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In this work we study a natural transition mechanism describing the pas-
sage from a quenched (almost sure) regime to an annealed (in average) one,
for a symmetric simple random walk on random obstacles on sites having
an identical and independent law. The transition mechanism we study was
first proposed in the context of sums of identical independent random expo-
nents by Ben Arous, Bogachev and Molchanov in [Probab. Theory Related
Fields 132 (2005) 579–612]. Let p(x, t) be the survival probability at time t

of the random walk, starting from site x, and let L(t) be some increasing
function of time. We show that the empirical average of p(x, t) over a box
of side L(t) has different asymptotic behaviors depending on L(t). There are

constants 0 < γ1 < γ2 such that if L(t) ≥ eγ td/(d+2)
, with γ > γ1, a law of

large numbers is satisfied and the empirical survival probability decreases

like the annealed one; if L(t) ≥ eγ td/(d+2)
, with γ > γ2, also a central limit

theorem is satisfied. If L(t) � t , the averaged survival probability decreases
like the quenched survival probability. If t � L(t) and logL(t) � td/(d+2)

we obtain an intermediate regime. Furthermore, when the dimension d = 1
it is possible to describe the fluctuations of the averaged survival probabil-

ity when L(t) = eγ td/(d+2)
with γ < γ2: it is shown that they are infinitely

divisible laws with a Lévy spectral function which explodes when x → 0
as stable laws of characteristic exponent α < 2. These results show that the
quenched and annealed survival probabilities correspond to a low- and high-
temperature behavior of a mean-field type phase transition mechanism.

1. Introduction. When studying the long-time behavior of Markovian dy-
namics in random media, one has to choose between two possibilities. One can
either choose to fix an almost sure realization of the random medium in which
the dynamics takes place, and then let the time go to infinity, or first average the
randomness of the medium before letting the time grow. We will call the first ap-
proach the quenched regime, and the second one the annealed or more appro-
priately the averaged regime. It is often the case that the two approaches give
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completely different answers. To name a few instances of such problems let us
mention the problem of random walks among random traps (or Brownian motion
among Poissonian traps) (see [1, 4] or Chapter 4 of [12]), or slowdowns of random
walks in random environments [9, 10], or the phenomenon of intermittency for the
parabolic Anderson model [6, 7].

We want to address here the question of the relevance of these two approaches.
A reasonable first answer to this question could simply be that the quenched ap-
proach solves the true question but that the averaged approach, being often much
simpler, has the merit of being the first possibility to understand a hard problem
(historically this has been the case with all the examples quoted above). We will
here introduce another way to address this question by showing that there is a
rich transition between these two approaches which shows that they are the two
extreme points of a broad range.

To introduce this new transition between the quenched and annealed regimes
we need to introduce, at least, one new parameter. This parameter will be a spa-
tial scale, that is, the spatial extent, say L, of the initial data. We will consider a
quenched realization of the medium and will let this spatial scale L and the time t

tend to infinity together. It is rather clear that if the diverging time scale is small
enough as a function of L, or equivalently if the spatial scale L is large enough
as a function of t , the annealed regime should prevail. Indeed the random medium
should be thought as sampled enough by the initial data for a spatial ergodic theo-
rem to apply and thus justify the annealed asymptotics. On the other hand, on much
longer time scales, when the time is very large to make the spatial scale look very
small and not very different from a pointwise initial datum, the quenched asymp-
totics should be in force. We will show that there is a rich transition of asymptotics
regimes interpolating between these two extremes. This transition should be seen
as a transition between the bulk properties and the extreme values of certain local
spectral statistics of the random medium. One should thus use the results provided
by the annealed or quenched asymptotics with care depending on this initial spatial
scale.

This point of view was first proposed and studied in [3] by Ben Arous, Bogachev
and Molchanov for the very simple case of large sums of random exponentials. We
have chosen to work here in the context of random walks among random traps. We
will address the question of branching random walks and slowdowns of random
walks in random environments in other works. In this article we study the transi-
tion mechanism proposed in [3] between the quenched and annealed behavior of a
random walk on random traps on the lattice.

More specifically, we study the asymptotic behavior of the survival probability
of a random walk which is killed when touching traps distributed according to a
product Bernoulli random variable. This can be regarded as the case of the par-
abolic Anderson problem where the random potential takes only two values: 0 or
−∞.
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Let us call p(x, t,w) the probability that a simple symmetric continuous-time
random walk survives up to time t , starting from site x, on a random trap environ-
ment given by the configuration w = {wx :x ∈ Zd} ∈ {0,1}Zd

(here if wx = 1 at
a site x, then x corresponds to a hard trap, killing the random walk the first time
it hits x). In [4, 5] Donsker and Varadhan showed that for long times, the average
of p(0, t,w) with respect to a Bernoulli product measure of parameter p behaves
like exp{−c2(d,p)td/(d+2) + o(td/(d+2))}, where c2(d,p) is a constant depending
only on the dimension and p. This is the annealed behavior. Subsequently, in [2]
Antal, following Sznitman, showed that almost surely with respect to the distribu-
tion of the traps, and on the event that the origin belongs to an infinite trap free
component, p(0, t,w) behaves like exp{−c1(d,p)t/(log t)d/2 + (t/(log t)d/2)},
where c1(d,p) is another constant depending on the dimension and the parame-
ter p. This is the quenched behavior. In this paper we study the averaged quantity
pL(0, t,w) := 1

|�L|
∑

x∈�L
p(x, t,w), where �L := [−(2L + 1), (2L + 1)]d ∩ Zd

is a box of radius L > 0 and |�L| is its cardinality. If we make L depend on t , then
as t → ∞ we show that several behaviors occur, depending on the rate at which
L grows with t . This is the content of Theorems 1 and 2 stated in the following
section. In particular, it is shown that for L ≤ t , the averaged survival probability
pL(0, t,w) behaves as in the quenched situation, while if L ≥ exp{γ c2

d
td/(d+2)} it

behaves as in the annealed case. In the one-dimensional case it is possible to give
more precise results for L = exp{γ c2

d
td/(d+2)}. This is the content of Theorem 3.

Let us now briefly discuss the intuitive picture described behind the proof of
Theorem 1. It is shown there that there exist four main averaging regimes (see also
Table 1): case 1 or L(t) ≤ t ; case 2 or L(t) ≥ t and logL(t) � td/(d+2), where for
two real functions defined on [0,∞), f � g means that limt→∞ f (t)/g(t) = 0;
case 5 or L(t) ≥ e(γ /d)c2t

(d/d+2)
, with γ > 2/(d + 2) and c2 a constant depending

on d and p; and case 6, or L(t) ≥ e(γ /d)c2t
(d/d+2)

, with γ > 2d/(d+2)2/(d + 2). In
cases 1 and 2, basically, in the average defining the survival probability pL there
is a dominant clearing in the random environment giving the main contribution to
the logarithmic asymptotic behavior. This is the clearing of radius proportional to
(logL)1/d . Thus, the difference between cases 1 and 2 corresponds simply to the
case in which logL is of the order of log t (case 1) and logL � log t (in general
in case 2). On the other extreme, cases 5 and 6 are situations where the behavior
of pL is determined by many large clearings of the random environment, it being
impossible to isolate a single dominant one.

In Section 2 of this paper, the results are stated. In Section 3 several impor-
tant estimates, concerning the survival probabilities analyzed as a field of random
variables, are derived. Most of them are moment and correlation estimates. In Sec-
tion 4, cases 1 and 2 of Theorem 1 are derived, using the method of enlargement of
obstacles of Sznitman (Chapter 4 of [12]). In Section 5 the cases 3, 4, 5 and 6 are
derived. The general philosophy of the corresponding proofs is the use of renor-
malization methods to control the main contributions of the random environment.
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The proof of Theorem 3 is the content of Section 6. The tools used here corre-
spond to standard, though lengthy, verifications of the necessary hypothesis for the
convergence of a given sequence of random variables to an infinitely divisible law.

2. Notation and results. We will first introduce the necessary notation to de-
fine a symmetric simple random walk on the lattice Z

d of total jump rate 1 in a
random obstacle environment. We define a random environment through a product
measure µ on the Cartesian product X := {0,1}Z

d
with the Borel-σ field gener-

ated by the product topology, so that µ(w(x) = 1) = p, where 0 < p < 1 and
w(x) is the x coordinate of w ∈ X. Each element of w ∈ X will be called an ob-
stacle environment. A site x of the lattice where w(x) = 1 represents a site with
an obstacle, while if w(x) = 0 there is none. Given any real function f (w) of
the environment w we will, throughout this paper, denote as 〈f 〉 := ∫

f (w)dµ

the expectation of f with respect to the law of the environment. Let us now
denote by G(w) := {y ∈ Z

d :w(y) = 1} the set of sites having an obstacle or
obstacle set. Throughout the sequel Z· will denote the canonical d-dimensional
continuous-time symmetric simple random walk of total jump rate 1 defined on
the Skorokhod space D([0,∞);Z

d). We will call Px the law of such a random
walk starting from site x ∈ Z

d and τ(w) := inf{t ≥ 0 :Zt ∈ G(w)} the killing
time, or the first hitting time of the obstacle set G(w). Let us now denote as
p(x, t,w) := Px(τ(w) > t) the probability that a random walk starting from site x

does not hit the obstacle set G(w) by time t . Such a probability will be referred
to as the quenched survival probability at time t of a random walk starting from
site x. Similarly we will call 〈p(x, t)〉 := ∫

p(x, t,w)dµ the annealed survival
probability at time t of a random walk starting from site x. Furthermore, we de-
note the sets {p(x, t,w) :x ∈ Z

d} and {〈p(x, t)〉 :x ∈ Z
d} as the field of quenched

survival probabilities and the field of annealed survival probabilities, respectively.
In the sequel, whenever there is no danger of confusion, we will drop the variables
x, w and t of the survival probabilities, writing p(x, t) or simply p in place of
the quenched p(x, t,w) and writing 〈p〉 in place of the annealed 〈p(x, t)〉. Given
r ∈ [0,∞) and x ∈ Z

d we denote by �(x, r) := {y ∈ Z
d :‖x − y‖ ≤ r} the ball of

radius r centered at site x under the norm ‖x‖ := supi=1,...,d |xi |, where xi are the
coordinates of site x. We will frequently write �r in place of �(0, r). In contrast
we will denote by B(x, r) := {y ∈ Z

d : |x − y| ≤ r} the Euclidean ball of radius r

centered at site x under the Euclidean norm |x| :=
√∑d

i=1 x2
i .

Now that we have settled the basic notation, we are in a position of defining
quantities which will correspond to a transition between the quenched and an-
nealed survival probabilities. We define the averaged survival probability at scale
L and time t for a random walk starting from site x as

pL(x, t,w) := 1

|�(x,L)|
∑

y∈�(x,L)

p(y, t,w),
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where |U | denotes the cardinality of U ⊂ Z
d . Whenever there is no danger of

confusion, we will drop the variables x, t or w, writing pL or pL(x, t) in place of
the averaged survival probability pL(x, t,w).

Given two real-valued functions f,g, the notation f ∼ g means that
limu→∞ g(u)

f (u)
= 1, f � g means that limu→∞ g

f
= 0, while f � g means that

g � f . Also, wd and �d will denote the volume of the ball of unit radius in
R

d and the principal Dirichlet eigenvalue of the differential operator − 1
2d

� on
this ball, respectively. For p < 1 we define ν := | log(1 − p)| and the con-
stants c1(d,p) := �d/R2

0 with R0 := ( d
wdν

)1/d and c2(d,p) := (wdν)2/(d+2)((d +
2)/2)(2�d/d)d/(d+2). Next, we define pc := inf{p :µ(|G(w)| = ∞) > 0} the criti-
cal probability of site percolation for the obstacles on Zd .

In this paper we want to study the behavior of the averaged survival probabilities
pL(0, t,w) for large t and L. By standard ergodic theorems it is possible to show
that for t fixed, as L → ∞ we have that µ-a.s. pL(0, t,w) ∼ 〈p〉 and the behavior
is annealed. On the other hand, it is not difficult to see that for L fixed, as t → ∞
we have that µ-a.s. pL(0, t,w) ∼ p(0, t,w) and the behavior is quenched. It is
natural to ask if there is a transition mechanism between these two extremes when
we let both L → ∞ and t → ∞. In this paper we partially answer this question.
We let L = L(t) depend on time t so that L(t) � 1 and distinguish six cases
according to the growth rate of L(t): If L(t) ≤ t we say the asymptotics is in
case 1; if logL(t) � td/(d+2) and L(t) ≥ t we say the asymptotics is in case 2; if
L(t) = exp{γ c2t

d/(d+2)/d} with γ < γ1 := 2/(d + 2) we say the asymptotics is
in case 3; if L(t) = exp{γ c2t

d/(d+2)/d} with γ1 < γ < γ2 := 2d/(d+2)γ1 we say
the asymptotics is in case 4; if L(t) ≥ exp{γ c2t

d/(d+2)/d} with γ > γ1 we say the
asymptotics is in case 5; while if L(t) ≥ exp{γ c2t

d/(d+2)/d} with γ > γ2 we say
the asymptotics is in case 6. We summarize this classification in Table 1.

We now state the main result of this paper.

THEOREM 1. Let L(t) : [0,∞) → N be some nondecreasing function and as-
sume that 0 ≤ p < 1. Then the following statements are true.

TABLE 1

Case 1 L(t) ≤ t

Case 2 L(t) ≥ t logL(t) � td/(d+2)

Case 3 L(t) = e(γ /d)c2t
d/(d+2)

γ < γ1

Case 4 L(t) = e(γ /d)c2t
d/(d+2)

γ1 < γ < γ2

Case 5 L(t) ≥ e(γ /d)c2t
d/(d+2)

γ > γ1

Case 6 L(t) ≥ e(γ /d)c2t
d/(d+2)

γ > γ2
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(i) Case 1. If 1 � L(t) ≤ t and p < 1 − pc, then µ-a.s. we have that

log pL(t)(0, t,w) ∼ −c1(d,p)
t

(log t)2/d
.

(i′) Case 2. If L(t) ≥ t and logL(t) � td/(d+2), then µ-a.s. it is true that

log pL(t)(0, t,w) ∼ −c1(d,p)
t

(logL(t))2/d
.

(ii) Case 5. Let γ1 = 2
d+2 and suppose that there is a γ > 0 such that L(t) ≥

exp(γ c2
d

td/(d+2)). If γ > γ1, then in µ-probability it is true that

pL(t)(0, t,w)

〈p(0, t)〉 ∼ 1.(1)

In particular, in µ-probability we have that

log pL(t)(0, t,w) ∼ −c2(d,p)td/(d+2).(2)

On the other hand, if L(t) ≤ exp(γ c2
d

td/(d+2)) with γ ≤ γ1, then µ-a.s. it is true
that

pL(t)(0, t,w)

〈p(0, t)〉 � 1.(3)

(iii) Case 6. Let γ2 = 2d/(d+2) 2
d+2 . If L(t) ≥ exp(γ c2

d
td/(d+2)) for some γ > γ2,

then

lim
t→∞

pL(t)(0, t,w) − 〈p(0, t)〉√
Varµ(pL(t)(0, t,w))

= N (0,1),(4)

where for any random variable X(w), Varµ(X) = ∫
(X − ∫

X dµ)2 dµ and
N (0,1) is the normal law of variance 1 and mean 0 and the convergence is in
the sense of distributions. On the other hand, if L(t) ≤ exp(γ c2

d
td/(d+2)) for some

γ1 < γ < γ2, then in µ-probability it is true that

pL(t)(0, t,w) − 〈p(0, t)〉√
Varµ(pL(t)(0, t,w))

� 1.(5)

It is possible to complement the statement of Theorem 1 in the case in which
the scale L(t) is of the form exp{γ c2

d
td/(d+2)}. For reasons that will become clear

below, we define the concept of negative conjugate constants. Let x, y be positive
real numbers. We say that x is negative conjugate to y if 1

x
− 1

y
= 1. Let us now

define

α := d

2
,(6)

α′ := d

d + 2
.(7)
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Clearly, α′ is negative conjugate to α.

THEOREM 2. Let γ > 0 and a(γ ) := α′( α
α′ γ )−1/α + γ and L(t) :=

eγ (c2/d)td/(d+2)
. Then the following statements are true.

(i) Case 3. If γ ≤ γ1 = 2
d+2 , then for every 0 < δ < 1, µ-a.s. we have that

pL(t)(0, t,w)

exp{−(a(γ ) − δ)c2td/(d+2)} � 1.(8)

(ii) Case 4. If γ1 < γ < γ2 = 2d/(d+2) 2
d+2 , then for every 0 < δ < 1 we have in

µ-probability that

pL(t)(0, t,w) − 〈p(0, t)〉
exp{−(a(γ ) − δ)c2td/(d+2)} � 1.(9)

We do expect the function a(γ ) to be critical in the sense that if γ ≤ γ1, then for

every 0 < δ < 1, µ-a.s. we should have that pL(t)(0,t,w)

exp{−(a(γ )+δ)c2t
d/(d+2)} � 1. We also

expect a similar statement complementing case (ii) of Theorem 2.
The statements of Theorems 1 and 2 can be visualized as a plot in the

case in which the time-dependent scale L(t) of the averaged survival proba-
bility pL(t)(0, t,w) is of the form L(t) = exp{γ c2

d
td/(d+2)}. In fact, these re-

sults suggest that the averaged survival probability pL(t)(0, t,w) behaves as
log pL(t)(0, t,w) ∼ −ā(γ )td/(d+2) with ā(γ ) := c2(d,p) for γ > γ1, ā(γ ) :=
a(γ ) = d

d+2(d+2
2 γ )−2/d + γ for 0 < γ < γ1 while ā(γ ) := 0 for γ = 0. This is

illustrated in Figure 1 in the case in which the dimension of the lattice has the
value d = 2.

Figure 1 shows graphically the regions where the law of large numbers (γ > γ1)
and the central limit theorem (γ > γ2) are valid. The quantity a(γ )c2 plays the
role of a “free energy” and the graph shows the presence of a phase transition at
γ = γ1, which is a point of nonanalyticity. This kind of behavior is analogous to
that of mean-field statistical mechanics magnetization models such as the random
energy model (REM). However, it should be pointed out that the constancy of
a(γ ) for γ > γ1 does not correspond to a “freezing” phenomenon as observed
in the REM. In fact, the constancy of a(γ ) for γ > γ1 can be interpreted as a
“high-temperature” phenomenon coming from a law of large numbers, whereas
the freezing phenomenon of the REM is a low-temperature phenomenon where
the main contribution to the free energy comes from low energy states close to the
ground states.

We wish now to describe more precise results of a similar character in the
context of sums of random independent exponentials, obtained recently by Ben
Arous, Bogachev and Molchanov [3], and then state Theorem 3 of this paper
which gives more precise information about the region when L(t) = eγ c2t

d/(d+2)
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FIG. 1. Plot of 1/ā(γ ) when d = 2. Here γ1 = 0.5 and γ2 = 0.71.

with 0 < γ < γ2. In the sequel we will consider infinitely divisible laws de-
scribed by the Lévy representation of their characteristic function. Let us first
set some terminology. We will call a Lévy spectral function any function
L(x) : R/{0} → R which is nondecreasing on (−∞,0) and on (0,∞), such that
limx→∞ L(x) = limx→−∞ L(x) = 0, and such that for every ε > 0 one has∫
x : ε≥|x|>0 x2 dL(x) < ∞. Now, given a Lévy spectral function L, β ∈ R and

σ > 0, we define Xβ,σ,L as the infinite divisible law whose characteristic func-
tion is

φ(u) = exp
{
iβu − σ 2

2
u2 +

∫
|x|>0

(
eiux − 1 − iux

1 + x2

)
dL(x)

}
.

In [3] the behavior of sums of the form SL(t) := ∑L(t)
k=1 exp{−tXk} is studied,

where t ∈ [0,∞), L(t) : [0,∞) → R is an increasing-natural-number valued func-
tion and X1,X2, . . . is a sequence of positive independent identically distributed
random variables. In [3] the case where X1 has a Fréchet tail law of parame-
ter κ > 0, so that P(X1 < 1/x) ∼ exp{−cxκ} for some constant c > 0, where
P is the law of X1, is studied. There it is shown that if L(t) = exp{γH(t)},
with H(t) := logE(etX1) and E the expectation associated to P , then there ex-
ist γ1 and γ2 such that 0 < γ1 < γ2 and for which if γ > γ1, SL(t)/E(SL(t))

converges to 1 in P -probability (law of large numbers) while if γ > γ2 in addition
it is true that (SL(t)−E(SL(t)))/

√
VarSL(t), where Var is the variance associated

to P , converges in distribution to the normal law N (0,1) (central limit theorem).
Moreover, in [3] it is shown that although the central limit theorem fails when
γ1 < γ ≤ γ2, it is true that (SL(t) − E(SL(t)))/B1(t) converges in law to an infi-
nitely divisible distribution Xβ1,0,L1 , where L1 = c1/x

a for x > 0 and L1(x) = 0
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for x < 0 with c1 > 0 and a = ( κ
κ ′ γ )1/κ ′

, so that Xβ1,0,L1 is a stable law of char-
acteristic exponent a. Here, κ ′ is negative conjugate to κ (i.e., 1

κ ′ − 1
κ

= 1), while
B1(t, γ ) := exp{c(γ )H(t)}, with H(t) := logE(etX1) and

c(γ ) := κ ′
(

κ

κ ′ γ
)1/κ

.(10)

Furthermore, they prove that in the region 0 < γ < γ1 where the law of large num-
bers fails, it is true that SL(t)/B1(t) converges in law to Xβ2,0,L2 , where β2 is some
real number and L2(x) = c2/x

a for x > 0 and L(x) = 0 for x < 0 with c2 > 0
and a = ( κ

κ ′ γ )1/κ ′
. Thus, the limiting law is stable of characteristic exponent a.

In [3] a similar analysis is made in the case in which SL(t) :=∑L(t)
k=1 exp{tXk},

X1,X2, . . . is a sequence of i.i.d. random variables and P(X > x) ∼ exp{−cxκ}
for some parameter κ > 0 and constant c > 0.

The results of Theorem 2 might suggest that the averaged survival probability
pL(t)(0, t,w) should behave in a way similar to the random exponentials studied
in [3], so that properly centered and normalized it converges to stable laws, in the
regions of Theorem 1 where the central limit theorem or the law of large numbers
fails. The following theorem, however, shows that at least in the one-dimensional
case there is convergence to specific infinitely divisible laws which are not stable.
In fact, the discrete character of the random walk law manifests itself. Throughout
the sequel, given a real number x we will denote by [x] the integer part of x and
denote [x]− := limε→0−[x − ε].

THEOREM 3. Let d = 1. Let α = 1
2 and α′ = 1

3 be negative conjugate to α and
L(t) := exp{ν[γ c2

ν
t1/3]−}. The following statements are true.

(i) Case 3. If 0 < γ < γ1, then we have that

lim
t→∞

∑
x∈�L(t)

p(x, t,w)

s1(γ )t1/3 exp{−4t�1/[γ c2t1/3/ν]2−} = Xβ1,0,L.(11)

(ii) Case 4. If 2
3 = γ1 < γ < γ2 = 21/3 2

3 , then we have that

lim
t→∞

∑
x∈�L(t)

(p(x, t,w) − 〈p(0, t)〉)
s1(γ )t1/3 exp{−4t�1/[γ c2t1/3/ν]2−} = Xβ2,0,L.

In both cases the convergence is in distribution, s1(γ ) := γ c2
�1ν

, β1 := 2p
(1−p)

×∑∞
k=−∞

(1−p)k

(1−p)k/a1+(1−p)−k/a1
, β2 := 2p

(1−p)

∑∞
k=−∞

(1−p)k(1+2/a1)

(1−p)k/a1+(1−p)−k/a1
, the Lévy

spectral function L(x) := − 2p
1−p

(1 − p)[−(1/ν) logxa1(γ )] for x > 0 and L(x) = 0

for x < 0 and a1 := ( α
α′ γ )1/α′

.
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REMARK 1. Note that the expression for the quantity a(γ ) − γ of Theorem 2
is as the expression for c(γ ) in the stable limit law cases of [3], in (10). Note that if
a(γ ) := α′( α

α′ γ )−1/α + γ , then (a − γ )c2t
1/3 ∼ 4t�1

[γ c2t
1/3/ν]2−

. This is in accordance

with the asymptotics described by Theorem 2. On the other hand, the extension
of Theorem 3 to higher dimensions requires a better understanding of the tail dis-
tribution of the Dirichlet principal eigenvalue of the Laplacian operator on the set
�L ∩ G(w)c.

REMARK 2. It is possible to prove a one-dimensional theorem analogous to
Theorem 3 in the context of Brownian motion on Poissonian obstacles. In this case
the limiting laws should be stable.

3. Moments and correlations. To prove Theorems 1, 2 and 3, we will need
several results describing the asymptotic behavior of some moments and correla-
tions of the field of quenched survival probabilities {p(x, t,w) :x ∈ Z

d} and trun-
cated versions of them. Here we will prove them, introducing the corresponding
notation. This section is divided in three subsections. In the first one we introduce
the truncated survival probabilities which will play an important role in reducing
some computations to sums of independent random variables. In the next subsec-
tion some estimates for the survival probabilities in terms of principal Dirichlet
eigenvalues will be proved. Finally, in the third subsection we apply the spectral
estimates to compute the logarithmic asymptotics of some quantities depending on
moments and correlations of the survival probabilities.

3.1. Truncated survival probabilities. Let us first define, given a subset
U ⊂ Z

d , the first exit time TU := infs≥0{Zt /∈ U} of the random walk Z· from
the set U . Next, for x ∈ Z

d , t ∈ [0,∞) and w ∈ X, let

p̃U (x, t,w) := Px

(
τ(w) > t, TU ≥ t

)
.(12)

Given x ∈ Z
d and t ≥ 0, in the particular case in which U = �(x,at), we will

use the notation p̃a(x, t,w) instead of p̃U (x, t,w) and Tat instead of TU . We will
call the probabilities p̃a(x, t,w) the truncated quenched survival probabilities
at scale a at time t for a random walk starting from x and refer to 〈p̃a(x, t)〉 as
the truncated annealed survival probabilities at scale a at time t for a random
walk starting from x. Furthermore, we will denote the sets {p̃a(x, t,w) :x ∈ Z

d},
{〈p̃a(x, t)〉 :x ∈ Z

d} as the field of truncated quenched survival probabilities and
the field of truncated annealed survival probabilities at scale a, respectively. These
quantities will be useful to approximate the field of quenched survival probabil-
ities by an independent field defined on boxes. This will eventually be applied
for the proof of the law of large numbers and central limit theorems stated in
parts (ii) and (iii) of Theorem 1. We will prove results describing the long-time
behavior of the moments 〈p(0, t)r〉 and 〈p̃a(0, t)r〉, for r real and r ≥ 1, and
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of the correlations 〈p(x, t),p(y, t)〉 := 〈p(x, t)p(y, t)〉 − 〈p(x, t)〉〈p(y, t)〉 and
〈p̃a(x, t), p̃a(y, t)〉 := 〈p̃a(x, t)p̃a(y, t)〉 − 〈p̃a(x, t)〉〈p̃a(y, t)〉, where the dis-
tance |x − y|, between x and y, might possibly depend on time. Many of the
computations will be done for the survival probabilities regarded as a field, in con-
trast to the usual estimates that can be found in the literature. We do not consider
our estimations novel, however, since they still are very much in the spirit of stan-
dard ones. We begin with the following elementary lemma.

LEMMA 1. Let a > 0 and consider the field of quenched survival probabili-
ties {p(x, t,w) :x ∈ Z

d} and of truncated quenched survival probabilities at scale
a > 0. Then for every x ∈ Z

d and t ≥ 0,

|p(x, t,w) − p̃a(x, t,w)| ≤ k1(a, d)e−k2(a,d)t ,(13)

where k1(a, d) := e−sinh−1(ad) and k2(a, d) := 1
d
J (ad) are positive constants with

J (x) := x sinh−1 x − √
1 + x2 + 1 defined for x ≥ 0.

PROOF. Note that

p(x, t,w) ≤ p̃a(x, t,w) + Px(Tat < t).

Note that the event Tat < t happens if and only if one of the d coordinates of the
random walk increases by [at] in a time smaller than t . Hence,

Px(Tat < t) ≤ dP

(
sup

0≤s≤t

Xs ≥ [at]
)
,

where X· is a one-dimensional random walk of total jump rate 1
d

. Now, by the re-
flection principle, the right-hand side of the above inequality can be upper-bounded
by 2P(Xt ≥ [at]), where P is the corresponding law. Now Xt = Nt − Mt , where
Nt and Mt are independent Poisson processes each one of jump rate 1/(2d). There-
fore, since [at] ≥ at − 1, we have

Px(Tat < t) ≤ 2dP (Nt − Mt ≥ at − 1),(14)

where we use for the sake of clarity again P for the joint law of the two Pois-
son processes. Now, if we call E the expectation with respect to one of these
Poisson processes, say Nt , we see by the Chebyshev inequality that the probabil-
ity in the right-hand side of (14) is bounded by E(eNtµ) · E(e−Ntµ)/e(at−1)µ =
e(coshµ−1)t/2d−(at−1)µ, where µ > 0 is arbitrary. Let us remark that this upper
bound is optimized for a positive value of µ. Substituting it we obtain

Px(Tat < t) ≤ k1(a, d)e−k2(a,d)t ,

where k1(a, d) := e−sinh−1(ad) and k2(a, d) := 1
d
J (ad) with J (x) : [0,∞) →

[0,∞) defined as J (x) := x sinh−1 x − √
1 + x2 + 1. Note that J ′(x) = log(x +
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√
1 + x2 ) is positive for x > 0. Hence k1(a, d) and k2(a, d) are strictly positive

for a > 0. �

Estimate (13) tells us how much we lose when replacing the quenched field by
the truncated one. It will turn out that this exponential error will be negligible for
most of our purposes.

3.2. Spectral estimates. We will now proceed to compute bounds for the sur-
vival probabilities in terms of principal Dirichlet eigenvalues of a discrete Lapla-
cian operator. Given a subset U ⊂ Z

d , we define the normalized discrete Laplacian
operator by its action on functions f : Zd → R which vanish outside U [i.e.,
f (x) = 0 for x /∈ U ] as

�df (x) := 1

2d

∑
e∈B

(
f (x + e) − f (x)

)
,(15)

where B is the union of the elements of the basis of the free abelian group Z
d

and its inverses. Note that if we define L2(U) := {f :
∑

x∈Zd f 2(x) < ∞f (x) = 0
if x /∈ U}, �d is a self-adjoint operator on the Hilbert space L2(U) endowed with
the inner product (f, g) :=∑

x∈Zd f (x)g(x) for f,g ∈ L2(U). We can then con-
sider the set {λn(U) :n ∈ U} of eigenvalues of �d in L2(U) in increasing order,
where U is the index set. Remark that the cardinality of this index set is finite for
finite U and at most countable. We will denote by {ψU

n :n ∈ U} the corresponding
normalized eigenfunctions [i.e.,

∑
x∈Zd ψU

n (x)2 = 1]. Let r ≥ 0. In the particu-
lar case in which U = �(x, r) ∩ Gc(w) =: �(x, r,w) we will employ the notation
{λn(x, r,w)} instead of {λn(U) :n ∈ U} and {ψx,r,w

n } instead of {ψU
n :n ∈ U}. Fur-

thermore, in the sequel, 1U will denote the indicator function of the set U . We first
begin with the following upper bound.

LEMMA 2. Consider the field of quenched survival probabilities {p(x, t,w) :
x ∈ Z

d}. Then the following statements are true.

(i) For every real a > 0 it is true that

p(x, t,w) ≤ k1(a, d)e−k2(a,d)t + (2at + 1)d/2e−λ0(x,at,w)t ,(16)

where k1(a, d) := 2d sinh−1(ad) and k2(a, d) := 1
d
J (ad) are positive constants

with J (x) defined as in Lemma 1 by J (x) := x sinh−1 x − √
1 + x2 + 1 for x ≥ 0.

(ii) For every finite subset U ⊂ Z
d ,

1

|U |
∑
z∈U

p(z, t,w) ≥ 1

|U |e
−λ0(U∩Gc(w))t .(17)
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PROOF OF LEMMA 2(i). Note that by Lemma 1 we have that p(x, t,w) ≤
k1(a, d)e−k2(a,d)t + p̃a(x, t,w). Therefore it is enough to estimate the truncated
probability at scale a, p̃a(x, t,w). First remark the following expansion in terms
of the eigenvalues {λn(x, at,w)} and the corresponding eigenfunctions {ψx,at,w

n }:
p̃a(x, t,w) = ∑

n∈U

e−tλn(x,at,w)ψx,at,w
n (x)(ψx,at,w

n ,1A),(18)

where A := �(x,at,w). Now, by the Cauchy–Schwarz inequality we see that the
right-hand side of (18) is upper-bounded by e−tλ0(x,at,w)(

∑
n∈U(ψx,at,w

n ,1x,w)2 ×∑
n∈U(ψx,at,w

n ,1A)2)1/2 which in turn is upper-bounded by e−tλ0(x,at,w)
√|A|,

where 1x,w(y) equals 1 if y = x ∈ Gc(w) and 0 otherwise. Using the fact that
|A| = |�(x,at,w)| ≤ ([2at] + 1)d , we conclude the proof. �

PROOF OF LEMMA 2(ii). First note the trivial inequality p(z, t,w) ≥
p̃U (z, t,w), where p̃U (z, t,w) is defined in (12). Also remark the follow-
ing eigenfunction expansion: p̃U (z, t,w) = ∑

n∈U e−λn(U∩Gc(w))tψ
U∩Gc(w)
n (z) ×

(ψ
U∩Gc(w)
n ,1U). Therefore we can see that

1

|U |
∑
z∈U

p(z, t) ≥ 1

|U |e
−λ0(U∩Gc(w))t (ψU∩Gc(w)

0 ,1U

)2

≥ 1

|U |e
−λ0(U∩Gc(w))t

∑
z∈U

(
ψ

U∩Gc(w)

0

)2
(z)

= 1

|U |e
−λ0(U∩Gc(w))t ,

where we have used in the second to last inequality the fact that ψ
U∩Gc(w)

0 (x) ≥ 0

and in the last inequality the normalization condition
∑

z∈U(ψ
U∩Gc(w)

0 )2(z) = 1.
�

3.3. Asymptotics of moments and correlations. Let us now apply the previous
results to estimate quantities such as some moments and correlations of the fields
of quenched and truncated quenched survival probabilities.

We begin writing a couple of elementary inequalities that will be repeatedly
used throughout the paper. Let n be an arbitrary natural number and let a1, . . . , an

be arbitrary real numbers. If r ≥ 1 we have by Jensen’s inequality∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣∣
r

≤ nr−1
n∑

i=1

|ai |r ,(19)

while if 0 ≤ r ≤ 1 we have ∣∣∣∣∣
n∑

i=1

ai

∣∣∣∣∣
r

≤
n∑

i=1

|ai |r .(20)
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Our first result is a pair of lemmas for the field of quenched and truncated quenched
survival probabilities, respectively.

LEMMA 3. Consider the field of quenched survival probabilities, {p(x, t,w) :
x ∈ Z

d}. Let x, y ∈ Z
d . Then:

(i) For every real r > 0 it is true that

log〈p(0, t)r〉 ∼ −c2(d,p)(rt)d/(d+2).(21)

(ii) For every real r > 0 it is true that

log
〈|p(x, t) − 〈p(x, t)〉|r 〉∼ −c3(d,p, r)td/(d+2),

where c3(d,p, r) := c2(d,p)min{r, rd/(d+2)}.
(iii) For every t ≥ 0 it is true that

〈p(x, t),p(y, t)〉 ≥ 0.

(iv) Let {Ut : t > 0} be a collection of subsets of the lattice Z
d indexed by t > 0.

Assume that there is an a > 0 such that |Ut | ∼ |Ua,t | as t → ∞, where Ua,t :=
{x ∈ Ut : dist(x,Uc

t ) ≥ 2at}. Then,

Varµ

(∑
x∈Ut

p(x, t)

)
∼ |Ut |

( ∑
x∈Zd

〈p(0, t),p(x, t)〉
)
.(22)

Furthermore,

log

( ∑
x∈Zd

〈p(0, t),p(x, t)〉
)

∼ −c2(d,p)(2t)d/(d+2).(23)

REMARK 3. Part (i) of Lemma 3 in the case of integer-valued r ≥ 1 and for
Brownian motion is stated in Section 4.5 of [12].

LEMMA 4. Consider the field of truncated quenched survival probabilities at
scale a > 0, {p̃a(x, t,w) :x ∈ Z

d}. Let x, y ∈ Z
d . Then:

(i) For every real r > 0 it is true that

log〈p̃a(0, t)r〉 ∼ −c2(d,p)(rt)d/(d+2).

(ii) For every real r > 0 it is true that

log
〈|p̃a(x, t) − 〈p̃a(x, t)〉|r 〉∼ −c3(d,p, r)(rt)d/(d+2),

where c3(d,p, r) := c2(d,p)min{r, rd/(d+2)}.
(iii) For every t ≥ 0 it is true that

〈p̃a(x, t), p̃a(y, t)〉 + k1(a, d)e−k2(a,d)t ≥ 0,(24)

where k1(a, d) := 2d sinh−1(ad) and k2(a, d) := 1
d
J (ad) are positive constants

with J (x) defined as in Lemma 1 by J (x) := x sinh−1 x − √
1 + x2 + 1 for x ≥ 0.
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(iv) Let {Ut : t > 0} be a collection of subsets of the lattice Z
d indexed by t > 0.

Assume that |Ut | ∼ |Ua,t | as t → ∞, where Ua,t := {x ∈ Ut : dist(x,Uc
t ) ≥ 2at}.

Then,

Varµ

(∑
x∈Ut

p̃a(x, t)

)
∼ |Ut |

( ∑
x∈Zd

〈p̃a(0, t), p̃a(x, t)〉
)
.(25)

Furthermore,

log

( ∑
x∈Zd

〈p̃(0, t), p̃a(x, t)〉
)

∼ −c2(d,p)(2t)d/(d+2).(26)

The proofs of parts (i), (ii) and (iii) of Lemma 4 are analogous to the proofs of
the corresponding parts of Lemma 3. Therefore, we will prove parts (i), (ii) and (iii)
of Lemma 3 and subsequently, part (iv) of Lemma 4 and Lemma 3.

PROOF OF LEMMA 3(i). Let x ∈ Z
d and t ≥ 0. Note that by part (ii) of

Lemma 2 with U = �(x, t) in (17), it is true that

1

|�(x, t)|
∑

z∈�(x,t)

p(z, t) ≥ 1

(2t + 1)d
e−λ0(x,t,w)t .(27)

Taking expectations on both sides of (27) we conclude that

〈p(0, t)〉 ≥ 1

(2t + 1)d

〈
e−λ0(0,t,w)t 〉,(28)

where we have used the translation invariance of the measure µ. On the other hand,
choosing a = r in (16), we see that

p(0, t) ≤ k1(r, d)e−k2(r,d)t + (2rt + 1)d/2e−λ0(0,rt,w)t .(29)

From Jensen’s inequality (19) with n = 2 and (19) applied to (29) we deduce that
for every r ≥ 0,

〈p(0, t)r〉 ≤ 2r(kr
1e

−k2rt + (2rt + 1)rd/2〈e−λ0(0,rt,w)rt 〉).(30)

Combining (28), (29) and (30), with the well-known fact that

lim
t→∞

log〈p(0, t)〉
c2(d,p)td/(d+2)

= −1

(see [2] or [5]), we deduce that for every r > 0,

lim sup
t→∞

log〈p(0, t)r〉
c2(d,p)(rt)d/(d+2)

≤ −1.(31)

The lower bound,

lim inf
t→∞

log〈p(0, t)r〉
c2(d,p)(rt)d/(d+2)

≥ −1,(32)
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can be proved following the standard approach of [4], [5] or [2] (see also [11]). In
what follows we recall such procedure in our context. First we note that for every
real R ≥ 0 we have

〈p(0, t)r〉 ≥
〈
ARP0

(
max

0≤s≤t
|Zs | ≤ R

)r〉
,

where AR is the indicator function of the event that the ball B(0,R) does not
contain any site which is an obstacle. Now, an estimation of the random walk
probability from below using an eigenvalue expansion and retaining only the term
with principal Dirichlet eigenvalue, and an optimization with respect to R enable
us to deduce (32). Inequalities (31) and (32) together imply the statement (21). �

PROOF OF LEMMA 3(ii). By (19) and (20) note that |p(0, t) − 〈p(0, t)〉|r ≤
2r (p(0, t)r + 〈p(0, t)〉r ). This and part (i) of Lemma 3 then imply the following
upper bound for r > 0:

lim sup
t→∞

log〈|p(0, t) − 〈p(0, t)〉|r〉
c3(d,p, r)td/(d+2)

≤ −1.

On the other hand,

〈|p − 〈p〉|r 〉≥ 〈|p − 〈p〉|r1p>2〈p〉
〉≥ 〈pr

∣∣∣∣1 − 〈p〉
p

∣∣∣∣
r

1p>2〈p〉
〉

≥ 1

2r

〈
pr1p>2〈p〉

〉≥ 1

2r

(〈pr〉 − (2〈p〉)r ).
From here we conclude that whenever r > 1 it is true that

lim inf
t→∞

log〈|p(0, t) − 〈p(0, t)〉|r〉
c3(d,p, r)td/(d+2)

≥ −1.(33)

On the other hand, note that if a > 0 and b > 0, then whenever 0 ≤ r ≤ 1, it is true
that |a − b|r ≥ |ar − br |. Thus, if 0 ≤ r ≤ 1 we have that |p − 〈p〉|r ≥ 〈p〉r − pr .
This clearly implies that the lower bound (33) is also valid for 0 ≤ r < 1. If r = 1,
note from the inequalities |p −〈p〉|1+ε ≤ |p −〈p〉| ≤ |p −〈p〉|1−ε valid for ε > 0
that −(1 + ε)d/(d+2) ≤ lim inft→∞ log〈|p(0,t)−〈p(0,t)〉|〉

c2(d,p)td/(d+2) ≤ −(1 − ε). Letting ε → 0
we conclude that the lower bound (33) is also valid for r = 1. �

PROOF OF LEMMA 3(iii). The case x = y is trivial. So let us assume that
x �= y. Denote by Ex the expectation of the continuous-time simple random walk
Z· of total jump rate 1 starting from site x ∈ Zd and of law Px . Define the
Wiener sausage Wx(t) at time t as the sites visited between time 0 and t for
the random walk Z· starting from x so that Wx(t) := {z ∈ Zd : z = Zs for some
time s ∈ [0, t]}. Now note that 〈p(x, t)〉 = Ex(e

−ν|Wx(t)|) and 〈p(x, t)p(y, t)〉 =
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Ex,y(e
−ν|Wx(t)∪Wy(t)|), where Ex,y := Ex ⊗ Ey denotes expectation with respect

to independent random walks with laws Px and Py and ν := | log(1 − p)|. Hence,

〈p(x, t),p(y, t)〉 = Ex,y

(
e−ν(|Wx(t)+Wy(t)|)(eν|Wx(t)∩Wy(t)| − 1

))
.(34)

Part (ii) follows immediately. �

PROOFS OF LEMMA 3(iv) AND LEMMA 4(iv). Note that due to the fact that
the truncated survival probabilities p̃a(x, t) and p̃a(y, t) are independent for ‖x −
y‖ > 2at , we have that

Varµ

(∑
x∈Ut

p̃a(x, t)

)
= ∑

x,y∈Ut

〈p̃a(x, t), p̃a(y, t)〉

= ∑
x,y∈Ut : ‖x−y‖≤2at

〈p̃a(x, t), p̃a(y, t)〉.

Now, the rightmost member of the above equalities is bounded above by
|Ut |∑y : ‖y‖≤2at 〈p̃a(0, t), p̃a(y, t)〉 which in turn gives the upper bound

Varµ

(∑
x∈Ut

p̃a(x, t)

)
≤ |Ut |

∑
y∈Zd

〈p̃a(0, t), p̃a(y, t)〉.(35)

On the other hand, in a similar way we can show that

Varµ

(∑
x∈Ut

p̃a(x, t)

)
≥ |Ua,t |

∑
y∈Zd

〈p̃a(0, t), p̃a(y, t)〉.(36)

But, since |Ut | ∼ |Ua,t |, inequalities (35) and (36) prove (25). To prove (26), note
that ∑

x∈Zd

〈p̃a(0, t), p̃a(x, t)〉 ≥ Varµ
(
p̃a(0, t)

)
.(37)

However, it is true that
∑

x〈p̃a(0, t), p̃a(x, t)〉 = ∑
x : ‖x‖≤2at 〈p̃a(0, t), p̃a(x, t)〉.

This combined with the inequality 〈p̃a(0, t), p̃a(x, t)〉 ≤ Varµ(p̃a(0, t)) for
x ∈ Zd , shows that∑

x∈Zd

〈p̃a(0, t), p̃a(x, t)〉 ≤ (3at)d Varµ
(
p̃a(0, t)

)
.(38)

Inequalities (37) and (38) together with the asymptotic behavior (24) with r = 2,
imply (26). We continue now with the proof of part (iv) of Lemma 3. Let a > 0 be
such that |Ut | ∼ |Ua,t |. Note that from (34) we have

〈p̃a(x, t), p̃a(y, t)〉 ≤ 〈p(x, t),p(y, t)〉,(39)
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for every x, y ∈ Z
d and t ≥ 0. This, and a calculation similar to the one which

leads to (35), enables us to conclude that

Varµ

( ∑
x∈|Ut |

p̃a(x, t)

)
≤ Varµ

( ∑
x∈|Ut |

p(x, t)

)
≤ |Ut |

∑
y∈Zd

〈p(0, t),p(y, t)〉.

Hence, to complete the proof of (22) and (23) it is enough to show that∑
y∈Zd

〈p(0, t),p(y, t)〉 ∼ ∑
y∈Zd

〈p̃a(0, t), p̃a(y, t)〉,(40)

applying part (iv) of Lemma 4. Now,∑
y∈Zd

〈p(0, t),p(y, t)〉 = ∑
y : ‖y‖≤2at

〈p(0, t),p(y, t)〉
(41)

+ ∑
y : ‖y‖>2at

〈p(0, t),p(y, t)〉.

Via Lemma 1, the last term can be shown to be bounded by

∑
y : ‖y‖>2at

2k1

(‖y‖
2t

, d

)
e−k2(‖y‖/2t,d)t ,

which is exponentially small in t . A second application of the same result lets
us conclude that

∑
y : ‖y‖≤2at 〈p(0, t),p(y, t)〉 ∼∑

y∈Zd 〈p̃a(0, t), p̃a(y, t)〉. These
remarks, together with the monotonicity (39) and equality (41), prove (40). �

4. The quenched and intermediate asymptotics. In this section we will
prove parts (i) and (i′) of Theorem 1. We will indirectly make use of the method
of enlargement of obstacle through some standard estimates on the almost sure
asymptotic behavior of principal Dirichlet eigenvalues and on the geometry of the
obstacle set G(w).

4.1. Quenched asymptotics. Let us begin proving part (i). First we show that
if p < 1 − pc, then µ-a.s.,

lim inf
t→∞

(log t)2/d

c1t
log pL(t)(0, t,w) ≥ −1.

Now, this is a simple consequence of the inequality pL(t)(0, t,w) ≥
1

(2t+1)d
p(0, t,w), where we used that L(t) ≤ t , and the fact that µ-a.s. on the

event C(w) that the origin belongs to an infinite trap free cluster it is true that

lim inft→∞ (log t)2/d

c1t
log p(0, t,w) ≥ −1 (see [2] or Theorem 4.5.1 on page 196

of [12] for a Brownian motion version of this result).
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Let us now prove that µ-a.s.,

lim sup
t→∞

(log t)2/d

c1t
log pL(t)(0, t,w) ≤ −1.(42)

Now note that for every x ∈ �L(t) it is true that λ0(x, t,w) ≥ λ0(0,L(t) + t,w) ≥
λ0(0,2t,w), where in the last inequality we have used the fact that L(t) ≤ t .
Hence, for every x ∈ �L(t) we have that e−λ0(x,t,w)t ≤ e−λ0(0,2t,w)t so that by (16)
with a = 1, we see that

pL(t)(0, t,w) ≤ k1(1, d)e−k2(1,d)t + (2t + 1)d/2e−λ0(0,2t,w)t .(43)

Finally, standard enlargement of obstacle asymptotic estimates for λ0(0,2t,w)

(see [1]) tell us that µ-a.s. it is true that limt→∞(log t)d/2λ0(0,2t,w) = c1(d,p).
This fact, combined with the upper bound (43), implies (42).

4.2. Intermediate asymptotics. We now proceed to prove part (i′) of Theo-
rem 1. We first show that

lim inf
t→∞

(logL(t))2/d

c1t
pL(t)(0, t,w) ≥ −1.(44)

Let us recall that R0 := ( d
wdν

)1/d . The principal ingredient in the proof of the
limit (44) will be the following statement which is a random walk version of the
Brownian motion context Lemma 4.5.2 of [12]. If L(t) ≥ t , µ-a.s. eventually in t ,
the following event occurs:⋃

x∈�L′(t)

{
B
(
x,R(logL(t))1/d)∩ (G(w))c = ∅

}
,(45)

where R := R0 − ε(t) with ε(t) = 1/(logL(t))1/d for d ≥ 2 while ε(t) :=
4R0

3 (log logL(t))/ logL(t) if d = 1, and L′(t) := L(t) − R0(logL(t))1/d . In
other words, µ-a.s. eventually in t , there exists a Euclidean ball of radius
R(logL(t))1/d contained in �L(t) which has no obstacles. To prove this, first
note that the box �L(t) contains at least [(2L + 1)/(2R0(logL)1/d)]d dis-
joint boxes of side 2R0(logL(t))1/d . Now, the probability of the event (45) is
smaller than the probability that some of these boxes contain a Euclidean ball
of radius R(logL(t))1/d which has no obstacles. This quantity is smaller than
(1 − exp{−νwdRd logL})(2L+1)d/((2R0)

d logL)−1, which in turn is bounded by

e · exp{−e−νwdRd logL (2L+1)d

(2R0)
d logL

}. Using the inequality (R0 − ε(t))d ≥ Rd
0 −

dRd−1
0 ε(t), we can bound this quantity by exp{− 3d

(2R0)
d (logL)−1ec(ε)}, where

c(ε) := dν wdRd−1
0 ε−(d−1) when d ≥ 2, while c(ε) := 4

3 log logL when d = 1.
For L large enough this is smaller than L−d . An application of the Borel–Cantelli
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lemma proves our claim (45). On the other hand, by (17) with U = �L(t), we have
that

pL(t)(0, t,w) ≥ 1

(2L + 1)d
e−λ0(0,L,w)t .(46)

Now, by (45), the monotonicity of the principal Dirichlet eigenvalue with re-
spect to the partial order of inclusion of sets, and translation invariance, it
is true that λ0(0,L,w) ≤ λ0(B(0,R(logL)1/d)). Hence, from (46) we con-
clude that pL(t)(0, t,w) ≥ 1

(2L+1)d
e−λ(B(0,R(logL)1/d ))t . Now, using the fact that

limL→∞ λ(B(0,R(logL)1/d))(logL)2/d = �d/R2
0 , where we recall that �d de-

notes the principal Dirichlet eigenvalue of the continuous Laplacian operator on
the ball of unit radius (see [2]), and using that t

(logL)2/d � logL (which is a conse-

quence of the hypothesis logL � td/(d+2)) we conclude the lower bound (44).
Let us now show that µ-a.s.,

lim sup
t→∞

(logL(t))2/d

c1t
log pL(t)(0, t,w) ≤ −1.(47)

The proof of (47) is very similar to the proof of the upper bound (42). This time
note that from (16) with a = 1 we deduce that

pL(t)(0, t,w) ≤ k1(1, d)e−k2(1,d)t + (2t + 1)d/2e−λ0(0,t+L,w)t .(48)

As in part (i) the first term is negligible. On the other hand, since for L(t) � t ,
we have that µ-a.s. λ0(�L(t)+t (w)) ∼ λ0(�L(t)(w)), the desired upper bound (47)
follows.

5. The critical, annealed and Gaussian asymptotics. In this section we will
prove parts (ii) and (iii) of Theorem 1, concerning the law of large numbers
and central limit theorem, and Theorem 2. The proofs are based on a Dirichlet–
Neumann type partition analysis. This enables us to arrive up to logarithmically
sharp lower bounds for the growth of L(t) so that the law of large numbers and
the central limit theorem in Theorem 1 are valid, and to determine the exact rate
of growth of the quantities pL and pL − 〈p〉 in the corresponding complementary
regions. Our method is based on making a partition of the box �L in a collection
of smaller boxes indexed by a set I, {�i : i ∈ I}. In some computations, this collec-
tion will in turn be subdivided in 2d disjoint collections which essentially decouple
the dependence of the random variables appearing in the sums over �L. In others,
it will be necessary to define a strip set whose contribution will be negligible, and
such that the set of partition boxes intersected with the complement of the strip set
becomes an independent set. This section is divided in six subsections. First we
define the decomposition of the box �L in the described partition boxes and strip
set. In the second subsection we collect several technical results that will be used
repeatedly. In the third subsection we prove the law of large numbers stated in (1)
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up to scales L(t) ≥ exp{γ c2
d

td/(d+2)} with γ > γ1. In the fourth subsection we
prove the central limit theorem stated in (4), up to scales L(t) ≥ exp{γ c2

d
td/(d+2)}

with γ > γ2. In the fifth subsection we prove part (i) of Theorem 2 obtaining as
a corollary (3) stating that the value γ1 is the smallest possible γ for the validity
of the law of large numbers (1). Similarly in the last subsection we prove part (ii)
of Theorem 2 obtaining as a corollary (4) stating that the value γ2 is the smallest
possible γ for the validity of the central limit theorem (4).

5.1. Partition analysis. Let L be some natural number and consider the cor-
responding box �L = {x ∈ Z

d :‖x‖ ≤ L}. Here we will define two related but dif-
ferent kinds of partitions of �L. The first one shows that �L can be decomposed
in disjoint partition boxes {�′

i : i ∈ I}, indexed by some set I, so that �L =⋃
i �

′
i.

The second one defines a partition of �L in a strip set and main boxes {�′′
i : i ∈ I}.

In the first case, the index set I will be partitioned in disjoint subsets {IK :K ∈ K},
where the cardinality of K is 2d , in such a way that for each K ∈ K any pair of
elements of the collection of partition boxes {�′

i : i ∈ IK} is at a large Euclidean
distance. This property will enable us to approximately decouple sums of the form∑

x∈�L
p or

∑
x∈�L

(p − 〈p〉) in a finite and constant number of sums of indepen-
dent random variables. In the second partition case, it turns out that the survival
probabilities corresponding to sites in the strip set have a total sum which is neg-
ligible, while the main boxes happen to be essentially independent. To proceed
we will need to introduce some notation defining the corresponding scales and
subsets.

Our first parameter is a natural number L′ smaller than or equal to L. Through-
out the sequel L′ will be called the mesoscopic scale. By the division algorithm,
we know that there exist natural numbers q and q̄ such that 2L + 1 = qL′ + q̄ ,
with 0 ≤ q̄ < q . Note that this last equation can be written in the form

2L + 1 =
q∑

i=1

L′
i ,(49)

with L′
i = L′ + θq̄(i) and θq̄(i) = 1 for i ≤ q̄ and θq̄(i) = 0 for i > q̄ . For our

purposes, the relevant fact is that L′ ≤ L′
i ≤ L′ + 1. In the sequel, for any given

pair of real numbers a, b we will use the notation [a, b]l for [a, b] ∩ Z. We now
will subdivide the box [−L,L]l in intervals according to (49). Thus, we define
I1 := [−L,−L + L′

1 − 1]l and for 1 < i ≤ q we let Ii := [−L +∑i−1
j=1 L′

i ,−L +∑i
j=1 L′

i −1]l . Note that Iq = [L−L′
q +1,L]l and |Ii | = L′

i . Next, we introduce a
second parameter r which is a natural number smaller than or equal to L′. We will
call r the fine scale. Then, for each Ii we define an interval Ji such that Ji ⊂ Ii ,
|Ji | = L′−2r and the endpoints of Ji are at a distance larger than r to the endpoints
of Ii . To do so, first let ri := r + θq̄(i). Then define J1 := [−L+ r,−L+L′

1 − 1 −
r1]l and for 1 < i ≤ q we let Ji := [−L +∑i−1

j=1 L′
i + r,−L +∑i

j=1 L′
i − 1 − ri]l .
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We now proceed to define the partition in �L in partition boxes and define
the corresponding decomposition of the index set. First we define the set I :=
{1,2, . . . , q}d , which will correspond to the indexes parameterizing the sub-boxes.
For a given element i ∈ I, of the form i = (i1, . . . , id) with 1 ≤ ik ≤ q , 1 ≤ k ≤ d ,
we define

�′
i := Ii1 × Ii2 × · · · × Iid .

We will call such a set a partition box. By definition the cardinality |�′
i| of a

partition box satisfies

(L′)d ≤ |�′
i| ≤ (L′ + 1)d .(50)

Note also that the partition boxes define a partition of �L so that �L =⋃
i∈I �′

i
where the union is disjoint.

Next we define a partition of the index set I. Consider the collection K of
subsets of {1,2, . . . , d}. Note that |K| = 2d . Now given K ∈ K we define IK as
the subset of I having coordinates which are even for k ∈ K and odd for k /∈ K . In
other words, if we define E as the set of even natural numbers and O as the set of
odd natural numbers, then

IK := {i = (i1, . . . , id) ∈ I : ik ∈ E if k ∈ K, ik ∈ O if k /∈ K, 1 ≤ k ≤ d}.
Note that {IK :K ∈ K} defines a partition of I so that I =⋃

K∈K IK is a disjoint
union. Hence the union

⋃
K∈K

⋃
i∈IK

�′
i is a disjoint union. We will refer to such

a decomposition as the parity partition at scale L′ of �L. Furthermore, given
K ∈ K and any pair of boxes �′

i and �′
j with i, j ∈ IK and i �= j, we have that

dist(�′
i,�

′
j) ≥ L′.(51)

Here for any pair of subsets A,B ⊂ Z
d we define dist(A,B) := infx∈A,y∈B |x −y|.

In other words (51) expresses the fact that the distance between any pair of partition
boxes with different subindexes in IK is larger than or equal to L′. This completes
the description of the partition of �L in partition boxes.

Next, we describe the partition of �L in the strip set and main boxes. Given an
i ∈ I we let

�′′
i := Ji1 × Ji2 × · · · × Jid .

Such a box will be called a main box. Its cardinality is |�′′
i | = (L′ − 2r)d . Now let

SL := �L −⋃
i∈I

�′′
i .

Such a set will be called the strip set. Note that SL and {�′′
L : i ∈ I} define a parti-

tion of �L. We will refer to such a partition as the strip-box partition at scale L′
of �L. We furthermore remark the following cardinality estimate for the strip set
which will be useful later:

|SL|
(2L + 1)d

≤ (L′ + 1)d − (L′ − 2r)d

(L′)d
,(52)

where we have used the fact that |I| = qd .
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5.2. Moment inequalities and decoupling. Several inequalities and technical
results obtained via the partition analysis will be used repeatedly throughout. Here
we will derive some of these facts and recall some standard ones.

First we recall the following well-known inequality due to von Bahr and Esseen
(see page 82, Exercise 2.6.20, of [8]).

LEMMA 5 (von Bahr–Esseen). Let X1, . . . ,Xn be mean-zero independent ran-
dom variables and let Sn :=∑n

i=1 Xi . Then if E denotes the expectation with re-
spect to the joint law of X1, . . . ,Xn, and 1 ≤ r ≤ 2, it is true that

E|Sn|r ≤ 2
n∑

k=1

E|Xk|r .(53)

The following lemma is a corollary of (53) and (19).

LEMMA 6. Consider the field of truncated quenched survival probabilities
{p̃1(x, t,w) :x ∈ Z

d} at scale 1. Let L(t),L′(t) : [0,∞) → N be functions such
that t ≤ L′(t) ≤ L(t). Then, if 1 ≤ r ≤ 2, it is true that〈∣∣∣∣∣

∑
x∈�L

(p̃1 − 〈p̃1〉)
∣∣∣∣∣
r〉

(54)
≤ 2(2L′ + 2)d(r−1)(2L + 1)d〈|p̃1 − 〈p̃1〉|r〉.

PROOF. We first perform the parity partition at scale L′ of the box �L so
that �L =⋃

K∈K
⋃

i∈IK
�i. We will use the notation cx instead of p̃1(x, t,w) −

〈p̃1〉(x, t). Then, 〈∣∣∣∣∣
∑

x∈�L

cx

∣∣∣∣∣
r〉

=
〈∣∣∣∣∣
∑

K∈K

∑
i∈IK

∑
x∈�′

i

cx

∣∣∣∣∣
r〉

.(55)

Applying Jensen’s inequality (19) to the right-hand side of (55) we see that
〈|∑K∈K

∑
i∈IK

∑
x∈�′

i
cx |r〉 ≤ 2d(r−1)∑

K∈K〈|∑i∈IK

∑
x∈�′

i
cx |r〉. Now, since

the probabilities p̃1 are truncated, by (51), and since t ≤ L′(t) ≤ L(t), the ran-
dom variables {∑x∈�′

i
cx : i ∈ IK} are independent for every K ∈ K . There-

fore by the von Bahr–Esseen inequality (53), Jensen’s inequality (19) and
the volume estimate (50) we have that 2d(r−1)∑

K∈K〈|∑i∈IK

∑
x∈�′

i
cx |r〉 ≤

22d(r−1)∑
K∈K

∑
i∈IK

|�′
i|r−1∑

x∈�′
i
〈|cx |r〉 ≤ 2(2L′ + 2)d(r−1)(2L + 1)d〈|c0|r〉.

Combining with (55), this completes the proof. �

We end this subsection with the following lemma which is an easy consequence
of Lemma 1 and the asymptotic decay of the annealed survival probabilities.
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LEMMA 7. Consider the field of quenched survival probabilities {p(x, t,w) :
x ∈ Z

d} and that of truncated quenched survival probabilities {p̃1(x, t,w) :x ∈
Z

d} at scale 1. Let L(t) : [0,∞) → N be such that L � 1. Then the following
statements are true.

(i) For every t ≥ 0,∣∣∣∣ p
L

〈p〉 −
∑

x∈�L(t)
p̃1

(2L + 1)d〈p̃1〉
∣∣∣∣≤ k1(1, d)e−k2(1,d)t

〈p〉
(

1 +
∑

x∈�L(t)
p̃1

(2L + 1)d〈p̃1〉
)
.(56)

(ii) For every function f (t) : [0,∞) → (0,∞) such that logf (t) � −td/(d+2),
we have that ∣∣∣∣

∑
x∈�L

(p − 〈p〉)
(2L + 1)df (t)

−
∑

x∈�L
(p̃1 − 〈p̃1〉)

(2L + 1)df (t)

∣∣∣∣� 1.(57)

PROOF OF LEMMA 7(i). This is a direct consequence of the following in-
equality:∣∣∣∣ p

L

〈p〉 −
∑

x∈�L(t)
p̃1

(2L + 1)d〈p̃1〉
∣∣∣∣

≤ 1

(2L + 1)d〈p〉〈p̃1〉
∣∣∣∣∣
∑

x∈�L

(p − p̃1)

∣∣∣∣∣+ |〈p1 − p〉‖∑x∈�L
p̃1|

(2L + 1)d〈p〉〈p̃1〉
and (13). �

PROOF OF LEMMA 7(ii). This follows again directly from (13). �

5.3. The annealed asymptotics. We proceed to prove the law of large numbers
stated in (1). In other words we will prove that whenever L(t) ≥ exp(γ c2

d
td/(d+2))

for some γ > γ1, where γ1 = 2
d+2 , then in µ-probability it is true that

pL(t)(0, t,w)

〈p(0, t)〉 ∼ 1.(58)

To do so we first remark that by (56) and (21) it is enough to show that in
µ-probability, ∑

x∈�L
p̃1(x, t,w)

(2L + 1)d〈p̃1(0, t)〉 ∼ 1.(59)

We will show that there is an ε > 0 such that〈∣∣∣∣
∑

x∈�L
p̃1

(2L + 1)d〈p̃1〉 − 1
∣∣∣∣
1+ε〉

� 1.(60)
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Remark that the right-hand side of (60) can be rewritten as〈∣∣∣∣
∑

x∈�L
p̃1

(2L + 1)d〈p̃1〉 − 1
∣∣∣∣
1+ε〉

= 〈|∑x∈�L
(p̃1 − 〈p̃1〉)|1+ε〉

(2L + 1)d(1+ε)〈p̃1〉1+ε
.(61)

At this point we make use of the parity partition decomposition for �L previ-
ously defined to deal with the numerator of the right-hand side of (61) via in-
equality (54) with r = 1 + ε. We will choose a time-dependent mesoscopic scale
L′(t) := exp{γ ′ c2

d
td/(d+2)}, where 0 < γ ′ < γ − γ1. Therefore, the right-hand side

of (61) is upper-bounded by

2(2L′ + 2)dε(2L + 1)d〈|p̃1 − 〈p̃1〉|1+ε〉
(2L + 1)d(1+ε)〈p̃1〉1+ε

.(62)

Now, by Lemma 4(i), we know that for t ≥ 0 one has that

〈p̃1〉1+ε = exp
{−(1 + ε) × c2t

d/(d+2) + o
(
td/(d+2))}

(this particular case is a classical result of [5]). By part (ii) of the same corollary we
also have that 〈|p̃1 − 〈p̃1〉|1+ε〉 = exp{−(1 + ε)d/(d+2)c2t

d/(d+2) + o(td/(d+2))}.
Hence, using these facts we see that (62) is upper-bounded by the expression
2dε+1(L′+1)dε

(2L+1)dε exp{[(1 + ε) − (1 + ε)d/(d+2)]c2t
d/(d+2) + o(td/(d+2))}. Then, from

the inequality (L′+1)dε/(2L+1)dε ≤ exp{−ε(γ −γ ′)c2t
d/(d+2)} we see that (62)

is upper-bounded by

2dε+1 exp
{−[ε(γ − γ ′)

(63)
− ((1 + ε) − (1 + ε)d/(d+2))]c2t

d/(d+2) + o
(
td/(d+2))}.

But since limε→0
(1+ε)−(1+ε)d/(d+2)

ε
= 2

d+2 = γ1, it follows that for ε small enough,
since γ ′ < γ − γ1, the exponent ε(γ − γ ′) − ((1 + ε) − (1 + ε)d/(d+2)) is pos-
itive for γ > γ1. Thus, we can choose ε small enough to upper-bound (63) by
exp{− const1 td/(d+2) + o(td/(d+2))}, where const1 > 0 is a constant depending
only on d and γ . This proves the validity of (60).

5.4. The Gaussian asymptotics. Here we will prove the central limit theo-
rem stated in (4). This time we will need to perform a strip-box partition of the
box �L into the strip set SL and the main boxes. We will choose the mesoscopic
scale L′(t) = exp{γ ′ c2

d
td/(d+2)} with 0 < γ ′ < γ and the fine scale r = td . Subse-

quently, γ ′ will be chosen small enough. First note that by part (iv) of Lemma 3
and part (iv) of Lemma 4, both applied to the collection of sets Ut = �L(t), and
Lemma 7 it is enough to prove that∑

x∈�L
(p̃1(x, t) − 〈p̃1(x, t)〉)√

Varµ
∑

x∈�L
p̃1(x, t)

(64)
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converges in distribution to the normal law N (0,1). On the other hand,∑
x∈�L

(p̃1 − 〈p̃1〉)√
Varµ

∑
x∈�L

p̃1

=
∑

x∈SL
(p̃1 − 〈p̃1〉)√

Varµ
∑

x∈�L
p̃1

+
∑

i∈I
∑

x∈�′′
i
(p̃1 − 〈p̃1〉)√

Varµ
∑

x∈�L
p̃1

.(65)

We begin by showing that the strip component of the decomposition (65) converges
to 0 in µ-probability. To do so it is enough to prove that the variance of such a term
converges to 0. But for t large enough we have

Varµ(
∑

x∈SL
p̃1)

Varµ(
∑

x∈�L
p̃1)

∼ |SL|
(2L + 1)d

≤ 2d(2t)d exp
(
−γ ′ c2

d
td/(d+2)

)
(66)

where we have used first, part (iv) of Lemma 4 with Ut = SL(t) and Ut = �L(t),
and in the inequality we have used estimate (52).

We have thus reduced the proof to showing that the second term of the
decomposition of the right-hand side of inequality (65) converges in distribu-
tion to N (0,1). By the choice of the fine scale r = td , the random variables
{∑x∈�′′

i
(p̃1 − 〈p̃1〉) : i ∈ I} are independent, so that considering again the esti-

mate (66), it is enough to verify the following version of the Lyapunov condition.
There is an ε > 0 such that∑

i∈I〈|∑x∈�′′
i
(p̃1 − 〈p̃1〉)|2+ε〉

(
∑

i∈I Varµ
∑

x∈�′′
i
p̃1)1+ε/2 � 1.(67)

Now, by Jensen’s inequality (19) with r = 2 + ε, the fact that |�′′
i | ≤ |�′

i|, inequal-
ity (50), and the fact that 〈|p̃1 − 〈p̃1〉|2+ε〉 = exp{−(2 + ε)d/(d+2)c2t

d/(d+2) +
o(td/(d+2))} [which follows from part (ii) of Lemma 4], we see that the numerator
of the left-hand side of (67) is upper-bounded by exp{−(2 + ε)d/(d+2)c2t

d/(d+2) +
o(td/(d+2))}(L′ +1)d(1+ε)(2L+1)d . Furthermore, by part (iv) of Lemma 4 applied
for each i ∈ I to the collection of sets Ut = �′′

i , the quantity exp{−2d/(d+2)(1 +
ε
2)c2t

d/(d+2) +o(td/(d+2))}(2L+1)d(1+ε/2) divided by the denominator of the left-
hand side of (67) converges to 1. Hence the left-hand side of (67) is upper bounded
by

exp
{(

(1 + ε)γ ′ − ε
γ

2
+
[
2d/(d+2)

(
1 + ε

2

)
(68)

− (2 + ε)d/(d+2)

])
c2t

d/(d+2) + o
(
td/(d+2))}.

Now, considering that limε→0
2d/(d+2)(1+ε/2)−(2+ε)d/(d+2)

ε
= 2d/(d+2) 1

2
2

d+2 = 1
2γ2,

we see that for ε and γ ′ small enough and γ > γ2, the exponent (1 + ε)γ ′ − ε
γ
2 +

[2d/(d+2)(1 + ε
2) − (2 + ε)d/(d+2)] of the bound (68) is negative. This proves the

Lyapunov condition (67).
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5.5. The critical asymptotics. In this subsection we will prove part (i) of
Theorem 2. Let us note that as a corollary of (8) we obtain (3), showing the
absence of an annealed behavior, for L(t) ≤ exp{γ c2

d
td/(d+2)} with γ ≤ γ1. In

fact, statement (8) implies (3), since 〈p〉 ∼ exp{−c2t
d/(d+2) + o(td/(d+2))} while

exp{−c2t
d/(d+2) + o(td/(d+2))} ≥ exp{−a(γ )c2t

d/(d+2)}.
Let us proceed with the proof of (8). Here we will not make use of the partition

analysis. Note that it is enough to show that for every 0 < δ < 1 and 0 < γ ≤ γ1
one has that µ-a.s.,

lim
n→∞ sup

n≤s≤n+1

∑
x∈�L(s)

p(x, s)

(2L(s) + 1)d exp{−(a(γ ) − δ)c2sd/(d+2)} = 0.(69)

Let b = ( 1
α′ (a − γ ))−α/α′

> 0. Note also that b = (d+2
2 γ )(d+2)/d ≤ 1 whenever

0 ≤ γ ≤ γ1. By the Borel–Cantelli lemma, to prove (69) it suffices to prove that〈(
sup

n≤s≤n+1

∑
x∈�L(s)

p(x, s)

(2L(s) + 1)d exp{−(a(γ ) − δ)c2sd/(d+2)}
)b〉

(70)

� exp
{
−bδc2n

d/(d+2)

2

}
.

Now, by the monotonicity of p(x, s) and by (20) with r = b applied in the sum-
mation of (70) we conclude that〈(

sup
n≤s≤n+1

∑
x∈�L

p(x, s)

(2L(s) + 1)de−(a(γ )−δ)c2s
d/(d+2)

)b〉
(71)

≤ (2L(n + 1) + 1)d〈p(0, n)b〉
(2L(n) + 1)dbe−b(a(γ )−δ)c2(n+1)d/(d+2)

.

By Lemma 3(i) with r = b, we know that 〈p(0, n)b〉 ≤ exp{−c2b
d/(d+2)nd/(d+2) +

o(nd/(d+2))}. Thus, the right-hand side of (71) is upper-bounded by

exp
{−[bd/(d+2) − b(a(γ ) − δ) − γ (1 − b)

]
c2n

d/(d+2) + o
(
nd/(d+2))}.(72)

Here, we will analyze briefly the function f (x) := xd/(d+2) − xc − γ (1 − x),
appearing in the exponent of the exponential of (72) with x = b and c = a(γ ) − δ.
Note that f (x) has no roots and is strictly negative for c > a(γ ), while it has one
root for c = a(γ ) and two roots for c < a(γ ). Therefore, if c = a(γ ) − δ we can
find a value of x for which f (x) is positive, for example, x = b. Note also that
f (b) = bδ > 0 and the expression of display (72) is equal to exp{−bδc2n

d/(d+2) +
o(nd/(d+2))}. This proves (70).

5.6. The annealed non-Gaussian asymptotics. Here we will prove the state-
ment of (9). As a corollary we will obtain (5). To see this, let us observe

that log
√

Varµ(pL(t)(0, t,w)) ∼ −(2−2/(d+2) + γ
2 )c2t

d/(d+2). On the other hand,
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note that infγ>0(a(γ ) − γ
2 ) = 2−2/(d+2) and the infimum is attained at γ =

γ2 = 2d/(d+2) 2
d+2 . Hence, a(γ ) ≥ 2−2/(d+2) + γ

2 . Thus,
√

Varµ(pL(t)(0, t,w)) ≥
exp{−a(γ )c2t

d/(d+2)}. First note that by Lemma 7, we have

pL(t) − 〈p〉
e−(a(γ )−δ)c2t

d/(d+2)
∼

∑
x∈�L

(p̃1 − 〈p̃1〉)
(2L + 1)de−(a(γ )−δ)c2t

d/(d+2)
.(73)

So it is enough to show that the right-hand side of (73) converges to 0 in prob-
ability. Let b = ( 1

α′ (a − γ ))−α/α′
. Note that 1 < b = (d+2

2 γ )(d+2)/d ≤ 2 for
γ1 < γ < γ2. We will show that〈∣∣∣∣

∑
x∈�L

(p̃1 − 〈p̃1〉)
(2L + 1)d exp{−(a(γ ) − δ)c2td/(d+2)}

∣∣∣∣
b〉

� 1.(74)

To estimate the left-hand side of (74) we will make use of the parity partition
of �L. We will choose the mesoscopic scale L′ := exp{−γ ′

d
c2t

d/(d+2)}. Now,
by (54) with r = b we see that (

∑
x∈�L

(p̃1 − 〈p̃1〉))b ≤ 2(2L′ + 2)d(b−1)(2L +
1)d〈|p̃1 − 〈p̃1〉|b〉. On the other hand, part (iii) of Lemma 4 tells us that 〈|p̃1 −
〈p̃1〉|b〉 = exp{−bd/(d+2)c2t

d/(d+2)} + o(td/(d+2)). We can thus bound the left-
hand side of (74) by

exp
{−[bd/(d+2) − b

(
a(γ ) − δ

)
(75)

− γ (1 − b) − γ ′(b − 1)
]
c2t

d/(d+2) + o
(
td/(d+2))}.

As in the previous subsection we obtain the function f (x) := xd/(d+2) − xc −
γ (1 − x) in the exponent of the exponential of (75) with x = b and c = a(γ ) − δ.
The same analysis shows us that f (b) = bδ > 0 and that the expression of (75)
equals

exp
{−(bδ − γ ′(b − 1)

)
c2t

d/(d+2) + o
(
td/(d+2))}.

Choosing γ ′ < δ, it is clear that the above expression converges to 0.

6. The one-dimensional convergence to infinitely divisible laws. In this
section we will establish Theorem 3, describing the convergence in distribution to

infinitely divisible laws of the quantities pL(0,t,w)

〈pL(0,t)〉 and pL(0,t,w)−〈pL(0,t)〉
Varµ(pL(0,t))

in the crit-

ical nonannealed and non-Gaussian asymptotics. The proof of this theorem will be
given in two steps: a reduction to a problem of sums of independent random vari-
ables; and a straightforward application of classical results for the convergence
of sums of independent random variables to infinitely divisible laws. The verifica-
tion of the conditions giving convergence will be similar to the results of [3], where
positive exponentials of random variables with Weibull-type and Fréchet-type tails
were studied.



QUENCHED TO ANNEALED TRANSITION 2177

6.1. Reduction to sums of independent random variables. We first need to
introduce some minimal notation. Given an environment w ∈ X, recall the de-
finition of the obstacle set G(w) = {y ∈ Z :w(y) = 1}. We want to make use
of the natural order of Z to enumerate the elements of G(w). Let us define
y0 := inf{y ∈ G(w) :y ≥ 0}, the site having an obstacle with nonnegative but small-
est coordinate. Then recursively in m ∈ N define ym := inf{y ∈ G(w) :y > ym−1}
and y−m := sup{y ∈ G(w) :y < y−(m−1)}. Note that for every integer m one has
that ym < ym+1 and furthermore G(w) = ⋃

i∈Z{ym}. Let us also define for each
m ∈ Z the intervals Im(w) := [ym−1 + 0.5, ym − 0.5]l . We denote their lengths
lm := |Im| = ym − ym−1 − 1. Note that {lm(w) :m ∈ Z/{0}} is a set of indepen-
dent identically distributed random variables with a geometric law of parameter
1 − p so that µ(lm = k) = p(1 − p)k for every m ∈ Z and k ≥ 0. On the other
hand, l0 is independent from the set {lm(w) :m ∈ Z/{0}} but has a law given by
l0 = l+0 + l−0 , where l+0 := |I0 ∩ [0,∞)| and l−0 := |I0 ∩ (−∞,−1]| are indepen-
dent identically distributed random variables with a geometric law of parameter
1 − p. Also, at this point we recall the notation of Section 3, so that for each
m ∈ Z, {λn(Im) : 0 ≤ n ≤ lm} and {ψIm

n : 0 ≤ n ≤ lm} represent the Dirichlet eigen-
values and eigenfunctions, respectively, of the discrete Laplacian operator (15)
on Im. Here we have used the fact that there are lm different eigenvalues each one
of geometric multiplicity 1. Our objective here is to prove the following proposi-
tion.

PROPOSITION 1. Let L(t) : [0,∞) → N be such that L(t) ≥ 1 and as-
sume that 0 ≤ p < 1. Consider the field of quenched survival probabilities
{p(x, t,w) :x ∈ Z} in dimension d = 1. Then for every ε > 0 µ-a.s. eventually
in t it is true that

m∑
k=−m

Xk ≤ ∑
x∈�L(t)

p(x, t,w) ≤
M∑

k=−M

Xk,(76)

where

Xk := 2(lk + 1)

�1
exp

{
−4t

�1

(lk + 1)2

(
1 + o1(lk)

)}(
1 + o4(lk, t)

)
,(77)

with m := [(1−ε)L
p

1−p
], M := [(1+ε)L

p
1−p

], �1 := π2

8 is the principal Dirichlet

eigenvalue of the operator −1
2� on the ball of radius 1, o4(x, t) : [0,∞)2 → R is a

function such that |o4(x, t)| ≤ 200
1+x

+500e−t (2π2/(x+1)2)(1+o2(x)) and o1(x), o2(x) :

[0,∞) → R are functions such that |o1(x)| ≤ π2

12(1+x)2 and |o2(x)| ≤ 10
(1+x)2 .

To prove Proposition 1 our first step will be the following lemma which tells us
that the averaged survival probability at scale L is essentially equal to the averaged
survival probability at the random scale y(1−p)L.
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LEMMA 8. Let L(t) : [0,∞) → N be such that L(t) ≥ 1 and assume that 0 ≤
p < 1. Consider the field of quenched survival probabilities {p(x, t,w) :x ∈ Z} in
dimension d = 1. Then for every ε > 0 µ-a.s. eventually in t it is true that

ym∑
x=y−m

p(x, t,w) ≤ ∑
x∈�L(t)

p(x, t,w) ≤
yM∑

x=y−M

p(x, t,w),(78)

where m := [(1 − ε)L
p

1−p
] and M := [(1 + ε)L

p
1−p

].

PROOF. Note that for every nonnegative natural n, yn = l+0 +∑n
i=1(ln + 1).

Since l+0 , l1, . . . is a sequence of independent geometric random variables of para-
meter 1 − p, by the strong law of large numbers since L(t) � 1 we know that for
every ε > 0, µ-a.s. eventually in t we have that ym < L(t) < yM . Similarly, µ-a.s.
eventually in t , y−M < −L(t) < y−m. This proves (78). �

Next, we recall some elementary estimates for the principal Dirichlet eigenvalue
and the L1 norm of the principal Dirichlet eigenfunction on an interval in terms of
the length of the interval.

LEMMA 9. Let I ⊂ Z be a bounded nonempty interval. Consider the Dirichlet
eigenvalues {λn(I ) :n ∈ U} and eigenfunctions {ψI

n :n ∈ U} of the discrete Lapla-
cian �d on I , where U is a finite index set. Then:

(i)

λ0(I ) = 4�1

(l + 1)2

(
1 + o1(l)

)
.

(ii)

λ1(I ) − λ0(I ) = 12�1

(l + 1)2

(
1 + o2(l)

)
.

(iii)

(ψI
0 ,1I ) =

√
2(l + 1)

�1

(
1 + o3(l)

)
,

where l = |I |, �1 = π2

8 is the principal Dirichlet eigenvalue of the differential op-
erator −1

2� on the ball of radius 1 and o1(x), o2(x), o3(x) : [0,∞) → [0,∞) are

functions such that |o1(x)| ≤ π2

12(1+x)2 , |o2(x)| ≤ 10
(1+x)2 and |o3(x)| ≤ 10

1+x
.

PROOF. By translation invariance, without loss of generality we can assume
that I = {0,1, . . . , l − 1}. Recall that λn(I ) = 1 − cos( (n+1)π

l+1 ) for n ∈ U with

U = {0,1, . . . , l − 1}, and that ψI
0 (x) =

√
2

l+1 sin( π
l+1(x + 1)) for x ∈ I . Parts
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(i) and (ii) follow directly from the fact that x2

2 (1− x2

12 ) ≤ 1−cosx ≤ x2

2 . To deduce
part (iii) note that since �1ψ

I
0 (x) = λ0ψ

I
0 (x) when x ∈ I [recall the definition (15)

of �1], then (ψI
0 ,1I ) =∑l−1

x=0 ψI
0 (x) = ψI

0 (0)+ψI
0 (l−1)

2λ0(I )
. Thus,

(ψI
0 ,1I ) =

√
2

l + 1

(
sinπ/(l + 1)

1 − cosπ/(l + 1)

)
.

We can now deduce (iii) from the mentioned bounds for cosx and the inequalities,
x − 1

6x3 ≤ sinx ≤ x. �

As a consequence of the estimates of Lemma 9 we deduce the following result,
which together with Lemma 8 finishes the proof of Proposition 1.

LEMMA 10. Consider the field of quenched survival probabilities {p(x, t,w) :
x ∈ Z} in dimension d = 1. Then for every r ∈ N, we have that

yr∑
x=y−r

p(x, t,w) =
r∑

k=−r

2(lk + 1)1N+(lk)

�1
(79)

× exp
{
−t

4�1

(lk + 1)2

(
1 + o1(lk)

)}(
1 + o4(lk, t)

)
,

where 1N+ is the indicator function of the set of natural numbers larger than 0,
�1 := π2

8 , o4(x, t) : [0,∞)2 → R, |o4(x, t)| ≤ 200
1+x

+ 500e−t (2π2/(x+1)2)(1+o2(x))

and o1(x), o2(x) : [0,∞) → R are functions such that |o1(x)| ≤ π2

12(1+x)2 and

|o2(x)| ≤ 10
(1+x)2 .

PROOF. Let k be such that −m ≤ k ≤ m. Note that if there is an x ∈ Ik (which
implies that lk = |Ik| ≥ 1), we have the expansion

p(x, t,w) =
lk−1∑
n=0

e−tλn(Ik)
(
ψIk

n ,1Ik

)
ψIk

n (x).

Hence,
∑

x∈Ik
p(x, t,w) =∑lk−1

n=0 e−tλn(Ik)(ψ
Ik
n ,1Ik

)2 and∑
x∈Ik

p(x, t,w)

(80)

= e−tλ0(Ik)

((
ψ

Ik

0 ,1Ik

)2 +
lk−1∑
n=1

e−t (λn(Ik)−λ0(Ik))
(
ψIk

n ,1Ik

)2)
.

Now, the summation in the right-hand side of (80) is bounded above by
e−t (λ1(Ik)−λ0(Ik))(lk − (ψ

Ik

0 ,1Ik
)2). Hence we conclude that

e−tλ0(Ik)Ak ≤ ∑
x∈Ik

p(x, t,w) ≤ e−tλ0(Ik)
(
Ak + e−t (λ1(Ik)−λ0(Ik))(lk − Ak)

)
,
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where Ak := (ψ
Ik

0 ,1Ik
)2. Summing up over k and applying the estimates of

Lemma 9, we obtain (79). �

6.2. Convergence to infinitely divisible laws. We now wish to describe how to
finish the proof of Theorem 3 via Proposition 1. By Proposition 1 it is clear that it
is enough to prove the following.

PROPOSITION 2. Let L(t) := eν[(γ c2/ν)t1/3]− , c > 0 and r := [cL p
1−p

].
Consider a sequence {lk :k ∈ N} of independent identically distributed geo-
metric random variables of parameter 1 − p and joint law υ . Let Xk(t) :=
2(lk+1)

�1
exp{−t 4�1

(lk+1)2 (1 + o1(lk))}(1 + o4(lk, t)), where o1, o2, o4 : [0,∞) → R

are functions such that |o4(x, t)| ≤ 200
1+x

+ 500e−t (2π2/(x+1)2)(1+o2(x)), |o1(x)| ≤
π2

12(1+x)2 and |o2(x)| ≤ 10
(1+x)2 . Then the following statements are true.

(i) If γ < γ1 := 1/3, then

lim
t→∞

1

s1(γ )t1/3 exp
{

4t�1

[γ c2t1/3/ν]2−

} r∑
k=−r

Xk(t) = Xβ1,0,L.

(ii) If γ1 < γ < γ2 := 21/3/3, then

lim
t→∞

1

s1(γ )t1/3 exp
{

4t�1

[γ c2t1/3/ν]2−

} r∑
k=−r

(
Xk(t) − υ(X1(t))

)= Xβ2,0,L.

In both cases the convergence is in distribution, s1(γ ) := γ c2
�1ν

, β1 := 2cp2

(1−p)2 ×∑∞
k=−∞

(1−p)k

(1−p)k/a1+(1−p)−k/a1
, β2 := 2cp2

(1−p)2

∑∞
k=−∞

(1−p)k(1+2/a1)

(1−p)k/a1+(1−p)−k/a1
, the Lévy

spectral function L(x) := − 2cp
1−p

(1 − p)−[(1/ν) logxa1(γ )] for x > 0 and L(x) = 0

for x < 0 and a1 := ( α
α′ γ )1/α′

.

The proof of Proposition 2 will be the content of the following subsections. We
will verify the conditions according to the classical results (see, e.g., Theorem 3.3
of [8]). Let us recall them.

THEOREM 4. Let n(t) : [0,∞) → N and for each t let {Yk(t) : 1 ≤ k ≤ n(t)}
be a sequence of independent identically distributed random variables. Call Pt the
law of Y1(t). Assume that for every ε > 0 it is true that

lim
t→∞Pt

(
Y1(t) > ε

)= 0.

Now let L(x) : R/{0} → R be a Lévy spectral function, β ∈ R and σ > 0. Then the
following statements are equivalent:
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(i)

lim
t→∞

n(t)∑
k=1

Yk(t) = Xβ,σ,L,

where the convergence is in distribution.
(ii) Define for τ > 0 the truncated random variable at level τ as Zτ (t) :=

Y1(t)1|Y1(t)|≤τ . Also, let Et(·) and Vart (·) denote the expectation and variance
corresponding to the law Pt . Then if x is a continuity point of L,

L(x) =



lim
t→∞n(t)Pt

(
Y1(t) ≤ x

)
, for x < 0,

− lim
t→∞n(t)Pt

(
Y1(t) > x

)
, for x > 0,

(81)

σ 2 = lim
τ→0

lim
t→∞n(t)Vart (Zτ (t)),(82)

and for any τ > 0 which is a continuity point of L(x),

β = lim
n→∞n(t)Et (Zτ (t))

(83)

+
∫
|x|>τ

x

1 + x2 dL(x) −
∫
τ≥|x|>0

x3

1 + x2 dL(x).

In the next subsections, we proceed to verify conditions (81), (82) and (83), for
the triangular array given by Xk(t) in part (i) of Proposition 2 and by Xk(t) −
υ(Xk(t)) in part (ii) of the same proposition.

6.3. The Lévy spectral function in the critical case. Here we begin the proof of
part (i) of Proposition 2 by identifying the Lévy spectral function L(x) verifying
condition (81) with

Y1(t) := 1

s1t1/3 exp
{

4t�1

[γ c2t1/3/ν]2−

}
X1(t),

and n(t) := 2r(t) + 1 with r(t) := [cL(t)
p

1−p
], L(t) := eν[(γ c2/ν)t1/3]− and c > 0.

Namely, we wish to prove that

− lim
t→∞n(t)υ

(
Y1(t) > x

)
(84)

= L(x) =



0, for x < 0,

− 2cp

1 − p
(1 − p)−[(1/ν) logxa1(γ )], for x > 0.

Since X1(t) ≥ 0 it is obvious that L(x) = 0 for x < 0. Thus, we concentrate on
the case x > 0. Let us first note that if l1 ≤ t2/9, then Y1(t) ≤ exp{−4�1t

5/9 +
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o(t−5/9)}. It follows that n(t)υ(Y1(t) > x, l1 ≤ t2/9) = 0 for t large enough.
Hence,

lim
t→∞n(t)υ

(
Y1(t) > x

)= lim
t→∞n(t)υ

(
Y1(t) > x, l1 > t2/9).(85)

Let us also remark that υ(l1 ≥ t2/5) = exp{−νt2/5 + o(t−2/5)}. Thus, since n(t) =
2r(t) + 1 = exp{γ c2t

1/3 + o(t−1/3)} we have that limt→∞ n(t)υ(l1 ≥ t2/5) = 0.
Thus, from (85) we see that

lim
t→∞n(t)υ

(
Y1(t) > x

)= lim
t→∞n(t)υ

(
Y1(t) > x, t2/9 < l1 < t2/5).(86)

Now note that if b1 and b2 are positive real numbers, the function f (y) =
b1ye−b2/y

2
is increasing. Therefore, if y0 is the solution of f (y) = x and n is

a natural number, we have that f (n) > x if and only if n > [y0]. Note that

y0 =
√

b2
logb1y0−logx

. This implies that if b1 > x, then either y0 ≤ 1 or if y0 > 1

then y0 ≤
√

b2
logb1−logx

. Hence if b1 > x, then y0 ≤ max{
√

b2
logb1−logx

,1}. Thus,

√
b2

logb1 + (1/2) log(b2/(logb1 − logx)) − logx
≤ y0

(87)

=
√

b2

logb1 + 1/2 log(b2(logb1y0 − logx)) − logx
,

whenever b1 > x and
√

b2
logb1−logx

≥ 1. Now, the inequality Y1(t) > x appear-

ing in (86) can be expressed as f (l1 + 1) > x with f (y) = b1ye−b2/y
2
, b1 :=

2
�1s1t

1/3 exp{ 4t�1
[γ c2t

1/3/ν]2−
}(1 + o4(l1, t)) and b2 := 4t�1(1 + o1(l1)). Hence,

υ
(
Y1(t) > x, t2/9 < l1 < t2/5)= υ(l1 + 1 > [y0], t2/9 < l1 < t2/5).(88)

But when t2/9 < l1 < t2/5 we have that |o1(l1)| ≤ π2

12t4/9 and |o4(l1, t)| ≤ 200
t2/9 +

500e−π2t1/5
. Hence, logb1 = ( 4t�1

[γ c2t
1/3/ν]2−

− log(s1�1t
1/3/2)) + O(t−2/9), b2 =

4t�1(1 + O(t−4/9)) and the lower bound of (87) is of the order of O(t1/3). Fur-
thermore, for t large enough we have b1 > x and

√
b2

logb1−logx
≥ 1 so that we can

apply such an inequality. It follows from (87) and (88) that for t large enough,

υ
(
Y1(t) > x, t2/9 < l1 < t2/5)= υ(l1 + 1 > [y0]) + o(1/n(t)),(89)

where we have used the fact that υ(l1 ≥ t2/5) = o(1/n(t)). Now, = υ(l1 +
1 > [y0]) = e−ν[y0]. We therefore need to get a good estimate on y0. Fur-

thermore, a short computation enables us to conclude that log b2
logb1−logx

=
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2 log(γ c2t
1/3/ν) + O(t−1/3 log t), and hence the lower bound of (87) can be esti-

mated as √
b2

logb1 + 1/2 log(b2/(logb1 − logx)) − logx

= 4t�1(1 + O(t−4/9))

(4t�1/[γ c2t1/3/ν]2−) + log(2γ c2/�1s1ν) − logx
.

Substituting this lower bound on the right-hand side of (87), we get an upper bound
for y0 of the same kind, so that the quantity υ(l1 + 1 > [y0]) equals

exp

{
−ν

[(
1 + O(t−4/9)

)

×
√

4t�1

(4t�1/[γ c2t1/3/ν]2−) + log(2γ c2/�1s1ν) − logx

]}
(90)

= exp

{
−ν

[√
4t�1

(4t�1/[γ c2t1/3/ν]2−) + log(2γ c2/�1s1ν) − logx
+ o(1)

]}
.

Now, from the expansion (1 + y)−1/2 = 1 − 1
2y + o(y2) for small y, the choice

of s1 so that 2γ c2
�1s1ν

= 1, the fact that n(t) = 2cp
1−p

eν[(γ c2/ν)t1/3]− + O(1) and (90)

combined with (89) for υ(Y1(t) > x, t2/9 < l1 < t2/5), we see that

nυ(Y1 > x, t2/9 < l1 < t2/5)

= 2c
p

1 − p

× exp
{
ν

[
γ c2

ν
t1/3

]
−

(91)

− ν

[[
γ c2

ν
t1/3

]
−

(
1 + 1

2

[γ c2t
1/3/ν]2−

4t�1
logx

)
+ o(1)

]}
+ o(1)

= 2c
p

1 − p
exp

{
−ν

[
1

2

[γ c2t
1/3/ν]3−

4t�1
logx + o(1)

]}
+ o(1).

Now, note that 1
2

[γ c2t
1/3/ν]2−

4t�1
< 1

ν
(γ 3

2)3 = 1
ν
a1(γ ) and limt→∞ 1

2
[γ c2t

1/3/ν]2−
4t�1

=
1
ν
a1(γ ). Hence,

lim
t→∞nυ(Y1 > x, t2/9 < l1 < t2/5) = 2cp

1 − p
(1 − p)−[(1/ν) logxa1(γ )].

Combining with (86), this proves (84).
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6.4. The Lévy spectral function in the annealed non-Gaussian case. Now we
compute the Lévy spectral function of the limiting law of part (ii) of Proposition 2.
This time, we must verify the condition (81) with

Y1(t) := 1

s1t1/3 exp
{

4t�1

[γ c2t1/3/ν]2−

}(
X1(t) − υ(X1(t))

)
,

L(t) := eν[(γ c2/ν)t1/3]− , n(t) := 2r(t) + 1, r(t) := [cL(t)
p

1−p
] and c > 0. Now, it

is easy to check that

lim
t→∞

1

c2(1,p)t1/3 logυ(X1(t)) = −1.

Therefore, we have that

1

s1t1/3 exp
{

4t�1

[γ c2t1/3/ν]2−

}
υ(X1(t))

= exp
{(

a(γ ) − γ − (1 + γ )
)
t1/3 + o(t1/3)

}
.

But, (a(γ ) − γ − (1 + γ )) = 22

33
1
γ 2 − (1 + γ ) < 0, whenever γ > γ1 = 1/3. It

follows that for real x,

υ
(
Y1(t) > x

)= υ

(
1

s1t1/3 exp
{

4t�1

[γ c2t1/3/ν]2−

}
X1(t) > x + o

(
e−t1/4))

.

It turns out that the term o(e−t1/4
) is small enough to not affect the computation

of the Lévy spectral function. In fact, essentially a repetition of the calculations of
the previous subsection show that

L(x) = − lim
t→∞n(t)υ

(
Y1(t) > x

)

=



0, for x < 0,

− 2cp

1 − p
(1 − p)−[(1/ν) logxa1(γ )], for x > 0.

6.5. The truncated moments. The purpose of this subsection is the verification
of conditions (82) and (83) respectively showing that there is no spectral atom and
identifying the constants β1 and β2 of the Lévy representation of the characteristic
function of the limiting laws, in parts (i) and (ii) of Proposition 2. Namely we will
prove that

limτ→+0 limt→∞ n(t)
(
υ
(
Y(t)2, Y (t) ≤ τ

)− υ
(
Y (t), Y (t) < τ

)2)= 0,

β1 = 2p

(1 − p)

∞∑
k=−∞

(1 − p)k

(1 − p)k/a1 + (1 − p)−k/a1
,



QUENCHED TO ANNEALED TRANSITION 2185

and that

β2 = 2p

(1 − p)

∞∑
k=−∞

(1 − p)k(1+2/a1)

(1 − p)k/a1 + (1 − p)−k/a1
.

Our first step is the following lemma.

LEMMA 11. For every integer k ≥ 1 it is true that

lim
t→∞n(t)υ

(
Y k(t), Y (t) ≤ τ

)
(92)

= 2c

(
p

1 − p

)2

(1 − p)(k−a1)/a1[(1/ν) log τa1 ] 1

1 − (1 − p)1/a1−1 .

PROOF. Note that

n(t)υ
(
Y k(t), Y (t) ≤ τ

)
(93)

∼ 2cp

1 − p
eν[(γ c2/ν)t1/3]− exp{k4t�1/[γ c2t

1/3/ν]2−}
(s1t1/3)k

m∑
j=0

e−ft (j),

where

ft (x) := 4kt�1

(x + 1)2

(
1 + o1(x)

)+ νx − k log
2(x + 1)

�1
− log

(
1 + o4(x, t)

)

and m is the largest integer such that eac2t1/3

s1t
1/3(2L+1)

2(m+1)
�1

e−(4t�1/(m+1)2)(1+o1(m))(1+
o4(m, t)) ≤ τ . Let us now interchange the order in the summation of (93) so that∑m

j=0 e−ft (j) =∑m
j=0 e−ft (m−j) and expand ft (m − j) around m,

ft (m − j) = ft (m) +
(

8tk�1

(m + 1)3 − ν

)
j + O1(j,m, t),

where

O1(j,m, t) := 4kt�1

(
j2

(m + 1)4

)(
1

(1 − j/(m + 1))2 + 2
1

1 − j/(m + 1)

)

+ o1(m − j)4kt�1

(m + 1 − j)2 + log
(

1 − j

m + 1

)
− log

(
1 − o4(m − j, t)

)
.

Thus, we see that the right-hand side of (93) can be expressed as

2cp

1 − p
eν[(γ c2/ν)t1/3]− exp{k4t�1/[γ c2t

1/3/ν]2−}
(s1t1/3)k

× e−ft (m)
m∑

j=0

e−((8tk�1/(m+1)3)−ν)j+O1(j,m,t).
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But, by the definition of m, it is easy to see that

lim
t→∞

2cp

1 − p
eν[(γ c2/ν)t1/3]− exp{k4t�1/[γ c2t

1/3/ν]2−}
(s1t1/3)k

e−ft (m)

= 2cp3

(1 − p)3 (1 − p)((k−a1)/a1)[(1/ν) log τa1 ].

Now, a straightforward computation shows that

lim
t→∞

m∑
j=0

e−((8tk�1)/((m+1)3)−ν)j+O1(j,m,t) = 1

1 − (1 − p)(1/a1)−1 .
�

Let us now compute β1 via (83). Note that since
∫ τ

0 x dL is well defined when

γ < γ1, we can make the decomposition
∫
|x|<τ

x3

1+x2 dL = ∫ τ
0 x dL− ∫ τ

0
x

1+x2 dL.
It follows that

β1 = lim
t→∞n(t)Et (Zτ (t)) −

∫ τ

0
x dL +

∫ ∞
0

x

1 + x2 dL.

For n ∈ Z let xn := (1 − p)n/a1 . Note that {xn :n ∈ Z} are the discontinuities of
L(x) and [ 1

ν
logx

a1
n ] = n. We then have that

∫ τ

0
x dL =

∞∑
k=m

xk

(
L(xk+1) − L(xk)

)

= 2cp

1 − p

∞∑
k=m

(1 − p)k/a1
(
(1 − p)−k−1 − (1 − p)−k)

= lim
t→∞n(t)Et (Zτ (t)),

where m = [ 1
ν

log τa1] and we used Lemma 11. Hence,

β1 =
∫ ∞

0

x

1 + x2 dL =
∞∑

n=−∞

xn

1 + x2
n

(
L(xn+1) − L(xn)

)

= 2cp

1 − p

∞∑
k=−∞

(1 − p)k/a1

1 + (1 − p)2k/a1

(
(1 − p)−k−1 − (1 − p)−k).

A similar computation enables us to compute β2.
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