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THE HYPERBOLIC GEOMETRY OF RANDOM TRANSPOSITIONS1

BY NATHANAËL BERESTYCKI

University of British Columbia and Ecole Normale Supérieure, Paris

Turn the set of permutations of n objects into a graph Gn by connecting
two permutations that differ by one transposition, and let σt be the simple
random walk on this graph. In a previous paper, Berestycki and Durrett [In
Discrete Random Walks (2005) 17–26] showed that the limiting behavior of
the distance from the identity at time cn/2 has a phase transition at c = 1.
Here we investigate some consequences of this result for the geometry of Gn.
Our first result can be interpreted as a breakdown for the Gromov hyperbolic-
ity of the graph as seen by the random walk, which occurs at a critical radius
equal to n/4. Let T be a triangle formed by the origin and two points sam-
pled independently from the hitting distribution on the sphere of radius an

for a constant 0 < a < 1. Then when a < 1/4, if the geodesics are suitably
chosen, with high probability T is δ-thin for some δ > 0, whereas it is always
O(n)-thick when a > 1/4. We also show that the hitting distribution of the
sphere of radius an is asymptotically singular with respect to the uniform
distribution. Finally, we prove that the critical behavior of this Gromov-like
hyperbolicity constant persists if the two endpoints are sampled from the uni-
form measure on the sphere of radius an. However, in this case, the critical
radius is a = 1 − log 2.

1. Introduction. Let Sn be the set of permutations of {1,2, . . . , n}, and let
σt be the continuous-time random walk on Sn that results when randomly chosen
transpositions are performed at rate 1. Let d(σt ) be the distance from the identity I

at time t , that is, the minimum number of transpositions needed to return to I . In a
previous paper, Berestycki and Durrett [3] showed

THEOREM 0. As n → ∞, d(σcn/2)/n →p u(c) where

u(c) = 1 −
∞∑

k=1

1

c

kk−2

k! (ce−c)k.(1.1)

Although it is not easy to see from the formula, the function u(c) = c/2 for c ≤ 1
and is < c/2 for c > 1.

Received December 2004; revised September 2005.
1Supported in part by Rick Durrett’s joint NSF–NIGMS Grant DMS-02-01037.
AMS 2000 subject classifications. Primary 60G50, 60K35, 60D05; secondary 60C05.
Key words and phrases. Random walks, Gromov hyperbolic spaces, phase transition, random

transpositions, random graphs, Cayley graphs.

429

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/009117906000000043
http://www.imstat.org
http://www.ams.org/msc/


430 N. BERESTYCKI

We can think of σt as a random walk on the graph Gn with vertices Sn and edges
connecting two permutations that differ by one transposition, so that Gn is the
Cayley graph of Sn associated with the set of generators S = {all transpositions}.
Theorem 0 was proved by establishing a connection with Erdős–Renyi random
graphs. The phase transition observed for σt is then related to the well-known dou-
ble jump of the size of connected components of G(n, c/n) at c = 1. [Here and in
all that follows, G(n,p) denotes the Erdős–Renyi random graph with parameters
n and p, i.e., a random graph on n vertices where each edge is present indepen-
dently of the others with probability p.] We refer the reader to Janson et al. [8] for
this and other facts about Erdős–Renyi random graphs.

In this paper we try to investigate some of the geometric implications of The-
orem 0. We find a new connection between the speed of a random walk and the
Gromov hyperbolicity of the space in which the random walk is evolving.

Organization of the paper. In Sections 1.1, 1.2, 1.3 we present our results. The
proofs of these results can be found successively in Sections 2–8. Each proof is
preceded by a restatement of the corresponding theorem for convenience, and by
an informal proof which outlines the main ideas used.

1.1. Asymptotic hyperbolicity. The notion of hyperbolicity for a discrete struc-
ture such as a group is a notion that goes back to Gromov [7]. As there is no deriv-
ative, and thus no curvature available in a discrete space, the idea is to define what
hyperbolic means using only elementary properties of the space.

One way to do this is as follows. Let (X, | · |) be a metric space, where |x − y|
denotes the distance between x and y. For points x, y and p in X, define the
Gromov inner product by

2(x|y)p = |x − p| + |y − p| − |x − y|.
(x|y)p thus measures how well the union of the geodesic segments [p,x] ∪ [p,y]
approximates a geodesic between x and y. Gromov’s original definition of hyper-
bolic spaces is as follows. Call X δ-hyperbolic if

(x|z)p ≥ (x|y)p ∧ (y|z)p − δ(1.2)

for all x, y, z and p. This definition is not very intuitive at first, but fortunately
there is an equivalent definition, which can be formulated using the notion of δ-thin
triangle. A triangle (x, y, z) with geodesic sides s1, s2, s3 is said to be δ-thin if any
side, say s1, lies entirely within distance at most δ of the two remaining sides:

s1 ⊂ {x ∈ X,d(x, s2 ∪ s3) ≤ δ}.
The space is called δ-hyperbolic if all geodesic triangles are δ-thin, and it is sim-
ply called hyperbolic if it is δ-hyperbolic for some δ ≥ 0 (when δ = 0, the space
isometrically embeds into a tree). It is not immediate, but not hard to check, that if
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all triangles (x, y, z) are δ-thin, then (1.2) is satisfied for some number δ′ that may
differ by a constant factor from δ. Conversely, in a space where (1.2) is satisfied
for all points (p, x, y, z), all triangles are δ′-thin, where δ′ may differ from δ by a
constant factor.

Of course a bounded space (in particular, a finite space such as Sn) is trivially
hyperbolic, but we will be interested in situations where the constant δ may or may
not stay bounded as the size of the space tends to ∞.

Our first result makes the connection between Theorem 0 and Gromov hy-
perbolic spaces, where we look at the two definitions of hyperbolic constants
suitably weakened. For 0 < a < 1, let ∂B(an) be the sphere of radius an, that
is, the set of points at distance 
an� from the origin. We let ν be the hitting
distribution of ∂B(an) by σt , that is, ν is the law on ∂B(an) of σT where
T = inf{t > 0, d(σt ) = 
an�}.

THEOREM 1. Let x, y be sampled from ν independently, and set p = I , the
identity element.

1. If a < 1/4, then there is some δ < ∞ (depending only on a), such that

E(x|y)p ≤ δ.

Moreover, with probability asymptotically 1, there is a geodesic between
x and y that comes within expected distance δ′ < ∞ of p.

2. If a > 1/4, then

E(x|y)p ∼ δn

for some 0 < δ < ∞. Moreover, no geodesic between x and y can approach p

closer than δ′n with probability asymptotically 1, where 0 < δ′ < ∞.

In the statement of the theorem and in the rest of the paper, an ∼ bn means that
an/bn → 1.

REMARK. It follows immediately from Theorem 1 that when a < 1/4, with
probability asymptotically 1,

(x|z)p ≥ (x|y)p ∧ (y|z)p − δ

for independent x, y, z sampled from ν, hence the idea that definition 1 of hyper-
bolicity is satisfied “asymptotically ν-almost surely.” The statement about the geo-
desics shows that definition 2 is satisfied “asymptotically ν-almost surely” when
a < 1/4.

At this point we should emphasize that the result in Theorem 1 involves hyper-
bolic constants that are different from the standard definitions discussed above in
several important ways. The most obvious difference comes from the randomness
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of x and y, and from the fact that the roles played by x, y and p are somewhat dif-
ferent. Here p is a fixed reference point, whereas Gromov’s definition requires that
every triangle should be thin. Another issue is that, corresponding to the second
definition of hyperbolicity with thin triangles, we show that there exists a certain
geodesic between x and y having the desired properties. As we will see below in
Theorem 6, there may be a great many geodesics between two given points in Sn.
More importantly, these geodesics can be far apart, as will show the following
concrete example:

σ (1 14 5 11) (2) (3 9) (4 13 6) (7 12 8 ) (10)
π1 (1) (14) (5) (11) (2) (3) (9) (4 13 6) (7 12 8 ) (10)
π2 (1 14 5 11) (2) (3 9) (4) (13) (6) (7) (12) (8) (10)

π1π
−1
2 (11 5 14 1) (2) (9 3) (4 13 6) (7 12 8) (10)

Since for any permutation π we have d(π) = n − # cycles of π , d(σ ) = 8.
π1 and π2 are on two geodesics from I to σ , but d(π1, π2) = d(π1π

−1
2 ) = 8.

In general if d(σ ) = cn/2 with c < 1, and we divide the cycles at random into
two groups, we can define π1 to have cycle structure given by the first group of σ

staying as it is and the second completely broken in cycles on lengths 1. If we
define π2 by the exchange of the two groups, then we will have d(σ,πi) = cn/4
and d(π1, π2) = cn/2.

1.2. The geometry of Gn. How much can we learn from Theorem 1 about the
global geometry of Gn? To answer this question, we need to see how special a
choice it is to sample the points x and y according to the hitting distribution ν.
(The fact that p = I is a fixed reference point is not too important, due to the
transitivity of Gn.) We begin by an apparently unrelated question, which is to ask
how large is a ball of radius an.

THEOREM 2. If 0 ≤ a ≤ 1, then as n → ∞, we have |B(I, an)| ≈ (n!)a in a
logarithmic sense, that is,

lim
n→∞

log |B(I, an)|
n logn

= a.

This result is probably not new, but we have not found it in the literature. Our
original motivation for studying the volume growth in Gn was to try to understand
the phase transition of Theorem 0 in terms of the geometry of Gn. Our first thought
was that since the speed was nonsmooth we might see a change in the volume
growth. The above result contradicts this idea.

To put our next two results into perspective it is useful to contrast them with
Brownian motion Bt on a d-dimensional manifold of constant negative curva-
ture −1. In that case as t → ∞, if d(Bt ) is the distance from the origin, then
(see [11], e.g.) there is a constant v so that

d(Bt )/t → v as t → ∞.
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In the case of Brownian motion on hyperbolic space, rotational symmetry implies
that the hitting distribution is uniform. In contrast for the random transposition ran-
dom walk, we will see in Theorem 3 that the hitting distribution is asymptotically
singular with respect to the uniform distribution on ∂B(I, an).

THEOREM 3. Let |C1| be the length of the cycle that contains 1. Under µ, the
uniform distribution on ∂B(I, an),

|C1| ⇒ G

where G is a geometric r.v. with P(G > k) = (b/(1 + b))k and b satisfies log(1 +
b)/b = 1 − a.

To describe the hitting distribution ν, we note that (1.1) suggests that it will
be the same as the distribution of σcn/2 where c = u−1(a). When a > 1/2 this is
much different from the distribution in Theorem 3 since in this case c > 1 and
Schramm [12] has shown that σcn/2 has cycles of lengths of order n.

Here we will concentrate on what happens when a < 1/2 and c = 2a. In
this case results in [3] show that as n → ∞, the number of fragmentations be-
fore time cn/2 is asymptotically a Poisson random variable with mean κ(c) =
−(log(1 − c) + c)/2. In particular,

P
(
d(σcn/2) = cn/2

) → e−κ(c) = ec/2
√

1 − c.

It will be convenient to approach the hitting distribution ν by the distribution ν0

of σcn/2 conditioned on no fragmentation. More generally, if νk = ν conditioned
on exactly k fragmentations before the hitting time,

ν = e−κ(c)
∞∑

k=0

νk

κ(c)k

k! + o(1).

To study ν0, we recall the connection with random graphs developed in [3]:
when we transpose i and j we draw an edge between i and j . In order for the
distance from the identity to increase by 1 at each time, each transposition must
involve indices from two different cycles and will merge them into one. In terms of
the random graph, this means that all components are trees. Using results from [3],
it is straightforward to show:

THEOREM 4. Let C1 be the length of the cycle that contains 1. Let c < 1.
Under ν0,

P(|C1| = k) → 1

c

kk−1

k! (ce−c)k for all k ≥ 1.
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Theorems 3 and 4 show that the uniform distribution µ and the hitting distribu-
tion ν0 concentrate on different permutations. In the first case the number of fixed
points will be close to its expected value nP (|C1| = 1) = n/(1 + b). In the sec-
ond it will be close to ne−c by Theorem 4. This is made precise by the following
theorem.

THEOREM 5. As n → ∞, the hitting distribution ν and the uniform distribu-
tion µ on a sphere of radius an are asymptotically singular:

dTV(µ, ν) → 1.

Let t = [cn/2] with c < 1. To understand why ν is different from µ we will
examine the Radon–Nikodym derivative r(σ ) = dν0/dµ. It is not hard to show
that

THEOREM 6. Suppose d(σ ) = t and m1, . . . ,mj are the cycle lengths of σ .
The number of paths of length t from I to σ is

t !
j∏

i=1

m
mi−2
i

(mi − 1)! .

If t = 
cn/2� with c < 1, then

r(σ ) = Kn,t

j∏
i=1

m
mi−2
i

(mi − 1)! ,

where Kn,t is a constant that only depends on n and t .

The last result enables us to prove a stronger version of Theorem 5: it tells us
that the “support” of ν is concentrated on a set that is exponentially smaller than
the size of ∂B(an).

THEOREM 7. Suppose a < 1/2. There exists a set Sn ∈ ∂B(an) such that
ν(Sn) → 1 as n → ∞ and

lim
n→∞

1

n
log

|Sn|
|∂B(an)| = γ < 0.

1.3. The hyperbolic constant under the uniform measure. In Theorem 1, we
learn that if x and y are sampled from ν, roughly speaking, the Gromov hyper-
bolicity of the “support” breaks down at a = 1/4, that is, the hyperbolic constant
increases suddenly from O(1) to O(n) at this point.

However, the results from the previous section tell us that this “support” is (ex-
ponentially) small with respect to the ambient space. It is therefore natural to ask
what happens to Theorem 1 when we replace ν with the uniform measure µ on
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∂B(an). Theorem 8 will show that the qualitative behavior of the hyperbolic con-
stant remains the same. We prove that there is a threshold where the expected Gro-
mov inner product E(σ |π)p jumps from O(1) to O(n), but this time the critical
value is a = 1 − log 2 ≈ 0.31, rather than a = 1/4.

When σ and π are independent uniform permutations on ∂B(an), by the
transitivity of Gn, it is enough to analyze d(σ,π) to understand (σ |π)p , the
inner Gromov product. Since d(σ,π) = d(I, σ−1π), which has the same law
as d(I, σπ), it will be enough to characterize the values of a for which d(I, σπ) =
2an + o(n) and those for which it is < 2an.

THEOREM 8. Let 0 < a < 1 and let σ,π be two random independent points
chosen uniformly from ∂B(an). Then:

1. If a < 1 − log 2,

E(σ |π)p ≤ δ(logn)2

for some 0 < δ = δ(a) < ∞. Moreover, with probability asymptotically 1, there
is a geodesic between σ and π that comes within distance at most δ(logn)2

of p.
2. If a > 1 − log 2,

E(σ |π)p ∼ δn

for some δ = δ(a) > 0. Moreover, no geodesic can approach p closer than δ′n
for some 0 < δ′ < ∞.

REMARK. The O((logn)2) bound in part 1 of the theorem could probably be
improved into an O(1) bound ( just like in Theorem 1) with some more work, but
we have not tried to do so. In part 2, by analogy with Berestycki and Durrett [3],
we conjecture that the fluctuations are of order exactly n1/2 in the supercritical
regime. More precisely, it should be true that when a > 1 − log 2,

n−1/2(
E(σ |π)p − δn

) ⇒ N (0, κ),

where δ is the limit in part 2 of the theorem, and κ is some parameter.

2. Asymptotic hyperbolicity under ν. The first result we prove is Theo-
rem 1.

THEOREM 1. Let x, y be sampled from ν independently, and set p = I , the
identity element.

1. If a < 1/4, then there is some δ < ∞ (depending only on a), such that

E(x|y)p ≤ δ.

Moreover, with probability asymptotically 1, there is a geodesic between
x and y that comes within expected distance δ′ < ∞ of p.
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2. If a > 1/4, then

E(x|y)p ∼ δn

for some 0 < δ < ∞. Moreover, no geodesic between x and y can approach p

closer than δ′n with probability asymptotically 1, where 0 < δ′ < ∞.

Sketch of the proof. Let Xt and Yt be two independent random walks
starting at the origin. Let them run until the times T and T ′ where they re-
spectively hit the sphere ∂B(an). Then the transitivity of the Cayley graph
of Sn, and the reversibility of the increments of the random walk, imply that
(XT ,XT −1, . . . , p,Y1, . . . , YT ′) is a random walk path of length T + T ′. Hence
the distance between XT = x and YT ′ = y is the same as d(σT +T ′). By The-
orem 0, T and T ′ ≈ 1

2u−1(a)n, so applying Theorem 0 again, when a < 1/4,
|x − y| ≈ 2an = |x| + |y| [the random walk runs for a time 2an < n/2 and
there are only O(1) fragmentations]. For a > 1/4, the random walk is run
for time u−1(a)n which, in view of Theorem 0, means that c = 2u−1(a), and
|x − y| = nu(2u−1(a)) � 2an. See Figure 1.

The claim about the existence of a geodesic that makes the triangle (x,p, y) thin
involves necessarily another argument, since geodesics may be far apart. However,
it is not very hard to construct by hand a geodesic between the identity and x such
that each point of the random walk path is within O(1) of this geodesic. Applying
this construction to the two random walk paths gives the result of Theorem 1.

PROOF OF THEOREM 1. Let us first deal with case a < 1/4 and prove that in
this case E(x|y)p ≤ δ. Keeping the same notation as above, note that an + O(1)

steps are sufficient for X to reach distance an. Indeed, after an steps, Xan is
at distance an − X1 where X1 is twice a Poisson random variable by Theo-
rem 1 in [3]. It is immediate that in X1 steps the probability that X has a frag-
mentation converges to 0. Therefore T − an ⇒ X1 (remember that here time

FIG. 1. Two independent random walks run until they hit the sphere of radius an.
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is measured discretely). Similarly T ′ − an ⇒ X2 where X1,X2 are i.i.d. Hence
(x = Xt,XT −1, . . . ,X1, I, Y1, . . . , Yt = y) is a random walk of 2an + X1 + X2
steps. In the worst case possible all X1 + X2 steps represent “backward” steps
(meaning, toward x rather than y). Hence if X3 = an − d(I, σ2an) (so that X3 is
also twice a Poisson random variable, but with a different parameter),

2E(x|y)p = 2an − |x − y|
≤ 2an − Ed(I, σ2an) + E(X1 + X2)

≤ E(X1) + E(X2) + E(X3) < ∞.

It is slightly simpler to prove that when a > 1/4,E(x|y)p ∼ δn. Indeed, in this
case, by Theorem 0, we have that

1
2u−1(a) − ε ≤ T/n ≤ 1

2u−1(a) + ε.

Therefore

inf
|t/n−u−1(a)|≤2ε

d(I, σt ) ≤ |x − y| ≤ sup
|t/n−u−1(a)|≤2ε

d(I, σt ).

An easy estimate shows that we are never off by more than O(n1/2) if we evaluate
the distance of the random walk by counting the number of clusters of the random
graph rather than the number of cycles of σt . But for the random graph, the number
of clusters is monotone increasing. Hence, if α denotes u(2u−1(a)), we have by
continuity of u that

α − ε′ + o(1) ≤ E|x − y|
n

≤ α + ε′ + o(1)

and ε′ can be made as small as desired by continuity of u. Therefore

E|x − y|
n

→ α.

It suffices now to prove that α < 2a, that is, u(2u−1(a)) < 2a or, after change of
variable c = u−1(a), it suffices to prove u(2c) < 2u(c) for all c > 1/2. This fact
is a consequence of the sublinearity of u: it will be proved later that u is strictly
concave on [1,∞), from which it follows that u(c) > u(2c)/2.

We now turn to the part of the theorem that concerns geodesics, and prove that
for a random walk (Xt , t ≤ cn/2) of time-duration cn/2 with c < 1, there is a
geodesic between σ = Xcn/2 and I , that we call γ , such that

E sup
t≤cn/2

d(Xt , γ ) = O(1).(2.1)

This shows that when c < 1 there is a geodesic that stays close to the random walk
path. When a < 1/4, p = I is on the random walk path that leads from x to y, so
this shows that E(d(I, γ )) = O(1), as claimed in the theorem. The case a > 1/4
is trivial by the triangle inequality.
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Let τ1, . . . , τN be the sequence of transpositions that are the increments of the
random walk path leading to σ , so that σ = τ1 . . . τN . Let γ be the geodesic be-
tween σ and I defined by γ0 = σ , γ1 = στN , γ2 = γ1τN−1, . . . , until the first
time t such that multiplying γt by τN−t would result in a coagulation of two cy-
cles of γt . We do not allow this possibility (otherwise γ would not be a geodesic),
and simply skip τN−t : γt+1 = γtτN−t−1. We will see in a moment that this path
never backtracks and that it ends at a bounded distance from I , to which it will be
necessary to add a (bounded) number of steps so that it actually ends at I .

Let n(t) be the index of the transposition to be performed at time t on γt . Note
that we can always write

γt = τ1τ2 . . . τn(t)

∏
i∈Kt

τi,

where Kt is a set whose size we will show is bounded. Indeed, even when we
skip τn(t) in γt [so that n(t) ∈ Kt+1], the following transpositions τn(t)−1, . . . com-
mute with the members of Kt with high probability and they can “jump above” the
terms in Kt and cancel the rest of the transpositions (τ1 . . . τn(t)−1).

LEMMA 1. For all t , E(|Kt |) ≤ O(1), where O(1) is a constant that depends
only on c < 1. As a consequence, the path ends at bounded distance from the
identity and the distance E supt≤cn/2 d(Xt , γ ) = O(1).

PROOF. There are two ways to add a member to Kt−1 at time t . The first one
is that performing τn(t) will result in a coagulation, so that it is skipped by γ . The
other way is if τn(t) does not commute with one of the members of Kt−1, it stays
stuck somewhere in Kt .

If τn(t) = (i, j), we claim that in order for i and j to be in the same cycle of γt ,
i and j must belong to a component of the Erdős–Renyi graph associated with the
random walk that contains a cycle at time cn/2. We will prove this in a moment,
but if we admit this, then it follows that all transpositions in Kt act on vertices that
belong to U(cn/2), the unicyclic components of the random graph at time cn/2:
if i ∈ Kt , then either τi = (i, j) yields a coagulation in γt , or it does not commute
with some member of (k, l) of Kt−1, in which case (i, j) overlaps with (k, l). By
induction, k, l ∈ U(cn/2), therefore so are i and j .

Let us prove our claim that if (i, j) would yield a coagulation in γt , then
i, j ∈ U(cn/2). Let us observe first that i and j must already be in the same com-
ponent of the random graph: because τn(t) was performed on the random walk,
i and j were connected at that point in the random graph and they remain so. If
i and j are in different cycles of σ , then there must have been some ulterior frag-
mentation in their cycles, so the claim holds. When they are in the same cycle of σ ,
then there must be some transposition τi with i ∈ Kt such that i and j are in dif-
ferent cycles of γ after τi . Call those cycles C1 and C2. τi involves two members
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k and l of C1 ∪ C2. Moreover the cycle structure of γ before (k, l) is performed
must be of the form

(k, . . . , i, . . . , j, . . . , l, . . . );
otherwise (k, l) cannot separate i and j at the next step. Unless i and j belong
to a complex component, this implies that the cycle structure of σ has the same
form. However, this can only happen if k and l were connected to the component
of i and j at different times; otherwise the cycle structure would be of the form
(i, . . . j, . . . , k, . . . , l) or (i, . . . k, . . . , l, . . . , j). This implies in turn the existence
of a cycle in the random graph component of i and j at time cn/2.

From there it follows in a straightforward way that |Kt | ≤ |U(cn/2)| (in a uni-
cyclic component there are as many edges as vertices). It is now standard in the
theory of random graphs to show that |U(cn/2)| is bounded:

E|U(cn/2)| ∼
(

π

8

)1/2 ∞∑
k=2

(
n

k

)
kk−1/2

k!
(

c

n

)k(
1 − c

n

)k(n−k)+(k
2)−k

k

∼
(

π

8

)1/2 ∞∑
k=2

kk+1/2

k! (ce−c)k < ∞

which completes the proof of the lemma. �

Now let Xt be a point on the random walk path. Since γ tries to perform all τi

(at reverse), there is a time s such that n(s) = t , that is, the next transposition to be
examined by γs is τt . At this time,

γs = τ1 · · · τt

∏
i∈Ks

τi

so that |Ks | steps are enough to reach γs from Xt . Since E(|Ks |) < O(1) by the
lemma, we have proved that

E sup
t≤cn/2

d(Xt , γ ) ≤ O(1)

and Theorem 1 is proved. �

3. Large deviations and volume growth. The goal of this section is to prove
Theorem 2, which we restate here for convenience.

THEOREM 2. If 0 ≤ a ≤ 1, then as n → ∞, we have |B(I, an)| ≈ (n!)a in a
logarithmic sense, that is,

lim
n→∞

log |B(I, an)|
n logn

= a.
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Sketch of the proof. The proof of the result is more interesting than the
limit. We begin by recalling the dynamics of the Chinese restaurant process (see,
e.g., [9]). Customer 1 enters and sits at table 1. At step i, customer i enters and
starts a new table with probability 1/i or sits to the left of customer k where k is
chosen uniformly at random in {1, . . . , i}. From the tables we define a permuta-
tion σ by σ(i) = i if customer i is sitting by himself at his table and σ(i) = k if k

sits to the right of i. It is easy to see that this defines a uniform random permutation
on Sn, and that the cycle structure is given by listing the individuals at the tables
in clockwise order. It is well known that if σ ∈ Sn, then d(σ ) = n− the number of
cycles of σ . In the Chinese restaurant process construction, let ζi be the random
variables taking the value 1 if customer i sits at an existing table (and 0 otherwise).
The ζi ’s are independent Bernoulli(1 − 1/i) random variables. Recall that if σ is
a permutation, then d(σ, I ) = d(σ ) is n − #cycles of σ . Hence, if σ is uniformly
distributed over Sn, then d(σ ) has the same distribution as Sn = ∑n

i=1 ζi .
The i’s where a new cycle starts (i.e., ζi = 0) are distributed with the same law

as that of the occurrences of records for i.i.d. variables with continuous distribution
function (cf. [5], Example 6.2 of Chapter 1). From calculations in that example it
follows that (n − Sn)/ logn → 1 in probability.

Returning to our calculation of the volume of the ball,

|B(I, an)| = n!P(Sn ≤ an)

for all 0 < a < 1. It is straightforward to generalize large deviation results for
i.i.d. random variables (see, e.g., [5], Section 2.9) to prove Theorem 1. One begins
with the observation that for λ > 0

P(Sn ≤ an) ≤ eλanEe−λSn(3.1)

optimizes the upper bound over λ and uses a change of measure argument to prove
a corresponding lower bound.

PROOF OF THEOREM 2. Let {ζi , i ≥ 1} be independent with P(ζi = 1) =
1 − 1/i, and let Sn = ∑n

i=1 ζi . Since (logn!)/(n logn) → 1 it suffices to show:

LEMMA 2. Let 0 < a < 1. As n → ∞,

lim
n→∞

logP [Sn ≤ an]
n logn

= a − 1.

PROOF. Let ϕn(λ) = E[e−λSn]. Using the definition we have

ϕn(λ) =
n∏

i=1

[(
1 − 1

i

)
e−λ + 1

i

]
≡

n∏
i=1

qi,
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where ≡ indicates that the last equation is the definition of qi . By Markov’s in-
equality we have

logP [Sn ≤ an] ≤ n

(
λa + 1

n
logϕn(λ)

)
for all λ.(3.2)

If we define

Fλ(x) = 1

ϕn(λ)

∫ x

−∞
e−λy dFn(y),

then Fλ is a distribution function such that

mean(Fλ) = −ϕ′
n(λ)

ϕn(λ)
and var(Fλ) = d

dλ

ϕ′
n(λ)

ϕn(λ)
≥ 0.

To optimize (3.2), we want to choose λ so that

a + 1

n

ϕ′
n(λ)

ϕn(λ)
= 0.

This says that the mean of the transformed distributions is na, so

a = 1

n

n∑
i=1

(1 − 1/i)e−λ

qi

= 1

n

n∑
i=1

(i − 1)e−λ

(i − 1)e−λ + 1
.

We guess that the optimal λ must be given (asymptotically) by e−λopt = b/n. Plug-
ging this in the above gives

a = 1

n

n−1∑
j=1

jb/n

(jb/n) + 1
→

∫ 1

0

bx

bx + 1
dx = 1 − 1

b
log(b + 1).

From this we see that we should choose b so that log(b + 1)/b = 1 − a.

Upper bound. Let us calculate what (3.2) gives with this choice of λ:

1

n
logϕn(λ) = − logn + 1

n
log

n∏
i=1

((
1 − 1

i

)
b + n

i

)
(3.3)

→ − logn +
∫ 1

0
log(b + 1/x) dx.(3.4)

Since the last integral is finite it follows from (3.2) and λopt = − logb + logn that

lim sup
n→∞

1

n logn
P (Sn ≤ na) ≤ a − 1,

proving the upper bound half of Lemma 2.
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Lower bound. The argument is similar to that in [5], page 73. Fix any ν < a

and ν < ν′ < a. Define a real number b′ by

log(1 + b′)
b′ = 1 − ν′.

For any λ,

P [Sn ≤ an] ≥
∫ an

νn
dFn(x) ≥

∫ an

νn
eλxϕn(λ) dFλ(x)

≥ ϕn(λ)eλnν[Fλ(na) − Fλ(nν)].
First, we prove that we can choose λ such that [Fλ(na) − Fλ(nν)] → 1. Recall

that the mean of Fλ is −ϕ′
n(λ)

ϕn(λ)
, and that the latter function starts at n − logn for

λ = 0, is strictly decreasing and equals na when λ = λopt = − logb + logn, that
is, e−λopt = b/n. Thus if we pick λ = λ′ such that e−λ′ = b′/n, the mean of Fλ′
is by the lower bound calculation exactly nν′, and we have chosen ν < ν′ < a.
To conclude that Fλ′(na) − Fλ′(nν) → 1, instead of using a law of large numbers
argument such as in the i.i.d. case, we simply compute the variance of Fλ′ directly.
Anticipating on the calculations of the next section, breaking the factor e−λx in the
Radon–Nikodym derivative of Fλ into e−λ

∑
xi means that we can see Fλ as a sum

of independent Bernoulli random variables with parameter βi so that the variance
is

varFλ′ =
n∑

i=1

βi(1 − βi) ≤
n∑

i=1

βi = mean(Fλ) = nν′ = O(n).

Another way to obtain this inequality is to do more direct computations:

varFλ = ϕ′′
n(λ)

ϕn(λ)
−

(
ϕ′

n(λ)

ϕn(λ)

)2

=
n∑

i=1

e−λ(1 − 1/i)

qi

+ ∑
i �=j

e−λ(1 − 1/i)e−λ(1 − 1/j)

qiqj

−
(

n∑
i=1

e−λ(1 − 1/i)

qi

)2

=
n∑

i=1

e−λ(1 − 1/i)

qi

−
n∑

i=1

e−2λ(1 − 1/i)2

q2
i

≤
n∑

i=1

e−λ(1 − 1/i)

qi

= ϕ′
n(λ)

ϕn(λ)
= meanFλ.
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Since the variance is O(n), by Chebyshev’s inequality we have that Fλ(na) −
Fλ(nν) → 1. Therefore,

lim inf
n→∞

logP [Sn ≤ an]
n logn

≥ ν − 1.

But ν is arbitrarily close to a, so the result is proved. �

4. The uniform measure on ∂B(an). Let {ζ ′
i ,1 ≤ i ≤ n} have the distrib-

ution of {ζi,1 ≤ i ≤ n} conditional on
∑n

i=1 ζi = 
an�. Let {ζ (λ)
i ,1 ≤ i ≤ n} be

independent with distribution

dFλ,i(x) = 1

φi(λ)
e−λx dFi(x),

where Fi , φi are respectively the distribution function and the Laplace transform
of ζi , and λ is the optimal parameter of the previous section, e−λ = b/n. It is easy
to see that ζ

(λ)
i is another Bernoulli random variable with

P [ζ (λ)
i = 1] = P [ζi = 1]e−λ 1

φi(λ)
= 1

1 + n/(b(i − 1))
:= βi.

We are now ready to prove:

THEOREM 3. Let |C1| be the length of the cycle that contains 1. Under µ, the
uniform distribution on ∂B(I, an),

|C1| ⇒ G,

where G is a geometric r.v. with P(G > k) = (b/(1 + b))k and b satisfies log(1 +
b)/b = 1 − a.

Sketch of the proof. The first part of demonstrating this is to recall what
Arratia, Barbour and Tavaré [1] call the Feller coupling. Start with vertex 1 and
choose σ(1) uniformly from the n possible choices. If this is 1, then take vertex 2
and choose σ(2) uniformly from the n−1 remaining possible choices. If σ(1) �= 1,
then choose σ(σ(1)) uniformly from the n − 1 remaining choices, and so on, until
the final vertex where there is only one possible choice. Although the construction
is much different from the Chinese restaurant process, the reader should note that
if ξi is defined by ξi = 1 if a cycle is not completed at the ith stage and 0 otherwise,
then {ξi : 1 ≤ i ≤ n} and {ζi : 1 ≤ i ≤ n} have the same distribution.

From the last observation it follows that N = inf{i : ξi = 1} has the same dis-
tribution as the length of the cycle containing 1. We can now conclude the proof
of the theorem, using the large deviation calculation of the volume, and an argu-
ment called the Gibbs conditioning principle (see [4]). This principle asserts that
the distribution of the ζi conditional on

∑n
i=1 ζi = an should be asymptotically
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independent and their law given by that which minimizes the entropy, that is, the
random variables ζ

(λ)
i with distribution

1

φi(λ)
e−λx dFi(x)(4.1)

where Fi , φi are respectively the d.f. and the Laplace transform of ζi , and λ is the
parameter that optimizes (3.1), that is, e−λ = b/n.

PROOF OF THEOREM 3. We will first need a lemma.

LEMMA 3. For any n ≥ 1 and for every λ > 0,

(ζ ′
1, . . . , ζ

′
n)

d= (
ζ

(λ)
1 , . . . , ζ (λ)

n

)
given

n∑
i=1

ζ
(λ)
i = 
an�.

PROOF. Let f1, . . . , fn be bounded nonnegative Borel functions:

E

(
n∏

i=1

fi(ζ
′
i )

)
= E

(
f1(ζ1) · · ·fn(ζn)

∣∣∣ n∑
i=1

ζi = 
an�
)

= E

(
f1(ζ1) · · ·fn(ζn);

n∑
i=1

ζi = 
an�
)
P

(
n∑

i=1

ζi = 
an�
)−1

.

On the other hand,

E

(
f1

(
ζ

(λ)
1

) · · ·fn

(
ζ (λ)
n

); n∑
i=1

ζ
(λ)
i = 
an�

)

=
∫
Rn

f1(x1) · · ·fn(xn)1{∑xi=
an�}
n∏

i=1

dFi,λ(x)

=
∫
Rn

n∏
i=1

fi(xi)1{∑i xi=
an�}
n∏

i=1

e−λx

φi(λ)
dFi(xi)

= e−λ
an�∏n
i=1 φi(λ)

∫
Rn

n∏
i=1

fi(xi)1{∑i xi=
an�}
n∏

i=1

dFi(xi)

= e−λ
an�∏n
i=1 φi(λ)

E

[
f1(ζ1) · · ·fn(ζn);

n∑
i=1

ζi = 
an�
]
.

We can now divide and multiply by the probability of the events in the two sides
of this equation to obtain that for some constant C > 0

E

(
n∏

i=1

fi

(
ζ

(λ)
i

); ∣∣∣ n∑
i=1

ζ
(λ)
i = 
an�

)
= CE

(
n∏

i=1

fi(ζi)
∣∣∣ n∑
i=1

ζi = 
an�
)
.
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By taking f1 = · · · = fn = 1 we see that C = 1 and the lemma is proved. �

We will need another lemma:

LEMMA 4. The ζ
(λ)
i satisfy a local central limit theorem:

P

(
n∑

i=1

ζ
(λ)
i = 
an�

)
∼ Cn−1/2.

PROOF. The proof of this local limit theorem follows very closely that of the
usual i.i.d. case, which can be found in Theorem 5.2 of [5]. Let βm = P(ζ

(λ)
m = 1)

[i.e., βm = (1 + n/b(m − 1))−1], and let Xm,n = n−1/2(ζ
(λ)
m − βm) be the rescaled

Bernoulli variable. We start by noticing that Xm,n satisfy the hypotheses of the
Lindeberg–Feller theorem (Theorem 4.5 in [5]). Indeed, they are independent by
definition; for all ε > 0, P(|Xm,n| > ε) = 0 as soon as n−1/2 ≤ ε, since ζ

(λ)
m ≤ 1

and βm ≤ 1 as well. Moreover,

n∑
m=1

E(X2
n,m) = 1

n

n∑
m=1

βm(1 − βm)

→
∫ 1

0

x/b

(1 + (x/b))2 dx := σ 2.

Therefore
∑n

m=1 Xm,n ⇒ N (0, σ ). At this point, the proof of the local limit theo-
rem from [5] can be reproduced exactly. Therefore

sup
x∈R

∣∣∣∣∣n1/2P

(
n∑

m=1

Xm,n = x

)
− n(x)

∣∣∣∣∣ → 0,

where n(x) := (2πσ 2)−1/2 exp(−x2/2σ 2). Since
∑n

m=1 βm → an, and since n(·)
is a continuous function, we can conclude the proof of the lemma by the above
uniform convergence. �

Now, by the Feller coupling, |C1| d= inf{k ≥ 1 : ζ ′
n−k = 0}, that is, we must re-

verse the time of the Chinese restaurant process. Hence by Lemmas 3 and 4:

P [C1 > k] = P [ζ ′
n = 1, . . . , ζ ′

n−k+1 = 1]

= P

[
ζ (λ)
n = 1, . . . , ζ

(λ)
n−k+1 = 1

∣∣∣ n∑
i=1

ζ
(λ)
i = 
an�

]

= 1

P [∑n
i=1 ζ

(λ)
i = 
an�]P

[
k−1∏
i=0

ζ
(λ)
n−i = 1;

n−k−1∑
i=1

ζ
(λ)
i = 
an� − k

]
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= 1

P [∑n
i=1 ζ

(λ)
i = 
an�]

k−1∏
i=0

P
[
ζ

(λ)
n−i = 1

]
P

[
n−k−1∑

i=1

ζ
(λ)
i = 
an� − k

]

∼ 1

1 + n/(b(n − 1))
· · · 1

1 + n/(b(n − k))

→ 1

(1 + 1/b)k
.

Hence Theorem 2 is proved. �

5. Asymptotic singularity between µ and ν. In this section we give a proof
of Theorem 5 that follows in an almost straightforward way from Theorems
2 and 3: ν and µ concentrate on permutations that have a different number of
fixed points. First recall the statement of the theorem:

THEOREM 5. As n → ∞, the hitting distribution ν and the uniform distribu-
tion µ on a sphere of radius an are asymptotically singular:

dTV(µ, ν) → 1.

LEMMA 5. The random partition of {1, . . . , n} derived from ν is exchange-
able.

PROOF. The probability to obtain a certain partition of {1, . . . , n} under ν only
depends on the size of its blocs, which stays the same under the action of a given
permutation. Hence ν yields an exchangeable partition of {1, . . . , n}. �

An immediate consequence is that the expected number of fixed points is
nν(C1 = 1) = n/(1 + b). Next we show that under ν the number of fixed points N

is close to its expected value.

LEMMA 6.

varN = o(n2)

under ν.

PROOF. Let xi = 1{ζ ′
i =0;ζ ′

i+1=0} be the indicator of the event that in the condi-
tioned Chinese restaurant process, client number i sits by himself. Then N = ∑

i xi

and

varN =
n∑

i=1

varxi + 1
2

∑
i<j

cov(xi, xj )

≤ n + 1
2

∑
i<j

cov(xi, xj ).
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But when j − i > 1, by the Gibbs asymptotic independence proved in Theorem 3,
cov(xi, xj ) → 0. Also, there are only O(n) terms such that j = i + 1 and in this
case cov(xi, xi+1) ≤ 1, hence the sum

∑
i<j cov(xi, xj ) = o(n2). �

To end the proof of Theorem 5 by Chebyshev’s inequality there remains only to
notice that:

LEMMA 7. For 0 < a < 1 and large enough n

ν(|C1| = 1) �= µ(|C1| = 1).

PROOF. Recall that b is defined by log(1 + b)/b = 1 − a. For x ∈ (0,1), let
f (x) = 1 − log(1 + x)/x, so that b = f −1(a).

On the other hand, an easy consequence of Berestycki and Durrett [3] or Theo-
rem 0 is µ(|C1| = 1) = e−u−1(a). [Indeed, under µ, |C1| is asymptotically the total
progeny of a Poisson–Galton–Watson process, or PGW process with offspring
mean u−1(a).]

Hence the lemma is proved if we show that

1/(1 + b) �= eu−1(a) or u(x) �= 1 − x/(ex − 1)

for all x > 0.
We start by noticing that as x → 0, u(x) ∼ x but 1 − x/(ex − 1) ∼ x/2. Hence

u(x) > 1 − x/(ex − 1) as x → 0. The same is true as x → ∞ [an easy argument
shows indeed that u(x) = 1−e−x +o(e−x)]. Now those functions are both concave
as we will see in a moment, hence this has to stay true on the whole open half-line
x > 0. (Notice that we have thus proved that the hitting distribution has always
fewer fixed points than the uniform distribution.) �

LEMMA 8. The function u appearing in Theorem 0 is concave.

PROOF. For c ≤ 1 this is obvious. When c > 1, rather than carrying explicit
calculations on the second derivative of u, we use a theoretic argument that ex-
ploits the recent result of Schramm [12], which says that the sizes of the pieces of
the giant component in the random graph have approximately a Poisson–Dirichlet
distribution. Since each fragmentation decreases the distance by 1 and each coa-
lescence increases it by 1, it is easy to see that

d

dc
E[d(σcn/2, I )|Fcn/2] = 1 − 2P [fragm.|Fcn/2],

where F· is the canonical filtration generated by the random walk. So we need to
show that P [fragm.] is an asymptotically increasing function of c. However, the
probability of fragmenting a small cycle is asymptotically 0 (by duality and the fact
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that u is linear in the subcritical regime), and the probability of fragmenting one of
the giant cycles can be computed explicitly using the Poisson–Dirichlet structure:

P [fragm.] → E
∞∑
i=1

(θ(c)Xi)
2 = θ(c)2E

∞∑
i=1

X2
i = 1

2θ(c)2,

where θ(c) is the survival probability of a PGW(c) branching process and
(Xi, i ≥ 1) follows the PD(1) distribution. (E

∑
X2

i = 1/2 follows from [10], for-
mula (128).) Since θ(c) is an increasing function of c, the lemma is proved (and
thus, so is Theorem 5). �

REMARK. We have thus proved the formula

u(c) = c/2 −
∫ c/2

0
θ(u)2 du

which is perhaps a little simpler to handle than the expression in Theorem 0.

6. Number of geodesics and Radon–Nikodym derivative. Here we prove
the following theorem, which we will then use to prove a stronger version of the
singularity theorem.

THEOREM 6. Suppose d(σ ) = t and m1, . . . ,mj are the cycle lengths of σ .
The number of paths of length t from I to σ is

t !
j∏

i=1

m
mi−2
i

(mi − 1)! .

From this it follows that if t = [cn/2] with c < 1, then

r(σ ) = Kn,t

j∏
i=1

m
mi−2
i

(mi − 1)! ,

where Kn,t is a constant that only depends on n and t .

Sketch of the proof. To see the first result, note that in order to go from σ to I

in the shortest number of steps we must increase the number of cycles by 1 at each
step, and to do this we must fragment a cycle at each step by transposing two of
its elements. A cycle of length mi will require mi − 1 fragmentations. The first
step in constructing a path is to decide on how to allocate the t moves between the
original cycles, which can be done in t !/∏j

i=1(mi − 1)! ways. The next step is to
count the number of ways that we can reduce a cycle of length mi in mi − 1 steps,
which turns out to be simple: m

mi−1
i .

PROOF OF THEOREM 6. Given a partition of {1,2, . . . , n} into groups
A1, . . . ,Aj of sizes mi , 1 ≤ i ≤ j , the number of forests that consist of trees
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with vertex sets A1, . . . ,Aj is by Cayley’s formula for the number of unrooted
trees on mi vertices

j∏
i=1

m
mi−2
i .

Let t = ∑
i(mi − 1). A given forest can be built up in t ! ways so there are

t !
j∏

i=1

m
mi−2
i

paths for our random graph process that end up producing a given partition. The
number of permutations that correspond to a given partition is

j∏
i=1

(mi − 1)!.

An equal number of paths end at each permutation with cycle sizes mi , 1 ≤ i ≤ j ,
so the number of paths to a given permutation is

t !
j∏

i=1

m
mi−2
i

(mi − 1)! .

If t = [cn/2] with c < 1, then the number of edge choices that end up producing
no fragmentations is by Theorem 1 in [3]

∼
((

n

2

))t

e−κ(c).

Taking the ratio of the last two results gives Theorem 6. �

7. The size of the support of the hitting distribution. In this section we
prove Theorem 7, restated below.

THEOREM 7. Suppose a < 1/2. There exists a set Sn ∈ ∂B(an) such that
ν(Sn) → 1 as n → ∞ and

lim
n→∞

1

n
log

|Sn|
|∂B(an)| = γ < 0.

Sketch of the proof. Obtaining a decay at least exponential is not very hard,
even in the case a > 1/2. However, it is not easy to prove that this is the correct
rate for the decay of |S|/|∂B|, and we restrict ourselves to the case a < 1/2.

If σ ∈ ∂B(an), then we can use Theorem 6 to find that

logν0(σ ) = −an logn + an +
n∑

k=1

ak logpk + o(n),
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where pk is the Borel distribution with parameter c, and ak is the number of
cycles of σ of size k. But by the law of large numbers, ν0(ak/n) should have
a limit as n → ∞. Hence there is a set S such that (logν0(σ ) + an logn)/n

has a limit −c1 whenever σ ∈ S. Because ν0(S) ≈ 1, |S| ≈ exp(an logn + c1n).
Moreover it is also true that ν(S) → 1. On the other hand, precise estimates on
the size of ∂B(an) obtained via Kolchin’s representation theorem tell us that
|∂B(an)| = exp(an logn + c2n + o(n)). (A statement of Kolchin’s theorem can
be found below.) Thus, the theorem holds with γ = c1 − c2. To prove that γ �= 0,
we argue that the decay has to be at least exponential (a consequence of Kolchin’s
representation theorem).

PROOF OF THEOREM 7. We will need precise estimates on the size of ∂B(an).
Because we need estimates to order higher than just n logn, sticking to the large
deviation approach is not good enough. Rather, we will use Kolchin’s representa-
tion theorem. We would like to thank Jim Pitman for pointing out this reference to
us.

Suppose we can partition {1, . . . , n} into a certain number of clusters, which
can all have different internal states. To be more specific, suppose that each par-
tition of {1, . . . , n} into k clusters leads to vk possible global states of the system
{1, . . . , n}, and that we can further assign each cluster of size j one of wj pos-
sible internal states. We call such a combinatorial structure a (v,w)-partition (of
{1, . . . , n}). Kolchin’s representation theorem answers with probabilistic means to
the following purely combinatorial question: how many different (v,w)-partitions
are there? Also, what does a random, uniform, (v,w)-partition look like?

Before going into the details of this theorem, let us see its relevance to our
problem. The number of permutations at distance an from the identity is a special
instance of the above Kolchin problem, where vk = 1{k=(1−a)n} and wj = (j −1)!.
Indeed a permutation at distance an is exactly a permutation having (1−a)n cycles
and each cluster of size j can be in one of the (j − 1)! possible orderings of the
cycle.

Here is the content of Kolchin’s theorem (see [10]). Let v(θ) = ∑∞
k=1 vkθ

k/k!
and let w(ξ) = ∑∞

j=1 wjξ
j/j ! be the so-called exponential generating function of

the sequences v and w. Let K be an integer-valued random variable with distribu-
tion

P(K = k) = vk

w(ξ)k

k!v(w(ξ))

and let X be a random variable distributed according to

P(X = j) = wjξ
j

j !w(ξ)
.

Here ξ is any parameter. In our setting, K = (1 − a)n, a.s. and X has the so-
called logarithmic distribution, P(X = j) = bj/j · 1

− log(1−b)
, for some parameter

b = w(ξ).
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THEOREM 9 (Kolchin). The number of (v,w)-partitions is given by

n!v(w(ξ))

ξn
P

(
K∑

i=1

Xi = n

)
,

where Xi are i.i.d. samples of the variable X. Moreover, the sizes of the clusters in
exchangeable random order have the same law as

(X1, . . . ,XK) given X1 + · · · + XK = n.

For a precise definition of exchangeable random order, and further discussion
of this theorem, see [10]. It is to be noted that here ξ is any parameter. By playing
on this parameter so as to make the event SK = n not unlikely (e.g., of probabil-
ity ∝ n−1/2 rather than exponentially small), we get that the sizes of the clusters
are approximately drawn from the r.v. X. Note that as a consequence we get here
another proof of Theorem 3. Indeed, we see that the sizes of the cycles of a uniform
permutation on ∂B in exchangeable random order have a logarithmic distribution
(asymptotically when the parameter is chosen suitably). Hence, a size-biased pick
|C1| should have distribution P(X′ = j) = const.j · bj

j
∝ bj , a geometric ran-

dom variable. The similarity between the large deviations–statistical mechanics
approach and Kolchin’s theorem is striking.

Another straightforward consequence of this theorem is the precise asymptotics
for the size of a ball of radius an. Indeed, in our setting, v(θ) = θ(1−a)n/[(1−a)n]!
and w(ξ) = − log(1 − ξ), hence:

|∂B(an)| = n!(− log(1 − ξ))(1−a)n

ξn((1 − a)n)! P

(
(1−a)n∑

i=1

Xi = n

)
,

where ξ is still any parameter. However, when ξ is chosen such that (1 − a) ×
E(X) = 1, the local central limit theorem shows that P(

∑(1−a)n
i=1 Xi = n) ∼

Cn−1/2. By Stirling’s formula, it is now straightforward to see that

|∂B(an)| = exp
(
an logn + c2n + o(n)

)
.

Let us now turn our attention to the hitting distribution. We will get the corre-
sponding estimate by analyzing the Radon–Nikodym derivative r(σ ) and the law
of large numbers for ν, as mentioned in the sketch of the proof.

More precisely, it follows from the proof of Theorem 6 that if σ ∈ ∂B(an), with
cycle decomposition of size m1, . . . ,m(1−a)n, and t = an, then

ν0(σ ) = 1(n
2

)t
e−κ(c)

t !
n(1−a)∏

i=1

m
mi−2
i

(mi − 1)! .



452 N. BERESTYCKI

Let us write ak for the number of cycles of σ of size k, so that
∑n

k=1 ak = n(1 − a)

and
∑n

k=1 kak = n. We can rewrite the above as

ν0(σ ) = 1(n
2

)t
e−κ(c)

t !
n∏

k=1

(
1

c

kk−2

(k − 1)!(ce
−c)k

)ak

c(1−a)n 1

(ce−c)n
.

When we take the logarithm, calling qk = 1
c

kk−2

k! (ce−c)k and pk = kqk ,

logν0(σ ) = κ(c) − t log
(

n

2

)
+ log t !

+
n∑

k=1

ak logpk + n(1 − a) log c − n log c + cn.

Recalling that t = an, c = 2a, and using Stirling’s formula, we find that

logν0(σ ) = −an logn + an +
n∑

k=1

ak logpk + o(n).(7.1)

We would now like to use the law of large numbers for ν0 since we know that
under ν,

ν

({
σ ∈ ∂B :

∣∣∣∣ak

n
− qk

∣∣∣∣ ≤ ε; ∀1 ≤ k ≤ n

})
→ 1

for given ε > 0, and where pk is the Borel distribution. But it is not directly pos-
sible to take S = {σ ∈ ∂B : |ak

n
− qk| ≤ ε; ∀1 ≤ k ≤ n} since we would obtain a

bound ε
∑∞

k=1 logpk = ∞. So we need to modify our choice: let

Sn =
{
σ ∈ ∂B :

∣∣∣∣ak

n
− qk

∣∣∣∣ ≤ (logn)−5; ∀1 ≤ k ≤ (logn)2 and ak = 0 otherwise
}
.

There are two things we need to check on Sn. First we need to see that it has the
property that ν(Sn) → 1, and also that it has the correct size asymptotically. The
first thing is taken care of by the next lemma, while the second will follow from
the fact that ν0(Sn) → 1, itself also a consequence of the lemma below.

LEMMA 9. ν(Sn) → 1.

PROOF. It suffices to prove that ν(∂B − Sn) → 0. By the coupling with an
Erdős–Renyi random graph, there is a β > 0 such that no cycle can be greater than
β logn with high probability under ν. Hence it remains to prove that

(logn)2∑
k=1

ν

(∣∣∣∣ak

n
− qk

∣∣∣∣ ≤ (logn)−5
)

→ 0.

The basic idea is to use random graph estimates. Let G(t) be the result of a random
graph process where edges are added in a Poissonian way at rate

(n
2

)
. Then the
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expectation of the number of clusters of size k a′
k in G(an), is known to be nqk

asymptotically with standard deviation O(n1/2), which is much smaller than the
n(logn)−5 from the definition of Sn. So we need to show this still holds under ν.
Recall that we can couple the process (G(t), t ≥ 0) with a random walk (σt , t ≥ 0)

where we multiply by a transposition (i, j) whenever edge (i, j) arrives in G(t).
Thus we may consider the first time T that σ is at distance 
an� of the identity,
and obviously a realization of ν is obtained as σT . We consider also T ′ the first
time that 
an� edges have been added to G(t). Then since T ′ is the first time a
Poisson process with intensity 1 exceeds the value 
an�, T ′ has mean 
an� and
variance O(n). Hence the number of edges added to G between 
an� ∧ T ′ and

an� ∨ T ′ is O(n1/2). On the other hand, only a bounded number Zan of edges
are added between T ′ and T , corresponding to the number of fragmentations at
time an, and thus all in all only O(n1/2) edges are added between an ∧ T and
an ∨ T , so this may create or destroy at most O(n1/2) clusters of size k for each
1 ≤ k ≤ (logn)2, which is much smaller than the n(logn)−5 from the definition of
Sn. Hence we conclude that

(logn)2∑
k=1

ν

(∣∣∣∣ak

n
− qk

∣∣∣∣ ≤ (logn)−5
)

→ 0.
�

Thus ν(∂B −Sn) → 1. Since ν0 is obtained as an asymptotically nondegenerate
conditioning of ν, it follows immediately that ν0(∂B − Sn) → 0 as well, that is,
ν0(Sn) → 1. We now show how to use this to estimate the size of Sn. By (7.1), for
all σ ∈ Sn,

logν0(σ ) + an logn

n
≥ a +

(logn)2∑
k=1

(
qk + (logn)−5)

logpk + o(1)

≥ a +
(logn)2∑

k=1

qk logpk + o(1),

from which we deduce that

lim inf
n→∞

1

n

(
logν0(σ ) + an logn

) = a +
∞∑

k=1

qk logpk := −c1.

After similar treatment for the lim sup, we get

1

n

(
logν0(σ ) + an logn

) → −c1.

Since

ν0(Sn) = ∑
σ∈Sn

ν0(σ ) → 1,
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it must be that |Sn| = exp(an logn + c1 + o(n)). Therefore

lim
n→∞

1

n
log

|Sn|
|∂B| = c1 − c2 := γ.

It now remains to show that γ �= 0. Observe that by Kolchin’s theorem, we could
pursue the asymptotic expansion of |∂B(an)| and the next term would be polyno-
mial in n. From the exact formula of ν(σ ), we could also find the next term for |S|
and find that it is polynomial. Hence if γ = 0, then we would have |S|/|∂B| ∼ n−α

for some α ≥ 0. But, another consequence of Kolchin’s theorem is that the decay
has to be at least exponential: for instance, permutations in S have a number of
fixed points characteristic of ν and not of µ. As we have seen earlier the number
of fixed points under µ, n/(1 + b), is smaller than under the hitting distribution.
But since the number of fixed points under µ is given by a sum of almost indepen-
dent random variables,

n−
an�∑
i=1

1{Xi=1} given
n−
an�∑

i=1

Xi = n,

we have that

µ(S) ≤ P

(
1

n

n−
an�∑
i=1

1{Xi=1} <
1

1 + b

∣∣∣ n−
an�∑
i=1

Xi = n

)

≤ Cn1/2e−nρ ≤ C′e−nρ′

by standard large deviations (here, simply Markov’s inequality), and because the
event on which we condition is of probability Cn−1/2. Hence the decay has to be
at least exponential and γ cannot be 0. �

REMARK. The same argument shows that the hitting distribution of σ is sup-
ported on a set at least exponentially small even in the case a > 1/2, but of course
we do not know whether this is a precise asymptotics. If the decay is still expo-
nential after a = 1/2, it seems likely that the exponential coefficient will not be
smooth at a = 1/2. In Figure 2 we have plotted the value of this coefficient against
a time-change of a. It would be interesting to compute exact asymptotics in the
case a > 1/2 and make this picture complete.

REMARK. Kolchin’s representation theorem could have been used already
earlier for the proofs of Theorems 2 and 3. This would actually simplify the proof
of both results. However, we have chosen to keep the proofs as they were, because
they do not rely on a technical result such as Kolchin’s theorem, which is not as
well known as standard large deviation theory.
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FIG. 2. Numerical evaluation by Maple of the limiting behavior of −n−1 log |Sn|
|∂B| . The re-

sult is plotted as a function of ξ = f −1(a), where f (ξ) = 1 + log(1 − ξ)(1 − ξ)/ξ . f −1 is
an increasing function of a. This picture has been rigorously proved only for a < 1/2, that is,
ξ < f −1(1/2) ≈ 0.715331863 . . . .

8. Asymptotic hyperbolicity under the uniform measure. Here we present
a proof of Theorem 8. The sketch of the proof below contains some ideas that will
be used and not re-explained in the actual proof that follows.

THEOREM 10. Let 0 < a < 1 and let σ,π be two random independent points
chosen uniformly from ∂B(an). Then:
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1. If a < 1 − log 2,

E(σ |π)p ≤ δ(logn)2

for some 0 < δ = δ(a) < ∞. Moreover, with probability asymptotically 1, there
is a geodesic between σ and π that comes within distance at most δ(logn)2

of p.
2. If a > 1 − log 2,

E(σ |π)p ∼ δn

for some δ = δ(a) > 0. Moreover, no geodesic can approach p closer than δ′n
for some 0 < δ′ < ∞.

Sketch of the proof. To guess what the answer is, we exploit once again the
connection with the theory of random graphs. The first thing to do is to realize
that because of the symmetries of the Cayley graph Gn it is enough to look at
d(I, σ · π) and see whether it is approximately 2an or much smaller than 2an.

To construct our graph, we will need some notation. Let

π = τ1τ2 · · · τan(8.1)

be a minimal decomposition of π as a product of transpositions, with the follow-
ing convention. If we list all cycles of π in the order of their least element, then
the transpositions τi are those (x, y) such that y comes just after x in the cyclic
decomposition of π and x and y are in the same cycle, and we order the an trans-
positions according to their position in this canonical decomposition. To clarify
the ideas, suppose

π = (1 4 3 7)(2)(5 8)(6 10 9);
then we write

π = (1 4)(4 3)(3 7)(5 8)(6 10)(10 9).

We define the graph � = (V ,E) on n(1 − a) vertices as follows. Let
V = {cycles of σ }, and there is an edge between C and C′ if there is x ∈ C and
y ∈ C′ such that (x, y) is one of the an transpositions in the minimal decomposi-
tion described above. Note that this graph could have self-loops and multi-edges.

A notion that we will use on several occasions is that of being a terminal point.
We say x ∈ {1, . . . , n} is terminal if x does not appear more than once in the trans-
positions of the above minimal decomposition. This means that, with those con-
ventions, x is situated at the “end” of the cycle of π in which it is contained.

Here is why we are interested in the properties of the graph �. If we de-
fine σ0 = σ and, for 1 ≤ r ≤ an, σr = σ · τ1 · · · τr , and consider the process
(σr ,0 ≤ r ≤ an), this is a walk on Gn starting at σ and ending at σ · π . Moreover,
since at each step we are multiplying by a transposition, the cycles of σr evolve ac-
cording to a discrete coagulation–fragmentation chain, with cycles merging when
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the transposition involves elements from different cycles, and cycles splitting oth-
erwise (as it is the case for simple random walk on Gn). Therefore, � is the graph
that results from drawing an edge between two cycles of σ as we encounter a trans-
position joining those two cycles. In particular, the same argument that shows that
the Erdős–Renyi random graph is an upper bound for the sizes of the cycles of
simple random walk on Gn, will show that the cycles of σ · π are subcomponents
of the connected components of �, with possibility of fragmentation whenever
there is a cycle in �, or a self-loop or a multiple-edge. All other edges represent
coalescence of cycles in the walk (σr ,0 ≤ r ≤ an).

In particular, the property of � that we will be most interested in, will be to de-
cide whether � has a giant component, meaning a component containing a positive
fraction of all n(1 − a) vertices. Indeed when all cycles of � are small, we should
expect very few cycles in � and hence little fragmentation. Hence most steps of
the walk σr are coalescence events and the number of cycles decreases linearly;
in other words, in the case that all cycles are small, d(σ,π) ≈ 2an. On the other
hand, if � contains a giant cycle, then we can expect many cycles in the graph and
hence many fragmentation events in the walk (σr ,0 ≤ r ≤ an), which means that
d(σ,π) � 2an.

Here is our strategy to see whether there is a giant component in �. Rather
than counting the number of cycles of σ that a component of � contains, we pre-
fer to compute the exact number of integers in {1, . . . , n} that it actually encloses
prior to shrinking all cycles of σ into points. Formally, this means, give weight
W(C) = |C| to any vertex C of �, and ask what is the total weight of a connected
component of �. Let C1(�) denote a size-biased pick from the connected compo-
nents of �, that is, the total weight of the connected component of � containing “1”
[or, more precisely, C1(σ )].

Lemma 10 shows that W(C1(�)) converges in distribution to the total progeny
of a branching process with offspring distribution a shifted geometric random vari-
able. The idea is that by Theorem 3, the various cycles of σ are asymptotically
i.i.d., so that each edge in � adds to the weight of C1(�) a contribution which
is, by Theorem 3, asymptotically a geometric random variable G with parameter
1/(1 + b) where b satisfies log(1 + b)/b = 1 − a. This seems to give an infinite
progeny almost surely (since G ≥ 1 a.s.). However, to every point that we examine
there is a positive probability that it is a terminal point. In this case, that integer
does not connect to a new independent cycle of σ , and hence its offspring is 0. This
kind of modified branching process is defined more precisely and analyzed in Sec-
tion 8.3. The key fact is that because of the special properties of the asymptotic law
of π , which involves geometric random variables, this modified branching process
is in fact equal in distribution to another branching process where the offspring
distribution has been shifted from G to G − 1. In all that follows, we call X a
random variable such that

X
d=G − 1.
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Hence � has a giant component if, and only if, E(G) > 2. Since p = 1/(1 + b)

and log(1 + b)/b = 1 − a,

P(� has a giant component) > 0 ⇐⇒ a > 1 − log 2.

PROOF OF THEOREM 8.

8.1. Structure of the proof. As this proof is rather long, we feel that it is ap-
propriate to explain how the various arguments are used. In Section 8.2, we prove
that W(C1(�)) ⇒ ∑

t≥0 Zt the total progeny of a branching process with offspring
distribution X. Then in Section 8.3, we define a modified branching process, and
prove that in the case of geometric random variables this becomes another branch-
ing process with shifted offspring distribution. We then use this to prove by hand
that in the subcritical case, |C1(σ · π)| is dominated by such a modified branching
process. Since this is a subcritical branching process, we prove the exponential
decay of the tail of |C1(σ · π)|, uniformly in n. This enables us to show that
as long as a < 1 − log 2 there are very few fragmentation events in the walk
(σr , r = 0, . . . , an). The supercritical case is treated in Section 8.5. Since we have
established branching process asymptotics, we can use the duality principle of a
branching process between the subcritical phase and the supercritical phase. This
shows that the number of clusters of � in the supercritical regime can be computed
by looking at the number of clusters of � for some specific subcritical time. Since
we have proved that the distance is linear in this regime, we now know how many
clusters � has at any subcritical time, and it follows that the number of clusters
of � in the supercritical regime is strictly less than what it would be if the distance
was still linear. It only remains to prove that at any given time the number of extra
cycles that were generated by some fragmentation (and have not been reabsorbed
by other large cycles) is O(n1/2), which is done in Section 8.6.

8.2. Branching process asymptotics. To start proving things, we need some
more notation. Let An

0 = {1} and define recursively the An
k by

An
k+1 = ⋃

x∈An
k

{
Cπ(x)(σ )

} − ⋃
1≤j≤k

An
j .

The An
k correspond to growing the branching process generation after generation,

rather than cycle after cycle. Let (Zt , t = 0,1, . . . ) be a branching process with
offspring distributed as X. Note that by the construction of �, we also have that

∞∑
k=0

|An
k | = W(C1(�)).

LEMMA 10. As n → ∞,

(|An
0|, |An

1|, . . .) ⇒ (Z0,Z1, . . . ).
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PROOF. Let us start by the convergence of (|An
0|, |An

1|). If j = 0, P(|An
0| = 1,

|An
1| = 0) = P(π(1) = 1) → 1/(1 + b) := p = P(X = 0). If j ≥ 1, then

P(|An
0| = 1, |An

1| = j) = P
(
π(1) �= 1; ∣∣Cπ(1)(σ )

∣∣ = j
)

= P
(
π(1) �= 1

) · P (|Cπ(1)(σ )
∣∣ = j |π(1) �= 1

)
→ (1 − p) · (1 − p)j−1p = P(X = j).

Indeed, conditionally on {π(1) �= 1}, π(1) is uniform on {2, . . . , n}, so that
Cπ(1)(σ ) is as good a size-biased pick as C1(σ ), and we can apply Theorem 3.

Now let us consider the general case of finite-dimensional distributions. Let
n1 > 0, n2 > 0, . . . , nk ≥ 0 with

∑
i ni ≤ n. We are trying to compute the asymp-

totics of

P(|An
0| = 1, |An

1| = n1, . . . , |An
k | = nk).

To do this, we need to evaluate the probability of a collision occurring in the first
k stages, that is,

P

(
π(x) ∈ ⋃

1≤i≤k

An
i − Cx(π) for some x ∈ An

j with j ≤ k

)
.

We will say of an x such as in the event above, that it makes a backward con-
nection. Hence an x makes a backward connection if π(x) maps it to some lower
level in the branching process, but x is not a terminal point. Therefore backward
connections (or collisions) are exactly those that may lead to a fragmentation, as
explained in the sketch of the proof.

It is easy to see that P(collision in first k stages) = O(1/n). In fact, it follows
from the uniformity of Lemma 11 that

P(|An
0| = n0, . . . , |An

k | = nk; b.w. collisions in k first stages) ≤
k∑

j=1

nj

∑j−1
i=0 ni

n

≤ (
∑k

i=0 ni)
2

n

(see also Lemma 12 where similar estimates are derived).
Therefore it is enough to consider

P(|An
0| = 1, |An

1| = n1, . . . , |An
k | = nk| given no b.w. connection).

Suppose An
k−1 = {x1, . . . , xnk−1}. Conditionally on the event that there is no col-

lision in the k first stages, π(x1), . . . , π(xnk−1) belong to yet unexplored cycles
(as long as they are not terminal). After decomposition on the number of such x
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[call T(An
k−1) the number of terminal elements in the set An

k−1], the last probability
is equal to

=
n∑

j=1

P

(nk−1−j∑
i=1

∣∣Cπ(xi)(σ )
∣∣ = nk

)
P

(
T(An

k−1 − j | no b.w. conn.)
)

→ ∑
j≥0

P

(nk−1−j∑
i=1

Xi = nk

)
pj

= P

(nk−1∑
i=1

Xi = nk

)

by the asymptotic independence property of a finite number of size-biased cycles,
and the fact that given there was no backward connection, the x in level An

k−1
belong to different cycles of π , so that the events that they are terminal are inde-
pendent asymptotically.

These are the transition probabilities of a branching process with offspring dis-
tribution X, so the lemma is proved. �

8.3. A modified branching process. One way to formalize the idea that a ver-
tex has a geometric number of children only during finitely many generations, is
to use a modified branching process where each individual x is endowed with a
nonnegative, integer-valued random variable T (x), that represents the “life-time”
of its family. As long as T (x) > 0, x will keep having children according to the
original offspring progeny L. But when T (x) = 0, the individual will be declared
“terminal” and will not be allowed to have any children.

Here is a rigorous description of this modified branching process. Let Xt,i be a
collection of i.i.d. random variables with distribution L, a fixed distribution on the
nonnegative integers (the original progeny). Let Tt,i be i.i.d. nonnegative integer-
valued random variables, distributed according to another distribution L′, the life-
time. Let Zt be the size of the process at time t (with discrete time). Define Z0 = 1,
and give the root lifetime T0,0. Then define recursively Zt by

Zt+1 =
Zt∑
i=0

Xt,i1{T (xi)>0},(8.2)

where x1, . . . , xZt are the Zt individuals of generation t . If y1, . . . , yZt+1 are
the Zt+1 individuals of generation t + 1, the rule that we adopt for the value
of T (y1), . . . , T (yZt+1) is the following. If T (xi) > 0, give all Xt,i children
of xi independent lifetimes from Tt,i , except for one of its children, say yj , for
which T (yj ) := T (xi) − 1. Rigorously, let Nt = #{i : T (xi) > 0}, rewrite the xi ’s
removing the terminal ones and call them x′

1, . . . , x
′
Nt

. Let T (y1) = T (x′
1) −
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1, . . . , T (yNt ) = T (x′
Nt

) − 1, and let T (yNt+1) = Tt+1,Nt+1, . . . , T (yZt+1) =
Tt+1,Zt+1 .

Of course we make this definition because asymptotically, W(C1(�)) will be
well approximated by such a system, where the offspring L is the size of a cycle
of σ , and where L′ is the size of a cycle of π . Indeed, suppose we are exploring the
cluster containing 1 in the graph of the superposition of σ and π . T (1) is |C1(π)|,
which corresponds to the fact that after that many iterations of π we are back to
where we started and no longer add anything new to the population of the cluster.
However, after one iteration say, all vertices in the first generation, other than π(1)

itself, belong to different cycles of π with high probability. Therefore their lifetime
should be an independent random variable, distributed as L′.

In general, the ageing branching process (Zt , t = 0,1, . . .), where each indi-
vidual has a “lifetime” that it transmits to one of its children, is not a Markov
process with respect to its own filtration σ(Z0,Z1, . . .). Indeed the size of the gen-
eration t + 1 depends not only on the size of generation t , but also on the random
variables Tx where x is an individual of generation t , so one would need to add in
the filtration the values of T (x) for each generation.

However, a miracle happens due to the fact that the cycles of π have (asymp-
totically) a geometric distribution G. Let p′ be the parameter of G: P(G = j) =
(1−p′)j−1p′. Then the distribution L′ of the random variables Tt,i is again G. For
k ≥ 1, conditionally on T > k, T − k is distributed as G. This fact, called “lack of
memory,” has the following amazing consequence:

PROPOSITION 1. When the lifetime L′ is a geometric random variable,
(Zt , t = 0, . . .) is a Markovian branching process with offspring distribution

L1{L′>0}. When L
d=L′ d=G, this distribution is X

d=G − 1.

PROOF. Let Bt,i be Bernoulli random variables with success parameter
P(Bt,i = 1) = p′. Because G =d inf{t ≥ 0;Bt,i = 1}, the event {T (xi) > 0} is
the same as {Bt,i = 0}, so (8.2) becomes

Zt+1 =
Zt∑
i=0

Xt,i1{Bt,i=0}.(8.3)

This expresses the fact that for each new vertex visited, we can take the decision of
closing the cycle, independently of the past. When the cycle still has some length
to be explored, then the vertex has Xt,i children. This decision affects the law of
progeny at a given vertex. The new distribution of the progeny is now, by (8.3):

P(X = j) =
{

p′, if j = 0,
(1 − p′)P (Xt,i = j), if j ≥ 1.

(8.4)

Of course, for our problem, σ =d π , so both L and L′ are distributed as G. As can
be readily checked from (8.4), the distribution of X is thus a shift of G:

X
d=G − 1.(8.5) �
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8.4. Fragmentations in the subcritical case. First note that if σ is a uniform
permutation on ∂B(an), if we visit all points in {1, . . . , n} according to their order
of appearance in the canonical cyclic decomposition of σ , and call this process
Vt(0 ≤ t ≤ n), then the successive points are in some sense uniformly chosen from
what remains to be found, at least as long as we do not have to start a new cycle.
More precisely:

LEMMA 11. Given (V0, . . . , Vt ) and given that Vt is not a terminal point,

σ(Vt ) is uniform on {1, . . . , n} − {V0, . . . , Vt }.

The proof of this lemma follows directly from the Feller coupling presentation
of a uniform permutation on Gn, which also has (obviously) this property. Condi-
tioning on the number of cycles does not change how the cycles are filled in.

LEMMA 12. Suppose the branching process is subcritical, that is, p > 1/2
or (equivalently) a < 1 − log 2. Then the number of fragmentations in the walk
(σr , r = 0, . . . , n) is o(n).

Basically, all cycles are fairly small, so by improving our estimates on the num-
ber of collisions, we should get an O(1) bound, just like in the Erdős–Renyi case.
Technicality arises due to the fact that the cycles are conditioned independent ran-
dom variables, and not just independent. Here is a rigorous proof.

PROOF OF LEMMA 12. We prove things in two steps.
First, we prove a uniform bound for the size of a cluster: we show that if we

write π = ∏an
i=1 τi , and denote πr := ∏r

i=1 τi ,

P
(|C1(σ · πr)| > u for some r ≤ an

) ≤ Cn exp(−αu),(8.6)

where C and α are constants independent of n, and u is any number.
Once this exponential control is proved, we can bound the number of times that

one of the τr ’s will yield a fragmentation. Indeed, recall that to obtain σ · π we
can perform successively the τr ’s on σ , and each one yields a coagulation or a
fragmentation. We hence view this as a process indexed by 1 ≤ r ≤ an. In the
course of this process, at all times, by (8.6) applied to u = (logn)2, no cluster is
larger than (logn)2 with overwhelming probability, so that by Lemma 11:

P(τr+1 yields a fragmentation) ≤ 2(logn)2/n.

There are (exactly) an transpositions to perform, hence:

E(#frag.) ≤ 2a(logn)2.

This is already largely enough to prove Lemma 12.
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We will now prove that (8.6) holds, since this is the only thing that remains to
be proved. Although we have seen that in the limit each cluster is a subcritical
branching process (for which such an exponential tail of the total progeny holds),
when n is finite there is no real branching process available to dominate C1(σ ·πr),
essentially because the sizes of the cycles are not i.i.d. random variables. However,
they are conditionally independent (cf. Theorem 9, or Theorem 3), and we will use
this fact to construct a real branching process that dominates C1(σ · πr), when
conditioned on some mild event. This conditioning accounts for the extra factor n

in (8.6).
Here is how we proceed. By Kolchin’s representation theorem (Theorem 9),

there are random variables (X1, . . . ,Xn(1−a)) such that the joint law of the sizes
of the cycles of σ is (X1, . . . ,Xn(1−a)) given

∑
i Xi = n (we will call An the event

that
∑

i Xi = n). The Xi’s constitute a “pool” of possible cycle sizes. Similarly,
there are random variables (Y1, . . . , Yn(1−a)) such that the joint law of the sizes
of the cycles of π is (Y1, . . . , Yn(1−a)) given

∑
i Yi = n (let Bn be the event that∑

i Yi = n).
We give an upper bound of C1(σ · π) in terms of the modified branching

processes of Section 8.3, that uses only the Xi’s and the Yi ’s. Start with ver-
tex 1 and choose a size-biased pick X′

1 of the Xi ’s (the cycle containing 1).
Put T (1) = Y ′

1, a size-biased pick of the Yi ’s. Next, given X′
1 = k, put T (2) =

Y ′
2, . . . , T (k) = Y ′

k . All vertices with positive lifetime T have a number of children
given by a size-biased pick of the remaining Xi’s. They transmit their lifetime −1
to one of their children and the rest have lifetimes given by size-biased picks from
the remaining Yi’s. Then repeat the procedure until we cannot go any further (i.e.,
until all vertices at a given generation have lifetime T = 0, or until all Xi’s and Yi’s
have been picked). Call Z′ the total population obtained at the end of this construc-
tion.

We claim that Z′ dominates all stages of C1(σ ·πr), because Z′ gives the cycles
of σ coagulated by those of π , without taking any account of eventual fragmen-
tations. In particular, in Z′, as long as a vertex x is not terminal (T (x) > 0), the
children of x will be part of the population of Z′. Of course in the event of a colli-
sion or a backward connection, Z does not contain any additional children, so that
Z < Z′. Therefore

P(Z > u) ≤ P(Z′ > u|An and Bn)

≤ P(An)
−1P(Bn)

−1P(Z′ > u;An;Bn)

≤ CnP (Z′ > u).

Indeed, by the local central limit theorem (see [5]),

P(An) = P(Bn) = P

(
n(1−a)∑

i=1

Xi = n

)
∼ Cn−1/2.
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To complete the proof, it remains to notice that size-biasing the logarithmic dis-
tribution of Kolchin’s theorem gives a geometric random variable. Therefore, by
arguments already developed in the sketch of the proof, Z′ is the total population
of a branching process with offspring distribution X of (8.5), and starting with a
geometric number of individuals G. Because p > 1/2, this branching process is
subcritical. In this case, classical estimates [2, 5] show the exponential tail

P(Z′ > u) ≤ C exp(−αu).

This concludes the proof of (8.6), and also that of Lemma 12. �

REMARK. It is possible to avoid the use of Kolchin’s representation theorem
in the above proof. Indeed, by Theorem 3, a size-biased pick of the cycles has,
after unconditioning on some event of probability ∝ n−1/2, a distribution which is
given by the lengths of sequences of 1 in the Bernoulli trials ζ

(λ)
i . However, since

βi = P(ζ
(λ)
i = 1) ≤ b/(1+b), it follows that the distribution of a size-biased cycle

is thus (after unconditioning) stochastically dominated by the geometric random
variable G.

8.5. Mean in the supercritical regime and duality. Although this may seem a
little surprising at first, we use the result from the subcritical case to get that for
the supercritical case. The idea is to use the duality of branching processes.

A crucial remark is that the number of cycles of σ · π is given by
∑n

x=1 1/

|Cx(σ · π)|, hence by exchangeability

1

n
E(#clusters of �) = E

(
1

|C1(�)|
)

→ E

(
1

T − 1

∣∣∣T > 1
)
,

where T is the total progeny of a branching process with offspring distributed as X

and started with one individual. Indeed, let us not forget that the first generation A0
of the branching process is itself a geometric random variable, so we can add an
imaginary root and then subtract it (thus T −1). Introducing an extra vertex for the
root allows us to make use of the duality principle of branching processes [2, 6].

The duality principle states that a supercritical branching process, conditioned
on extinction, is another branching process, subcritical, whose offspring distrib-
ution is given through its generating function. If φ(s) = E(sX) is the generating
function of X and α is the extinction probability α = P(T < ∞), then the condi-
tioned process has offspring distribution characterized by

φ′(s) = φ(sα)/α.

Here, P(X = j) = (1 − p)jp, so

φ(s) = p

1 − s(1 − p)
.
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Therefore

φ′(s) = p/α

1 − sα(1 − p)
.

The fixed point equation for α yields that
p

α
+ α(1 − p) = 1(8.7)

so that φ′ is the Laplace transform of another shifted geometric random vari-
able X′, with parameter p′ = p/α. Let T ′ be the total progeny of a branching
process with offspring X′ and started with one individual.

Let us now relate the supercritical and subcritical regimes. By duality,

E

(
1

T − 1

∣∣∣T > 1
)

= P(T < ∞)

P (T > 1)
E

(
1

T − 1
1{T >1}

∣∣∣T < ∞
)

= P(T < ∞)

P (T > 1)
E

(
1

T ′ − 1
1{T ′>1}

)

= P(T < ∞)

P (T > 1)
P (T ′ > 1)E

(
1

T ′ − 1

∣∣∣T ′ > 1
)
.

However, for the subcritical regime, we know by Lemma 12 that there are
only o(n) fragmentations, so the distance between σ and π is 2an + o(n) and the
number of clusters is (1 − 2a)n + o(n). Hence E( 1

T ′−1 |T ′ > 1) = 1 − 2a′, where
a′ is the radius corresponding to the conditioned parameter p′. Since p = 1/(1+b)

and log(1 + b)/b = 1 − a, we have that

a = 1 + p logp

1 − p
.

On the other hand, due to the fixed point equation (8.7), the constant P(T ′ >

1)/P (T > 1) = (1 − p′)/(1 − p) simplifies into α.
Therefore, Theorem 8 is proved when we show that

α2(1 − 2a′) > 1 − 2a.

Using the fixed point equation (8.7), we find that a′ = 1 + p logp′/((α2)(1 − p)),
so that the above reduces to

−α2 − 2
p logp′

1 − p
> −1 − 2

p logp

1 − p

or
2p logα

1 − p
> α2 − 1.

Using one more time the fixed point equation, one gets

2p logα > α − 1.
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Since log(1 − x) > −x, it is therefore enough to show

−2p(1 − α) > α − 1 or 2p < 1

which is precisely the condition that the branching process is supercritical.

8.6. Fragmentations in the supercritical range. In the previous section we
have computed asymptotics for the expected number of clusters in the graph result-
ing from the superposition of the cycle structures of σ and π . We now need to show
that at the end of the walk (σr , r = 0, . . . , an), there are no more than o(n) addi-
tional cycles that have been generated by fragmentation, compared to the number
of clusters of �.

To do this, we use once again the dynamic point of view adopted to deal with
the subcritical regime. Let τ1, . . . , τan be the decomposition of π in product of an

transpositions as evoked earlier, and let σr = σ · τ1 . . . τr .

LEMMA 13. For each 1 ≤ r ≤ an, the expected number of cycles in σr gener-
ated by fragmentation is O(n1/2).

This is similar to the Erdős–Renyi case of Berestycki and Durrett [3], The-
orem 3. Lemma 13 does not claim that the number of fragmentations itself
is O(n1/2), but that the number of extra cycles generated by fragmentation
is O(n1/2). Just like in the Erdős–Renyi case, many of the cycles that are frag-
mented get reabsorbed by large components fairly quickly.

PROOF OF LEMMA 13. There can never be more than n1/2 cycles of size
larger than n1/2. On the other hand, by Lemma 11, the probability that τt will
create a fragment of size smaller than n1/2 is at most n1/2/n = n−1/2. Therefore
the expected number of such fragmentations is at most an · n−1/2 = O(n1/2). �

At this point, Theorem 8 is proved. �
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