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POWER LAWS FOR FAMILY SIZES IN A DUPLICATION MODEL

BY RICK DURRETT1 AND JASON SCHWEINSBERG2

Cornell University and University of California, San Diego

Qian, Luscombe and Gerstein [J. Molecular Biol. 313 (2001) 673–681]
introduced a model of the diversification of protein folds in a genome that we
may formulate as follows. Consider a multitype Yule process starting with
one individual in which there are no deaths and each individual gives birth
to a new individual at rate 1. When a new individual is born, it has the same
type as its parent with probability 1 − r and is a new type, different from all
previously observed types, with probability r . We refer to individuals with the
same type as families and provide an approximation to the joint distribution
of family sizes when the population size reaches N . We also show that if 1 �
S � N1−r , then the number of families of size at least S is approximately
CNS−1/(1−r), while if N1−r � S the distribution decays more rapidly than
any power.

1. Introduction. Genome sequencing of various species has shown that gene
and protein-fold family sizes have a power-law distribution. Huynen and van
Nimwegen [19] studied six bacteria, two Archea and yeast. Li, Gu, Wang and
Nekrutenko [28] and later Gu, Cavalcanti, Chen, Bouman and Li [17] analyzed the
genomes of yeast, the nematode C. elegans, fruit fly (Drosophila melanogaster)
and human. There have been several models advanced to explain this phenom-
enon. Rzhetsky and Gomez [33] and Karev, Wolf, Rzhetsky, Berezov and Koonin
[23] (see also [25]) introduced a birth and death model in which, when there are i

individuals in a family, a birth occurs at rate λi and a death occurs at rate δi . They
proved, as most readers of this journal can easily verify, that if the birth rates are
second-ordered balanced, that is,

λi−1/δi = 1 − a/i + O(1/i2)

for some a > 0, then the stationary distribution of the family size is asymptotically
Ci−a . See the Appendix of [23] or Example 3.6 on page 297 of [13] for more
details.

Qian, Luscombe and Gerstein [32] introduced an alternative model that we will
study in detail here. Consider a continuous-time Yule process with infinitely many
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types. At time zero, a single individual of type 1 is born. No individuals die, and
each individual independently gives birth to a new individual at rate 1. When a new
individual is born, it has the same type as its parent with probability 1 − r , where
0 < r < 1. With probability r , the new individual has a type which is different from
all previously observed types. If the kth individual born has a different type from
its parent, we say that it has type k. Note that, as a consequence of this choice of
labeling, there are always type-1 individuals, but for k ≥ 2, with probability 1 − r

there are never any individuals of type k.
In this model one can think of the new types as resulting from mutations,

where r is the probability of mutation. Alternatively, one could think of a Yule
process with immigration in which each individual gives birth at rate 1 − r and
new immigrants arrive at rate r times the current population size. We refer to in-
dividuals with the same type as families. The goal of this paper is to study the
distribution of the family sizes at the time when the population size reaches N .

1.1. Approximation to the family-size distribution. Let TN be the time that
the population size reaches N . Let Rk,N be the number of individuals of type k

at time TN . Let Xk,N be the fraction of individuals at time TN whose type is in
{1, . . . , k}. Let Vk,N be the fraction of individuals at time TN , among those whose
type is in {1, . . . , k}, that are of type k. This means that the fraction of individuals
at time TN that are of type k is Vk,NXk,N and the number of individuals of type k

at time TN is Rk,N = NVk,NXk,N . Note that XN,N = 1 and for k = 1, . . . ,N − 1,
we have

Xk,N =
N∏

j=k+1

(1 − Vj,N).(1.1)

The following proposition follows from well-known connections between Yule
processes and Pólya urns. We review these connections and prove this proposition
in Section 2.

PROPOSITION 1.1. For each positive integer k, the limit

Wk = lim
N→∞Vk,N

exists a.s. The random variables W1,W2, . . . are independent. We have W1 = 1 a.s.
Furthermore, P(Wk > 0) = r for all k ≥ 2 and conditional on the event that Wk >

0, the distribution of Wk is Beta(1, k − 1).

Let YN,N = 1 and, for k = 1, . . . ,N − 1, let

Yk,N =
N∏

j=k+1

(1 − Wj).(1.2)
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Let � = {(xi)
∞
i=1 : 0 ≤ xi ≤ 1 for all i and

∑∞
i=1 xi = 1}. Note that the sequence

(N−1Rk,N)∞k=1 = (Vk,NXk,N)∞k=1,

whose kth term is the fraction of the population having type k at time TN , is in �.
Proposition 1.1 and equations (1.1) and (1.2) suggest that, for large N , the dis-
tribution of this sequence can be approximated by Qr,N , which we define to be
the distribution of the sequence in � whose first term is Y1,N , whose kth term is
WkYk,N for 2 ≤ k ≤ N and whose kth term is zero for k > N . Theorem 1.2 below
uses the coupling of the Xk,N and Yk,N given above to show that the distribution
of (N−1Rk,N)∞k=1 can be approximated by Qr,N to within an error of O(N−1/2).
We prove this result in Section 3.

THEOREM 1.2. We have E[max1≤k≤N |Xk,N − Yk,N |] ≤ 5√
N

.

The distributions Qr,N first arose in the work of Durrett and Schweinsberg [15]
and Schweinsberg and Durrett [34], who studied the effect of beneficial mutations
on the genealogy of a population. The distributions Qr,N arose in that context
because, shortly after a beneficial mutation, the number of individuals with the
beneficial gene behaves like a supercritical branching process, which means that
the number with descendants surviving a long time into the future behaves like
a Yule process. In this setting, r is the rate of recombination, and individuals de-
scended from a lineage with a recombination get traced back to a different ancestor
than other individuals, just as individuals descended from an individual with a mu-
tation in the present model are of a different type than the others. Schweinsberg
and Durrett’s [34] approximation had an error of O((logN)−2) because of deaths
and other complexities in the model, but Theorem 1.2 shows that the distributions
Qr,N give a much more accurate approximation to the family-size distribution in
the simpler model studied here. We note also that here it is assumed that r is fixed,
whereas Schweinsberg and Durrett [34] considered r to be O(1/(logN)).

1.2. A power law for the number of families of moderate size. Let FS,N denote
the number of families at time TN whose size is at least S. Define

g(S) = r�

(
2 − r

1 − r

)
NS−1/(1−r).(1.3)

The theorem below, which is proved in Section 4, shows that if 1 � S � N1−r ,
then g(S) provides a good approximation to the number of families of size at
least S, in the sense that |FS,N − g(S)|/g(S) → 0 as N → ∞.

THEOREM 1.3. There are constants 0 < C1,C2 < ∞ so that

E[|FS,N − g(S)|] ≤ C1g(S)
[
S−1/5 + (

NS−1/(1−r))−1/5] + C2.
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Note that S−1/5 and (NS−1/(1−r))−1/5 are both small and g(S) is large when
1 � S � N1−r .

Theorem 1.3 confirms Qian, Luscombe and Gerstein’s [32] power law but it
also conflicts with their results. Since they considered the number of folds that oc-
cur exactly V times rather than at least V times, it follows from differentiating the
right-hand side of (1.3) that for large N we would expect a decay with the power
b = 1 + 1/(1 − r). This quantity is always larger than 2, while they observed pow-
ers b between 0.9 and 1.2 for eukaryotes and between 1.2 and 1.8 for prokaryotes.
Despite this discrepancy, they were able to fit their model by starting the process
at time zero with N0 > 1 families. For example, for Haemophilus influenzae they
took r = 0.3, N0 = 90, and ran the process for 1249 generations. For C. elegans
they took r = 0.018, N0 = 280 and ran for 18,482 generations.

Figure 1 shows one simulation of the system with r = 0.018, N0 = 1, and N =
20,000. In contrast to biologists who do a log-log plot of the number of gene
families of size k (see, e.g., Figure 1 in [18], or Figure 8 in [23]), we look at
the tail of the distribution and plot the log of the family size on the x-axis and
the log of the number of families of at least that size on the y-axis. The curve
fit by Karev et al. [23] has asymptotic power 1.9 in contrast to the 2.018 that
comes from our formula, but note that the straight line fitted to our simulation
of the distribution function has slope 0.91. Figure 2 shows the average of 10,000

FIG. 1. One simulation of the duplication model with C. elegans parameters. r = 0.018 and
N = 20,000.
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FIG. 2. Average of 10,000 simulations of the duplication model with C. elegans parameters.
r = 0.018 and N = 20,000. Straight line is the prediction of Theorem 1.3.

simulations of the process with the C. elegans parameters. The straight line shows
that Theorem 1.3 very accurately predicts the expected number of families until the
log of the family size is 4. This simulation also shows that the power law breaks
down when S � N1−r , which motivates our next topic.

1.3. Sizes of the largest families. Recall that Rk,N is the number of individuals
of type k at time TN . Proposition 1.4 below identifies the limiting distribution of
the size of the large families.

PROPOSITION 1.4. For each positive integer k, the limit

Zk = lim
N→∞Nr−1Rk,N

exists almost surely. The distribution of Z1 is the Mittag–Leffler distribution with
parameter 1 − r , which has density

g(x) = 1

π(1 − r)

∞∑
k=0

(−1)k+1

k! sin(παk)�
(
(1 − r)k + 1

)
xk−1, x > 0.(1.4)

For k ≥ 2, conditional on the event that the kth individual born has type k, the
distribution of Zk is the same as the distribution of MB1−r

k , where Bk has the
Beta(1, k − 1) distribution, M has the Mittag–Leffler distribution with parameter
1 − r and M and Bk are independent.
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The fact that Z1 has the Mittag–Leffler distribution was first proved by An-
gerer [2], who was motivated by the study of bacterial populations. He considered
a model that is equivalent to our model, except that he referred to our type-1 in-
dividuals as nonmutant cells, and individuals of all other types as mutant cells.
Theorem 6.1 in [2] gives the Mittag–Leffler limit when the probability of mutation
is a fixed constant. See also Theorems 1.7 and 1.8 of [21], where the Mittag–Leffler
distribution arises as a limiting distribution in an urn model that is closely related
to our model. We mention another proof of the Mittag–Leffler limit at the end of
Section 1.4, and we prove Proposition 1.4 for k ≥ 2 in Section 5.

The moments of M are given by E[Mm] = �(m + 1)/�(m(1 − r) + 1) for
m > 0 (see Section 0.5 of [30]). Also, we have E[Bm

k ] = �(m+1)�(k)/�(m+ k)

for m > 0. Since P(Zk > 0) = r when k ≥ 2, it follows that for k ≥ 2 and m > 0
we have

E[Zm
k ] = �(m + 1)

�(m(1 − r) + 1)
· r�(m(1 − r) + 1)�(k)

�(m(1 − r) + k)
= r�(m + 1)�(k)

�(m(1 − r) + k)
.

The next result, which is proved in Section 5, proves what was observed in the
simulation. The expected number of families of size at least xN1−r decays faster
than any power of x. Indeed, it decays faster than exponentially in x, and the decay
is fastest when r is small.

PROPOSITION 1.5. There exist constants C1 and C2 such that for all x ≥ 1,
we have

lim
N→∞

N∑
k=1

P(Rk,N > xN1−r ) ≤ C1e
−C2x

1/r

.

1.4. A new Chinese restaurant. Our model has a close relation to a construc-
tion called the “Chinese restaurant process,” which was first proposed by Dubins
and Pitman. We describe here a two-parameter version of the process, which is
discussed in Pitman [29, 30]. Suppose 0 ≤ α < 1 and θ > −α. Consider a restau-
rant with infinitely many tables, each with an unbounded number of seats. The
first customer sits at table 1. Suppose, for some n ≥ 1, that after n customers have
been seated, there are k occupied tables, with ni customers at the ith table, so that
n1 + · · · + nk = n. Then, the (n + 1)st customer sits at table i with probability
(ni −α)/(n+ θ) and sits at an unoccupied table, which we call the (k + 1)st table,
with probability (θ + kα)/(n + θ).

For any N , the Chinese restaurant process gives rise to a random partition �N

of {1, . . . ,N}, where i and j are in the same block of �N if and only if the ith
and j th customers are seated at the same table. That is, the partition �N consists
of blocks B1,N , . . . ,Bk,N , where Bj,N consists of all integers i between 1 and N

such that the ith customer is seated at the j th table. Let |Bj,N | denote the num-
ber of the first N customers at the j th table. Then (see [30]), the distribution of
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the �-valued sequence (N−1|B1,N |,N−1|B2,N |, . . .) converges as N → ∞ to the
Poisson–Dirichlet distribution with parameters (α, θ). This distribution is defined
as follows. Let (Dj )

∞
j=1 be a sequence of independent random variables such

that Dj has the Beta(1 − α, θ + jα) distribution. Then the sequence whose kth
term is Dk

∏k−1
j=1(1 − Dj) has the Poisson–Dirichlet distribution with parameters

(α, θ). The Poisson–Dirichlet distributions were studied extensively by Pitman and
Yor [31]. See also [30] and [4] for further applications of these distributions.

An important special case of the Chinese restaurant process is when α = 0.
Then, we may assume that the (n + 1)st customer sits at a new table with proba-
bility θ/(n + θ) and otherwise chooses one of the previous n customers at random
and sits at that person’s table. In this case, if π is a partition of {1, . . . ,N} with k

blocks of sizes n1, . . . , nk , one can check that

P(�N = π) = θk−1

(1 + θ)(2 + θ) · · · (N − 1 + θ)

k∏
i=1

(ni − 1)!.(1.5)

This leads to the famous Ewens sampling formula [16]. The Ewens sampling for-
mula describes the family-size distribution in a Yule process with immigration
when immigration occurs at constant rate θ . When there are n individuals in the
Yule process, they are each splitting at rate 1 and immigration occurs at rate θ ,
so the probability that the (n + 1)st individual starts a new family is θ/(n + θ).
For another application of the Ewens sampling formula, consider a population in
which each lineage experiences mutation at rate θ/2 and whose ancestral structure
is given by Kingman’s coalescent (see [24]), meaning that each pair of lineages
merges at rate 1. Working backward in time, when there are n + 1 lineages, co-
alescence occurs at rate n(n + 1)/2 while mutations occur at rate θ(n + 1)/2.
Consequently, the probability of having mutation before coalescence is θ/(n + θ).
Because Kingman’s coalescent is a good approximation to the genealogy in pop-
ulations of fixed size, the Ewens sampling formula is a standard model for gene
frequencies in populations of fixed size. However, this model does not lead to the
power-law behavior that has been observed in some data.

Note that our model can be viewed as a variation of the Chinese restaurant
process in which the (n + 1)st customer sits at a new table with constant prob-
ability r , rather than with probability θ/(n + θ), and otherwise picks one of the
previous n customers at random and sits at that person’s table. One can define
the random partition 	N of {1, . . . ,N} such that i and j are in the same block if
and only if the ith and j th customers are seated at the same table. In our branch-
ing process interpretation, this means that the ith and j th individuals born have
the same type, so the family sizes in our model correspond to block sizes of 	N .
It is straightforward to derive an analog of the Ewens sampling formula in this
case. If π is a partition of {1, . . . ,N} into k blocks of sizes n1, . . . , nk , and if
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a1 < a2 < · · · < ak are the first integers in these blocks, then

P(	N = π) = rk−1(1 − r)N−k

(N − 1)!
[

k∏
i=1

(ni − 1)!
]

k∏
j=2

(aj − 1).

This formula depends on a2, . . . , ak as well as the block sizes n1, . . . , nk , so the
random partition 	N is not exchangeable. Nevertheless, one can still look for ap-
proximations to the distribution of the block sizes. We see from Theorem 1.2 that
the distributions Qr,N play the role of the Poisson–Dirichlet distributions in this
model. Because the population size in Yule processes grows exponentially, these
distributions provide a plausible model of gene frequencies in growing popula-
tions, and they do lead to power-law behavior, as shown in Theorem 1.3. Further-
more, the approximation error in Theorem 1.2 of O(N−1/2) is the same order of
magnitude as the error when the distributions of the block sizes of the partitions
�N above are approximated by the Poisson–Dirichlet distributions.

Finally, the Chinese restaurant process when α = 1− r and θ = 0 can be used to
give another proof of Proposition 1.4 when k = 1. This argument was pointed out
to us by Wolfgang Angerer, Anton Wakolbinger and a referee, and also appears
implicitly in earlier unpublished notes of Jim Pitman. Given our multitype Yule
process, we can obtain a Chinese restaurant process with α = 1 − r and θ = 0 by
saying that each individual born in the Yule process sits at the same table as its
parent, unless it has type 1 in which case it starts a new table. Thus, the number
of type-1 individuals is the number of occupied tables, so the Mittag–Leffler limit
follows from Theorem 31 of [30]. See also Angerer and Wakolbinger [3].

1.5. Connections with preferential attachment. In our model, gene families
grow at a rate proportional to their size. This is similar to the behavior of Barbási
and Albert’s [8] preferential attachment model in which one grows a graph by
adding a vertex at each time and connecting that vertex to m existing vertices
chosen with probabilities proportional to their degrees. Through simulations and
heuristic arguments, Barbási and Albert concluded that the fraction of vertices of
degree k converged to a limit pk ∼ Ck−3. This result was later proved rigorously
by Bollobás, Riordan, Spencer and Tusnády [11].

Fueled by the observation of power laws for degree distributions in the Internet,
collaboration networks and even sexual relations in Sweden, this work touched off
a flurry of activity. To remedy the difficulty that the power was always 3 in the
Barbási–Albert model, Krapivsky, Redner and Leyvraz [26] introduced a model
in which attachment to vertices of degree i was proportional to a + bi, and were
able to achieve any power in (2,∞). These results, published in Physical Review
Letters, omit a few details, but work by Kumar, Raghavan, Rajagopalan, Sivaku-
mar, Tompkins and Upfal [27] and Cooper and Freize [12] further generalizes the
model and provides rigorous proofs of the power laws.
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The preferential attachment models are different from ours because adding an
edge changes the degree of two vertices. However, if one considers directed graphs
and analyzes only the out-degree, then taking α = 1 − r and δ = 0 in the Cooper–
Frieze model gives a model identical to ours and a power law that is proved in their
Section 6.1. Later work of Bollobás, Borgs, Chayes and Riordan [10] investigates a
directed graph model which contains our result as a special case and for which they
derive a power law. We point out also that a construction similar to that given in
Section 1.1 was developed by Berger, Borgs, Chayes and Saberi [9] in the context
of preferential attachment graphs.

In addition to recent work, Simon [35] considered the following model of word
usage in books, which he also applied to scientific publications, city sizes and
income distribution. Let Xi(t) be the number of words that have appeared exactly i

times in the first t words. He assumed that (a) the probability that the (t +1)st word
is a word that has already appeared i times is proportional to iXi(t); (b) there is a
constant probability α that the (t + 1)st word is a word that has not appeared in the
first t words. This of course is exactly our model, but even this is not the earliest
reference. It appeared in work of Yule [37] who considered a model of the number
of species in a given genus. Both Yule [37] and Simon [35] argued that the model
gives rise to power-law behavior. See Aldous [1] for a more recent account and a
simple explanation for the power law.

While our model has been considered a number of times, our results are more
precise. In most cases investigators have considered the limit of the fraction of ver-
tices of degree k for fixed k. Exceptions are Bollobás, Riordan, Spencer and Tus-
nády [11] who were able to prove results for k ≤ N1/15 and Cooper and Freize [12]
who could handle k ≤ N1/21. In contrast, our results hold for the entire range over
which the power law is valid and show how the power law breaks down for larger
values.

2. Branching processes and Pólya urns. In this section we review some
well-known connections between Pólya urns and continuous-time branching
processes, which will be useful later in the paper. Athreya and Karlin [6] showed
how to embed the urn process in a continuous-time branching process. This tech-
nique was reviewed in [7]. See [20] for a thorough survey of recent developments
and generalizations.

Recall the following version of Pólya’s urn model. Suppose we start with a

white balls and b black balls in the urn. We then draw a ball at random from the
urn. If the ball we draw is white, we return it to the urn and add an additional
white ball to the urn. If the ball we draw is black, we return it to the urn and add
another black ball. This process can be repeated indefinitely. To see the connection
with branching processes, consider a two-type branching process in which there
are no deaths and each individual gives birth at rate 1. If at some time there are a

individuals of type 1 and b individuals of type 2, then the probability that the next
individual born will have type 1 is a/(a + b), which is the same as the probability
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that the next ball added to an urn with a white balls and b black balls will be
white. It follows that the distribution of the number of type-1 individuals when the
population size reaches N is the same as the distribution of the number of white
balls in the urn when the number of balls in the urn is N .

Let ζi = 1 if the ith ball added to the urn is white, and let ζi = 0 if the ith ball
added to the urn is black. Fix a positive integer N . Let S ⊆ {1, . . . ,N}, and let
Sc = {1, . . . ,N} \ S. Let |S| denote the cardinality of S. It is easy to check that for
a, b ≥ 1,

P(ζi = 1 for i ∈ S and ζi = 0 for i ∈ Sc)
(2.1)

= (a + |S| − 1)!(b + N − |S| − 1)!(a + b − 1)!
(a − 1)!(b − 1)!(a + b + N − 1)! .

Since the right-hand side of (2.1) depends only on |S| and not on the particular
elements of S, the sequence (ζi)

∞
i=1 is exchangeable. By de Finetti’s theorem, there

exists a probability measure µ on [0,1] such that for all N and all S ⊆ {1, . . . ,N},
we have

P(ζi = 1 for i ∈ S and ζi = 0 for i ∈ Sc) =
∫ 1

0
x|S|(1 − x)N−|S|µ(dx),(2.2)

where µ is the distribution of limN→∞ N−1|{i ≤ N : ζi = 1}|, the limiting frac-
tion of white balls in the urn when we start with a white balls and b black
balls. It follows from Theorem 1 in Section 9.1 of Chapter V of [7] that µ is the
Beta(a, b) distribution. One can also see this by checking that the right-hand sides
of (2.1) and (2.2) agree in this case.

PROOF OF PROPOSITION 1.1. Clearly W1 = 1 a.s. because V1,N = 1 a.s. As-
sume now that k ≥ 2. Let Sk be the set of all i such that the type of the ith individ-
ual born is in {1, . . . , k}. Let Hk be the σ -field generated by the sets Sk, Sk+1, . . . .

Note that if j > k, then Vj,N is Hk-measurable for all N . Therefore, to prove
the proposition, it suffices to show that, for all k ≥ 2, the limit Wk exists a.s. and
satisfies the following conditions:

1. P(Wk > 0) = r .
2. The conditional distribution of Wk given Wk > 0 is Beta(1, k − 1).
3. Wk is independent of Hk .

Note that the third condition implies that Wk is independent of (Wj )
∞
j=k+1.

Enumerate the elements of Sk as i1 < i2 < i3 < · · · . Define a sequence (ζ
(k)
j )∞j=1

such that ζ
(k)
j = 1 if the ij th individual has type k and ζ

(k)
i = 0 otherwise. Note that

ij = j for j ≤ k. Also, ζ
(k)
j = 0 for j = 1, . . . , k − 1. Recall from our conventions

for labeling the types that if the kth individual to enter the population has a new
type, then it has type k. Therefore, ζ

(k)
k = 1 if and only if the kth individual has
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a new type, and whether or not this individual has a new type does not affect the

births of individuals of types greater than k. Thus, P(ζ
(k)
k = 1|Hk) = r . If ζ

(k)
k = 0,

then clearly Wk = 0. Because of the connection between branching processes and
Pólya urns, if ζ

(k)
k = 1, then the sequence (ζ

(k)
j+k)

∞
j=1 has the same distribution as

the Pólya urn sequence (ζi)
∞
i=1 defined above when a = 1 and b = k − 1. Further-

more, the values of ζ
(k)
j do not affect the births of individuals of types greater than

k, so this relationship holds even after conditioning on Hk . It follows that, condi-
tional on ζ

(k)
k = 1, the random variable Wk has a Beta(1, k − 1) distribution and

Wk is independent of Hk . �

Now, fix N and to simplify notation, write Xk , Yk , Vk and Rk for Xk,N , Yk,N ,
Vk,N and Rk,N , respectively. We will use this notation throughout the rest of the pa-
per when the value of N is clear from the context. Let Fk be the σ -field generated
by the random variables Vj and Wj for j ≥ k + 1. It follows from (1.1) and (1.2)
that Xk and Yk are Fk-measurable. Let Gk be the σ -field generated by the random
variables Vj for j ≥ k + 1 and Wj for j ≥ k.

We can write Wk = ξkW̃k , where ξk has a Bernoulli(r) distribution and is inde-
pendent of Fk , and W̃k has a Beta(1, k − 1) distribution and is independent of ξk

and Fk . Since E[W̃k] = 1/k and E[W̃ 2
k ] = 2/[k(k+1)], we have E[Wk|Fk] = r/k

and E[W 2
k |Fk] = 2r/[k(k+1)]. Note that Vk = 0 whenever Wk = 0. On {Wk > 0},

define Ṽk = Rk − 1. Define Ṽk = 0 on {Wk = 0}. Then

Vk =
[

1 + Ṽk

NXk

]
1{Wk>0}

(2.3)

=
[(

1

k

)(
k

NXk

)
+

(
Ṽk

NXk − k

)(
NXk − k

NXk

)]
1{Wk>0}.

It follows from (2.2) that

the conditional distribution of Ṽk given Gk is Binomial(NXk − k,Wk)(2.4)

because there are NXk − k individuals, after the first k, with types in {1, . . . , k},
and conditional on Gk , each has type k with probability Wk . Therefore,

E[Vk|Gk] =
[

1

NXk

+ Wk

(
NXk − k

NXk

)]
1{Wk>0}(2.5)

and

E[Vk|Fk] = E
[
E[Vk|Gk]|Fk

] = r/k.

3. Approximating the family-size distribution. In this section we prove
Theorem 1.2, which implies that the distribution Qr,N is a good approximation
to the family-size distribution in the Yule process with infinitely many types. To
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prove this result, we need to show that the Xk , which are related to the Vj by (1.1),
are close to the Yk , which are likewise related to the Wj by (1.2). We begin by
showing that E[Xk] and E[Yk] are the same.

LEMMA 3.1. We have E[Xk] = E[Yk] = ∏N
j=k+1(1 − r

j
) for 1 ≤ k ≤ N .

PROOF. We prove the formula for E[Yk] by backward induction on k. Clearly
E[YN ] = 1. Suppose the formula holds for some k ≥ 2. Then

E[Yk−1] = E[(1 − Wk)Yk] = E[(1 − Wk)]E[Yk]

=
(

1 − r

k

) N∏
j=k+1

(
1 − r

j

)
=

N∏
j=k

(
1 − r

j

)
.

To get the same formula for E[Xk], first note that E[Xk,j ] = 1 for 1 ≤ j ≤ k. If
n ≥ k, then conditional on Xk,n, the probability that the (n + 1)st individual has a
type in {1, . . . , k} is (1 − r)Xk,n. Therefore,

E[Xk,n+1] = nE[Xk,n] + (1 − r)E[Xk,n]
n + 1

=
(

1 − r

n + 1

)
E[Xk,n],

so the formula for E[Xk] follows by induction on n. �

LEMMA 3.2. We have ( k
N

)re−r2/k ≤ E[Xk] ≤ ( k
N

)rer/k for 1 ≤ k ≤ N .

PROOF. By Lemma 3.1, we have logE[Xk] = ∑N
j=k+1 log(1− r/j). Note that

if 0 ≤ x < 1, then log(1 − x) = −∑∞
k=1(x

k/k). Summing, we see that if 0 ≤ x ≤
1/2, −(x + x2) ≤ log(1 − x) ≤ −x. Therefore,

logE[Xk] ≤ −
N∑

j=k+1

r

j
= r

k
−

N∑
j=k

r

j

(3.1)

≤ r

k
−

∫ N

k

r

x
dx = r

k
+ log

(
k

N

)r

,

logE[Xk] ≥ −
N∑

j=k+1

(
r

j
+ r2

j2

)
(3.2)

≥ −
∫ N

k

r

x
dx −

∫ N

k

r2

x2 dx ≥ log
(

k

N

)r

− r2

k
.

The result now follows by exponentiating both sides in (3.1) and (3.2). �

LEMMA 3.3. We have E[X2
k(Wk − Vk)

2] ≤ r( 1
N2 + 2

N1+r k1−r ) for 2 ≤ k ≤ N .
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PROOF. By (2.3), we have

Vk − Wk =
[(

1

k
− Wk

)(
k

NXk

)
(3.3)

+
(

Ṽk

NXk − k
− Wk

)(
NXk − k

NXk

)]
1{Wk>0}.

When we take the conditional expectation given Gk of the square of the right-hand
side of (3.3), the cross-term vanishes because (2.4) implies

E

[
Ṽk

NXk − k
− Wk

∣∣∣Gk

]
= 0.

Since Xk and Wk are Gk-measurable, using (2.4) again gives

E[(Vk − Wk)
2|Gk]

= E

[(
1

k
− Wk

)2(
k

NXk

)2

1{Wk>0}

+
(

Ṽk

NXk − k
− Wk

)2(
NXk − k

NXk

)2

1{Wk>0}
∣∣∣Gk

]

=
(

1

k
− Wk

)2(
k

NXk

)2

1{Wk>0} + Wk(1 − Wk)

NXk − k

(
NXk − k

NXk

)2

1{Wk>0}.

Since Wk is independent of Fk and the conditional distribution of Wk given Wk > 0
is Beta(1, k − 1),

E[(Vk − Wk)
2|Fk] = k − 1

k2(k + 1)

(
k

NXk

)2

r + NXk − k

(NXk)2

(
r

k
− 2r

k(k + 1)

)

≤ r

N2X2
k

+ r

NkXk

.

Thus, using Lemma 3.2, we get

E[X2
k(Wk − Vk)

2] = E
[
X2

kE[(Wk − Vk)
2|Fk]] ≤ E

[
r

N2 + rXk

Nk

]

≤ r

N2 + r

N1+rk1−r
er/k ≤ r

(
1

N2 + 2

N1+rk1−r

)
,

since for k ≥ 2, we have er/k ≤ e1/2 ≤ 2. �

LEMMA 3.4. For every real number a, we have E[Xk(Xk − Yk)(Wk −
Vk)(Wk − a)] = 0.
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PROOF. Using the fact that E[Wk −Vk|Fk] = 0 and that Wk is Gk-measurable,
we have

E[(Wk − Vk)(Wk − a)|Fk] = E[Wk(Wk − Vk)|Fk]
= E

[
E[Wk(Wk − Vk)|Gk]|Fk

]
= E

[
W 2

k − WkE[Vk|Gk]|Fk

]
.

Using (2.5) now, the above equals

E

[
W 2

k − Wk

(
1

NXk

+ Wk

(
NXk − k

NXk

))
1{Wk>0}

∣∣∣Fk

]

= 1

NXk

(kE[W 2
k |Fk] − E[Wk|Fk])

= r

NXk

(
2

k + 1
− 1

k

)
.

It follows that

E[Xk(Xk − Yk)(Wk − Vk)(Wk − a)]
= E

[
E[Xk(Xk − Yk)(Wk − Vk)(Wk − a)|Fk]]

= E
[
Xk(Xk − Yk)E[(Wk − Vk)(Wk − a)|Fk]]

= E

[
(Xk − Yk)

(
r

N

)(
2

k + 1
− 1

k

)]
= 0,

where the last equality follows from Lemma 3.1. �

LEMMA 3.5. We have E[(Xk − Yk)
2] ≤ 3/N for 1 ≤ k ≤ N .

PROOF. Suppose 2 ≤ k ≤ N . We will bound E[(Xk−1 − Yk−1)
2] in terms of

E[(Xk − Yk)
2]. First, note that it follows from (1.1) and (1.2) that

Xk−1 − Yk−1 = (1 − Vk)Xk − (1 − Wk)Yk
(3.4)

= Xk(Wk − Vk) + (Xk − Yk)(1 − Wk).

Thus,

E[(Xk−1 − Yk−1)
2] = E[X2

k(Wk − Vk)
2] + E[(Xk − Yk)

2(1 − Wk)
2]

(3.5)
+ 2E[Xk(Xk − Yk)(Wk − Vk)(1 − Wk)].

By Lemma 3.4 with a = 1, the third term on the right-hand side of (3.5) vanishes.
Using Lemma 3.3 and the fact that E[(Xk − Yk)

2(1 − Wk)
2] ≤ E[(Xk − Yk)

2], we
get

E[(Xk−1 − Yk−1)
2] ≤ E[(Xk − Yk)

2] + r

(
1

N2 + 2

N1+rk1−r

)
.
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Since XN = YN = 1, it follows that for 1 ≤ k ≤ N , we have

E[(Xk − Yk)
2] ≤

N∑
j=2

r

(
1

N2 + 2

N1+rj1−r

)
≤ r

N
+ 2r

N1+r

N∑
j=2

1

j1−r

(3.6)

≤ 1

N
+ 2r

N1+r

∫ N

1

1

x1−r
dx ≤ 1

N
+ 2r

N1+r

(
Nr

r

)
= 3

N
,

which completes the proof. �

PROOF OF THEOREM 1.2. Let M = max1≤k≤N |Xk − Yk|. Fix x > 0. Let
T = max{k : |Xk − Yk| ≥ x} if M ≥ x, and let T = 0 otherwise. For 2 ≤ k ≤ N ,
define

ρk = Xk(Wk − Vk) − (Xk − Yk)(Wk − r/k)(3.7)

so that by (3.4), Xk−1 − Yk−1 = ρk + (Xk − Yk)(1 − r/k). Let

Hk =



Xk − Yk, for k ≥ T ,

XT − YT +
T∑

j=k+1

ρj , for k < T .

This definition is chosen so that

Hk−1 − Hk = ρk − (r/k)Hk1{k>T }.(3.8)

Our first step is to show

P(M ≥ x) ≤ x−2E[H 2
1 ].(3.9)

To establish (3.9), we mimic the proof of Kolmogorov’s maximal inequality
in [13]. Let Ak = {T = k}, so the event that M ≥ x is the event

⋃N
k=1 Ak . Then

E[H 2
1 ] ≥

N∑
k=1

E
[
H 2

1 1Ak

]

=
N∑

k=1

E
[(

H 2
k + 2Hk(H1 − Hk) + (H1 − Hk)

2)
1Ak

]

≥
N∑

k=1

E
[
H 2

k 1Ak

] + 2
N∑

k=1

E
[
Hk(H1 − Hk)1Ak

]
.

If j ≤ k, then

E[ρj |Fk] = E
[
E[ρj |Fj ]|Fk

]
(3.10)

= E
[
XjE[Wj − Vj |Fj ] − (Xj − Yj )E[Wj − r/j |Fj ]|Fk

] = 0.
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Therefore,
N∑

k=1

E
[
Hk(H1 − Hk)1Ak

] =
N∑

k=1

E
[
E

[
Hk(ρ2 + · · · + ρk)1Ak

|Fk

]]

=
N∑

k=1

E
[
Hk1Ak

E[ρ2 + · · · + ρk|Fk]] = 0.

It follows that

E[H 2
1 ] ≥

N∑
k=1

E
[
H 2

k 1Ak

] ≥
N∑

k=1

x2P(Ak) = x2P(M ≥ x),

which implies (3.9).
We now obtain a bound on E[H 2

1 ]. Using (3.8) and the fact that the random
variable Hk and the event {k > T } are Fk-measurable, we have

E[H 2
k−1|Fk] = E

[(
ρk + Hk

(
1 − (r/k)1{k>T }

))2|Fk

]
= E[ρ2

k |Fk] + 2Hk

(
1 − (r/k)1{k>T }

)
E[ρk|Fk]

+ H 2
k

(
1 − (r/k)1{k>T }

)2
.

Since E[ρk|Fk] = 0 by (3.10), it follows that E[H 2
k−1|Fk] ≤ E[ρ2

k |Fk] + H 2
k ,

and thus E[H 2
k−1] ≤ E[ρ2

k ] + E[H 2
k ]. Since HN = 0, we can combine this result

with (3.9) to get

P(M ≥ x) ≤ x−2E[H 2
1 ] ≤ x−2

N∑
k=2

E[ρ2
k ].

To bound E[ρ2
k ] we recall the definition in (3.7) and use Lemma 3.5 and the fact

that Wk is independent of Xk and Yk to get

E[(Xk − Yk)
2(Wk − r/k)2] ≤ E[(Xk − Yk)

2]E
[
W 2

k − 2r

k
Wk + r2

k2

]

≤ 3

N

(
2r

k(k + 1)
− 2r2

k2 + r2

k2

)
≤ 6r

Nk(k + 1)
.

Combining this result with Lemmas 3.3 and 3.4 with a = r/k, we get

E[ρ2
k ] ≤ r

(
1

N2 + 2

N1+rk1−r
+ 6

Nk(k + 1)

)
.(3.11)

The telescoping sum
∑N

k=2 6r/[Nk(k + 1)] ≤ 3r/N , so it follows from (3.6) and
(3.11) that

P(M ≥ x) ≤ x−2
N∑

k=2

E[ρ2
k ] ≤ x−2

(
3

N
+ 3r

N

)
≤ 6

Nx2 .
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Thus,

E[M] =
∫ ∞

0
P(M ≥ x)dx ≤ 2√

N
+

∫ ∞
2/

√
N

6

Nx2 dx = 2√
N

+ 3√
N

= 5√
N

,

which proves the theorem. �

4. The power law. In this section we prove Theorem 1.3, which gives the
power law for the family-size distribution. Our first lemma gives a bound on the
moments of the binomial distribution. Throughout this section, we allow the value
of the constant C to change from line to line.

LEMMA 4.1. Fix m ≥ 1. There exists a constant C such that for all n and p

such that np ≥ 1, if X has a Binomial(n,p) distribution, then

E

[∣∣∣∣Xn − p

∣∣∣∣
m]

≤ C

(
p

n

)m/2

.

PROOF. For now, we assume that p ≤ 1/2. The proof is based on two bounds
for binomial tail probabilities. If z > 0, then

P

(
X

n
− p ≤ −z

)
≤ e−nz2/2p,(4.1)

and if 0 < z < 1 − p, then

P

(
X

n
− p ≥ z

)
≤ e−nz2/2(p+z).(4.2)

Equation (4.1) follows from (3.52) on page 121 of [22]. To prove (4.2), we use the
fact that if p < a < 1, then P(X/n ≥ a) ≤ e−nH(a), where

H(a) = a log(a/p) + (1 − a) log
(
(1 − a)/(1 − p)

)
.

This is proved, for example, in [5]. We have H ′(a) = log(a/p)− log((1−a)/(1−
p)) and H ′′(a) = 1/[a(1 − a)]. Since H(p) = H ′(p) = 0, by Taylor’s theorem
there exists z ∈ [p,a] such that H(a) = 1

2H ′′(z)(a − p)2. Note that the func-
tion a �→ H ′′(a) is decreasing on (0,1/2) and increasing on (1/2,1). Therefore,
if a ≤ 1/2, then H(a) ≥ 1

2H ′′(a)(a − p)2 ≥ 1
2a

(1 − p)2 and if a ≥ 1/2, then
H(a) ≥ 1

2H ′′(1/2)(a − p)2 ≥ 2(a − p)2 ≥ 1
2a

(a − p)2. Equation (4.2) follows
by substituting z = a − p.

Now, using Lemma 5.7 in Chapter 1 of [13], we get

E

[∣∣∣∣Xn − p

∣∣∣∣
m]

=
∫ p

0
mzm−1P

(∣∣∣∣Xn − p

∣∣∣∣ > z

)
dz

(4.3)

+
∫ 1−p

p
mzm−1P

(∣∣∣∣Xn − p

∣∣∣∣ > z

)
dz.
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Using (4.1) and (4.2), then z ≤ p, and making the substitution z = y
√

4p/n, the
first term on the right-hand side is less than or equal to∫ p

0
mzm−1(

e−nz2/2p + e−nz2/2(p+z))dz

≤ 2m

∫ p

0
zm−1e−nz2/4p dz

(4.4)

≤ 2m

∫ ∞
0

(
4p

n

)m/2

ym−1e−y2
dy

≤ C

(
p

n

)m/2

.

Likewise, using z/(p + z) ≥ 1/2 for z ≥ p and substituting z = 4y/n, the second
term on the right-hand side in (4.3) is less than or equal to∫ 1−p

p
mzm−1e−nz2/2(p+z) dz

≤ m

∫ 1−p

p
zm−1e−nz/4 dz

(4.5)

≤ m

∫ ∞
0

(
4

n

)m

ym−1e−y dy

≤ C

nm
.

It follows from (4.3), (4.4) and (4.5) that if p ≤ 1/2 and np ≥ 1, then

E

[∣∣∣∣Xn − p

∣∣∣∣
m]

≤ C

(
p

n

)m/2

+ C

(
1

n

)m

≤ C

(
p

n

)m/2

.(4.6)

The fact that np ≥ 1 was used only for the second inequality in (4.6). Therefore, if
p ≥ 1/2 and np ≥ 1, we can use the first inequality in (4.6) to get

E

[∣∣∣∣Xn − p

∣∣∣∣
m]

= E

[∣∣∣∣n − X

n
− (1 − p)

∣∣∣∣
m]

≤ C

(
1 − p

n

)m/2

+ C

(
1

n

)m

≤ C

(
p

n

)m/2

,

which completes the proof of the lemma. �

The next lemma bounds the moments of Xk . Recall that Xk = Xk,N is the frac-
tion of the first N individuals with one of the first k types.
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LEMMA 4.2. Fix a real number m ≥ 1. Then there is a positive constant C

such that for all k ≥ 1,

E[Xm
k ] ≤

(
k

N

)mr(
1 + C

k

)
.

PROOF. Let Mk,l = ∑k
j=1 Rj,l be the number of individuals at time Tl with

types in {1, . . . , k}. Note that Mk,N = NXk . Conditional on Mk,l , the probability
that the (l + 1)st individual born has a type in {1, . . . , k} is (1 − r)Mk,l/ l. There-
fore,

E[Mm
k,l+1|Mk,l] = Mm

k,l + (1 − r)

(
Mk,l

l

)
[(Mk,l + 1)m − Mm

k,l].

Since bm − am = ∫ b
a mxm−1 dx ≤ mbm−1(b − a) for 0 ≤ a ≤ b, the above is less

than or equal to

Mm
k,l + (1 − r)

(
Mk,l

l

)
m(Mk,l + 1)m−1

= Mm
k,l + (1 − r)m

l
Mm

k,l + (1 − r)m

l
[(Mk,l + 1)m−1 − Mm−1

k,l ]Mk,l.

Using the integration inequality again this is less than or equal to

Mm
k,l

(
1 + (1 − r)m

l

)
+ (1 − r)m

l
[(m − 1)(Mk,l + 1)m−2]Mk,l

≤ Mm
k,l

(
1 + (1 − r)m

l

)
+ m(m − 1)

l
(Mk,l + 1)m−1.

Since Mk,l ≥ 1, we have

E[Mm
k,l+1|Mk,l] ≤ Mm

k,l

(
1 + (1 − r)m

l

)
+ C

l
Mm−1

k,l .(4.7)

We now establish the lemma for integer values of m by induction. When m = 1,
the result is an immediate consequence of Lemma 3.2 and the inequality er/k ≤
1 + C/k. Suppose the result holds for m − 1. Then, since Mk,l = lXk,l , we have

E[Mm−1
k,l ] = lm−1E

[(
Mk,l

l

)m−1]

≤ lm−1
(

k

l

)(m−1)r(
1 + C

k

)

≤ Ck(m−1)r l(m−1)(1−r).

Therefore, taking expectations of both sides in (4.7), we get

E[Mm
k,l+1] ≤

(
1 + (1 − r)m

l

)
E[Mm

k,l] + Ck(m−1)r l(m−1)(1−r)−1.
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Since Mk,k = k, iterating the last result shows that E[Xm
k ] = E[Mk,N ]/Nm is at

most

1

Nm

[
km

N−1∏
j=k

(
1 + (1 − r)m

j

)

+
N−1∑
l=k

Ck(m−1)r l(m−1)(1−r)−1

(
N−1∏

j=l+1

(
1 + (1 − r)m

j

))]
.

Since 1 + x ≤ ex for x > 0, we have
N−1∏
j=k

(
1 + (1 − r)m

j

)
≤ exp

(
N−1∑
j=k

(1 − r)m

j

)

≤ exp
(
(1 − r)m

(
1

k
+

∫ N

k
x−1 dx

))

= exp
(

(1 − r)m

k
+ (1 − r)m log

(
N

k

))

≤
(

N

k

)(1−r)m(
1 + C

k

)
.

Thus,

E[Xm
k ] ≤ 1

Nm

[
km

(
N

k

)(1−r)m(
1 + C

k

)

+ C

N−1∑
l=k

k(m−1)r l(m−1)(1−r)−1
(

N

l

)(1−r)m
]

=
(

k

N

)mr
[

1 + C

k
+ Ck−r

N−1∑
l=k

l−2+r

]
≤

(
k

N

)mr[
1 + C

k

]
.

The result for integer values of m follows by induction.
Now suppose n < m < n + 1, where n is a positive integer. Let

p = (n − m + 1)−1

and let

q = (m − n)−1.

Note that p−1 + q−1 = 1 and n/p + (n + 1)/q = m. By Hölder’s inequality,

E[Xm
k ] = E

[
X

n/p
k X

(n+1)/q
k

]
≤ E[Xn

k ]n−m+1E[Xn+1
k ]m−n

≤
(

k

N

)mr(
1 + C

k

)
,
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so the lemma is true for all real numbers m ≥ 1. �

To prove Theorem 1.3, we will approximate the family sizes NVkXk by
NWk(k/N)r . To use this approximation, we will need a bound on the probabil-
ity that the difference between these two quantities is large. Note that

VkXk − Wk

(
k

N

)r

= Xk(Vk − Wk) + Wk

(
Xk −

(
k

N

)r)
.(4.8)

The next two lemmas deal separately with the two terms on the right-hand side
of (4.8).

LEMMA 4.3. There is a positive constant C so that for all δ > 0

N∑
k=1

P

(∣∣∣∣Wk

(
Xk −

(
k

N

)r)∣∣∣∣ >
δS

2N

)
≤ C

(
N1−r

δS

)2/(3−2r)

.

PROOF. Conditioning on Fk and noting that Wk is independent of Fk gives

E

[
W 2

k

(
Xk −

(
k

N

)r)2]
= E[W 2

k ]E
[(

Xk −
(

k

N

)r)2]
.

If k ≥ 2, Lemmas 3.2 and 4.2 give that the above is equal to

2r

k(k + 1)

(
E[X2

k ] − 2E[Xk]
(

k

N

)r

+
(

k

N

)2r)

≤ 2r

k2

[(
k

N

)2r(
1 + C

k

)
− 2

(
k

N

)2r

e−r2/k +
(

k

N

)2r]

≤ 2r

k2

(
k

N

)2r[
1 + C

k
− 2

(
1 − r2

k

)
+ 1

]

≤ C

N2rk3−2r
.

Fix a positive integer L. Using a trivial inequality for k ≤ L and Chebyshev’s
inequality,

N∑
k=1

P

(∣∣∣∣Wk

(
Xk −

(
k

N

)r)∣∣∣∣ >
δS

2N

)
≤ L +

N∑
k=L+1

C

N2rk3−2r

(
δS

2N

)−2

≤ L + CN2−2r

(δS)2

∫ ∞
L

1

x3−2r
dx(4.9)

= L + CN2−2rL−(2−2r)

(2 − 2r)(δS)2 .
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If L = (N1−r/(δS))2/(3−2r), then the right-hand side of (4.9) is bounded by(
N1−r

δS

)2/(3−2r)

+ C

(
N1−r

δS

)2−(2−2r)2/(3−2r)

≤ C

(
N1−r

δS

)2/(3−2r)

,

as claimed. �

LEMMA 4.4. There is a constant C so that for all δ > 0, we have
N∑

k=1

P

(
|Xk(Vk − Wk)| > δS

2N

)
≤ 1 + CN

(δS)3/2(1−r)
.(4.10)

PROOF. Recall from Section 2 that Wk = ξkW̃k , where ξk = 1{Wk>0} has a
Bernoulli(r) distribution and W̃k has a Beta(1, k − 1) distribution and is indepen-
dent of ξk . Also recall that Ṽk = (NVkXk − 1)1{Wk>0} is a random variable such
that the conditional distribution of Ṽk given Gk is Binomial(NXk − k, W̃k). Using
(2.3), we see that for all k ≥ 2 we have

P

(
|Xk(Vk − Wk)| > δS

2N

)

= P

(
|NXk(Vk − Wk)|1{Wk>0} >

δS

2

)
(4.11)

= P

(∣∣(1 − kW̃k) + (
Ṽk − W̃k(NXk − k)

)∣∣1{Wk>0} >
δS

2

)

≤ P

(
|1 − kW̃k| > δS

4

)
+ P

(
|Ṽk − W̃k(NXk − k)| > δS

4

)
.

Let m = 3/2(1−r). The reason for this choice will become clear in (4.15). Until
then the reader should keep in mind that m is a fixed real number. Since �(x +
1) = x�(x) for all real x, we have �(k)/�(m + k) ≤ Ck−m for some constant C.
Therefore,

E[W̃m
k ] = �(k)�(m + 1)

�(m + k)
≤ Ck−m,(4.12)

so using (a + b)m ≤ 2m(am + bm) for a, b ≥ 0, we have

E[(1 + kW̃k)
m] ≤ 2m(

1 + E[(kW̃k)
m]) ≤ C.

Therefore, by Markov’s inequality, if k ≥ 2, then

P

(
|1 − kW̃k| > δS

4

)
≤ P

(
|1 + kW̃k| > δS

4

)

≤
(

δS

4

)−m

E[(1 + kW̃k)
m](4.13)

≤ C

(δS)m
,
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which bounds the first term on the right-hand side of (4.11).
Because of the restriction np ≥ 1 in Lemma 4.1, we must split the second

term in (4.11) into two pieces, depending on the value of W̃k(NXk − k). Let V ′
k

be a random variable such that, conditional on Gk , the distribution of V ′
k is

Binomial(NXk − k,1/(NXk − k)). We set V ′
k = 0 if NXk − k = 0. Note that

when W̃k(NXk − k) < 1, the conditional distribution of V ′
k given Gk stochas-

tically dominates the conditional distribution of Ṽk given Gk . By Lemma 4.1,
E[|V ′

k − 1|m|Gk] ≤ C. Note also that |Ṽk − W̃k(NXk − k)| = 0 on the event
{NXk − k = 0}. Therefore, if k ≥ 2, then

P

(
|Ṽk − W̃k(NXk − k)|1{W̃k(NXk−k)<1} >

δS

4

)

= E

[
E

[
P

(
|Ṽk − W̃k(NXk − k)|1{W̃k(NXk−k)<1} >

δS

4

)∣∣∣Gk

]]

≤ E

[
E

[
P

(
|V ′

k − 1| + 1 >
δS

4

)∣∣∣Gk

]]
(4.14)

≤
(

δS

4

)−m

E
[
E[(|V ′

k − 1| + 1)m|Gk]]

≤
(

δS

4

)−m

2m(C + 1) ≤ C

(δS)m
.

By Lemma 4.1, we get, for k ≥ 2,

P

(
|Ṽk − W̃k(NXk − k)|1{W̃k(NXk−k)≥1} >

δS

4

)

= E

[
E

[
P

(∣∣∣∣ Ṽk

NXk − k
− W̃k

∣∣∣∣1{W̃k(NXk−k)≥1} >
δS

4(NXk − k)

)∣∣∣Gk

]]

≤ E

[(
δS

4(NXk − k)

)−m

E

[∣∣∣∣ Ṽk

NXk − k
− W̃k

∣∣∣∣
m

1{W̃k(NXk−k)≥1}
∣∣∣Gk

]]

≤ E

[(
4(NXk − k)

δS

)m

C

(
W̃k

NXk − k

)m/2]

≤ C

(δS)m
E[W̃m/2

k (NXk − k)m/2].

By conditioning on Fk and noting that Wk is independent of this σ -field, we see
that this is at most

C

(δS)m
E[W̃m/2

k ]E[(NXk)
m/2] ≤ C

(δS)m

C

km/2 Nm/2
(

k

N

)mr/2
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by (4.12) and Lemma 4.2. Recalling that m = 3/2(1 − r), the above is at most

C

(δS)m

(
N

k

)m(1−r)/2

= C

(δS)m

(
N

k

)3/4

.(4.15)

Note that

N∑
k=2

(
N

k

)3/4

= N3/4
N∑

k=2

k−3/4 ≤ CN3/4N1/4 = CN.

Combining this fact with (4.11), (4.13), (4.14) and (4.15), which hold for k ≥ 2,
we get

N∑
k=1

P

(
|Xk(Vk − Wk)| > δS

2N

)
≤ 1 + CN

(δS)m
,

which completes the proof. �

Now that we have shown that VkXk and Wk(k/N)r are close with high proba-
bility, the next step is to calculate the probability that Wk(k/N)r is large. The next
two lemmas provide upper and lower bounds on the probability that Wk(k/N)r is
large. Recall from (1.3) that

g(S) = r�

(
2 − r

1 − r

)
NS−1/(1−r).

LEMMA 4.5. There is a constant C so that for 0 < δ < 1/2 and S ≤ 1
2N1−r ,

N∑
k=1

P

(
Wk

(
k

N

)r

≥ (1 − δ)S

N

)
≤ C + g(S)(1 + Cδ).

PROOF. The C on the left takes care of the term k = 1. Since the conditional
distribution of Wk given Wk > 0 is Beta(1, k − 1), we have, for all k ≥ 2 and
a ∈ (0,1),

P(Wk ≥ a) = r

∫ 1

a
(k − 1)(1 − x)k−2 dx = r(1 − a)k−1.(4.16)

Using the facts that (1 − a/x)x ≤ e−a if 0 ≤ a ≤ x and 1/(1 − x) ≤ 1 + 2x if
0 ≤ x ≤ 1/2, we have, for k ≥ 2,

P

(
Wk ≥ S(1 − δ)

krN1−r

)
= r

(
1 − S(1 − δ)k1−r

kN1−r

)k(
1 − S(1 − δ)

krN1−r

)−1

(4.17)

≤ re−S(1−δ)(k/N)1−r
(

1 + 2S

krN1−r

)
.
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Note that

N∑
k=2

e−S(1−δ)(k/N)1−r
(

1 + 2S

krN1−r

)
(4.18)

≤
∫ ∞

0
e−S(1−δ)(x/N)1−r

(
1 + 2S

xrN1−r

)
dx.

Letting y = S(1 − δ)(x/N)1−r , which means that x = y1/(1−r)M where M =
N(S(1 − δ))−1/(1−r) and dx = y1/(1−r)−1M/(1 − r) dy, we have∫ ∞

0
e−S(1−δ)(x/N)1−r

dx =
∫ ∞

0
e−yy1/(1−r)−1

(
M

1 − r

)
dy

= �

(
1

1 − r

)
M

1 − r
(4.19)

= �

(
2 − r

1 − r

)
N

(
S(1 − δ)

)−1/(1−r)
.

The same change of variables gives∫ ∞
0

e−S(1−δ)(x/N)1−r
(

2S

xrN1−r

)
dx

= 2S

N1−r

∫ ∞
0

e−y(
y1/(1−r)M

)−r
y1/(1−r)−1

(
M

1 − r

)
dy

(4.20)

= 2SM1−r

(1 − r)N1−r

∫ ∞
0

e−y dy

= 2

(1 − r)(1 − δ)
≤ C.

Because (1 − δ)−1/(1−r) ≤ 1 + Cδ, the claim follows from (4.17)–(4.20). �

LEMMA 4.6. There is a constant C so that for 0 < δ < 1/2 and S ≤ 1
3N1−r ,

N∑
k=1

P

(
Wk

(
k

N

)r

≥ (1 + δ)S

N

)
≥ −C + g(S)(1 − Cδ − Ce−S/2).

PROOF. Recall from the beginning of the proof of Lemma 3.2 that if
0 ≤ x ≤ 1/2, then log(1 − x) ≥ −(x + x2). It follows that if 0 ≤ a/y ≤ 1/2 and
a ≥ 0, then y log(1 − a/y) ≥ −a − a2/y, and so

(
1 − a

y

)y

≥ e−ae−a2/y ≥ e−a

(
1 − a2

y

)
.
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Therefore, if k ≥ 2, then

P

(
Wk

(
k

N

)r

≥ (1 + δ)S

N

)

= r

(
1 − S(1 + δ)

krN1−r

)k−1

(4.21)

≥ r

(
1 − S(1 + δ)k1−r

kN1−r

)k

≥ re−S(1+δ)(k/N)1−r
(

1 − S2(1 + δ)2k1−2r

N2−2r

)
.

We have

N∑
k=2

e−S(1+δ)(k/N)1−r

≥
(∫ ∞

0
e−S(1+δ)(x/N)1−r

dx

)
(4.22)

− 2 −
∫ ∞
N

e−S(1+δ)(x/N)1−r

dx.

It follows from (4.19) with δ replaced by −δ and M = N(S(1 + δ))−1/(1−r) that∫ ∞
0

e−S(1+δ)(x/N)1−r

dx = �

(
2 − r

1 − r

)
M

(4.23)

≥ �

(
2 − r

1 − r

)
NS−1/(1−r)(1 − Cδ).

To estimate the second term in (4.21) we note that

N∑
k=2

e−S(1+δ)(k/N)1−r
(

S2(1 + δ)2k1−2r

N2−2r

)

≤ CS2

N2−2r

∫ ∞
0

e−S(1+δ)(x/N)1−r

x1−2r dx.

Making the change of variables x = y1/(1−r)M and reasoning as in (4.20), we see
that this equals

CS2

N2−2r

∫ ∞
0

e−y(
y1/(1−r)M

)1−2r
y1/(1−r)−1

(
M

1 − r

)
dy

(4.24)

= C

(1 + δ)2

∫ ∞
0

e−yy dy ≤ C.
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For all real numbers b, there is a constant C such that xbe−x/2 ≤ C for all x > 1.
Using this fact and our favorite change of variables, we get∫ ∞

N
e−S(1+δ)(x/N)1−r

dx =
∫ ∞
S(1+δ)

e−yy1/(1−r)−1
(

M

1 − r

)
dy

≤ M

1 − r

∫ ∞
S

e−yy1/(1−r)−1 dy

(4.25)

≤ CM

1 − r

∫ ∞
S

e−y/2 dy

≤ CNS−1/(1−r)e−S/2.

The lemma now follows by combining (4.21)–(4.25). �

PROOF OF THEOREM 1.3. Let Ak be the event that {NXkVk ≥ S}, so FS,N =∑N
k=1 1Ak

. First, note that if the theorem is true for S = 1
3N1−r , then we know

that E[FS,N ] ≤ C for all S > 1
3N1−r , which implies the assertion in the theo-

rem. Therefore, it suffices to prove the result for S ≤ 1
3N1−r , in which case the

conclusions of Lemmas 4.5 and 4.6 will hold as long as we choose δ < 1/2. Let
A−

k = {NWk(k/N)r ≥ (1 − δ)S} and let A+
k = {NWk(k/N)r ≥ (1 + δ)S}. Let

F−
S = ∑N

k=1 1A−
k

and F+
S = ∑N

k=1 1A+
k

. Writing FS for FS,N , we have

|FS − g(S)| ≤ |FS − F−
S | + |F−

S − E[F−
S ]| + |E[F−

S ] − g(S)|.(4.26)

To prove the theorem, we will bound the expectations of the three terms on the
right-hand side of (4.26).

Note that A+
k ⊂ A−

k for all k and Ak�A−
k ⊂ (A−

k \A+
k )∪{|VkXk −Wk(k/N)r | >

δS/N}. By Lemmas 4.5 and 4.6, we have

N∑
k=1

P(A−
k \ A+

k ) ≤ C + Cg(S){δ + e−S/2}.(4.27)

By (4.8) and Lemmas 4.3 and 4.4, we have

N∑
k=1

P

(∣∣∣∣VkXk − Wk

(
k

N

)r ∣∣∣∣ >
δS

N

)

≤ 1 + C

(
N1−r

δS

)2/(3−2r)

+ C

(
N

(δS)3/2(1−r)

)
(4.28)

≤ 1 + Cg(S)

{
(NS−1/(1−r))−1/(3−2r)

δ2/(3−2r)
+ S−1/2(1−r)

δ3/2(1−r)

}
.

Combining the last two results, we get

E[|FS − F−
S |] ≤ C + Cg(S)(D1 + D2),(4.29)
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where D1 and D2 are the terms in braces in (4.27) and ( 4.28). To bound the second
term of (4.26), we use Jensen’s inequality and the fact that the A−

k are independent
to get

E
[|F−

S − E[F−
S ]|] ≤ E

[
(F−

S − E[F−
S ])2]1/2

= Var(F−
S )1/2 =

[
N∑

k=1

Var
(
1A−

k

)]1/2

(4.30)

≤
[

N∑
k=1

P(A−
k )

]1/2

≤ Cg(S)1/2 ≤ Cg(S)
(
NS−1/(1−r))−1/2

.

Furthermore, note that since Lemma 4.5 gives an upper bound for E[F−
S ] that

is greater than g(S) and Lemma 4.6 gives a lower bound for E[F+
S ] that is smaller

than g(S), the difference |E[F−
S ] − g(S)| is less than or equal to the difference

between these two bounds, which itself was bounded in (4.27). Combining this
observation with (4.26), (4.29) and (4.30), we see that

E[|FS − g(S)|] ≤ C + Cg(S)
(
D1 + D2 + (

NS−1/(1−r))−1/2)
.

To prove the theorem, we need to show that each part of D1 + D2 is bounded
by S−a or (NS−1/(1−r))−b for some positive constants a and b. Letting R =
NS−1/(1−r) to simplify notation, it is enough to bound

δ + R−1/(3−2r)

δ2/(3−2r)
+ S−1/2(1−r)

δ3/2(1−r)
.

To do this, we let δ = A(S−c + R−d), where 3c < 1 and 2d < 1, and choose A

to ensure that δ < 1/2. To optimize the bound we set (1 − 3c)/2(1 − r) = c and
(1 − 2d)/(3 − 2r) = d . Solving gives c = 1/(5 − 2r) and d = 1/(5 − 2r). �

5. Sizes of the largest families. In this section we study the largest families,
whose sizes are O(N1−r ), and we prove Propositions 1.4 and 1.5. The key to
our arguments is the following well-known result about Yule processes, which is
discussed in Chapter III of [7]. Suppose (X(t), t ≥ 0) is a Yule process started with
one individual at time zero in which each individual splits into two at rate λ. Then,
there exists a random variable W such that

lim
t→∞ e−λtX(t) = W a.s.

and W has an exponential distribution with mean 1. A consequence of this fact is
that if X1(t), . . . ,Xk(t) are k independent Yule processes, each started with one
individual at time zero, then

lim
t→∞

X1(t)

X1(t) + · · · + Xk(t)
= B a.s.,(5.1)
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where B has the Beta(1, k − 1) distribution.

PROOF OF PROPOSITION 1.4. The k = 1 case was proved by Angerer [2],
so we may fix k ≥ 2. Let Ik denote the kth individual to enter the population.
Let Dk,N be the number of descendants of Ik in the population at time TN , when
the total population size reaches N , and let Gk,N be the number of those descen-
dants having the same type as Ik . It follows from (5.1) that

lim
N→∞

Dk,N

N
= Bk a.s.,

where Bk has the Beta(1, k − 1) distribution. Also, by the same argument as in the
k = 1 case, we have

lim
N→∞

Gk,N

(Dk,N)1−r
= Mk a.s.,

where Mk has the Mittag–Leffler distribution with parameter 1 − r . Moreover,
since the descendants of Ik form a Yule process and mutations are neutral,
Mk and Bk are independent.

Recall that Rk,N is the number of type-k individuals in the population at
time TN . On the event that the kth individual born is a mutant, we have
Rk,N = Gk,N . Therefore

Zk = lim
N→∞

Rk,N

N1−r
= lim

N→∞
Gk,N

(Dk,N)1−r

(
Dk,N

N

)1−r

= MkB
1−r
k

almost surely on the event that the kth individual born is a mutant. Proposition 1.4
follows because Mk and Bk are independent of the event that the kth individual is
a mutant. �

It remains to prove Proposition 1.5. We will need the following lemma.

LEMMA 5.1. Given ε > 0, there exists a positive integer L such that for suffi-
ciently large N ,

N∑
k=L

P (Rk,N ≥ N1−r ) < ε.(5.2)

PROOF. We have Rk,N = NVkXk , so P(Rk,N ≥ N1−r ) = P(VkXk ≥ N−r ).
From ( 4.9) with S = N1−r and δ = 1/2, we get

N∑
k=L

P

(∣∣∣∣Wk

(
Xk −

(
k

N

)r)∣∣∣∣ >
N−r

4

)
≤ 2C

1 − r
(L − 1)−(2−2r),(5.3)
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which is less than ε/3 for sufficiently large L. By Lemma 4.4, again with
S = N1−r and δ = 1/2,

N∑
k=L

P

(
|Xk(Vk − Wk)| > N−r

4

)
<

ε

3
(5.4)

for sufficiently large N as long as L ≥ 2, because the 1 on the right-hand side
of (4.10) comes from the k = 1 term. Finally, (4.16) implies that for L ≥ 2,

N∑
k=L

P

(
Wk

(
k

N

)r

>
N−r

2

)
=

N∑
k=L

P

(
Wk >

1

2kr

)
=

N∑
k=L

r

(
1 − 1

2kr

)k−1

,(5.5)

which is also at most ε/3 for sufficiently large L. The lemma follows from (5.3),
(5.4) and (5.5). �

We now review some facts about the Mittag–Leffler distribution. Let X be a
stable random variable satisfying E[e−λX] = e−λα

, where 0 < α < 1. Then, it is
well known (see [30], Section 0.5) that X is nonnegative and has density

fα(x) = 1

π

∞∑
k=0

(−1)k−1

k! sin(παk)
�(αk + 1)

xαk+1 , x > 0.(5.6)

It follows from [36] that if A1 = α1/(2(1−α))(cos πα
2 )−1/(2(1−α))[2π(1 − α)]−1/2

and A2 = (1 − α)αα/(1−α)(cos πα
2 )−1/(1−α), then

fα(x) ∼ A1x
−1−α/(2(1−α)) exp

(−A2x
−α/(1−α)),

where “∼” means that the ratio of the two sides tends to 1 as x ↓ 0. The Mittag–
Leffler distribution with parameter α ∈ (0,1) is the distribution of Y = X−α .
Therefore, if gα denotes the density of Y , a change of variables gives

gα(x) = fα(x−1/α)

αx1+1/α
∼ A1

α
x1/(2(1−α))−1 exp

(−A2x
1/(1−α)),(5.7)

where “∼” means that the ratio of the two sides tends to 1 as x → ∞. In the
following proof, C is a positive constant whose value may change from line to
line.

PROOF OF PROPOSITION 1.5. Let g be the density of M , which has the
Mittag–Leffler distribution with parameter 1−r . By (5.7), there exists a constant C

such that g(x) ≤ Cx1/2r−1e−A2x
1/r

for all x ≥ 1. Therefore, if x ≥ 1, then, making
the substitution y = A2z

1/r , we get

P(M ≥ x) ≤ C

∫ ∞
x

z1/2r−1e−A2z
1/r

dz

= Cr

A
1/2
2

∫ ∞
A2x

1/r
y−1/2e−y dy(5.8)

≤ Ce−A2x
1/r

.
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Fix a positive integer L. It follows from Proposition 1.4 and (5.8) that there is a
constant C such that

lim
N→∞

L∑
k=2

P(Rk,N > xN1−r ) = r

L∑
k=2

P(MB1−r
k > x)

= r

L∑
k=2

P

(
M >

x

B1−r
k

)

≤ Cr

L∑
k=2

E
[
e−A2(x/B1−r

k )1/r ]

= Cr

L∑
k=2

∫ 1

0
(k − 1)(1 − y)k−2e−A2(x/y1−r )1/r

dy.

Note that
∞∑

k=2

(k − 1)(1 − y)k−2 =
∞∑

k=2

k−1∑
i=1

(1 − y)k−2

=
∞∑
i=1

∞∑
k=i+1

(1 − y)k−2 =
∞∑
i=1

(1 − y)i−1

y
= 1

y2 .

Therefore, making the substitution z = A2(x/y1−r )1/r and using the fact that, for
all real numbers b, there is a C > 0 such that zbe−z ≤ Ce−z/2 for all z ≥ A2, we
get

lim
N→∞

L∑
k=2

P(Rk,N > xN1−r )

≤ Cr

∫ 1

0
y−2e−A2(x/y1−r )1/r

dy

(5.9)

= Cr2

(1 − r)A
r/(1−r)
2 x1/(1−r)

∫ ∞
A2x

1/r
z(2r−1)/(1−r)e−z dz

≤ Ce−A2x
1/r /2.

By combining (5.9) with (5.8) for the k = 1 case, we get

lim
N→∞

L∑
k=1

P(Rk,N > xN1−r ) ≤ 1
2C1e

−C2x
1/r

,

where C1 and C2 are constants that do not depend on L. The proposition follows
by letting ε = 1

2C1e
−C2x

1/r
and choosing L as in Lemma 5.1 such that (5.2) holds

for sufficiently large N . �
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