2nt − Mn1/3}
= P

{
L0

(
nt

√
1 + Mn−2/3/t, nt

√
1 + Mn−2/3/t

)
− 2nt

√
1 + Mn−2/3/t + O(M2n−1/3)

< [2nt] − 2nt − Mn1/3}
< ε,

for sufficiently large M = M(ε) > 0 and all n ≥ n0(M, ε). Relation (7.7) similarly
implies

P
{
n−1/3{znt ([2nt]) − nt} ≤ −M

}
< ε,

for sufficiently large M = M(ε) > 0 and all n ≥ n0(M, ε), using

n−1/3{znt ([2nt]) − nt} ≤ −M ⇐⇒ L0(nt − Mn1/3, nt) ≥ [2nt].
In order to prove (7.7), it is sufficient to show

t−1/3{L0(t, t) − 2t} = Op(1), t → ∞.(7.8)

Now first note that the length L0(t, t) of a longest strictly NE path from (0,0)

to (t, t) is the same as At(0) in the proof of Theorem 5.1. Let, for λ = 1 − rt−1/3,
Lλ be defined as in the proof of Theorem 5.1. By (5.3), we have

P

{
sup

z∈[0,Kt2/3]
{N(z) + At(z)} − At(0) ≥ Lt1/3

}
(7.9)

≤ P

{
sup

z∈[0,Kt2/3]
{N(z) − Ñλ(z)} ≥ Lt1/3

}
+ P{X′

λ(t) < t}.

We first deal with the second term on the right-hand side of (7.9). By (5.4), we
have

P{X′
λ(t) < t} = O(r−3),(7.10)

uniformly for r ∈ [1, 1
2 t1/3]. To deal with the first term on the right-hand side of

(7.9), we first note that

z �→ Mr(z)
def= t−1/3{N(zt2/3) − Ñλ(zt

2/3)} − rz, z ≥ 0,

is a zero-mean martingale. So we get

P

{
sup

z∈[0,Kt2/3]
{N(z) − Ñλ(z)} ≥ Lt1/3

}
= P

{
sup

z∈[0,K]
{Mr(z) + rz} ≥ L

}

≤ P

{
sup

z∈[0,K]
Mr(z) ≥ L − rK

}
.
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Taking r = L/(2K) and using Doob’s submartingale inequality, we get

P

{
sup

z∈[0,Kt2/3]
{N(z) − Ñλ(z)} ≥ Lt1/3

}
≤ P

{
sup

z∈[0,K]
Mr(z) ≥ L/2

}

≤ P

{
sup

z∈[0,K]
Mr(z)

2 ≥ L2/4
}

≤ 4EMr(K)2

L2 � K/L2.

We also have, by Corollary 4.4,

P

{
sup

z∈[−Kt2/3,Kt2/3]
{N(z) + At(z)} �= sup

z∈[−t,t]
{N(z) + At(z)}

}

≤ 2P{Z(t) > Kt2/3} � 1/K3.

So, taking K = L7/12 [note that this means that r = L/(2K) = 1
2L5/12 ≤

1
2 t1/3, for L ≤ t4/5], we obtain

P

{
sup

z∈[−t,t]
{N(z) + At(z)} − At(0) ≥ Lt1/3

}

= P{L1(t, t) − At(0) ≥ Lt1/3} � L−5/4,

for all L ≤ t4/5.
If L > t4/5, we first note that

P{L1(t, t) − At(0) ≥ Lt1/3} ≤ P{L1(t, t) ≥ Lt1/3}
≤ 2P

{
Pt ≥ 1

2Lt1/3} ≤ 2P
{
Pt ≥ 1

2L1/6t
}
,

where Pt is a Poisson variable with expectation t . Let [x] denote the largest integer
≤ x and let a = 1

2L1/6. Then, using the Lagrange remainder term in an expansion
of et , we get, for a θ ∈ (0,1),

P
{
Pt ≥ 1

2L1/6t
} ≤ P{Pt ≥ [at]} = t [at]e−(1−θ)t

[at]! ≤ t [at]

[at]! .
Stirling’s formula for the gamma function 
(x) yields that, uniformly in t ≥ 1,

tat


(at + 1)
∼ 1√

2πat
e−a(loga−1)t , a → ∞.

This implies that P{Pt ≥ 1
2Lt1/3} tends to zero faster than any negative power of

L, if L > t4/5, uniformly in all large t and hence, we can conclude that

P{L1(t, t) − At(0) ≥ Lt1/3} = O(L−5/4),
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for all L ≥ 1, implying

0 ≤ 2t − EAt(0) = E{L1(t, t) − At(0)}
(7.11)

� t1/3
{

1 +
∫ ∞

1
L−5/4 dL

}
= O(t1/3).

Thus,

E|At(0) − 2t | = E|L0(t, t) − 2t | = O(t1/3).

This proves (7.8) and, as noted above, (7.6) now also follows. This, in turn, proves
tightness of the sequence (Yn/n1/3), for Yn defined by (7.2) for Hammersley’s
process, starting with the empty configuration on the axes.

Notice that we also proved at the same time

EL0(nx,nt) = EL0
(
n
√

xt, n
√

xt
) = EAn

√
xt (0) = 2n

√
xt + O(n1/3),

for all x, t > 0; see (7.11).
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