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THE SPREAD OF A RUMOR OR INFECTION
IN A MOVING POPULATION

BY HARRY KESTEN1 AND VLADAS SIDORAVICIUS2

Cornell University and IMPA

We consider the following interacting particle system: There is a “gas”
of particles, each of which performs a continuous-time simple random walk
on Z

d , with jump rate DA. These particles are called A-particles and move
independently of each other. They are regarded as individuals who are ig-
norant of a rumor or are healthy. We assume that we start the system with
NA(x,0−) A-particles at x, and that the NA(x,0−), x ∈ Z

d , are i.i.d.,
mean-µA Poisson random variables. In addition, there are B-particles which
perform continuous-time simple random walks with jump rate DB . We start
with a finite number of B-particles in the system at time 0. B-particles are in-
terpreted as individuals who have heard a certain rumor or who are infected.
The B-particles move independently of each other. The only interaction is
that when a B-particle and an A-particle coincide, the latter instantaneously
turns into a B-particle.

We investigate how fast the rumor, or infection, spreads. Specifically, if
B̃(t) := {x ∈ Z

d : a B-particle visits x during [0, t]} and B(t) = B̃(t) +
[−1/2,1/2]d , then we investigate the asymptotic behavior of B(t). Our prin-
cipal result states that if DA = DB (so that the A- and B-particles perform the
same random walk), then there exist constants 0 < Ci < ∞ such that almost
surely C(C2t) ⊂ B(t) ⊂ C(C1t) for all large t , where C(r) = [−r, r]d . In a
further paper we shall use the results presented here to prove a full “shape
theorem,” saying that t−1B(t) converges almost surely to a nonrandom set
B0, with the origin as an interior point, so that the true growth rate for B(t)

is linear in t .
If DA �= DB , then we can only prove the upper bound B(t) ⊂ C(C1t)

eventually.

1. Introduction. We study the interacting particle system described in the
first paragraph of the abstract. A construction of such a process will be discussed
in the beginning of the next section.

In addition to the possible interpretations of such systems mentioned in the ab-
stract, the B-particles have been interpreted as “packets of energy” which together
with A-particles produce more energy, according to the reaction B + A → 2B
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(see [11]). If memory serves us well, the study of these systems was suggested
by Frank Spitzer to the first author around 1980. At that time only the case when
the A- and B-particles perform the same random walks (i.e., DA = DB ) seems to
have been considered. Recently, the so-called frog model—which has DA = 0, that
is, the A-particles do not move—has been treated by [1] and [11]. In this special
case, in which the A-particles stand still, the model has subadditivity properties
which were used to prove a full shape theorem. More specifically, it is proven
in these references that there exists a nonrandom set B0 such that almost surely
(abbreviated to a.s. in the sequel) for all ε > 0

(1 − ε)B0 ⊂ 1

t
B(t) ⊂ (1 + ε)B0 eventually.(1.1)

In this paper we mainly deal with the case DA = DB . However, the upper bound
for B(t) (see Theorem 1 below) is relatively easy and is proven even for DA �= DB .
Probably this bound was known to several people already. It turns out that a lower
bound for B(t) in Theorem 2, in the case DA = DB , can be obtained by the meth-
ods of [7]. It is still an open problem whether B(t) grows linearly with t when
DA > 0, but DA �= DB . In this case we can only prove that B(t) ⊃ C(K1t/(log t)p)

eventually, for some constants K1,p > 0. (We do not give the proof here.)
Throughout we shall use NA(x, t) (NB(x, t)) to denote the number of

A-particles (resp. B-particles) at position x at time t . NB denotes the total number
of B-particles at time 0. We always take 0 < NB < ∞ and consider NB , as well as
the positions of the initial B-particles, as nonrandom. At a site x with a B-particle
at time 0 all particles immediately turn to B-particles. We write NA(x,0−) for the
number of A-particles at x “just before” the B-particles are added to the system,
and NB(x,0−) for the number of B-particles added at x. In accordance with these
rules we take NA(x,0) = 0,NB(x,0) = NA(x,0−) + NB(x,0−) at a site x to
which a B-particle is added at time 0. If no B-particle is added at x at time 0, then
NA(x,0) = NA(x,0−) and NB(x,0) = 0. We further define

B̃(t) = {x ∈ Z
d : a B-particle visits x during [0, t]},

B(t) = B̃(t) + [−1
2 , 1

2

]d
,

and the cubes

C(r) = [−r, r]d.(1.2)

Our first theorem states that the rumor/infection cannot spread from the origin
faster than linearly in time.

THEOREM 1. For some constant C1 < ∞, and all sufficiently large t ,

E{number of B-particles
(1.3)

with a position outside C(C1t) at time t} ≤ 2NBe−t .
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Consequently it is a.s. the case that

B(t) ⊂ C(2C1t) eventually.(1.4)

This result holds for any DA,DB ≥ 0 and probably is even valid if one allows
the A- and B-particles to perform any random walk with bounded jumps of mean
zero. The next theorem shows that the rumor/infection spreads at least linearly in
time, but we can only prove this if both the A- and B-particles perform simple
random walks with the same jump rate.

THEOREM 2. If DA = DB , then there exists a constant C2 > 0 such that for
each constant K > 0

P {C(C2t) �⊂ B(t)} ≤ 1

tK
for all large t.(1.5)

Consequently, a.s.

C
(1

2C2t
)⊂ B(t) eventually.(1.6)

For proving a shape theorem we will need a form of Theorem 2 which also gives
some information about the possible occurrence of A-particles amid the spreading
B-particles. More specifically, the same proof as for Theorem 2 can be used to
prove the next theorem. This answers a question raised after a lecture on this ma-
terial; unfortunately we do not remember who the questioner was.

THEOREM 3. If DA = DB , then for all K there exists a constant C3 = C3(K)

such that

P {there is a vertex z and an A-particle

at the space–time point (z, t) while there also was
(1.7)

a B-particle at z at some time ≤ t − C3[t log t]1/2}
≤ 1

tK
for all sufficiently large t.

Consequently, for large t,

P {at time t there is a site in C(C2t/2)
(1.8)

which is occupied by an A-particle} ≤ 2

tK
.

REMARK 1. It can be checked that the constants C1,C2 do not depend on the
number or positions of the initial B-particles. However, the lower bounds for the
times for which (1.3)–(1.6) are valid do depend on these initial data.
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Some heuristics. The proof of Theorem 1 is basically a Peierls argument.
This proof relies in part on the construction of the process given in Section 2.
It associates to each B-particle, ρ say, present at time t , a so-called genealogi-
cal path which describes the sequence of B-particles which “transmitted the ru-
mor/infection” from the initial B-particles to ρ at time t , and also describes the
relevant pieces of the paths of these intermediate particles. One proves (1.3) by tak-
ing the expectation of the number of genealogical paths which lead to a B-particle
outside C(C1t) at time t .

By far the most involved proof here is that of Theorem 2, which gives a lower
bound on the spread of the rumor/infection. To help the intuition, it is best to think
of the one-dimensional case, started with one B-particle at the origin and no other
B-particle. All the major difficulties appear already in this special case. Until the
last two paragraphs of these heuristic remarks we therefore take d = 1.

In this one-dimensional case, there is for each t a rightmost B-particle, at po-
sition R(t) say, and a leftmost B-particle at position −L(t). At time t all parti-
cles in [−L(t),R(t)] are B-particles and all particles outside [−L(t),R(t)] are
A-particles. Basically we want to show that lim inft→∞ R(t)/t > 0 and similarly
for L(t). If there is exactly one particle at R(t) at time t , then R(·) behaves like a
simple random walk, that is, P {R(t + dt) = R(t)± 1} = Dt/2 +O(dt2), with D

standing for the common value of DA and DB . However, if there is more than one
particle at R(t) at time t , then the rightmost particle moves one step to the right as
soon as one of the particles at R(t) makes a jump to the right, whereas the right-
most position moves a step to the left only when all particles at R(t) move to the
left. Thus, the rightmost B-particle has a drift to the right at all times when there is
more than one particle at R(t). When there is at least one other particle (of either
type) “close to” the rightmost B-particle, then there is a positive probability that in
the next time unit another particle will coincide with the rightmost B-particle. This
will still provide R(·) with an upwards drift. By using large deviation estimates
for martingales one can see that the only way for R(t)/t to become small (with a
nonnegligible probability) is if the particle at R(s) has for most s ∈ [0, t] no par-
ticle (of any type) nearby. We therefore want to show that the probability of this
event goes to 0. One is tempted to try and prove this by studying the environment
as seen from the position R(t). However, this approach seems difficult because
the dependence between R(t) and the particles near R(t) is very complicated. We
have been unable to use this approach. Instead, it turns out to be easier to prove
a much stronger property, which uses almost no property of the path s 	→ R(s).
Roughly speaking we prove that every space–time path s 	→ π̂(s) with not too
many jumps during [0, t] has some particle “near π̂(s) most of the time.”

To make this more specific, we introduce some notation. A path
π = (x0, . . . , xm) is a sequence of integers with xj+1 − xj = ±1,1 ≤ i ≤ m. We
regard the xj as the successive positions of a space–time path π̂ . There are many
space–time paths which traverse the same positions in the same order. A space–
time path π̂ is specified by giving its successive positions xi and jump times si .
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For s1 < s2 < · · · we shall sometimes denote the path which jumps to xi at time si
by π̂({si, xi}). We make the convention that s0 = 0, and unless stated otherwise,
x0 = 0. In addition we are here only discussing space–time paths over the time in-
terval [0, t], so we tacitly take sm ≤ t . π̂({si, xi}) is then the path which is at posi-
tion xi during [si, si+1) for 0 ≤ i < m, and at position xm during [sm, t]. If it is im-
portant that the path has exactly m jump times, then we shall write π̂({si, xi}i≤m).
Throughout this proof we shall only consider paths which are contained in

C(t log t) = [−t log t, t log t].
Of particular interest for us is the following class of paths with exactly � jumps:

�(�, t) = {π̂({si, xi}0≤i≤�)
(1.9)

with 0 = s0 < s1 < · · · < s� < t and xi ∈ C(t log t)
}
.

Instead of using the path followed by R(·), we shall construct special paths π̂ with
the property that there is a B-particle at (π̂(s), s) for all s ≤ t [so that automatically
R(t) ≥ π̂(t)], and such that these paths are with high probability in �(�, t) for
some � ≤ 2Dt , and also have a drift to the right at any time s when there are at
least two particles at π̂(s). Thus, it will be sufficient to show that every space–time
path π̂ ∈⋃�≤2Dt �(�, t) has some particle “near π̂(s) most of the time.”

To this end we choose a large integer C0 and partition space–time Z × [0,∞)

into the following blocks of size �r := C6r
0 :

Br (i, k) = [i�r, (i + 1)�r

)× [k�r, (k + 1)�r

)
.

We call these intervals r-blocks. We shall soon define “good” and “bad” r-blocks.
There is a standard percolation argument which also partitions space into large
blocks which can be good or bad, and then shows that on the one hand the bad
blocks do not percolate, and on the other hand that no percolation of bad blocks
implies a desired property. In our case the desired property would be that any
space–time path π̂ ∈ �(�, t) intersects at most εt bad r-blocks for a suitable �

and for a small ε [see (1.17) below]. This is indeed the desired property we are
after, but we have not succeeded in simply working with r-blocks for one fixed r ,
because of the complicated dependence of the configurations in different r-blocks.
Instead we work with r-blocks for all r . This is why we say that our proof is based
on a multiscale argument. We also need the following sets (see Figure 1):

B̃r (i, k) := [(i − 3)�r, (i + 4)�r

)× [(k − 1)�r, (k + 1)�r

)
,

Qr (x) := [x, x + Cr
0),

Vr(i) := [(i − 3)�r, (i + 4)�r

)
(these are just intervals of length Cr

0 and 7�r , resp.), and the pedestal of Br (i, k):

Vr (i, k) = Vr(i) × {(k − 1)�r}.
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FIG. 1. Relative location of the sets Br (i, k), B̃r (i, k) and Vr (i, k) for d = 1. These sets are “left
closed, right open,” that is, the solid segments are in the sets, but the dashed segments are not.
The space and time directions are along the horizontal and vertical axes, respectively. The points
A and B are the space–time points (i�r , k�r) and ((i − 3)�r , (k − 1)�r ), respectively. Vr is the
line segment which constitutes the bottom of B̃r .

We also need to count numbers of particles in certain sets. We define N∗(x, t)

as the number of particles at the space–time point (x, t) in the system which
evolves freely, without any B-particles. In this system—which we sometimes de-
note by P ∗—we start off with NA(x,0) = NA(x,0−) particles at x at time 0 and
let all these particles perform independent random walks without any interaction.
Note that N∗(x, t) ≤ NA(x, t) + NB(x, t). The important counts are

Ur(x, v) = ∑
y∈Qr (x)

N∗(y, v) = ∑
y : x≤y<x+Cr

0

N∗(y, v).(1.10)

(We shall need this only for integer times v.) We call the r-block Br (i, k) bad if

Ur(x, v) < γrµACr
0 for some (x, v) with integer v for which

Qr (x) × {v} is contained in B̃r (i, k).

The γr in this definition are given by (4.3) below. For the time being the only
important properties are that the γr are strictly increasing (but slowly) and satisfy

0 < γ0 < γr < γ∞ ≤ 1
2 , r > 0.(1.11)

Roughly speaking, the bad blocks are blocks in which the number of A-particles
in some spacelike cube of specified size and which is nearby in space–time, is
less than half the expected amount. Indeed, it is well known that in our setup each
Ur(x, v) has a Poisson distribution of mean µACr

0. The pedestal Vr (i, k) is called
bad if

Ur

(
x, (k − 1)�r

)
< γrµACr

0 for some x with Qr (x) ⊂ Vr(i).

A block (resp. pedestal) is called good if it is not bad.
If a space–time path π̂ is in a good r-block at a given time s, then there are a

reasonable number of particles within distance Cr
0 of π̂(s) at time s, by definition



2408 H. KESTEN AND V. SIDORAVICIUS

of a good block. We therefore would like to show that “most” space–time paths
intersect “few” bad blocks during [0, t]. To quantify this statement we define

φr(π̂) = number of bad r-blocks
(1.12)

which intersect the space–time path π̂ ,

	r(�) = sup
π̂∈�(�,t)

φr(π̂),(1.13)

ψr+1(π̂) = number of (r + 1)-blocks which intersect

the space–time path π̂ and which have(1.14)

a good pedestal but contain a bad r-block

and

�r(�) = sup
π̂∈�(�,t)

ψr(π̂)(1.15)

(we suppress the dependence on t in these quantities). The principal part of the
proof is to show that for any choice of K > 0 and ε0 > 0 there exists an r0 such
that

P {	r(�) ≥ ε0C
−6r
0 (t + �) for some r ≥ r0, � ≥ 0} ≤ 2

tK
(1.16)

for all large t (see Proposition 8). This result has the desired form, because any
path π̂ spends at most C6r

0 time units in a given r-block, and therefore at most
C6r

0 φr(π̂) time units in bad blocks during [0, t]. Moreover, as we stated before, we
only need to consider space–time paths in

⋃
�≤2Dt �(�, t). Thus if the property in

braces in (1.16) holds, then any π̂ ∈⋃�≤2Dt �(�, t) satisfies

C6r
0 φr(π̂) ≤ C6r

0 sup
�≤zDt

	r(�) ≤ ε0(1 + 2D)t,(1.17)

and spends at most ε0(1 + 2D)t time units in bad blocks (for r ≥ r0). For ε =
ε0(1 + 2D) < 1/2 this shows that the paths of interest to us have a drift to the right
for at least t/2 time units.

This leaves us with the problem of proving (1.16). This is done by means of
a recurrence relation (with random terms) for the 	r . Note that each bad r-block
has to lie either in a good (r + 1)-block or in a bad (r + 1)-block. Since any
(r + 1)-block contains exactly C12

0 r-blocks, the number of bad r-blocks which
intersect a path π̂ , and which are contained in a bad (r + 1)-block (and which
necessarily intersects π̂ ) is at most C12

0 φr+1(π̂) ≤ C12
0 	r+1. A similar estimate

holds for the number of bad r-blocks which intersect π̂ and which are contained
in a good (r + 1)-block. If one also takes into account that any good block has a
good pedestal, by definition, then it is not hard to see that

φr(π̂) ≤ C12
0 	r+1(�) + C12

0 ψr+1(π̂).
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In turn, by taking the sup over π̂ ∈ �(�, t) this gives

	r(�) ≤ C12
0 	r+1(�) + C12

0 �r+1(�).(1.18)

In addition, it follows from simple estimates for Poisson variable that outside
a set of probability t−K there are no spacelike intervals Qr(x) which intersect
[−t log t, t log t] and with Ur(x, s) < γrµACr

0 for any r ≥ R(t), where R(t) is the

unique integer with C
R(t)
0 ≥ K4 log t > C

R(t)−1
0 (for a suitable constant K4). Thus

with high probability 	r(�) = 0 for all � and r ≥ R(t). Thus we can start with the
“boundary condition” 	R(t)(�) = 0 and then work our way downward to conclude
that also 	r0(�) is o(t) for some fixed r0, provided we can show that the �r(�)

are suitably small (with high probability). This last fact is shown by using the fol-
lowing lower bound for the Ur(x, v): Let Br+1(i, k) be the unique (r + 1)-block
which contains (x, v). Then define

Wr(x, v) = number of particles in the system P ∗ in Qr (x) × {v}
which were in Vr+1(i) at time (k − 1)�r+1.

We call the r-block Br (i, k) inferior if

Wr(x, v) < γrµACr
0 for some (x, v) with integer v for which

Qr (x) × {v} is contained in B̃r (i, k).

It is apparent from the definitions that Wr(x, v) ≤ Ur(x, v). Therefore, a bad block
is also inferior and it suffices to show that �̃r(�) is small, where �̃ is defined by
changing “bad” in the definition (1.14) to “inferior.” Now let

A(i, k) = A(i, k, r) := {Br+1(i, k) contains some inferior r-block Br (j, q)}.
The advantage of the Wr over the Ur is that they lead to much better indepen-
dence properties of the A(i, k) than if we had defined A(i, k) with “some bad
r-block” instead of “some inferior r-block.” In fact, once we know which parti-
cles are in the pedestal Vr+1(i, k) of Br+1(i, k), whether or not A(i, k) occurs
depends only on the particles in Vr+1(i, k) and not on particles in any pedestal
Vr+1(j, v) with v ≤ k and disjoint from Vr+1(i, k). With a little more work one
shows that for fixed a ∈ {0,1, . . . ,11} and b ∈ {0,1} the collection of pairs (i, k)

with i ≡ a mod 12, k ≡ b mod 2 for which Vr+1(i, k) is good, but A(i, k) occurs, is
stochastically smaller than an independent percolation system in which each site
(i, k), i ≡ a mod 12, k ≡ b mod 2 has probability ρr+1 of being open. Here ρr+1
is an upper bound for the probability that an (r + 1)-block with a good pedestal
contains an inferior r-block. We shall show in Lemma 6, by straightforward large
deviation estimates, that in dimension 1 we can take

ρr+1 = 9C
12(r+1)
0 exp

[−1
2γrµAC

r/4
0

]
.

It is for this estimate that the γr are chosen strictly increasing. Roughly speaking,
a good (r + 1)-block has density at least γr+1µA of particles in its pedestal. It
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is then possible to bound the probability that such an (r + 1)-block contains an
r-block with density ≤ γrµA for a suitable γr < γr+1.

From here on one can follow known arguments from percolation and large
deviations to obtain an estimate for the tail of the distribution of �r+1(�) (see
Lemma 7). Finally, the recurrence relation (1.18) then gives (1.16) in the one-
dimensional case. As pointed out before, (1.16) guarantees that with high proba-
bility every relevant space–time path has drift to the right for at least half the time
and this is enough to obtain lim inft→∞ R(t)/t > 0 a.s.

At this stage it may be useful to say a few words about the case of dimension
greater than 1. There is no clear analogue of R(t), or at least none that is help-
ful. Instead of constructing paths which have a drift to the right at least half the
time one now fixes an x ∈ C(C2t) ∩ Z

d and tries to construct a space–time path
λ(·) = λ(·, x) which has a B-particle at λ(s) for all s, and which has a tendency
to move toward x. In fact, our λ(s) behaves like a (d-dimensional) simple random
walk at times s when there is only one particle at π̂(s), but if there are at least two
particles at λ(s) and a particle jumps away from λ(s−) at time s, then the con-
ditional expectation of ‖λ(s) − x‖2 is smaller than ‖λ(s−) − x‖2. This will give
us a path which with high probability reaches x during [0, t], provided the path
has at least two particles “near λ(s)” at least a positive fraction of the time. In this
way all points x ∈ C(C2t) ∩ Z

d are reached by the infection during [0, t]. From
there on there are only minor differences between the cases d = 1 and d > 1 for
Theorem 2.

Theorem 3 is very similar to Theorem 2. Roughly speaking, if there is a
B-particle at a given site x at some time s ≤ t − C3[t log t]1/2, then by the es-
timates for Theorem 2 each site z ∈ x + C(C2(t − s)) will be reached by some
B-particle during [s, t]. This is proven by constructing some random path from x

to z in the same manner as in the last pargaraph. However, for Theorem 3 there is a
small difference. We do not need a B-particle which reaches a given site z, but any
particle which is at z at time t should have coincided with a B-particle during [s, t]
(or already have type B itself at time s). To show that this is the case we construct
a random path which has a tendency to move toward such a moving particle, rather
than toward the fixed site z. Only trivial changes in the construction of useful paths
are required, but no real changes in the estimates are needed.

In Section 2 we describe a possible construction of our process, but we do not
give a proof here that this construction results in a strong Markov process. A proof
of this fact can be found in an earlier version of this paper (see [8]). The proof
of the upper bound for the spread of the rumor/infection, that is, of Theorem 1, is
given in Section 3. The rather involved proof of Theorem 2 is given in Section 4.
Finally, the proof of Theorem 3 is similar to that of Theorem 2. This proof is given
in Section 5.

2. Construction of a strong Markov process. Throughout this paper we
make the following convention about constants. Ki will denote a strictly positive,
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finite constant, whose precise value is unimportant for our purposes. The value of
the same Ki may be different in different formulas. We use Ci for constants whose
value remains fixed throughout the paper. They will again have values in (0,∞).
If necessary, we indicate on what other quantities a constant depends at the time
when it is first introduced. Throughout ‖x‖ denotes the �∞ norm of the vector
x = (x(1), . . . , x(d)) ∈ R

d , that is,

‖x‖ = max
1≤i≤d

|x(i)|.(2.1)

0 will denote the origin (in Z
d or R

d ).
In this section we shall indicate how to construct our process on a suitable prob-

ability space as a strong Markov process. We shall skip most proofs. Even though
the main results in this paper are for the case DA = DB , we do not make this
assumption yet, so that we can prove Theorem 1 also if DA �= DB . A complete
proof of the strong Markov property, even for the case DA �= DB , can be found in
an earlier version of this paper (see [8]). The usual way to prove that an interact-
ing particle system can be represented by a strong Markov process is to construct
the process as a function from a probability space into a state space with a suit-
able topology in which the process is right-continuous and has the Feller property.
We did not succeed in finding such a topology. We were only able to construct our
process as a right-continuous process {Yt } for which t 	→ Q(Yt ,E) is almost surely
right-continuous for sufficiently many E , where Q(y, ·) are the transition probabil-
ities from y. This suffices for the strong Markov property (see [5], Theorem 5.10
and the remark following it, or [3], Theorem I.8.11 and its proof ). However, we
need a somewhat involved definition of Yt as a function on a probability space.

We want to construct our process as a Markov process with a given initial state
which contains only finitely many B-particles. Our first task is to choose the state
space 0 for our process. We shall assume that there are countably many parti-
cles in our system, which are labeled ρ1, ρ2, . . . . A particle keeps the same label
throughout. The state of our system is described by specifying the location and
type of each particle. We shall also add an artificial cemetery point ∂ for each
particle to its coordinate space. Thus, the state space will be taken as a subset of
 := ∏k≥1((Z

d ∪ ∂k) × {A,B}). If σ = (σ ′(k), σ ′′(k)) is a generic point of ,
then σ ′(k) represents the position of ρk and σ ′′(k) represents the type of ρk . Oc-
casionally it will be more convenient to use the notation σ ′(ρ), σ ′′(ρ), ∂(ρ) for
the position, type and cemetery point of a particle ρ, without specifying which of
the particles ρk equals ρ. To describe the state space 0 we introduce a process
{Yt }t≥0. A priori, each Yt takes values in . Later we add conditions to make sure
that Yt takes values in 0. We need some definitions. {Sη

t }t≥0 will be a random
walk with the same distribution as the random walks performed by the particles of
type η (with S

η
0 = 0, η = A or B). We further attach to each particle ρ present at

time 0 two random walk paths t 	→ πA(t, ρ) and t 	→ πB(t, ρ). Each {πη(t, ρ)}t≥0
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has the same distribution as {Sη
t }t≥0. For the case DA �= DB all these paths are cho-

sen independently. For the case DA = DB it is more convenient to take πA = πB ,
so that for each particle only the paths πA have to be chosen, with the πA(·, ρ)

for different ρ completely independent. Note that we take all these paths right-
continuous. We write π(t, ρ) and η(t, ρ) for the position and type of ρ at time t ,
respectively.

We want to let an A-particle ρ which starts at z move along the path t 	→ z +
πA(t, ρ) until the time θ(ρ), say, at which it changes to a B-particle, or until ρ is
moved to its cemetery point, if this time comes at or before θ(ρ) (see below). If
θ(ρ) comes before ρ is moved to its cemetery point, then from θ(ρ) on, ρ follows
the path t 	→ z + πA(θ(ρ), ρ) + πB(t, ρ) − πB(θ(ρ), ρ). For all ρ which have
type B at time 0, we take θ(ρ) = 0 and let ρ move along the path t 	→ z+πB(t, ρ)

for all t ≥ 0 (z again denotes the initial position of ρ). Also for the case DA = DB

each particle ρ moves along the single path t 	→ z + πA(t, ρ) until the time at
which ρ is moved to its cemetery point (this time may be infinite). Formally, we
proceed as follows. We assume that initially there are in total only finitely many
B-particles, and that none of these sits at a cemetery point. We set τ0 = 0. Now
let k = 0, or let k ≥ 1 and assume that we have already found the first k times
τ1 ≤ τ2 ≤ · · · ≤ τk at which a B-particle has coincided with an A-particle. We
also assume that at each of these times only finitely many A-particles turned into
B-particles, so that at time τk there are still only finitely many B-particles in the
system. Assume further that we have determined the paths of all particles during
the interval [0, τk]. Then we know at time τk which particles are B-particles and
also the positions of all particles. We then assign to each particle ρ the tentative
continuation of its path on [τk,∞), which it would follow if it never changed type
anymore. The tentative continuation of the particle paths is given by

π̃k(τk + t, ρ)
(2.2)

=
{

π(τk, ρ) + [πA(τk + t, ρ) − πA(τk, ρ)], if η(τk, ρ) = A,
π(τk, ρ) + [πB(τk + t, ρ) − πB(τk, ρ)], if η(τk, ρ) = B.

We have to allow that some particles sit at their cemetery point. We therefore
interpret the right-hand side of (2.2) as ∂(ρ) if π(τk, ρ) = ∂(ρ). As the reader
can check in the definitions below, this has the effect that any particle stays at
its cemetery point once it reaches this cemetery point. After that such a particle no
longer interacts with the other particles and plays no further role in the construction
of the paths of the other particles. We now use these π̃k to define

τk+1 = inf{t > τk : a B-particle coincides with an A-particle at time t

if the particles move according to the π̃k}
(2.3)

= inf{t > τk : π̃k(t, ρ
′) = π̃k(t, ρ

′′) for some ρ′, ρ′′

with η(τk, ρ
′) = B,η(τk, ρ

′′) = A}.



SPREAD OF A RUMOR OR INFECTION 2413

We then take

π(s, ρ) =
{

π̃k(s, ρ), for τk ≤ s ≤ τk+1 if η(τk, ρ) = A,
π̃k(s, ρ), for s ≥ τk if η(τk, ρ) = B.(2.4)

Moreover,

η(s, ρ) =
{

A, for τk ≤ s < τk+1 if η(τk, ρ) = A,
B, for s ≥ τk if η(τk, ρ) = B.(2.5)

In addition we take η(τk+1, ρ) = B for those ρ which have η(τk, ρ) = A and which
coincide at time τk+1 with a ρ′ which has η(τk, ρ

′) = B . For this special set of
particles ρ we take θ(ρ) = τk+1 and call θ(ρ) the switching time of ρ. For all
other particles their type remains unchanged at τk+1. If ρ is already of type B at
time 0, then we define its switching time to be 0. Note that if there are sites with
both A- and B-particles in σ , then τ1 = 0 according to (2.3), and all A-particles
which are at the same location as a B-particle in σ immediately change their type
to B . These particles have switching time equal to 0.

These definitions give us Yt through time τk+1 and we can repeat the procedure
to go till time τk+2, and so on. We stop the process at

τ̂ := inf{τk : infinitely many A-particles

turn into a B-particle at time τk, or τk+1 = τk}.
Note that a.s. τk+1 = τk can occur only if there are coincidences of B- and
A-particles immediately after τk , so that there must be infinitely many B-particles
at τk + ε for any ε > 0. (E.g., such a situation would arise if at some time there are
infinitely many particles at a site x and a B-particle adjacent to x.) We shall actu-
ally choose 0 such that this possibility has probability 0. We also cannot continue
beyond τ∞ := limk→∞ τk . We define for t < min{τ̂ , τ∞},

ν(t) = total number of B-particles at time t

and

Y ′
t (ρ) = π(t, ρ), Y ′′

t (ρ) = η(t, ρ).

If min{τ̂ , τ∞} > 0 and t ≥ min{τ̂ , τ∞}, then we take

Yt (ρ) =

(
∂(ρ),A

)
, if η(s, ρ) = A for all s < min{τ̂ , τ∞},(

π
(
θ(ρ), ρ

)+ πB(t, ρ) − πB

(
θ(ρ), ρ

)
,B
)
,

if θ(ρ) < min{τ̂ , τ∞}.
(2.6)

If min{τ̂ , τ∞} = 0, then we take for t ≥ 0

Yt (ρ) =
{(

∂(ρ),A
)
, if η(0, ρ) = A,(

π(0, ρ) + πB(t, ρ),B
)
, if η(0, ρ) = B.

(2.7)
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We further take

ν(t) = ∞ for t ≥ min{τ̂ , τ∞}.
Thus, at min{τ̂ , τ∞} all particles which still have type A are moved to their ceme-
tery, while the B-particles continue as B-particles along the appropriate path pre-
scribed by their πB . Since we start off with no B-particles at any cemetery point,
the relations (2.2), (2.6) and (2.7) guarantee that there never are B-particles at the
cemetery points. Thus ν(t) is actually the number of B-particles in Z

d at time t .
The preceding defines for each initial state σ with finitely many B-particles a

process {Yt }t≥0. We write P σ for the probability measure governing this process.
We easily see that our definitions give us the following three properties which

agree with the intuitive description of our system:

if ρ is already of type B at time τk ,
(2.8)

then it will stay of type B for all t ≥ τk;
(note that if η(τk, ρ) = B , then we have two possible prescriptions for π(s, ρ) and
η(s, ρ) on [τk+1,∞), one using (2.4) and (2.5) as written, and the other using (2.4)
and (2.5) with k replaced by k + 1, but these two prescriptions agree)

if ρ has type A at time τk , then it must have been

of type A during the whole interval [0, τk] and(2.9)

π(s, ρ) = π(0, ρ) + πA(s, ρ) for s ∈ [0, τk];

once ρ has become of type B, then its position changes according

to πB(·, ρ), that is, π(s′′, ρ) − π(s′, ρ) = πB(s′′, ρ) − πB(s′, ρ)(2.10)

for s′′ ≥ s′ ≥ θ(ρ).

We also point out that ν(t) < ∞ for all t < min{τ̂ , τ∞}, directly from the defini-
tions. Finally, we define

0 = {σ ∈ (Zd × {A,B})Z+ :

1 ≤ (number of B-particles in σ ) < ∞,(2.11)

and P σ {min{τ̂ , τ∞} = ∞|Y0 = σ
}= 1
}
.

Note that σ ∈ 0 requires that none of the particles in σ are at their cemetery point.
The next two lemmas and Proposition 3 state that 0 is a good state space for

the process {Yt } and that {Yt } restricted to 0 has the strong Markov property. We
expect that most readers will be content to accept this without proof. We therefore
do not give their proofs here, but refer the interested reader to [8] for the proofs.
Proposition 3 shows that under a product measure of mean-µA Poisson variables
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for the numbers of A-particles on the sites of Z
d , almost all choices lead to an

initial point in 0. In particular 0 �= ∅. Note, however, that in Lemmas 1, 2 and 3
the numbers of initial A-particles at the various sites are not random. The initial
state there is any point of  or 0, respectively. The basic σ -fields which we shall
use are

F 0
t := σ -field generated by {Ys : s ≤ t}.(2.12)

The elements of these σ -fields are subsets of [0,∞), the path space for {Yt }t≥0.
The coordinate spaces of , that is, the spaces (Zd ∪ ∂k) × {A,B}, are countable.
We endow them with the discrete topology and use the product of these topologies
on .

Unfortunately the description of 0 is not very explicit, and it may seem useless
to go through such length to find such a state space. Instead one might choose to
work only with the process starting with independent Poisson numbers of particles
at the sites of Z

d . However, we know of no way to prove that such a process has
the strong Markov property without describing the state space 0, and our proofs
use the strong Markov property at several places.

LEMMA 1. The process {Yt }t≥0 is a Markov process on  with respect to the
filtration {F 0

t }t≥0. Its transition function equals

Qs(σ,�) = P σ {Ys ∈ �}, s ≥ 0,� ⊂ .(2.13)

Moreover, t 	→ Yt is right-continuous if we use the product topology on .

To formulate the next lemma we define

αt(z) = P {SA
t = −z}(2.14)

and

Ms(σ) = ∑
z∈Zd

αs(z)
∑

ρ : σ(ρ)=(z,A)

1 =∑
ρ

I [σ ′′(ρ) = A]αs(σ
′(ρ)).(2.15)

For purposes of comparison it is useful to couple our system with the system
in which there are never any B-particles and in which all original A-particles
move forever without interaction. In this system, which we shall denote by P ∗
(and which was already mentioned in the heuristic comments in Section 1), an
A-particle ρ which starts at z will have position z + πA(t, ρ) for all t . Thus it co-
incides with this same particle in the Y -process until the minimum of θ(ρ) and the
time at which ρ is moved to its cemetery (if this time is finite). After this time, the
increments of ρ in the Y -process will be the same as those of πB(·, ρ), or these in-
crements will be 0, while in the P ∗ system, the increments of ρ will be the same as
those of πA(·, ρ). We write N∗(x, t) for the number of particles at the space–time
point (x, t) in the system P ∗. N∗(x,0) is taken equal to NA(x,0−), the initial
number of A-particles at x. No initial B-particles are introduced in P ∗ and all
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particles have type A forever in P ∗. For x ∈ Z
d , N∗(x, t) is an upper bound for

the number of A-particles at (x, t) in our original system, because in that system
A-particles can turn into B-particles at some time, after which they are no longer
counted in NA. Thus ∑

ρ : Yt (ρ)=(x,A)

1 ≤ N∗(x, t).(2.16)

One more piece of notation: We shall write P σ for the measure governing the
process {Yt } given that it starts with Y0 = σ . This is the unique measure on the
space of right-continuous paths into  with finite-dimensional distributions given
by (2.13). These finite-dimensional distributions are determined by

P
{
Yti ∈ �i,1 ≤ i ≤ k|Y0 = σ

}
(2.17)

=
∫

σ1∈�1

· · ·
∫

σk∈�k

Qt1(σ, dσ1) · · ·Qtk−tk−1(σk−1, dσk)

for �i ⊂  and 0 < t1 < t2 < · · · < tk . Eσ denotes expectation with respect to P σ .

LEMMA 2. Fix the initial state σ ∈ 0. Then almost surely [P σ ] the following
properties hold:

min{τ̂ , τ∞} = ∞;(2.18)

Ms(Yt ) < ∞ for all s, t ≥ 0;(2.19)

and for all z ∈ Z, t < ∞
(number of particles which visit z during [0, t]) < ∞.(2.20)

PROPOSITION 3. For each σ ∈ 0 one has

P σ {Yt ∈ 0 for all t ≥ 0} = 1.(2.21)

Also, a.s. [P σ ],
for all t, s ≥ 0

(2.22)
P Yt {Y ′

s(ρ) = ∂(ρ) for some ρ} ≤ P Yt
{
min{τ̂ , τ∞} ≤ s

}= 0.

Moreover, if σ ∈ 0 and E is a finite union of sets of the form{
Ysj (ρj ) = (zj , ηj ),1 ≤ j ≤ n

}
(2.23)

= {π(sj , ρj ) = zj , η(sj , ρj ) = ηj ,1 ≤ j ≤ n}
for some fixed zj ∈ Z

d, ηj ∈ {A,B}, 0 ≤ sj < ∞, then

t 	→ P Yt {E} is right-continuous a.s. [P σ ].(2.24)
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The process {Yt } starting at σ ∈ 0 has the strong Markov property with respect
to the filtration {Ft }t≥0, where

Ft := ⋂
h>0

F 0
t+h.(2.25)

We have claimed that the Y -process on 0 is a nice Markov process, but before
we can accept it as a version of a process as described in the abstract we have to
show that 0 is not empty. In the next proposition we shall show the even stronger
property that σ lies in 0 a.s. if σ is chosen by putting NA(z,0−) A-particles
at z, with the NA(z,0−) i.i.d. mean-µA Poisson variables, and by adding in total a
finite number of B-particles. From now on P without superscript will be used for
the measure governing the Y -process with such an initial measure. This notation
does not indicate the value of µA, nor the location of the B-particles introduced at
time 0, but these quantities have no significant influence anyway. Expectation with
respect to P will be denoted by E without superscript. Note that the description
of our system in the abstract forces all particles at any given space–time point to
be of the same type. Thus if we put B-particles at z1, . . . , zk at time 0, then we
instantaneously have to change the A-particles there into B-particles.

The proof of the next proposition is basically a Peierls argument. We associate
to each B-particle present at time t and with a switching time before τ∞ a different
“genealogical path” which describes how the B-particle arose from the B-particles
at time 0 by various coincidences between A- and B-particles, and then more or
less count all the genealogical paths to show that the expected number of genealog-
ical paths at each time t < ∞ is finite.

PROPOSITION 4. For any choice of the location of the finite number of initial
B-particles we have σ ∈ 0 a.s. [P ]. Equivalently

∫
P {Y0 ∈ dσ }P σ {min{τ̂ , τ∞} = ∞}= 1.(2.26)

PROOF. It is a trivial calculation to show that EMt < ∞. We also note the
following simple properties of the αt : for z, z′ ∈ Z

d

αt+u(z) ≥ e−DAuαt (z)(2.27)

and

αt+s(z) ≥ αt(z
′)αs(z − z′).(2.28)

We now claim that (2.20) holds a.s. [P ] on {t < min{τ̂ , τ∞}}. [Note that Lemma 2
claims that (2.20) holds a.s. with respect to another measure, so that we cannot
simply deduce our claim from Lemma 2.] To prove our claim we note that there
are only finitely many B-particles in the system at any time t < min{τ̂ , τ∞}, by the
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definitions of τ̂ and τ∞. It therefore suffices to prove (2.20) with the number of
A-particles which visit instead of the number of all particles which visit. In turn,
by virtue of (2.16), it suffices to show that for each fixed (z, t)

E{(number of particles in P ∗ which visit z during [0, t])} < ∞ a.s. [P ].(2.29)

To see that (2.29) indeed holds we note that, by a decomposition with respect to
the starting point of the particles,

E{(number of particles in P ∗ which visit z during [0, t])}
(2.30)

≤ ∑
y∈Zd

µAP {y + πA(s, ρ) = z for some s ≤ t}.

But, if ρ starts at y with type A, then∫ t+1

0
αs(y − z) ds

= E{amount of time spent by ρ at z during [0, t + 1] in P ∗}
≥ P {y + πA(s, ρ) reaches z at some s ≤ t(2.31)

and stays at z for at least one unit of time}
≥ e−DAP {y + πA(s, ρ) = z for some s ≤ t}.

Thus (2.30), combined with (2.27) and (2.28), shows that

E{(number of paricles in P ∗ which visit z during [0, t])}

≤ eDA
∑

y∈Zd

µA

∫ t+1

0
αs(y − z) ds

≤ eDA

∫ t+1

0
e(t+1)DA

∑
y∈Zd

µAαt+1(y − z) ds(2.32)

≤ e(t+2)DA[α1(z)]−1
∫ t+1

0

∑
y∈Zd

µAαt+2(y) ds

= (t + 1)e(t+2)DA[α1(z)]−1EMt+2 < ∞.

Of course (2.29) and our claim for (2.20) follow from this.
Now the fact that (2.20) holds a.s. [P ] tells us that a.s. [P ] only finitely many

B-particles are created at any τk and therefore, a.s. [P ], τk+1 > τk for all k and one
cannot have τ̂ < τ∞. Therefore, to prove (2.26), we only have to prove that

P {τ∞ = ∞} =
∫

P {Y0 ∈ dσ }P σ {τ∞ = ∞} = 1.(2.33)
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At any time t , we shall associate to any particle ρ that has type B , and turned
into a B-particle strictly before τ∞, a unique genealogical path. One component of
the genealogical path is a space–time path ζ̃ (·, ρ) on [0, t] which keeps track of the
space–time paths traversed by the “ancestors” of ρ, that is, by B-particles which
“transmitted” the B-type to ρ. The genealogical path also contains some additional
information about the identity of the transmitting particles. The space–time part ζ̃

of the genealogical path is constructed as follows. If ρ starts at z and has type B

already at time 0, then its genealogical path is just the space–time path followed
by ρ, restricted to [0, t], that is, ζ̃ (s, ρ) = π(s, ρ) = π(0, ρ) + πB(s, ρ) = z +
πB(s, ρ),0 ≤ s ≤ t . If ρ initially has type A, then ρ first turned into a B-particle at
its switching time θ(ρ), which necessarily is less than or equal to t . Moreover, we
assumed ρ became of type B before τ∞, that is, θ(ρ) < τ∞. The path component
of the genealogical path of ρ will then be ζ̃ (s, ρ) = π(s, ρ) for θ(ρ) ≤ s ≤ t .
Note θ(ρ) = τk for some k. At this time either the particle ρ jumped from some
site y to a site which contained some B-particle ρ′, or there was a B-particle ρ′
which jumped from some position y onto the position of ρ at time θ(ρ). In the
former case ρ′ may not be unique, but we make some choice for ρ′ among the
B-particles at the site to which ρ jumps at time θ(ρ). We now follow the particle
ρ′ backward in time till time θ(ρ′) when it first turned into a B-particle, and take
ζ̃ (s, ρ) = π(s, ρ′) for θ(ρ′) ≤ s < θ(ρ). If θ(ρ′) = 0, then we have defined the
genealogical path of ρ on the whole interval [0, t] and we are done. If θ(ρ′) > 0,
then θ(ρ′) = τk′ for some k′ < k and ρ′ coincided with some other B-particle ρ′′
at θ(ρ′). We then follow ρ′′ backward in time, and so on, till we arrive at time 0.
If we now traverse ζ̃ in the natural direction from 0 to t , then we see that this path
starts with following the path of some initial B-particle, ρj0 , till some time s1.
At time s1 either ρj0 jumps to a point where there is an A-particle ρj1 , or some
A-particle ρj1 jumps at time s1 to the position of ρj0 at time s1. Thus ρj1 turns into
a B-particle at time s1, so that s1 = θ(ρj1). The path ζ̃ then follows the path of ρj1

till some time s2, at which ρj1 coincides with an A-particle ρj2 , which turns into a
B-particle due to this coincidence. This continues until some time s�, at which the
A-particle ρ turns into a B-particle. Thus s� equals what we called θ(ρ) before.
ζ̃ then equals π(·, ρ) on [s�, t]. We shall take ρj�

equal to ρ.
We shall want to keep track of some further data in the genealogical path. It

will be convenient at this stage to label the initial A-particles by their initial po-
sition and their number in some arbitrary ordering of the initial particles at that
site. Thus 〈z,m〉 will be used to denote the mth particle which started at z. We
shall say that the particle 〈z,m〉 exists if and only if there are at least m particles
at z at time 0. The particle ρji

appearing in the genealogical path in the preceding
paragraph will also be denoted by 〈zi,mi〉. We denote by ηi the type of the particle
which jumps at time si . This particle can be ρji−1 or ρji

. ηi takes one of the values
A or B . We further denote, for 1 ≤ i ≤ �, by yi the position from which the parti-
cle jumps at time si , and by xi the position to which the particle jumps at time si .
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x�+1 will be the position of ρ = ρj�
at time t . The full genealogical path associated

to ρ now consists of ζ̃ (·, ρ) plus the (xi, si, ηi, yi, ρj0, ρji
= 〈zi,mi〉), that is, the

positions and times of the jumps at which there is a changeover from one parti-
cle to another, as well as which particles jump at these times and which particles
continue along ζ̃ (·, 〈zi,mi〉). We obtain the genealogical paths of all B-particles
at time t by this forward construction and taking all possible values of ζ̃ , � and
(xi, si, ηi, yi, ρj0, ρji

),1 ≤ i ≤ �. Since each genealogical path is the genealogical
path of just one particle, namely ρj�

, the number of B-particles at time t is at most
equal to the number of genealogical paths obtained in this forward construction.
A crucial observation is that the ρji

,0 ≤ i ≤ �, have to be distinct. Indeed, in the
construction of the genealogical path, ρji

is a particle whose type changes from A

to B at time si (with s0 = 0), and any particle can change from type A to type B

only once. We also note that ρji
becomes a B-particle at time si and then must

move from xi to xi+1 during [si, si+1) if ηi+1 = A, or must move from xi to yi+1
during [si, si+1) if ηi+1 = B .

We claim that it suffices for (2.33) to prove that for any t

E{total number of genealogical paths defined on [0, t]} < ∞.(2.34)

Indeed, this will imply that the number of B-particles which arises before t is al-
most surely finite. Since infinitely many B-particles have been created by time τ∞
this will also give

P {τ∞ < t} = 0 for any t.(2.35)

Thus (2.34) is indeed sufficient for (2.33). For the time being we shall estimate

E{number of genealogical paths associated to
(2.36)

some B-particle that is in the set E at time t},
for any subset E of Z

d . Only near the end of this proof shall we take E = Z
d to

get (2.33).
We bound the expectation in (2.36) by decomposing with respect to � and the

data (xi, si, ηi, yi, ρj0, ρji
= 〈zi,mi〉),1 ≤ i ≤ �. Of course we cannot directly de-

compose with respect to the si , but have to follow the usual procedure which spec-
ifies only that the jump occurs in some interval J (k) = Jn(k) := (k/n, (k + 1)/n]
and then let n go to infinity. To this end we introduce the following indicator func-
tions (with z used as an abbreviation for an �-tuple z1, . . . , z�, and similarly for
m,k): if ηi = A and 2 ≤ i ≤ �, then

Ii,A(k, z,m)

= I
[〈zi−1,mi−1〉 is at xi−1 at time (ki−1 + 1)/n

and moves from there to xi during
[
(ki−1 + 1)/n, ki/n

)]
(2.37)

× I
[〈zi,mi〉 is an A-particle at yi at time (ki/n)−,

it jumps to xi during J (ki) and becomes the B-particle ρji+1

]
,
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whereas for ηi = B,2 ≤ i ≤ �,

Ii,B(k, z,m)

= I
[〈zi−1,mi−1〉 is at xi−1 at time (ki−1 + 1)/n

and moves from there to yi during
[
(ki−1 + 1)/n, ki/n

)]
(2.38)

× I [〈zi,mi〉 is an A-particle at xi at time (ki/n)− and

during J (ki) the B-particle 〈zi−1,mi−1〉 jumps from yi to xi];

I�+1 = I
[
ρj�

moves to a position in E during [(k�+1)/n, t]].(2.39)

For i = 1 the definitions of I1,A and I1,B need small changes, which amount to
interpreting 〈z0,m0〉 as ρj0, k0 as −1 and x0 as the initial position of ρj0 . For
instance, I1,B is defined as

I1,B(k, z,m)

= I
[
ρj0 moves from x0 to y1 during [0, k1/n)

]
(2.40)

× I
[〈z1,m1〉 is an A-particle at x1 at time (k1/n)− and

during J (ki) the B-particle ρj0 jumps from y1 to x1
]
.

We leave the corresponding definition of I1,A to the reader. Finally we define

Hn = Hn(k, z,m)

= I
[
the particles ρjq ,1 ≤ q ≤ �, together(2.41)

have at most one jump during Jn(ki),1 ≤ i ≤ �
]
.

We shall use
∏ (η) to denote the product over the indices i ∈ [1, �] with ηi = η.

Also
∑ (�) is the sum over all ordered �-tuples ρj1, . . . , ρj�

of initial A-particles
which are distinct, and distinct from ρj0 . Finally,

∑
x1,...,x�+1

will be short for the
sum over x1, . . . , x� ∈ Z

d , and over x�+1 ∈ E.
We claim that for fixed ρj0 and z,m there are almost surely no common jump

times in the paths of any pair of particles from {ρj0, ρji
= 〈zi,mi〉 : 1 ≤ i ≤ �}.

This follows from the fact that for any ρ, π(·, ρ) can have a jump at a time
s only if πA(·, ρ) or πB(·, ρ) has a jump at s [by virtue of (2.2), (2.4)]. Our
claim then follows because all the pairs of paths πA(·, ρji

), πB(·, ρji
) for dif-

ferent i are independent. It follows that, for given z,m, we have almost surely
infki≤nt Hn(k, z,m) → 1 as n → ∞. Consequently,∑

ρ0

∑
x1,...,x�+1

∑
η1,...,η�

∑
y1,...,y�

∑
0<k1<···<k�<nt

HnI�+1

×∏ (A)Ii,A(k, z,m)
∏

(B)Ii,B(k, z,m)
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almost surely converges as n → ∞ to the number of genealogical paths with ex-
actly � changeovers among given pairs 〈zi−1,mi−1〉 and 〈zi,mi〉, and with final
position in E at time t . Thus, by Fatou’s lemma,

E{number of genealogical paths with � changeover

times associated to some B-particle which is in E at time t}
(2.42)

≤ lim inf
n→∞ E

{∑
ρj0

∑
x1,...,x�+1

∑
η1,...,η�

∑
y1,...,y�

∑
0<k1<···<k�<nt

∑
(�)HnI�+1

×∏ (A)Ii,A(k, z,m)
∏

(B)Ii,B(k, z,m)

}
.

Note also that our particles perform simple random walks, so that the sum over yi

in (2.42) can be restricted to the neighbors of xi . The sum over ρj0 runs over
the finite number of initial B-particles. For simplicity we restrict ourselves in the
remainder of this proof to the case in which there is only one initial B-particle, and
that it starts from position x0. We can then drop the sum over ρj0 .

We wish to establish some independence between the required jumps and the
required movement of B-particles in the indicator functions in the right-hand side
of (2.42). For this we shall again make use of the particle system P ∗, which we
coupled to our true particle system just before Lemma 2. We shall use P0 to denote
the true particle system and use NA(x, t) for the number of A particles at the
space–time point (x, t) in this true system. Recall that we coupled P ∗ and P0
in such a way that N∗(x,0) = NA(x,0−) for all x. Thus in the present situation
the N∗(x,0) are i.i.d. mean-µA Poisson variables. According to our construction
NA(x, t) = 0 for x ∈ Z

d, t ≥ τ∞, and

NA(x, t) ≤ N∗(x, t) for all x ∈ Z
d, t ≥ 0.(2.43)

It also follows that if ηi = A, then

Ii,A(k, z,m)

≤ I
[
in P0, 〈zi−1,mi−1〉 moves

from xi−1 to xi during
[
(ki−1 + 1)/n, ki/n

)]
× I [in P ∗, 〈zi,mi〉 is at yi at time (ki/n) − and

jumps to xi during J (ki)]
(2.44)

≤ I [〈zi,mi〉 exists]I [πA(ki/n, 〈zi,mi〉) = yi − zi

and 〈zi,mi〉 jumps to xi during J (ki)]
× I
[
πB

(
ki/n, 〈zi−1,mi−1〉)

− πB

(
(ki−1 + 1)/n, 〈zi−1,mi−1〉)= xi − xi−1

]
=: Ki,A(k, z,m)Li,A(k, z,m)
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with Ki,A standing for I [〈zi,mi〉 exists] times the indicator function involving
πA(·, 〈zi,mi〉), while Li,A stands for the indicator function involving πB(·, 〈zi−1,

mi−1〉) in the right-hand side. For i = 1 we interpret k0 as −1. Similarly, if ηi = B ,
then

Ii,B(k, z,m)

≤ I [〈zi,mi〉 exists]I [πA

(
ki/n, 〈zi,mi〉)= xi − zi

]
× I
[
πB(ki/n, 〈zi−1,mi−1〉)

(2.45)
− πB

(
(ki−1 + 1)/n, 〈zi−1,mi−1〉)= yi − xi−1

and jumps to xi − xi−1 during J (ki)
]

=: Ki,B(k, z,m)Li,B(k, z,m).

For i = 1 we again take k0 = −1. Finally,

I�+1 ≤ I
[
πB(t, 〈z�,m�〉)

(2.46)
− πB

(
(k�+1)/n, 〈z�,m�〉) ∈ E − x�

]=: L�+1.

We may therefore replace Ii,A, Ii,B, I�+1 in the right-hand side of (2.42) by the ap-
propriate right-hand sides in (2.44)–(2.46). Consider now an i with ηi = ηi+1 = A.
In this case 〈zi,mi〉 has to exist and to move from zi to xi during [0, (ki + 1)/n]
following πA(·, 〈zi,mi〉), and then from xi to xi+1 during ((ki +1)/n, ki+1/n] fol-
lowing πB(·, 〈zi,mi〉). These are requirements on the increments of πA(·, 〈zi,mi〉)
and πB(·, 〈zi,mi〉) during disjoint time intervals and are therefore independent.
The first requirement appears in one of the factors Ki,A, while the second re-
quirement occurs in one of the factors Li,A. A similar situation prevails for the
other three possible values of the pair (ηi, ηi+1). Because the paths πA,πB have
independent increments, the requirements which appear in a K-factor and in an
L-factor are independent for each particle separately. Since further the pairs
(πA,πB) for different particles are completely independent, we find that the
left-hand side of (2.42) is bounded by

lim inf
n→∞

∑
x1,...,x�+1

∑
η1,...,η�

∑
y1,...,y�

∑
0<k1<···<k�<nt

∑
(�)

E
{
HA

n

∏
(A)Ki,A(k, z,m)

∏
(B)Ki,B(k, z,m)

}
(2.47)

× E
{
HB

n L�+1
∏

(A)Li,A(k, z,m)
∏

(B)Li,B(k, z,m)
}
,

where

Hη
n = I [each particle 〈zj ,mj 〉 with ηj = η has exactly one jump in J (kj )].
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With Sη as in the beginning of this section we can write

E
{
HB

n L�+1
∏

(A)Li,A(k, z,m)
∏

(B)Li,B(k, z,m)
}

≤∏ (A)P
{
SB

(ki−ki−1−1)/n = xi − xi−1
}

×∏ (B)P
{
SB

(ki−ki−1−1)/n = yi − xi−1
(2.48)

and has exactly one jump during J (ki − ki−1 − 1)

and this goes from yi − xi−1 to xi − xi−1
}

× P
{
SB

t−(k�+1)/n ∈ E − x�

}
.

To simplify our formulae somewhat we now use that, as in (2.27),

P
{
SB

(ki−ki−1)/n = xi − xi−1
}

≥ P
{
SB

(ki−ki−1−1)/n = xi − xi−1
}

× P {SB· remains constant during [(ki − ki−1 − 1)/n, (ki − ki−1)/n]}
= e−DB/nP

{
SB

(ki−ki−1−1)/n = xi − xi−1
}
.

We write ν = ν(η) = ν(η, �) for the number of 1 ≤ i ≤ � with ηi = A. Then the
last inequality combined with (2.48) shows that

E
{
HB

n L�+1
∏

(A)Li,A(k, z,m)
∏

(B)Li,B(k, z,m)
}

≤ eνDB/nP
{
SB

t ∈ E − x0, S
B
ki/n = xi − x0 for ηi = A;

(2.49)
SB

(ki−1)/n = yi − x0 and SB· jumps

from yi − x0 to xi − x0 during J (ki − 1) for ηi = B
}
.

The right-hand side is independent of z,m, so the expectation of the L factors
in the right-hand side of (2.47) can be replaced by (2.49) and taken outside the
sum
∑ (�).

Next we deal with
∑ (�) of the expectation of the factors Ki . We claim that∑

m1,...,m�

E
{
HA

n

∏
(A)Ki,A(k, z,m)

∏
(B)Ki,B(k, z,m)

}

≤ [µA]�
[

DA

2dn

]ν∏
(A)P
{
SA

ki/n = yi − zi

}
(2.50)

×∏ (B)P
{
SA

ki/n = xi − zi

}
,

provided
∑

m1,...,m�
runs only over those �-tuples with mi ≥ 1 for which 〈zi,mi〉,

1 ≤ i ≤ �, are distinct. To prove this, first fix z,m such that all 〈zi,mi〉,1 ≤ i ≤ �,
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are distinct A-particles. For such �-tuples, the paths πA(·, 〈zi,mi〉) are indepen-
dent, and

P {πA(ki/n, 〈zi,mi〉) = yi − zi and 〈zi,mi〉 jumps to xi during J (ki)}
≤ DA

2dn
P
{
SA

ki/n = yi − zi

}
,

while

P {πA(ki/n, 〈zi,mi〉) = xi − zi} = P
{
SA

ki/n = xi − zi

}
.

Consequently, the left-hand side of (2.50) is at most∑
m1,...,m�

E

{
�∏

i=1

I [〈zi,mi〉 exists]
}

×
[

DA

2dn

]ν∏
(A)P
{
SA

ki/n = yi − zi

}∏ (B)P
{
SA

ki/n = xi − zi

}
.

Therefore it suffices for (2.50) to show that

E

{ ∑
m1,...,m�

�∏
i=1

I [〈zi,mi〉 exists]
}

≤ [µA]�.(2.51)

To prove this last inequality, we partition the zi into maximal classes of equal z’s.
More precisely, let a1, . . . , ap ∈ Z

d be distinct, and let T1, . . . , Tp be a partition
of {1, . . . , �} and let zi = aj precisely for i ∈ Tj . Finally, let Tj have exactly qj

elements. If we write [N]k for N(N − 1) · · · (N − k + 1), then∑
m1,...,m�

�∏
i=1

I [〈zi,mi〉 exists] =
p∏

j=1

[
NA(aj ,0)]qj

.(2.52)

Inequality (2.51) now follows by taking the expectation in (2.52). [In fact, since we
assumed that the NA have a Poisson distribution, (2.51) holds with equality. We
point out here that (2.51) also holds if NA(z,0) ≤ µA with probability 1, rather
than distributed like a mean-µA Poisson variable.]

As pointed out, (2.51) proves (2.50). If we sum (2.50) over the zi and use (2.49),
we obtain∑

(�)E
{
HA

n

∏
(A)Ki,A(k, z,m)

∏
(B)Ki,B(k, z,m)

}
× E
{
HB

n L�+1
∏

(A)Li,A(k, z,m)
∏

(B)Li,B(k, z,m)
}

≤ [µA]�
[
DAeDB/n

2dn

]ν
(2.53)

× P
{
SB

t ∈ E − x0, S
B
ki/n = xi − x0 for ηi = A;

SB
(ki−1)/n = yi − x0 and SB· jumps from yi − x0 to xi − x0

during J (ki − 1) for ηi = B
}
.
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We now fix the set of indices for which ηi = B . Let this set be D = {i1 < i2 <

· · · < iκ} ⊂ {1, . . . , �}. We also fix the kij for 1 ≤ j ≤ κ . Note that D = ∅, or
equivalently, κ = 0 is possible. Further set i0 = 0, iκ+1 = � + 1, k0 = −1, k�+1 =
�nt�. Finally note that

ν = � − κ =
κ∑

j=0

[ij+1 − ij − 1],(2.54)

and that for all integers a ≤ b, and r ≥ 0∑
a<kp+1<kp+2<···<kp+r≤b

1 =
(

b − a

r

)
≤ (b − a)r

r!(2.55)

(the sum here is over kp+1, . . . , kp+r ). We now sum (2.53) first over all xi, yi with
i /∈ D . The sum of the right-hand side of (2.53) over these xi, yi equals

[µA]�
[
DAeDB/n

n

]ν
× P
{
SB

t ∈ E − x0, S
B
(ki−1)/n = yi − x0 and SB·(2.56)

jumps from yi − x0 to xi − x0 during J (ki − 1) for i ∈ D
}
.

Next sum over the kj with j ≥ 1, but j /∈ D . By means of (2.55) we see that the
sum over the kj with kis < kj < kis+1 contributes a factor no larger than

(kis+1 − kis )
is+1−is−1

(is+1 − is − 1)! .

In this way we obtain that the contribution to (2.42) of the terms with ηi = B

exactly for i ∈ D = {i1 < i2 < · · · < iκ}, with �,D and kij for ij ∈ D fixed (before
taking the liminf over n), is at most∑

xi ,yi ,i∈D

[µA]κ
[
DAµAeDB/n

n

]�−κ (ki1)
i1−1

(i1 − 1)!
κ∏

j=1

(kij+1 − kij )
ij+1−ij−1

(ij+1 − ij − 1)!
× P {SB

t ∈ E − x0 and SB· jumps

from yi − x0 to xi − x0 during J (ki − 1) for i ∈ D}

= [µA]κ
[
DAµAeDB/n

n

]�−κ (ki1)
i1−1

(i1 − 1)!
κ∏

j=1

(kij+1 − kij )
ij+1−ij−1

(ij+1 − ij − 1)!
× P {SB

t ∈ E − x0 and SB· has

a jump during J (ki − 1) for i ∈ D}

= [µA]κ 1

(i1 − 1)!
(

DAµAki1e
DB/n

n

)i1−1

(2.57)
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×
κ∏

j=1

[
1

(ij+1 − ij − 1)!
(

DAµA(kij+1 − kij )e
DB/n

n

)ij+1−ij−1]

× P {SB
t ∈ E − x0 and SB· has

a jump during J (ki − 1) for i ∈ D}.
We now sum (2.42) also over � ≥ iκ and use Fatou’s lemma to bring the lim inf

outside the sum over �. We also rename kij as rj . Since iκ+1 = � + 1 and rκ+1 =
�nt�, this yields

E{number of genealogical paths associated

to some B-particle which is in E at time t}
≤ lim inf

n→∞
∑
κ≥0

[µA]κ

× ∑
D={i1<···<iκ }

∑
0<r1<···<rκ<nt

exp
[
DAµAeDB/n

n
(�nt� − rκ)

]
(2.58)

× 1

(i1 − 1)!
(

DAµAr1e
DB/n

n

)i1−1

×
κ−1∏
j=1

[
1

(ij+1 − ij − 1)!
(

DAµA(rj+1 − rj )e
DB/n

n

)ij+1−ij−1]

× P {SB
t ∈ E − x0 and SB· has

a jump during J (rj − 1) for 1 ≤ j ≤ κ}.
We next carry out the sum over D = {i1 < · · · < iκ}. This transforms the right-
hand side of (2.58) into

lim inf
n→∞

∑
κ≥0

[µA]κ ∑
0<r1<···<rκ<nt

exp

[
DAµAr1e

DB/n

n

+
κ∑

j=1

DAµA(rj+1 − rj )e
DB/n

n

]

× P {SB
t ∈ E − x0 and SB· has

a jump during J (rj − 1) for 1 ≤ j ≤ κ}(2.59)

= lim inf
n→∞

∑
κ≥0

[µA]κ ∑
0<r1<···<rκ<nt

exp[DAµAt]

× P {SB
t ∈ E − x0 and SB· has

a jump during J (rj − 1) for 1 ≤ j ≤ κ}.
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At this point we finally specialize to E = Z
d . With this choice the right-hand

side of (2.59) is at most

exp[DAµAt] lim inf
n→∞

∑
κ≥0

[µA]κ ∑
0<r1<···<rκ<nt

[
DB

n

]κ

≤ exp[DAµAt] lim inf
n→∞

∑
κ≥0

1

κ!
[
DBµAnt

n

]κ
[by (2.55)](2.60)

= exp[(DA + DB)µAt] < ∞.

This proves (2.34) and the proposition in the case when we start with one
B-particle. If we start with NB B-particles at x0,1, x0,2, . . . , x0,NB

, respectively,
then we only have to replace the probability in (2.59) by

NB∑
m=1

P {SB
t ∈ E − x0,m and SB· has

(2.61)
a jump during J (rj − 1) for 1 ≤ j ≤ κ}.

(The x0,m do not have to be distinct here.) �

REMARK 2. A check of the proof shows that (2.51) is the only property of
the initial distribution which is used. In particular, (2.33) also holds for any initial
distribution for which NA(z,0) is a.s. bounded by a constant. A special case of this
last situation is also treated in [11], Lemma 3.2. The proof also works for initial
distributions which are stochastically below a Poisson distribution. Also, by the
argument given in the next section for Theorem 1, we obtain by specializing to
E = [C(C1t)]c, that (2.51) is sufficient to conclude that (1.3) holds.

3. A linear upper bound for B(t). In this section we give the

PROOF OF THEOREM 1. The arguments preceding (2.42) show that it is
enough to show that for E = the complement of C(C1t), the left-hand side of
(2.42) is bounded by 2NB exp(−t). In turn, it suffices to prove that the right-hand
side of (2.59) [with the last factor replaced by (2.61)] is bounded by 2NB exp(−t)

if we take E = [C(C1t)]c. In order to show this we split the sum over κ in (2.59)
into two pieces. The first sum is over κ ≥ K1t and the second over κ < K1t ,
where K1 is chosen so large that the first piece is bounded by [cf. (2.60)]

lim sup
n→∞

NB

∑
κ≥K1t

∑
0<r1<···<rκ<nt

[µA]κ exp

[
DAµAr1e

DB/n

n

+
κ∑

j=1

DAµA(rj+1 − rj )e
DB/n

n

]
(3.1)
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× P {SB· has a jump during J (rj − 1) for 1 ≤ j ≤ κ}

≤ NB exp[DAµAt] lim sup
n→∞

∑
κ≥K1t

1

κ!
[
DBµAnt

n

]κ
≤ NBe−t (for t ≥ 1).

Note that this estimate is uniform in C1.
To estimate the second sum, over κ < K1t (for fixed K1), we note that the

increments of SB over disjoint intervals are independent. Thus the sum of the in-
crements of SB over

[0, t]
∖ κ⋃

j=1

J (rj − 1)

has the same distribution as

S
B,0
r1−1 +

κ−1∑
j=1

S
B,j
(rj+1−rj−1)/n + S

B,κ+1
t−rκ/n,

where the SB,j are independent copies of SB . In turn, this sum has the same distri-
bution as SB

t−κ/n, and is independent of the increments of SB over the J (rj − 1).

In addition, given that SB has a jump in J (rj − 1), the conditional distribution of
SB

rj /n − SB
(rj−1)/n is the distribution of

ψ∑
m=1

Zm,

where Z1,Z2, . . . are independent random variables, each with the distribution of
a generic jump of SB , and ψ is independent of the Zi , and ψ has the conditional
distribution of a mean-DB/n Poisson variable, given that this variable is at least 1.
In our case P {Zi = ±ej } = 1/(2d), so that ‖∑ψ

m=1 Zm‖ ≤ ψ , and conditionally
on the event {SB has a jump in J (rj − 1),1 ≤ j ≤ κ}, ‖SB

t ‖ is stochastically
smaller than

‖SB
t−κ/n‖ + ψ1 + · · · + ψκ,

with the ψi independent copies of ψ , which are also independent of SB . It is
now a standard large deviation estimate that for fixed K1 and x0,m, and sufficiently
large C1 (independent of the x0,m, though), and all sufficiently large t and κ < K1t

P {SB
t /∈ C(C1t) − x0,m, SB· has a jump in J (rj − 1),1 ≤ j ≤ κ}

≤
[
DB

n

]κ
P

{
‖SB

t−κ/n‖ + ∑
1≤j<K1t

ψj ≥ C1t/2

}

≤
[
DB

n

]κ
exp[−(DAµA + DBµA + 1)t].
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We leave the details of this to the reader (cf. (2.40) in [7]). For such a choice of C1
it follows that the sum of the terms with κ < K1t in (2.59) [with the replacement
of (2.61)] is at most

lim inf
n→∞

∑
1≤m≤NB

∑
0≤κ<K1t

∑
0<r1<···<rκ<nt

[µA]κ exp[DAµAt]

× P {SB
t /∈ C(C1t) − x0,m

and SB· has a jump during J (rj − 1) for 1 ≤ j ≤ κ}

≤ NB exp[DAµAt] lim inf
n→∞

∑
0≤κ<K1t

1

κ!
(

DBµAnt

n

)κ

× exp[−(DAµA + DBµA + 1)t]
≤ NBe−t .

For K1,C1 as above and E = [C(C1t)]c we find that the expectation (2.36) is
bounded by 2NB exp(−t) for all large t , so that (1.3) holds. Equation (1.4) now
follows from the Borel–Cantelli lemma and the fact that B(t) is increasing in t .

�

4. A linear lower bound for B(t) when DA = DB . In this section we shall
prove Theorem 2. We remind the reader that P without superscript stands the
measure governing the Y -process when the initial NA(x,0−) are i.i.d. mean-µA

Poisson variables and a finite number of B-particles are added at time 0. Through-
out this section we assume that the A- and B-particles perform random walks with
the same distribution, that is,

DA = DB.(4.1)

We shall write D for the common value of DA and DB . As explained in Section 2
we then take πA(·, ρ) ≡ πB(·, ρ). We then have that the position at time s of a
particle ρ which starts in z is z + πA(s, ρ) for all s. However, the type of ρ will
change from A to B at θ(ρ), the first instant when ρ coincides with a B-particle.
These paths πA(·, ρ) for different ρ are independent and so, as far as the posi-
tions of the particles are concerned, there is no interaction. Thus the system of
particles which start out as A-particles (i.e., all particles but the finitely many ini-
tial B-particles) is the same as the system P ∗ described in Section 2 just before
(2.16), as far as positions of particles are concerned. In agreement with Section 2
we write N∗(x, t) for the number of particles at the space–time point (x, t) which
started out as an A-particle (but whose type may have changed to B by time t). Of
course, this assumes, as before, that P ∗ is coupled with the true system such that
N∗(x,0) = NA(x,0−). In the present setup this means that the N∗(x,0), x ∈ Z

d ,
are i.i.d., mean-µA Poisson variables. The system P ∗ is then stationary in time
for t ≥ 0. It is convenient to extend the system P ∗ to a stationary system defined
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for all times t ∈ R, including negative ones. For our system of noninteracting ran-
dom walkers this can easily be done by extending the path t 	→ πA(t, ρ) for each
particle ρ present at time zero to all t in such a way that {−πA(−t, ρ)}t≥0 has
the same distribution as {πA(t, ρ)}t≥0, and in such a way that the paths {πA(·, ρ)},
with ρ varying over all particles present at time 0, are completely independent.
We shall still use the notation P ∗ for the extended system. The configurations
{N∗(x, t), x ∈ Z

d} are stationary in time in P ∗.
We remind the reader that we gave an outline of the proof of Theorem 2 under

the heading “Some heuristics” in the Introduction. We now fill in the details of the
proof. This proof is almost a “mirror image” of the proof of Theorem in [7]. The
difference is that in [7] we wanted not too many particles near certain space–time
paths, and here we want not too few particles near these space–time paths.

We repeat most of the definitions of the Introduction, but now in the form needed
for a general dimension d ≥ 1. The constants C0 and γr are chosen as follows:
γ0 > 0 is a constant which satisfies

0 < γ0

∞∏
j=1

[1 − 2−j/4]−1 ≤ 1
2 .(4.2)

We take

γ1 = γ0, γr+1 = γ0

r∏
j=1

[
1 − 1

C
j/4
0

]−1

, r > 0.(4.3)

Further, C0 ≥ 2 is an integer which is so large that for all r ≥ 1,

C
−r/2
0 −

(
1 − C4(r logC0)

d

Cr
0

)
(4.4)

× (1 − e−C
−r/2
0
)[1 − C

−r/4
0 ]−1 ≤ −1

2
C

−3r/4
0 ,

as well as

3d+1C
6(d+1)(r+1)
0 exp

[−1
2γ0µAC

(d−3/4)r
0

]≤ 1, r ≥ 1.(4.5)

Here C4 is the constant of Lemma 5 below. Since C4 will not depend on C0, we can
indeed fulfill (4.4) and (4.5) by taking C0 large. Then (4.2), together with C0 ≥ 2,
implies (1.11) with

γ∞ := lim
r→∞γr = γ0

∞∏
j=1

[
1 − 1

C
j/4
0

]−1

.

We take �r = C6r
0 as before, and for i = (i(1), . . . , i(d)) ∈ Z

d we define (see
Figure 1)

Br (i, k) =
d∏

s=1

[
i(s)�r,

(
i(s) + 1

)
�r

)× [k�r, (k + 1)�r

)
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and

B̃r (i, k) :=
d∏

s=1

[(
i(s) − 3

)
�r,
(
i(s) + 4

)
�r

)× [(k − 1)�r, (k + 1)�r

)
.

For x = (x(1), . . . , x(d)) ∈ Z
d we further take

Ur(x, v) = ∑
y∈Qr (v)

N∗(y, v) with Qr (x) =
d∏

s=1

[
x(s), x(s) + Cr

0
)
.(4.6)

Note that the edge size of the cube Qr is only Cr
0 and not �r . Further we define

Vr(i) =
d∏

s=1

[(
i(s) − 3

)
�r,
(
i(s) + 4

)
�r

)
,

and the pedestal of Br (i, k) which is defined as

Vr (i, k) = Vr(i) × {(k − 1)�r}

=
d∏

s=1

[(
i(s) − 3

)
�r,
(
i(s) + 4

)
�r

)× {(k − 1)�r}.

The r-block Br (i, k) is called bad if

Ur(x, v) < γrµACdr
0 for some (x, v) with integer v for which

(4.7)
Qr (x) × {v} is contained in B̃r (i, k).

The pedestal Vr (i, k) of Br (i, k) is called bad if

Ur

(
x, (k − 1)�r

)
< γrµACdr

0 for some x with Qr (x) ⊂ Vr(i).(4.8)

A block or pedestal is called good if it is not bad. Note that in contrast to [7], the
good blocks and pedestals have U(x, v) large.

Still more definitions are needed. As in Section 1 π̂({si, xi}) will denote the
space–time path for which π̂(s) = xi for si ≤ s < si+1. Then exactly as in Sec-
tion 1,

�(�, t) := {π̂ ({si, xi}0≤i≤�)
(4.9)

with 0 = s0 < s1 < · · · < s� < t and xi ∈ C(t log t)
}
,

φr(π̂) = number of bad r-blocks
(4.10)

which intersect the space–time path π̂ ,

	r(�) = sup
π̂∈�(�,t)

φr(π̂),(4.11)

ψr+1(π̂) = number of (r + 1)-blocks which intersect

the space–time path π̂ and which have a good(4.12)

pedestal but contain a bad r-block
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and

�r(�) = sup
π̂∈�(�,t)

ψr(π̂)(4.13)

(we suppress the dependence on t in these quantities).
Exactly as in the argument for the one-dimensional case in the Introduction, or

as in Lemma 8 of [7], we now have for any π̂ ∈ �(�, t)

φr(π̂) ≤ C
6(d+1)
0 	r+1(�) + C

6(d+1)
0 ψr+1(π̂)(4.14)

and

	r(�) ≤ C
6(d+1)
0 	r+1(�) + C

6(d+1)
0 �r+1(�).(4.15)

Now choose some large constant K and take R = R(t) to be the integer for which

CR
0 ≥ [K4 log t]1/d > CR−1

0 .(4.16)

(This differs slightly from [7], which had a 1 instead of the K4 here.) As in [7],
Lemmas 5 and 9, simple Poisson distribution estimates now show that we can take
K4 = K4(K,d,µA) so large that

P {	r(�) > 0 for some r ≥ R and some � ≥ 0}
≤ P {for some r ≥ R and � ≥ 0

a bad r-block intersects some π̂ ∈ �(�, t)}
≤∑

r≥R

P {Ur(x, v) < γrµACdr
0

for some (x, v) with integer v ∈ [−�r, t + �r)
(4.17)

for which Qr (x) intersects C(t log t + 3�r)}
≤∑

r≥R

P
{
Ur(x, v) < 1

2µACdr
0

for some (x, v) with integer v ∈ [−�r, t + �r)

for which Qr (x) intersects C(t log t + 3�r)
}

≤ t−K for all large t.

(We used γr ≤ 1/2 for the one but last inequality.) Note also that the required value
of K4 depends on K,d and µA only.

We shall also need the following analogue of Lemma 6 in [7] (note that this
time the inequality goes in the opposite direction from (5.22) in [7]). {Su}u≥0 is
short for what we formerly denoted by {SA

u }u≥0, that is, a continuous-time simple
random walk with jump rate D (starting at 0).
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LEMMA 5. There exists a constant C4 = C4(d,D), which is independent
of C0, such that for r ≥ 1, if Vr+1(i, k) is good, and u an integer with �r+1 −�r ≤
u ≤ 2�r+1, then for

y ∈
d∏

s=1

[(
i(s) − 1

)
�r+1,

(
i(s) + 2

)
�r+1
)
,(4.18)

it holds that ∑
z∈Vr+1(i)

N∗(z, (k − 1)�r+1
)
P {z + Su ∈ Qr (y)}

(4.19)

≥ γr+1µACdr
0

[
1 − C4(r logC0)

d

Cr
0

]
.

PROOF. Let r ≥ 1 be fixed. In addition to the blocks
∏d

s=1[i(s)�r+1, (i(s) +
1)�r+1) which have edge length �r+1 = C

6(r+1)
0 , we also need the blocks

M( j) :=
d∏

s=1

[
j (s)Cr+1

0 ,
(
j (s) + 1

)
Cr+1

0

)
.

In our previous notation M( j) = Qr+1(x) with x(s) = j (s)Cr+1
0 . These blocks

have edge length only Cr+1
0 , and the set Vr+1(i) is a disjoint union of 7dC

5d(r+1)
0

of these smaller blocks. Let � = �(i, r + 1) be the set of j ∈ Z
d with

M( j) ⊂ Vr+1(i).

Also, for each j ∈ � let zj ∈ M( j) be such that

P {zj + Su ∈ Qr (y)} = min
z∈M( j)

P {z + Su ∈ Qr (y)}.

Then the left-hand side of (4.19) equals∑
j∈�

∑
z∈M( j)

N∗(z, (k − 1)�r+1
)
P {z + Su ∈ Qr (y)}

(4.20)
≥∑

j∈�

∑
z∈M( j)

N∗(z, (k − 1)�r+1
)
P {zj + Su ∈ Qr (y)}.

Since Vr+1(i, k) is assumed to be good, we have∑
z∈M( j)

N∗(z, (k − 1)�r+1
)= Ur+1

(
jCr+1

0 , (k − 1)�r+1
)

≥ γr+1µAC
d(r+1)
0 = ∑

z∈M( j)

γr+1µA.
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We can therefore continue (4.20) to obtain that the left-hand side of (4.19) is at
least ∑

j∈�

∑
z∈M( j)

γr+1µAP {zj + Su ∈ Qr (y)}

≥∑
j∈�

∑
z∈M( j)

γr+1µAP {z + Su ∈ Qr (y)}(4.21)

−∑
j∈�

∑
z∈M( j)

γr+1µA|P {zj + Su ∈ Qr (y)} − P {z + Su ∈ Qr (y)}|.

Now, by virtue of (4.18), the first multiple sum in the right-hand side of (4.21)
is at least ∑

z : z−y∈[−2�r+1,2�r+1)
d

γr+1µA

∑
w∈Qr (y−z)

P {Su = w}

≥ ∑
w∈[−�r+1,�r+1)

d

P {Su = w} ∑
z∈Qr (y−w)

γr+1µA

= ∑
w∈[−�r+1,�r+1)

d

P {Su = w}γr+1µACdr
0(4.22)

= γr+1µACdr
0
[
1 − P {Su /∈ [−�r+1,�r+1)

d}]
≥ γr+1µACdr

0
[
1 − K5 exp[−K6�r+1]]

for some constants K5,K6, depending on d,DA only. In the last inequality we
used simple large deviation estimates for Su (see, e.g., (2.40) in [7]) and the fact
that u ≤ 2�r+1.

On the other hand, we have for any z ∈ M( j) that

|P {zj + Su ∈ Qr (y)} − P {z + Su ∈ Qr (y)}|
≤ ∑

w∈Qr (y)

|P {zj + Su = w} − P {z + Su = w}|

≤ ∑
v∈Qr (y−z)

sup
w : ‖w−v‖≤Cr+1

0

|P {Su = v} − P {Su = w}|.

It follows that the second multiple sum in the right-hand side of (4.21) is bounded
in absolute value by∑

z

γr+1µA

∑
v∈Qr (y−z)

sup
w : ‖w−v‖≤Cr+1

0

|P {Su = v} − P {Su = w}|

≤ γr+1µA

∑
v∈Zd

∑
z∈Qr (y−v)

sup
w : ‖w−v‖≤Cr+1

0

|P {Su = v} − P {Su = w}|

= γr+1µACdr
0

∑
v∈Zd

sup
w : ‖w−v‖≤Cr+1

0

|P {Su = v} − P {Su = w}|.
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The right-hand side here has been estimated in (6.37) and in (5.26) and the follow-
ing lines in [7]. The result is that the right-hand side here is bounded by

K7γr+1µACdr−2r−2
0 [r logC0]d

for some constant K7 which does not depend on C0. Combining this with the
estimates (4.21) and (4.22) we obtain (4.19). �

We define some σ -fields analogously to [7] (but with some differences):

Hr+1(i, k) := σ -field generated by the paths of all particles

through time (k − 1)�r+1 and the paths through

time (k + 1)�r+1 − 1 of the particles which are(4.23)

outside Vr+1(i) at time (k − 1)�r+1,

Kr+1 := σ -field generated by
{
N∗(x, (k − 1)�r+1

)
:x ∈ Vr+1(i)

}
.

Note that

Kr+1 ⊂ Hr+1(i, k),

because if one knows all paths through time (k − 1)�r+1, then one also knows
how many particles there are at each x at time (k − 1)�r+1. In other words, all
N∗(x, (k − 1)�r+1), x ∈ Z

d , are Hr+1(i, k)-measurable.
We also need certain events A(i, k) which are somewhat larger than the event

{Br+1(i, k) contains some bad Br ( j, q)}. For given (i, k) and any (y, v) with v ≥
(k − 1)�r+1 we define

Wr(y, v) = number of particles in the system P ∗ in Qr (y) × {v}
which were in Vr+1(i) at time (k − 1)�r+1.

A block Br ( j, q) ⊂ Br+1(i, k) will be called inferior if Wr(y, v) < γrµACdr
0 for

some (y, v) for which v is an integer and Qr (y) × {v} is contained in B̃r ( j, q).
It is apparent from the definitions that

Wr(y, v) ≤ Ur(y, v),(4.24)

since we count only particles which passed through Vr+1(i, k) in Wr(y, v),
whereas Ur(y, v) also counts particles which do not satisfy this requirement. It
follows from this that a bad block is also inferior. Finally, we define the event

A(i, k) = A(i, k, r) = {Br+1(i, k) contains some inferior r-block Br ( j, q)}.
One now has the following analogue of Lemma 7 and part of the proof of

Lemma 8 in [7].



SPREAD OF A RUMOR OR INFECTION 2437

LEMMA 6. Let

ρr+1 = 3d+1C
6(d+1)(r+1)
0 exp

[−1
2γrµAC

(d−3/4)r
0

]
, r ≥ 1.(4.25)

Then for r ≥ 1, on the event {Vr+1(i, k) is good},
P {A(i, k)|Hr+1(i, k)} = P {A(i, k)|Kr+1(i, k)} ≤ ρr+1.(4.26)

Moreover, for fixed a(s) ∈ {0,1, . . . ,11} and b = 0 or 1, the collection of pairs
(i, k), i(s) ≡ a(s)mod 12,1 ≤ s ≤ d, k ≡ b mod 2, for which Vr+1(i, k) is good,
but A(i, k) occurs, is stochastically smaller than an independent percolation sys-
tem in which each site (i, k), i(s) ≡ a(s)mod 12,1 ≤ s ≤ d, k ≡ b mod 2, is open
with probability ρr+1.

PROOF. By the Markov property of the particle system P ∗, the conditional
distribution of the particles during [(k−1)�r+1,∞), given the behavior of all par-
ticles during (−∞, (k − 1)�r+1], is the same as the conditional distribution given
the positions of all particles at time (k − 1)�r+1. Moreover, given the positions of
the particles at time (k − 1)�r+1, the future paths of all particles are conditionally
independent. In particular, given the particles at time (k − 1)�r+1, the paths after
time (k−1)�r+1 of the particles in Vr+1(i, k) are conditionally independent of the
future paths of all particles outside Vr+1(i, k) at time (k − 1)�r+1. By definition
the event A(i, k) depends only on the particles in Vr+1(i, k) at time (k − 1)�r+1
and the increments of their paths after time (k−1)�r+1. It follows from these com-
ments that P {A(i, k)|Hr+1(i, k)} is a function of the particles in Vr+1(i, k) only.
In fact, since A(i, k) depends on particle counts only, P {A(i, k)|Hr+1(i, k)} de-
pends only on the N∗(x, v) with (x, v) ∈ Vr+1(i, k) (see the explicit computation
in the next paragraph). Thus the left-hand side of (4.26) is Kr+1(i, k)-measurable,
and equals the middle member of (4.26).

We next prove the inequality in (4.26). If A(i, k) occurs, then Wr(y, v) <

γrµACdr
0 for some integer v and

(y, v) ∈ ⋃
Br( j,q)⊂Br+1(i,k)

B̃r ( j, q)

⊂∏[i(s)�r+1 − 3�r,(
i(s) + 1

)
�r+1 + 3�r

)× [k�r+1 − �r, (k + 1)�r+1
)

(4.27)

⊂∏[(i(s) − 1
)
�r+1,(

i(s) + 2
)
�r+1 − �r

)× [k�r+1 − �r, (k + 1)�r+1
)
.

Now consider any (y, v) satisfying (4.27) and let the particles in Vr+1(i, k) be
given such that Vr+1(i, k) is good. Conditionally on this, the distribution of
Wr(y, v) is the distribution of

∑
z∈Vr+1(i)

N∗(z,(k−1)�r+1)∑
q=1

I [z + Sz,q
u ∈ Qr (y)],



2438 H. KESTEN AND V. SIDORAVICIUS

where the {Sz,q} are independent copies of the random walk {S} and u = v −
(k − 1)�r+1 ∈ [�r+1 − �r,2�r+1] (see the proof of Lemma 7, and in particular

the lines following (5.37) in [7]). Therefore, P {Wr(y, v) < γrµACdr
0 } is the prob-

ability of fewer than γrµACdr
0 successes in∑

z∈Vr+1(i)

N∗(z, (k − 1)�r+1
)

trials, N∗(z, (k − 1)�r+1) of which have success probability

p(y − z,u) := P {z + Su ∈ Qr (y)}.
Very much as in (5.38), (5.39) of [7] we therefore have for θ ≥ 0,

E{exp[−θWr(y, v)]|Kr+1}
= ∏

z∈Vr+1(i)

[1 − p(y − z,u) + p(y − z,u)e−θ ]N∗(z,(k−1)�r+1)

≤ exp

[
− ∑

z∈Vr+1(i)

N∗(z, (k − 1)�r+1
)
p(y − z,u)(1 − e−θ )

]
.

For θ = C
−r/2
0 this gives, by virtue of (4.3), (4.4) and Lemma 5, that on the event

{Vr+1(i, k) is good} and for (y, v) satisfying (4.27),

P {Wr(y, v) < γrµACdr
0 |Kr+1}

≤ exp

[
θγrµACdr

0

(4.28)

− ∑
z∈Vr+1(i)

N∗(z, (k − 1)�r+1
)
p(y − z,u)(1 − e−θ )

]

≤ exp
[−1

2γrµAC
(d−3/4)r
0

]
.

The inequality in (4.26) now follows from the fact that P {A(i, k)} is bounded by
the sum over (y, v) with integral v and satisfying (4.27).

The last statement of the lemma concerning the stochastic ordering between the
collection of pairs (i, k) for which Vr+1(i, k) is good and A(i, k) occurs, and an
independent percolation system, now follows in exactly the same way as in the
proof of (5.43) in [7]. �

The next lemma is basically a copy of parts of Lemma 8 and Lemma 11 in [7].
Note that now R = R(t) is defined in (4.16).
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LEMMA 7. Inequalities (4.14) and (4.15) hold. Moreover, there exist some
constants C5 = C5(d,µA), κ0 = κ(d,µA) and t0 = t0(d,µA) (independent of r, �),
such that for 1 ≤ r ≤ R(t) − 1, κ ≥ κ0, t ≥ t0 and any � ≥ 0

P

{
�r+1(�) ≥ κ(t + �)

�r+1
[ρr+1]1/(d+1)

}
(4.29)

≤ exp
[
−(t + �)C5κ exp

[
− 1

2(d + 1)
γrµAC

(d−3/4)r
0

]]
.

PROOF. We already observed that (4.14) and (4.15) hold, for the same reasons
as in Lemma 8 of [7].

Inequality (4.29) follows by a percolation argument which is given in the proof
of (6.28) and Lemma 8 of [7]; see also the proof of Theorem 9 in [9]. This time we
take an integer ν such that

[ρr+1]−1/(d+1) ≤ ν ≤ 2[ρr+1]−1/(d+1)(4.30)

and define

D(m, q) =
d∏

s=1

[
νm(s)�r+1, ν

(
m(s) + 1

)
�r+1
)

(4.31)
× [qν�r+1, (q + 1)ν�r+1

)
.

m here is short for (m(1), . . . ,m(d)); the m and ν here have nothing to do with
the mi and ν in the proof of Proposition 4. Note that ρr+1 ≤ 1 by (4.5) and
(1.11), so that (4.30) can be satisfied. Each D(m, q) is the disjoint union of
νd+1(r + 1)-blocks. Moreover, as shown in (6.30) of [7], for � ≥ 0 at most

λ(�) := 3d

(
t + �

ν�r+1
+ 2
)

(4.32)

blocks D(m, q) can intersect a space–time path π̂ ∈ �(�, t) (with jump times s1 <

· · · < s� < t and positions x1, . . . , x�). Now fix a(1), . . . , a(d) ∈ {0, . . . ,11}, b ∈
{0,1} and define for any space–time path π̂

ψr+1(π̂ ,a, k) = number of (r + 1)-blocks Br+1(i, k)

with i(s) ≡ a(s)mod 12, k ≡ b mod 2,
(4.33)

which intersect the space–time path π̂ and

which have a good pedestal but contain a bad r-block.

Define further

�r+1(�,a, b) = sup
π̂∈�(�,t)

ψr+1(π̂,a, b).
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Then

�r+1(�) ≤ ∑
(a,b)

�r+1(�,a, b).(4.34)

As in [7], let Z(i, k) be independent random variables with

P {Z(i, k) = 1} = 1 − P {Z(i, k) = 0} = ρr+1.

Then, as in (6.31) of [7],

P

{
�r+1(�,a, b) ≥ 2−1(12)−d κ(t + �)

�r+1
[ρr+1]1/(d+1)

}

≤ ∑
D(m0,0),...,D(mλ−1,λ−1)

P

{
λ−1⋃
q=0

D(mq, q) contains at least

2−1(12)−d κ(t + �)

�r+1
[ρr+1]1/(d+1)(4.35)

(r + 1)-blocks Br+1(i, k) with Z(i, k) = 1,

and i(s) ≡ a(s)mod 12, k ≡ b mod 2

}
.

Here (D(m0,0), . . . ,D(mλ−1, λ−1)) runs over the possible collections of blocks
D which intersect a space–time path π̂ ∈ �(�, t). For some constant K8 which
depends on d only, there are at most

[2t log t + 1]d exp[K8λ](4.36)

collections of this form. If we fix such a collection D(m0,0), . . . ,D(mλ−1, λ−1),
then the probability that

λ−1⋃
q=0

D(mq, q)

contains at least 2−1(12)−dκ(t + �)�−1
r+1[ρr+1]1/(d+1) (r + 1)-blocks B(r+1)(i, k)

with Z(i, k) = 1 and (i, k) ≡ (a, b), is bounded by

P

{
T ≥ 2−1(12)−d κ(t + �)

�r+1
[ρr+1]1/(d+1)

}
,(4.37)

where T has a binomial distribution corresponding to λνd+1 trials with success
probability ρr+1. As in (6.33) or (5.52) in [7] one obtains from Bernstein’s in-
equality [together with (4.30) and (4.32)] that this probability is at most

K9 exp
[
−K10

κ(t + �)

�r+1
[ρr+1]1/(d+1)

]
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for 1 ≤ r ≤ R(t)−1, κ ≥ some κ0, t ≥ some t0, and constants K9,K10, depending
on d and µA only. Inequality (4.29) now follows from (4.35), (4.36) and (4.34).

�

PROPOSITION 8. For any choice of K and ε0 > 0, there exist constants r0, t1
such that for all t ≥ t1,

P {	r(�) ≥ ε0C
−6r
0 (t + �) for some r ≥ r0, � ≥ 0} ≤ 2

tK
.(4.38)

PROOF. Consider a sample point for which

	r(�) = 0 for all r ≥ R(t) and � ≥ 0,(4.39)

and for which

	r(�) ≤ C
6(d+1)
0 	r+1(�) + C

6(d+1)
0

κ0(t + �)

�r+1
[ρr+1]1/(d+1)(4.40)

for all t ≥ t0,1 ≤ r ≤ R − 1, � ≥ 0. For such a sample point one also has
for t ≥ t0, r0 ≤ r ≤ R − 1, � ≥ 0,

	r(�) ≤ C
6(d+1)
0

κ0(t + �)

�r+1
[ρr+1]1/(d+1) + C

6(d+1)
0 	r+1(�)

≤ C
6(d+1)
0 3κ0(t + �) exp

[
− γ0µA

2(d + 1)
C

(d−3/4)r
0

]
+ C

6(d+1)
0 	r+1(�)

≤ C
6(d+1)
0 3κ0(t + �) exp

[
− γ0µA

2(d + 1)
C

(d−3/4)r
0

]

+ C
12(d+1)
0 3κ0(t + �) exp

[
− γ0µA

2(d + 1)
C

(d−3/4)(r+1)
0

]
+ C

12(d+1)
0 	r+2(�)(4.41)

≤ · · · ≤
R−r∑
j=1

C
6j (d+1)
0 3κ0(t + �) exp

[
− γ0µA

2(d + 1)
C

(d−3/4)(r+j−1)
0

]

+ C
6(d+1)(R−r)
0 	R(�)

≤ 6κ0(t + �)C
6(d+1)
0 exp

[
− γ0µA

2(d + 1)
C

(d−3/4)r
0

]
≤ ε0C

−6r
0 (t + �),

provided r0 is sufficiently large. The required value for r0 is independent of t, �.
By (4.15)–(4.17), and (4.29), relations (4.39) and (4.40) hold outside a set of

probability

t−K +
R−1∑
r=1

∑
�≥0

exp
[
−(t + �)C5κ0 exp

[
− 1

2(d + 1)
γrµAC

(d−3/4)r
0

]]
≤ 2t−K,
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provided t ≥ some t1 ≥ t0. This proves the proposition. �

Proposition 8 is the main technical estimate for the proof of Theorem 2. We now
start on this proof proper. The strategy will be to show that (with overwhelming
probability) there exists a (random) path u 	→ λ(u, x) along which a B-particle
moves with a “drift” toward a fixed point x, at least at the times u when there are
at least two particles at λ(u, x). Lemma 9 below expresses this more formally in
terms of quantities I1, I≥2,�1 and �≥2 which will be defined in (4.42) and (4.43)
below; at the times when I≥2(u) = 1 [and hence I1(u) = 0], ‖λ(u, x) − x‖2 has a
drift D�≥2(u), which will be shown to be negative in (4.68).

We now give the details. For x ∈ Z
d construct a path λ(·) = λ(·, x) ∈ Z

d by the
rules (i)–(v) below:

(i) λ(0, x) is the location of some initial B-particle, say λ(0, x) = z0;
(ii) for all times s there is a distinguished B-particle, ρ̂(s) say, at λ(s, x); at

time 0 we designate any of the B-particles at z0 as ρ̂(0);
(iii) s 	→ λ(s, x) can jump only at times when ρ̂(s−) jumps away from λ(s, x),

and λ(·, x) is constant between such jumps;
(iv) if ρ̂(s−) jumps from λ(s−, x) = w to w′ at some time s, and if this was

the only particle at w at time s−, then λ(·, x) also jumps to w′ at time s [so that
λ(s, x) = w′] and ρ̂(s) = ρ̂(s−), the particle which jumped at time s;

(v) if ρ̂(s−) jumps from λ(s−, x) = w to w′ at some time s such that there is
at least one other particle ρ′ at w at time s−, then λ(·, x) jumps to w′ at time s

if and only if ‖w′ − x‖2 < ‖w − x‖2, and in this case again ρ̂(s) = ρ̂(s−); if,
however, ‖w′ − x‖2 ≥ ‖w − x‖2, then λ(·, x) does not jump at time s and we take
ρ̂(s) = ρ′.

In general, these rules do not determine λ(·) uniquely, because there may be
more than one possible choice for ρ′ in rule (v). However, we can use any a priori
rule to make λ unique. We can, for instance, choose ρ′ as the particle ρk with the
minimal k among all possible ones.

We shall say that the distinguished particle attempts a jump at time s when the
distinguished particle at time s−, that is, ρ̂(s−), jumps away from λ(s). Due to
the fact that we may then declare another particle to be the distinguished one at
time s [see rule (v)], an attempted jump of the distinguished particle at time s does
not necessarily make λ(s) �= λ(s−).

We start with the distinguished particle being of type B , and by rules (iii)–(v),
right after each attempted jump of the distinguished particle, there still is a distin-
guished B-particle at the location of λ. From this it is easy to check recursively,
from one attempted jump of the distinguished particle to the next, that λ(·, x) au-
tomatically satisfies (ii). We merely have to note that if the distinguished particle
has type B just before an attempted jump, then all particles which coincide with
the distinguished particle at that time also have type B .
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Note that λ(·, x) can change only at the time at which the distinguished parti-
cle ρ̂ jumps [by rule (iii)]. The next lemma shows that the jumps which occur at
a time t when there are more than one particle at λ(t) cause a certain drift of λ(·)
toward x. We remind the reader that F 0

t = σ -field generated by {Ys : s ≤ t} and
that

Ft = ⋂
h>0

F 0
t+h.

We remind the reader that P without superscript is discussed just before Proposi-
tion 4. We take ed+i = −ei for 1 ≤ i ≤ d , and define

I1(u) = I
[
NB

(
λ(u, x), u

)= 1
]

= I
[
ρ̂(u) is the only particle present at

(
λ(u, x), u

)]
,(4.42)

I≥2(u) = I
[
NB

(
λ(u, x), u

)≥ 2
]
,

�1(u) = 1

2d

2d∑
i=1

[‖λ(u, x) + ei − x‖2 − ‖λ(u, x) − x‖2],
(4.43)

�≥2(u) = 1

2d

∑ ∗[‖λ(u, x) + ei − x‖2 − ‖λ(u, x) − x‖2],
where

∑ ∗ is the sum over those i ∈ {1, . . . ,2d} for which

‖λ(u, x) + ei − x‖2 − ‖λ(u, x) − x‖2 < 0.

LEMMA 9.

M(t) = M(t, x) := ‖λ(t, x) − x‖2
(4.44)

− D

∫ t

0
[I1(u)�1(u) + I≥2(u)�≥2(u)]du

is a right-continuous {Ft }-martingale under the measure P .

The proof of this lemma is standard and we shall skip it here. The reader can
find a proof in [8], Lemma 10.

We now want to use known exponential bounds for large deviations of martin-
gales with suitable bounds on their increments. The following lemma is a special
case of estimates for discrete-time (super) martingales with bounded jumps, such
as can be found in [10], pages 154–155 (see also the estimation of λ on page 334
in [6]).

LEMMA 10. Assume that {Gn}n≥0 is an increasing sequence of σ -fields and
that Dn,n ≥ 1, are random variables which satisfy for all n ≥ 1

Dn is Gn-measurable,(4.45)

|Dn| ≤ c,(4.46)
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for some constant 0 ≤ c < ∞, and

E{Dn|Gn−1} = 0.(4.47)

Define V0 = 0 and

Vn =
n∑

i=1

Di, An =
n∑

i=1

E{D2
n|Gn−1},

for n ≥ 1. Then {Vn}n≥0 is a {Gn}-martingale and there exists a constant K3, de-
pending on c only, such that

P {|Vn| ≥ a + bAn for some n ≥ 0} ≤ 2 exp[−K3ab],
(4.48)

a ≥ 0,0 ≤ b ≤ 1.

To deduce estimates for M(t) from this lemma, we define σ0 = 0 and for k ≥ 0

σk+1 = min[σk + 1, inf{t > σk : the distinguished particle

ρ̂ attempts a jump at time t}].
We further take Dn = M(σn) − M(σn−1), n ≥ 1, and Gn = Fσn . We then have
V0 = 0 and

Vn = M(σn, x) − M(0, x)

= M(σn, x) − ‖λ(0, x) − x‖2

= M(σn, x) − ‖z0 − x‖2,

with M given by (4.44). It is immediate from the definitions that

sup
σn≤s≤σn+1

|M(s) − M(σn)| ≤ 1 + D.(4.49)

Thus, (4.45)–(4.47) are satisfied with c = 1 + D. Moreover, An ≤ c2n. Conse-
quently,

P {|M(σn) − M(0)| ≥ a + bn for some n ≥ 0}
≤ P

{
|M(σn) − M(0)| ≥ a + b

c2 An for some n ≥ 0
}

(4.50)

≤ 2 exp[−K3abc−2] if b ≤ c2.

The attempted jump times of ρ̂ are distributed like the jump times of a rate-D
Poisson process, so that

P
{
σ�2Dt� ≤ t

}≤ ∑
k≥�2Dt�

e−Dt [Dt]k
k! ≤ K4 exp[−K5t].(4.51)
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Combined with (4.49) and (4.50) this shows that for a ≥ 2 + 2D, 0 ≤ b ≤ 1 and
some constant K6 = K6(D) > 0

P

{
sup
s≤t

|M(s) − M(0)| ≥ a + bt

}
≤ P
{
σ�2Dt� ≤ t

}
+ P

{
|M(σn) − M(0)| ≥ a − 1 − D + b

(1 + 2D)
n(4.52)

for some n ≤ 2Dt

}
≤ K4 exp[−K5t] + 2 exp[−K6ab].

In particular, if we take K6 ≤ K5 (as we may), then we obtain for a = bt,0 ≤ b ≤ 1
and t ≥ t2 := 2(1 + D)/b, that

P

{
sup
s≤t

|M(s) − M(0)| ≥ 2bt

}
≤ (2 + K4) exp[−K6b

2t].(4.53)

Next we must find a lower bound for
∫ t

0 I≥2(u) du. Before we can do this we
need a preparatory lemma. For L ≥ 2 we define

β(L,d) =


1, if d = 1,
[logL]−1, if d = 2,
L2−d, if d ≥ 3,

En = {there is some particle ρ′ �= ρ̂
(
3L2(n − 1)

)
in

(4.54)
λ
(
3L2(n − 1), x

)+ [−L,L]d at time 3L2(n − 1)
}

and

Jn = I
[
ρ̂(u) coincides with another particle

at some time u ∈ (3L2(n − 1),L2(3n − 1)
]]

.

LEMMA 11. There exists a constant K7 > 0, depending on d only, such that
for all 4 ≤ L2 ≤ t/4

E
{
Jn|F3L2(n−1)

}≥ K7β(L,d) on the event En.(4.55)

PROOF. Fix an integer n and for brevity write m for 3L2(n − 1). Recall that
the position of ρ̂(m) is λ(m). Write ρ′′ for the particle which is the distinguished
particle ρ̂(m) at time m. Of course ρ′′ does not have to be the distinguished particle
anymore at some later time u. However, ρ′′ can fail to be the distinguished particle
at time u > m only if rule (v) is invoked at some time in (m,u].
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Now ρ′ and ρ′′ continue after time m to perform random walks {S′} and {S′′}
which are independent of each other and all other particles. Since, on the event En,
these two particles have a distance at most L

√
d from each other at time m, we

can use standard random walk estimates to find a lower bound for

P {ρ′ and ρ′′ coincide at some time u ∈ (m,m + L2]|Fm}
= P {S′

u − S′′
u = z for some u ≤ L2},

where z = −π(m,ρ′) + π(m,ρ′′) = −π(m,ρ′) + π(m, ρ̂(m)). Indeed,∫
u≤L2

P {S′
u − S′′

u = z}du

= E{amount of time during [0,L2] with S′
u − S′′

u = z}
=
∫
s≤L2

P {smallest u with S′
u − S′′

u = z lies in ds}

× E{amount of time during [0,L2 − s] with S′
u − S′′

u = 0}
≤ P {S′

u − S′′
u = z for some u ≤ L2}

∫
u≤L2

P {S′
u − S′′

u = 0}du.

The integrals in the extreme left- and right-hand sides here can be estimated by
means of the local central limit theorem to obtain that

P {ρ′ and ρ′′ coincide at some time u ∈ (m,m + L2]|Fm} ≥ K7β(L,d)(4.56)

(see Theorem 2.2 in [1] or Lemmas 5.1 and 5.2 in [4] for similar arguments). If ρ′′
is still the distinguished particle at the time u when ρ′ and ρ′′ coincide, then there
are at least the two particles ρ′ and ρ′′ at λ(u) at time u so that I≥2(u) = 1 and
Jn = 1 in this case.

As pointed out, ρ′′ does not have to equal the distinguished particle ρ̂(u) at
a time u, but this can happen only if for some u′ ∈ (m,u] we use rule (v). This
means that there must have been some time u′ ∈ (m,u] at which ρ̂(u′) coincided
with another particle. It follows that Jn = 1 also in this case. �

We next derive a lower bound for

Z(t) = Z(t, x) :=
∫ t

0
I≥2(u) du

in terms of

V (t,L) = V (t,L, x)

:= ∑
1≤n≤L−2t/3

I
[
there is some particle other than ρ̂

(
3L2(n − 1)

)
(4.57)

inside λ
(
3L2(n − 1), x

)+ [−L,L]d
at time 3L2(n − 1)

]
.
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LEMMA 12. For 0 < ε ≤ 1 and u ≤ L2 ≤ t/4

P {Z(t) ≤ εβ(L,d)L−2t}
≤ P

{
V (t,L) ≤ 2ε

K7
e2DL−2t

}
(4.58)

+ 2 exp
[
−K3

3
ε2β2(L, d)L−2t

]
.

PROOF. We define

Gn = F3L2n,

J̃n = min
{

1,

∫ 3L2n

3L2(n−1)
I≥2(u) du

}
,

Dn = J̃n − E{J̃n|Gn−1}.
Note that 0 ≤ J̃n ≤ 1, so that |Dn| ≤ 1, E{D2

n|Gn−1} ≤ 1 and

A�L−2t/3� := ∑
1≤n≤L−2t/3

E{D2
n|Gn−1} ≤ L−2t/3.

Therefore, (4.48) with c = 1,

a = εβ(L,d)L−2t/3 and b = εβ(L,d)

yields

P

{∣∣∣∣∣ ∑
1≤n≤L−2t/3

[J̃n − E{J̃n|Gn−1}]
∣∣∣∣∣≥ εβ(L,d)L−2t

}

≤ 2 exp
[
−K3

3
ε2β2(L, d)L−2t

]
.

In particular,

P {Z(t) ≤ εβ(L,d)L−2t}

≤ P

{ ∑
1≤n≤L−2t/3

J̃n ≤ εβ(L,d)L−2t

}

≤ P

{ ∑
1≤n≤L−2t/3

E{J̃n|Gn−1} ≤ 2εβ(L,d)L−2t

}

+ P

{∣∣∣∣∣ ∑
1≤n≤L−2t/3

[J̃n − E{J̃n|Gn−1}]
∣∣∣∣∣≥ εβ(L,d)L−2t

}
(4.59)
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≤ P

{ ∑
1≤n≤L−2t/3

E{J̃n|Gn−1} ≤ 2εβ(L,d)L−2t

}

+ 2 exp
[
−K3

3
ε2β2(L, d)L−2t

]
.

Finally, we observe that on the event En [see (4.54)]

E{J̃n|Gn−1} ≥ P
{
ρ̂(u) coincides with another particle ρ′ at some time

u ∈ (3L2(n − 1),L2(3n − 1)
]

and the positions of ρ̂(u′)
and ρ′ and λ(u′, x) all stay together for u′ ∈ [u,u + 1]|Gn−1

}
≥ exp[−2D]P {Jn = 1|Gn−1}
≥ exp[−2D]K7β(L,d) [by (4.55)].

The lemma now follows from∑
1≤n≤L−2t/3

E{J̃n|Gn−1} ≥ exp[−2D]K7β(L,d)
∑

1≤n≤L−2t/3

I [En]

= exp[−2D]K7β(L,d)V (t,L). �

The next lemma gives an upper bound for
∫ t

0 [I1(u)�1(u) + I≥2(u)�≥2(u)]du

in terms of Z(t).

LEMMA 13. There exist constants 0 < K8,K9,K10 < ∞, which depend on
d and D only, such that for all z > 0∫ t

0
[I1(u)�1(u) + I≥2(u)�≥2(u)]du

(4.60)

≤ K8β(L,d)

zL2 t + K8

∫ t

0
I

[
‖λ(u) − x‖2 ≤ zL2

β(L,d)

]
du − K9Z(t).

Consequently, for

0 < ε ≤ 1, ‖x − z0‖2 ≤ K9εDβ(L,d)

4L2 t, z = 4K8

K9ε
,(4.61)

L ≥ L0 :=
[
εDK9

8

]1/2

∨ 3,(4.62)

and for t ≥ L2[εβ(L,d)]−1t3 for some t3 = t3(D) it holds that

P

{∫ t

0
I

[
‖λ(u) − x‖2 ≤ zL2

β(L,d)

]
du ≤ K9εβ(L,d)

4K8L2 t

}
≤ (2 + K4) exp[−K10ε

2β2(L, d)L−4t](4.63)

+ P

{
V (t,L) ≤ 2ε

K7
e2DL−2t

}
+ 2 exp

[
−K3

3
ε2β2(L, d)L−2t

]
.
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PROOF. We shall show by simple calculus that there exist some constants
0 < K8,K9 < ∞ which depend on d only, such that for λ,x ∈ Z

d

1

2d

2d∑
i=1

[‖λ + ei − x‖2 − ‖λ − x‖2] ≤ K8

‖λ − x‖2 + 1
,(4.64)

and, with
∑ ∗ as in (4.43),

1

2d

∑ ∗[‖λ + ei − x‖2 − ‖λ − x‖2] ≤ −K9 + K8

‖λ − x‖2 + 1
.(4.65)

Moreover, the left-hand sides of (4.64) and (4.65) are at most 1 in absolute value.
Before we prove these inequalities we show that they imply the lemma. Indeed,

it follows from (4.64), (4.65) and the definitions (4.43) that the left-hand side
of (4.60) is at most

K8β(L,d)

zL2

∫ t

0

(
I1(u) + I≥2(u)

)
I

[
‖λ(u) − x‖2 >

zL2

β(L,d)

]
du

+ K8

∫ t

0

(
I1(u) + I≥2(u)

)
I

[
‖λ(u) − x‖2 ≤ zL2

β(L,d)

]
du − K9

∫ t

0
I≥2(u) du

≤ K8β(L,d)

zL2 t + K8

∫ t

0
I

[
‖λ(u) − x‖2 ≤ zL2

β(L,d)

]
du − K9Z(t).

This proves (4.60).
To prove (4.63) we take b = εDK9β(L,d)/(8L2) in (4.53). For L ≥ L0 this b

satisfies b ≤ 1. Then we obtain, by means of (4.60), that outside a set of probability
at most (2 + K4) exp[−K6b

2t] it holds that

0 ≤ ‖λ(t) − x‖2

≤ ‖λ(0) − x‖2 + 2bt + DK8β(L,d)

zL2 t

+ DK8

∫ t

0
I

[
‖λ(u) − x‖2 ≤ zL2

β(L,d)

]
du − DK9Z(t)

for t ≥ t2 = L2[εβ(L,d)]−1t3 for some t3 = t3(D). By substitution of the chosen
values of x, b and z this yields∫ t

0
I

[
‖λ(u) − x‖2 ≤ zL2

β(L,d)

]
du ≥ K9

K8
Z(t) − 3K9εβ(L,d)

4K8L2 t.(4.66)

If we exclude a further set of probability at most equal to the right-hand side
of (4.58), then the right-hand side of (4.66) exceeds K9εβ(L,d)[4K8L

2]−1t .
Thus (4.63) also follows from (4.64) and (4.65).

We turn to the proof of (4.64) and (4.65). The sentence following (4.65) is triv-
ial. We can therefore adjust K8 so that (4.64) and (4.65) are valid on any given
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finite set of values for ‖λ− x‖2. In particular, we may restrict ourselves to proving
(4.64), (4.65) for ‖λ − x‖2 ≥ 2. Now the Taylor expansion

‖a + b‖2 =
√

‖a‖2
2 + 2a · b + ‖b‖2

2

= ‖a‖2 + 2a · b + ‖b‖2
2

2‖a‖2
+ O

(‖a‖2
2‖b‖2

2 + ‖b‖4
2

‖a‖3
2

)
shows that the left-hand side of (4.64) equals

1

2d

2d∑
i=1

(λ − x) · ei

‖λ − x‖2
+ H(λ − x)

‖λ − x‖2
= H(λ − x)

‖λ − x‖2
(4.67)

for some function H which is bounded on {λ �= x} = {‖λ − x‖2 ≥ 1} (recall that
λ,x ∈ Z

d ). Thus (4.64) holds.
For (4.65) we write λ − x = ∑d

i=1 niei , with integer coefficients ni (since
λ − x ∈ Z

d ). Then for a given i ∈ {1, . . . , d} there are three possibilities: ni > 0,

ni < 0, ni = 0. If ni > 0, and hence ni ≥ 1, then d + i is contained in
∑ ∗, but

not i. Thus in this case, 2d times the contribution of the term with d + i to the
left-hand side of (4.65) is[∑

k �=i

n2
k + (ni − 1)2

]1/2

−
[∑

k �=i

n2
k + n2

i

]1/2

=
{[∑

k �=i

n2
k + (ni − 1)2

]1/2

+
[∑

k �=i

n2
k + n2

i

]1/2}−1

(−2ni + 1)

≤ −1
2

[∑
k �=i

n2
k + n2

i

]−1/2

ni.

[In the last inequality we used that 2ni − 1 ≥ ni and that the term in the denomina-
tor with n2

i exceeds that with (ni − 1)2.] If ni < 0, then only i is contained in
∑ ∗,

but not d + i, and the preceding estimates hold with ni replaced by −ni . Finally,
if ni = 0, then neither i nor d + i is contained in

∑ ∗. Thus the left-hand side of
(4.65) is at most

− 1

4d

[
d∑

k=1

n2
k

]−1/2 d∑
i=1

|ni | ≤ − 1

4d
I [λ − x �= 0].

�

PROOF OF THEOREM 2. We now have everything in place to prove Theo-
rem 2. Fix K > 0 and a large t . We first use that the distinguished particle attempts
to jump at the constant rate D. (It may, however, lose its distinguished character
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due to a jump.) Therefore, it holds for any x that

P {λ(·, x) has more than 2Dt jumps during [0, t]}
≤ P {ρ̂(·) attempts to jump more than 2Dt times during [0, t]}
≤ K4 exp[−K5t] [see (4.51)].

Note that if λ(·, x) has no more than 2Dt jumps during [0, t], then also
‖λ(s, x) − λ(0, x)‖ = ‖λ(s, x) − z0‖∞ ≤ 2Dt for s ≤ t . Thus, for sufficiently
large t [see (4.9) for �]

P

{
{λ(s, x)}s≤t /∈ ⋃

�≤2Dt

�(�, t) for some x with ‖x‖ ≤ t

}
(4.68)

≤ K11t
d exp[−K5t].

Proposition 8 (with K replaced by K + d) now tells us that outside a further set of
probability at most 2/tK+d , we have for r ≥ r0, � ≤ 2Dt and t ≥ t1 that 	r(�) ≤
ε0C

−6r
0 (1+2D)t . Therefore, if we write λ̃(s, x) for the space–time point λ(s, x)×

{s}, then

for each ‖x‖ ≤ t the path {̃λ(s, x)}s≤t intersects
(4.69)

at most C−6r
0 ε0(1 + 2D)t bad r-blocks

[see (4.7) for the definition of a bad block]. We choose ε0 > 0 such that

ε0(1 + 2D) <
1

7
and

2ε0

K7
e2D <

1

6
,(4.70)

and then we fix r at some value r1 ≥ r0 such that

γr1µAC
dr1
0 ≥ 2, C

6r1
0 ≥ 3DK9

8
(4.71)

[(4.71) is possible because C0 ≥ 2 and γr1 ≥ γ0 > 0]. We claim that with this
choice, (4.69) implies (for large t) that

for each ‖x‖ ≤ t and corresponding path {λ(s, x)}s≤t there are at least

(1/6)C
−6r1
0 t integers 0 ≤ n ≤ C

−6r1
0 t/3 − 1 for which there exists a(4.72)

particle ρ′ �= ρ̂ inside λ(3C
6r1
0 n,x) + [−C

3r1
0 ,C

3r1
0 ] at time 3C

6r1
0 n.

To see this recall that �r = C6r
0 , and note that each point λ̃(kC

6r1
0 , x) belongs to

a unique r1-block Br1(i, k), and for different k, these blocks are disjoint. Thus
for each x, {λ(s, x)}s≤t intersects at least �C−6r1

0 t� distinct r1-blocks. If (4.69)

holds, then, by (4.70), at most (1/7)C
−6r1
0 t of these blocks are bad, so that for

large t there are at least (6/7)C
−6r1
0 t − 4 values of 0 ≤ k ≤ �C−6r1

0 t� − 3 such that
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λ̃(kC
6r1
0 , x) belongs to a good r1-block. At least (1/6)C

−6r1
0 t of these will have k

divisible by 3, say k = 3n, with n ≤ �C−6r1
0 t�/3 − 1. If λ̃(3C

6r1
0 n,x) belongs to a

good r1-block, then by definition

Ur1

(
λ(3C

6r1
0 n,x),3C

6r1
0 n
)= ∑

y∈Qr1 (λ∗)
N∗(y,3C

6r1
0 n)

≥ γr1µAC
dr1
0 ≥ 2

[see (4.71)], where we have temporarily written λ∗ for λ(3C
6r1
0 n,x). In particular,

there have to be two particles in
∏d

s=1[λ∗(s), λ∗(s) + Cr
0) at time 3C

6r1
0 n, and

one of these must be different from the distinguished particle at λ(3C
6r1
0 n). This

justifies our claim (4.72).
In the notation of (4.57) the preceding paragraph shows that (4.69)–(4.71) imply

that for all x with ‖x‖ ≤ t and

L = C
3r1
0 ,

it holds that

V (t,L, x) ≥ 1

6
C

−6r1
0 t >

2ε0

K7
e2DC

−6r1
0 t

= 2ε0

K7
e2DL−2t.

Thus the bound (4.68) and the lines following it prove (for large t)

P

{
V (t,L, x) <

2ε0

K7
e2DL−2t

}
≤ K11t

d exp[−K5t] + 2t−K−d

≤ 3t−K−d .

Equation (4.63) with ε = ε0 and z as in (4.61) then shows that for large t and for
all x with

‖x − z0‖2 ≤ K9ε0Dβ(L,d)

4L2 t and ‖x‖ ≤ t,(4.73)

P

{∫ t

0
I

[
‖λ(u, x) − x‖2 ≤ 4K8L

2

K9ε0β(L,d)

]
du ≤ K9ε0β(L,d)

4K8L2 t

}
(4.74)

≤ 4t−K−d .

Now fix x and assume that∫ t

0
I

[
‖λ(u, x) − x‖2 ≤ 4K8L

2

K9ε0β(L,d)

]
du >

K9ε0β(L,d)

4K8L2 t.(4.75)

This implies trivially that ‖λ(u, x)−x‖2 ≤ 4K8L
2/(K9ε0β(L,d)) for some u ≤ t .

However, we want more. For Theorem 2 we want that for each x ∈ C(C2t) there
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exists a u ≤ t at which x is visited by a B-particle. To show that such a u exists
with high probability, we define the stopping times

u0 = 0, ui+1 = ui+1(x)

= inf
{
u ≥ ui + L4β−2(L, d) :‖λ(u, x) − x‖2 ≤ 4K8L

2

K9ε0β(L,d)

}
.

Equation (4.75) implies that ui + L4β−2(L, d) ≤ t for at least

χ :=
⌈
K9ε0β

3(L, d)

4K8L6 t

⌉
− 2

values of i ≥ 1 with ui ≤ t . By definition ui+1 − ui ≥ L4β−2(L, d) and by the
right-continuity of λ(·)

‖λ(ui, x) − x‖2 ≤ 4K8L
2

K9ε0β(L,d)
=: K12

L2

β(L,d)
.(4.76)

Define

L̃ = L2

β(L,d)
.

Then the same random walk estimates as for (4.56) give that

P
{
the particle which is the distinguished particle

at time ui visits x at some time in (ui, ui+1]|Fui

}
(4.77)

� K13β(L̃, d) �


K13, if d = 1,

K13[4 logL]−1, if d = 2,

K13L
d(d−2), if d ≥ 3.

Note that we are estimating here the probability that the distinguished particle of
time ui visits x at some time u, rather than that λ(u, x) = x. But conditionally
on Fui

, the B-particle which is the distinguished one at time ui performs a random
walk which is a copy of S, and this fact is the basis for the estimate (4.77). Finally
we apply Lemma 10 once more. We take Gn = Fun ,

Hn := I
[
the particle which is the distinguished

particle at time un−1 visits x at some time in (un−1, un]]
and

Dn = Hn − E{Hn|Gn−1}.
Since Hn takes on only the values 0 or 1, it is easy to see from (4.77) that on the
event (4.75)

χ∑
n=1

E{Hn|Gn−1} ≥ χK13β(L̃, d) ≥ K14β(L̃, d)
β3(L, d)

L6 t



2454 H. KESTEN AND V. SIDORAVICIUS

and

Aχ =
χ∑

n=1

E{D2
n|Gn−1} ≤ K15β(L̃, d)

β3(L, d)

L6 t.

It is then easy to deduce from Lemma 10, with a = (1/2)K14β(L̃, d)
β3(L,d)

L6 t, b =
K14/(2K15) ∧ 1 and c = 1, that for x satisfying (4.73) and t large

P {x is not visited by a B-particle by time t}

≤ P {(4.75) does not occur} + P

{
(4.75) occurs, but

χ∑
i=1

Hn = 0

}

≤ 4t−K−d

+ P

{
(4.75) occurs, but

(4.78)
χ∑

i=1

[Hn − E{Hn|Gn−1}] ≤ −K14β(L̃, d)
β3(L, d)

L6 t

}

≤ 4t−K−d + P

{ χ∑
n=1

[Hn − E{Hn|Gn−1}] ≤ −a − bAχ

}

≤ 4t−K−d + 2 exp
[
−K16β(L̃, d)

β3(L, d)

L6 t

]
≤ 5t−K−d .

Theorem 2 with

C2 = K9ε0Dβ(L,d)

8L2
√

d
∧ 1

now follows by summing (4.78) over all x which satisfy (4.73). �

5. Proof of Theorem 3. A basic step for the proof is a monotonicity property
which is proven via a coupling argument. We formulate it as a separate lemma.

LEMMA 14. Assume DA = DB and let σ (2) ∈ 0. Assume further that σ (1)

lies below σ (2) in the following sense:

for any site z ∈ Z
d , all particles present

(5.1)
in σ (1) at z are also present in σ (2) at z

and

at any site z at which the particles in σ (2) have
(5.2)

type A, the particles also have type A in σ (1).
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Let πA(·, ρ) = πB(·, ρ) be the random walk paths associated to the various par-
ticles and assume that the Markov processes {Y (1)

t } and {Y (2)
t } are constructed by

means of the same set of paths πA(·, ρ) = πB(·, ρ) and starting with state σ (1) and
σ (2), respectively (as defined in Section 2). Then, almost surely, {Y (1)

t } and {Y (2)
t }

satisfy (5.1) and (5.2) for all t with σ (i) replaced by Y
(i)
t , i = 1,2. In particular,

σ (1) ∈ 0 and (2.20) holds almost surely for {Y (1)
t }.

PROOF. Couple the processes {Y (1)
t } and {Y (2)

t } as in the statement of the
lemma. Specifically, first choose independent paths s 	→ πA(s, ρ) for all parti-
cles ρ present in σ (2) and construct {Y (2)

t } with the help of these paths [as in
(2.6) and (2.7), with πB(s, ρ) = πA(s, ρ) for all s, ρ]. We then assign to each par-
ticle ρ present in σ (1) the same path s 	→ πA(s, ρ) as assigned to ρ in σ (2). By
(5.1) this assigns a path to each particle present in σ (1). We then construct {Y (1)

t }
on the basis of these paths. Note that a.s. no particles are ever moved to a cemetery
point in the {Y (2)

t }-system, since σ (2) ∈ 0. The position at time t of a particle ρ

starting at z is then z+πA(t, ρ), in whichever of the systems the particle is present.
It is immediate from this that (5.1) with σ (i) replaced by Y

(i)
t , i = 1,2, is valid.

To show (5.2) with σ (i) replaced by Y
(i)
t , i = 1,2, we first note that (2.20) a.s.

holds for {Y (2)
t }, because σ (2) ∈ 0. Then, by (5.1), a.s. (2.20) holds in both sys-

tems. Now let τ
(i)
0 = 0 and for k ≥ 1, let τ

(i)
k be the kth time at which a new

particle changes from type A to type B in {Y (i)
t }. More formally, as in (2.3),

τ
(i)
k+1 = inf{t > τ

(i)
k : a B-particle coincides with an A-particle at time t in {Y (i)

t }}.
We shall show by induction on k ≥ 0 that at each time τ

(1)
k the property (5.2)

with σ (i) replaced by Y
(i)

τ
(1)
k

still holds, and that there are only finitely many

B-particles in both systems at time τ
(1)
k . We may restrict ourselves to sample

points for which min(τ̂ , τ∞) = ∞ in the {Y (2)
t }-system, because σ (2) ∈ 0 (see

Lemma 2). Assume then that at time τ
(1)
k , (5.2) with σ (i) replaced by Y

(i)

τ
(1)
k

still

holds. Since the second system has only finitely many B-particles at time τ
(1)
k ,

this, together with (5.2) with σ (i) replaced by Y
(i)

τ
(1)
k

, shows that also the first system

has only finitely many B-particles at time τ
(1)
k . Moreover, τ

(1)
k+1 is the first time

after τ
(1)
k at which some B-particle ρ coincides with some A-particle ρ′ in the first

system. From the right-continuity of the paths πA(·, ζ ) for all B-particles ζ , plus
(2.20), it then follows that τ

(1)
k+1 > τ

(1)
k , a.s. By the induction hypothesis, ρ must

also have type B at time τ
(1)
k in the second system. Therefore also ρ′ turns into a

B-particle in the second system no later than τ
(1)
k+1. (ρ′ may already have turned

to type B before τ
(1)
k+1 in the second system, in which case no type change occurs

for ρ′ in the second system at τ
(1)
k+1.) In any case, any particle which turns to type B
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at time τ
(1)
k+1 in the first system also has type B at or before time τ

(1)
k+1 in the second

system, so that (5.2) with σ (i) replaced by Y
(i)

τ
(1)
k+1

still holds. This completes the

inductive step.
Since we already know that there are only finitely many B-particles at each τ

(1)
k

in the second system, we conclude that a.s. this holds in both systems at each τ
(1)
k .

As we remarked above this shows that a.s. τ
(1)
k+1 > τ

(1)
k for all k, so that τ̂ < τ∞

has probability 0 in both systems. Also, at each τ
(1)
k , the number of B-particles in

the first system is at most equal to the number of B-particles in the second system.
Since there are at least k B-particles in the first system at time τ

(1)
k , this shows that

P σ(1){τ∞ < ∞} ≤ P σ(2){τ∞ < ∞} = 0.

Thus, σ (1) ∈ 0. �

PROOF OF THEOREM 3. Fix K . Note that if a particle has type B at some
time s ≤ t and is outside the cube C(C1t) at that time, then by symmetry of the
random walk {S}, the particle has a conditional probability, given Fs , at least 1/2
of being outside C(C1t) at time t . Therefore

E{number of particles outside C(C1t) at some time s ≤ t}
≤ 2E{number of particles outside C(C1t) at time t}.

Thus, by (1.3)

P {a site outside C(C1t)
(5.3)

is visited by a B-particle during [0, t]} ≤ t−K−1

for t ≥ some t0. We may therefore restrict ourselves for (1.7) to space–time points
(z, t) with z ∈ C(C1t). Now fix a (z, t) which satisfies this condition and assume z

is first visited by a B-particle at time s ≤ t −[K1t log t]1/2. Outside a set of proba-
bility Dt−K−d−1 this B-particle stayed at z for at least t−K−d−1 units of time, so
that it is still at z at a time s of the form kt−K−d−1 ≤ t −[K1t log t]1/2 + t−K−d−1.
Further, the probability that there is an A-particle at (z, t) which was at a point y

with ‖y − z‖ > [K2t log t]1/2 at one of the times kt−K−d−1 is bounded by∑
s=kt−K−d−1

≤t−[K1t log t]1/2+1

∑
y : ‖y−z‖>[K2t log t]1/2

ENA(y, s)P {St−s = z − y}.(5.4)

We now remind the reader of the particle system P ∗ which we introduced just
before (2.16). In this process interactions between particles are ignored. Thus,
in P ∗, each A-particle ρ with initial position π(0, ρ) continues to follow the path
t 	→ π(0, ρ)+πA(t, ρ) even after its switching time θ(ρ). In the present case with
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DA = DB , this is also the path which the particle follows in the true system. We
write N∗(z, t) for the number of particles at (z, t) in P ∗. In our case this is just
the total number of particles at (z, t) which are different from the finitely many
original B-particles. {N∗(z, t) : z ∈ Z

d, t ≥ 0} is stationary in time, and at each t

the N∗(x, t), x ∈ Z
d , are i.i.d. mean-µA Poisson variables. From this description

we see that

NA(z, t) ≤ N∗(z, t) and NA(z, t) + NB(z, t) ≥ N∗(z, t),
(5.5)

z ∈ Z
d, t ≥ 0.

In particular, ENA(y, s) ≤ EN∗(y, s) = µA. Therefore, (5.4) is bounded by∑
s=kt−K−d−1

≤t−[K1t log t]1/2+1

µAP {‖St−s‖ > [K2t log t]1/2}

(5.6)
≤ K3t

K+d+2 exp[−K4K2 log t]
(see (2.42) in [7]). Taking into account the number of possibilities for z we find
that the probability in the left hand-side of (1.7) is for large t bounded by

1

tK+1 + K5t
d 1

tK+d+1 + K6t
K+2d+2 exp[−K4K2 log t]

+ ∑
s=kt−K−d−1

≤t−[K1t log t]1/2+1

∑
z∈C(C1t)

∑
y : ‖y−z‖≤[K2t log t]1/2

P {there is a B-particle

at z and an A-particle at y at time s = kt−K−d−1,

but this A-particle is not turned into a B-particle by time t}.
We shall write U(k, z, y) for the event in the summand corresponding to k, z, y

in the triple sum here. We further write s for kt−K−d−1. We choose K2 so large
that for t ≥ some t1 the sum of the first three terms here is at most 1/(2tK). The
probability in the left-hand side of (1.7) is then bounded by

1

2tK
+ ∑

s=kt−K−d−1

≤t−[K1t log t]1/2+1

∑
z∈C(C1t)

∑
y:‖y−z‖≤[K2t log t]1/2

P {U(k, z, y)}.(5.7)

The triple sum in (5.7) contains at most K7t
K+d+2[C1t]d [K2t log t]d/2 ≤

K8t
K+3d+2 summands. We shall complete the proof of (1.7) by showing that each

summand in (5.7) is at most K9t
−2K−3d−3 for some constant K9 which does not

depend on t .
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At an intuitive level it seems clear that there should be a way to estimate these
summands which is similar to the one used in the proof of Theorem 2 for estimat-
ing the probability that a fixed vertex x has not been reached by a B-particle by
time t . We have to be a bit careful, though, not to bias the relevant distributions by
the fact that there is a B-particle at the space–time point (z, s) or a certain number
of A-particles at (y, s). Nevertheless, the proof will follow Theorem 2 closely. As
before, we shall write P0 for our original particle system.

In order to estimate the summand in (5.7) we shall make use of the monotonicity
property in Lemma 14. We shall compare the real system with a modified system,
which is constructed via two modifications. In each of these modifications we re-
move particles and change some B-particles to A-particles, at time s. According
to the monotonicity property of Lemma 14, any particle which is present in both
systems at time t , and which has type A in the unmodified system, also must have
type A in the modified system. Now fix y and z as well as s < t , and make the
first modification as follows: at time s, at each x �= z remove all particles of type B

which were added at time 0, and reset the type of the remaining particles at x to A.
At x = z, if there are particles at (z, s) give them type B at time s. If there is no
particle at (z, s), put one B-particle at z at time s. If there is no B-particle at z

or no A-particle at y at time s before the modification, then U(k, z, y) does not
occur in the original system, so we do not care what the modification does in this
case. In the other cases there is at least one A-particle at y, and a B-particle at z,
so y �= z. In these cases the A-particle at y is not removed, and the type of the par-
ticles at z is unchanged by the modification, so the monotonicity property gives us
that P {U(k, z, y)} can only go up by this first modification. Note that after the first
modification, we have N∗(x, s) A-particles at x, for any x �= z, and NB(z, s) ∨ 1
B-particles at z. These

N∗(x, s), x ∈ Z
d, are i.i.d. mean-µA Poisson variables.(5.8)

Now there are N∗(y, s) A-particles at (y, s) after the first modification. Since all
particles at the same space–time point play the same role, each of these N∗(y, s)

particles at (y, s) has the same probability of still having type A at time t . Order
the particles at (y, s) by some arbitrary rule. Then the k, z, y summand in (5.7) is
at most

E
{
N∗(y, s)P {in the first modified system the first

(5.9)
particle at (y, s) is still of type A at time t |Fs}}.

There is some dependence between N∗(y, s) and the conditional probability factor
in this expectation. To handle this we make one further modification at y. In this
second modification we remove all but the first A-particle at (y, s). If there is no
A-particle at (y, s), then we add an A-particle at y. Since there is no contribution to
(5.9) from the sample points with N∗(y, s) = 0, we can ignore how this modifica-
tion influences the conditional probability in (5.9) on the event {N∗(s, y) = 0}. On
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the event {N∗(y, s) ≥ 1} the second modification cannot decrease the conditional
probability in (5.9), once again by Lemma 14. Now, the second modified system
does not involve N∗(y, s) anymore. In the second modified system the conditional
probability in (5.9) is replaced by

P {in the second modified system, the unique
(5.10)

particle at (y, s) is still of type A at time t |Fs},
which is a function of the N∗(u, s) with u �= y only. As we already observed,
these are independent mean-µA Poisson variables, independent of N∗(y, s). Con-
sequently (5.9) is at most

E{N∗(y, s)}P {in the second modified system the unique
(5.11)

particle at (y, s) is still of type A at time t}.
The statement (5.11) suggests that we introduce two systems P z,y and P z say,

which have initial distributions as follows: Let Ñ(u), u ∈ Z
d , be a family of inde-

pendent mean-µA Poisson variables. Then P z,y starts with Ñ(u) A-particles at u

if u /∈ {z, y}, Ñ(z) ∨ 1 B-particles at z and one A-particle at y. No other particles
are in the initial state. For P z the only change is that at y we put initially Ñ(y)

particles, so that y is treated like all other sites u �= z. The particles then move and
change type in P z,y and in P z according to the same rules as in P0. It follows
from (5.8) that the probability factor in (5.11) equals

P {in the system P z,y the unique

particle at (y,0) is still of type A at time t − s}
= P {in the system P z the unique particle at (y,0)

(5.12)
is still of type A at time t − s | start with one A-particle at y}

≤ 1

e−µAµA

P {in the system P z the first particle

at (y,0) is still of type A at time t − s}.
Here e−µAµA in the right-hand side represents P {Ñ(y) = 1}. We further have
E{N∗(y, s)} = µA, and t − s ≥ [K1t log t]1/2 − 1, so that the k, z, y summand in
(5.7) is bounded by

eµAP {the first particle at (y,0) is still of type A
(5.13)

at time [K1t log t]1/2 − 1 in the system P z}.
Our task has now been reduced to estimating the probability factor in (5.13).

But the system P z is either equal to the original system P0 with one B-particle
added at z [in case Ñ(z) = 0] or is like the system P0, but with all particles at z
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turned into B-particles at time 0, without the addition of an extra B-particle. In
both these cases we can basically repeat the proof of Theorem 2 to estimate (5.13).
We form a path s 	→ λ(s) = λ(s, y, z), s ≥ 0, which starts at λ(0, y, z) = z and
from there proceeds according to the rules (i)–(v) in the proof of Theorem 2 (after
the proof of Proposition 8) with only one change in rule (v). We now want the path
to have a drift to the first particle which started at y, instead of to a fixed vertex x.
If we denote this first particle at y by φ, then the position of φ at a time s equals
π(s,φ) = y + πA(s,φ). Accordingly we change rule (v) to the following:

(v′) if ρ̂(s−) jumps from λ(s−) = w to w′ at some time s such that there is at
least one other particle ρ′ at w at time s−, then λ(·) jumps to w′ at time s if and
only if ‖w′ − π(s,φ)‖2 < ‖w − π(s,φ)‖2, and in this case again ρ̂(s) = ρ̂(s−);
if, however, ‖w′ − π(s,φ)‖2 ≥ ‖w − π(s,φ)‖2, then λ(·) does not jump at time s

and we take ρ̂(s) = ρ′.

Under these changed rules λ(·) − π(·, φ) has a drift toward zero in the sense that
now

M̃(t) := ‖λ(t, x) − π(t, φ)‖2
(5.14)

− D

∫ t

0
[I1(u)�̃1(u) + I≥2(u)�̃≥2(u)]du − D

∫ t

0
�̃1(u) du

is an {Ft }-martingale, where analogously to (4.43)

�̃1(u) := 1

2d

2d∑
i=1

[‖λ(u) + ei − π(u,φ)‖2 − ‖λ(u) − π(u,φ)‖2],

�̃≥2(u) := 1

2d

∑ ∗[‖λ(u) + ei − π(u,φ)‖2 − ‖λ(u) − π(u,φ)‖2],
and
∑ ∗ is the sum over those i ∈ {1, . . . ,2d} for which

‖λ(u) + ei − π(u,φ)‖2 − ‖λ(u) − π(u,φ)‖2 < 0,

and ed+i = −ei,1 ≤ i ≤ d; I1(u) and I≥2(u) are the same as in (4.42). The extra
integral D

∫
[0,t] �̃1(u) du [which was not present in the M(·) of (4.44)] has to be

introduced to compensate for the jumps of φ. However, the proof that M̃ is a
martingale is quite the same as for Lemma 9.

From here on one can follow the proof of Theorem 2. One merely has to replace
λ(s) − x by λ(s) − π(s,φ) at most places and to take into account the jumps in
M̃(·) due to a jump of φ. For instance, the definition of σk+1 right after (4.48)
should now be

σk+1 = min[σk + 1, inf{t > σk : t the distinguished particle

attempts a jump at t or φ jumps at t}].
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One also has to note that t should be replaced by [K1t log t]1/2 − 1 in everything
that comes after Lemma 10, but this is a trivial change to make. The conclusion
is that if K1 is chosen sufficiently large with respect to K2, then each of the sum-
mands in (5.7) is bounded by K9t

−3d−2K−3, uniformly in k, y, z in the ranges over
which they are summed. As pointed out before this completes the proof of (1.7).

Once we have (1.7), (1.8) easily follows by means of (1.5). Indeed, by (1.5),
outside a set of probability at most t−K , each point in C((C2/2)t) has been visited
by a B-particle during [0, t/2]. We then have by (1.7) that the additional proba-
bility of some vertex z ∈ C((C2/2)t) being occupied by an A-particle at time t

is at most t−K . Thus, for large t the left-hand side of (1.8) is at most 2t−K .
�
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