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STOCHASTIC EQUIVARIANT COHOMOLOGIES AND
CYCLIC COHOMOLOGY

BY REMI LEANDRE
Université de Bourgogne

We give two stochastic diffeologies on the free loop space which allow
us to define stochastic equivariant cohnomology theories in the Chen—Souriau
sense and to establish a link with cyclic cohomology. With the second one,
we can establish a stochastic fixed point theorem.

1. Introduction. Let us consider a finite-dimensional orientable maniféfd
of even dimension. Let us suppose that it is endowed with an action of the
circle §1, that is, a smooth map of groups— v, from the circle into the set
of diffeomorphisms of the manifold. We can suppose since the circle is compact
that it is an action by isometried./dro = X is called the Killing vector field
onM.

Duistermaat and Heckman [16] and Berline and Vergne [8] have considered an
integral of the following type:

(1.1) /M expl—dX — | XI21A p

and have shown that this integral is equal to an integral over the fixed point set of
the circle action, that is, the manifold where the Killing vector field vanishes. We
have only, in order to show this localization formula, to suppose(thati x)u = 0
(this means that is equivariantly closed) and thatis of even degree. In order to
understand (1.1), let us remark that we can endpwith a Riemannian structure
invariant under the circle actioiX can be considered alternatively as a vector field
or as a 1-form: in (1.1)4 X is considered as the exterior derivative of the 1-form
X and |X|? = ixX is a scalar. Forms of even degree constitute a commutative
algebra. Therefore expd X — | X|?] = exd—|X |21 Y. ©Xax " and in (1.1), we
consider the integral of the top degree form. '

This leads to the concept 6f-equivariant cohomology af. We consider the
set of invariant forms under the circle action #h If a form is invariant under
rotation, its Lie derivative for the Killing vector fieldd + ix)2 = dix + ixd
is equal to 0. This shows that the equivariant exterior derivativeix defines
a complex on the set of forms invariant by rotation. This complex is called the
S1-equivariant complex. The main theorem of Jones and Petrack [30] is that the
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s1-equivariant cohomology is equal to the de Rham cohomology of the fixed point
set under the circle action of the manifold.

Let us recall how Jones and Petrack proceed in order to prove this theorem. They
remark that the fixed point set of the Killing vector field (the set whére 0) is
a manifold. They assume that there is a neighborhBoaf the fixed point set
which is invariant under rotation and which retracts equivariantly{ n= 0}.

They deduce that the equivariant cohomology7ofis equal to the de Rham
cohomology of the fixed point set: namely, the equivariant cohomology of the fixed
point set is equal to the traditional de Rham cohomology of it, bec&us) on

the fixed point set. They remark that the equivariant cohomologyXof 0} is
trivial: namely, X considered as a 1-form is such thdt+ ix) X is invertible in

the algebra of forms invariant under rotation £Xi # 0}. They conclude by a
Mayer—Vietoris argument: namely, the equivariant cohomolog¥ a§ equal to

the de Rham cohomology of the fixed point set, and the equivariant conomology
of T N{X # 0} and of{X # 0} is equal to 0. We get a cover &f by open subset
invariant by rotation, such that we can apply the mechanism of the long exact
sequence of Mayer and Vietoris.

We are interested in an infinite-dimensional generalization of this work.
Namely, in theoretical physics, people consider the free loop spadecdsmooth
mapsy from the circlest into M. Let us consider a compact spin manifold such
that the smooth free loop spaée.(M) of smooth mapg’ from the circle Sy
into M is orientable. It carries a natural circle action, and the fixed point set is
the manifold itself. The generator of this circle acti&n,, called the canonical
Killing vector field, is the vector over a loop which koassomateé’— Namely,
the fiber iny of the tangent space @f., (M) coincides with the space of smooth
sections of the bundle on the circleé T (M) whereT (M) is the tangent bundle
of M. It consists of smooth maps from the cirgle> X (s) into 7 (M) such that
X (s) belongs to the fiber of the tangent bundlejoR). s - Xeo(s) =d/dsy (s)
is such a smooth map because we consider the smooth loop space.

Following Atiyah [6], the index of the Dirac operatdr, over M should satisfy

(1.2) IndD, = C / eXf—d X oo — | Xoo|2]
Loo(M)

such that the index theorem over the manifold should be a localization formula in
infinite dimension in the manner of Duistermaat and Heckmann [16] or Berline and
Vergne [8]. In (1.2), Atiyah considered tii& metric on the tangent spagéT (M)

of a loopy. In particular, we remark thaiX |2 is nothing else but the energy of
the loopy [ |d/dsy (s)|?ds. Bismut [10, 11] pioneered the relation between the
equivariant cohomology of the loop space and the index theory by considering
the Dirac operator oveM tensorized by an auxiliary bundle. He introduced the
Bismut—Chern character over the free loop space, which is equivariantly closed,
and which is related to the index theorem of the Dirac operator. The Bismut—Chern
character is associated to the bunglle on the free loop space deduced from the
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bundle¢ on M as follows: the fiber 0., ony consists of smooth sections of the
bundle ons(y*¢). The reader interested in further developments about this topic
by physicists can see the book of Szabo [60] and the references therein.

So the equivariant cohomology of the free loop spaces gives topological
invariants. Jones and Petrack [30] show that the equivariant cohomology of the
smooth loop space is equal to the cohomology of the manifold, by localization.
Getzler, Jones and Petrack [22] introduce iterated integrals and establish a link
between the equivariant conomology of the loop space and the cyclic conomology.
Inspired by this, Getzler [21] defines algebraically a current over the loop space,
which by localization gives the index theorem.

Our motivation is to give an analytical meaning to the current of Getzler [21].
For that, we need a measure over the free loop space. We choose the B—H-K
measure, which is invariant under rotation [10, 11, 25]. Let us recall quickly the
definition of the B-H—K measure. Let be the Laplace—Beltrami operator ah.

Let p;(x, y) be the heat kernel associated to the heat semigrowp.dretd P . be
the law of the Brownian bridge starting fromand coming back at time 1 to.
The B—-H-K measure is given by

X)dx ®dP
13 g LD X D AP
[y p1(x, x)dx

In some sense, it is the uniqgue measure on the free loop space which is invariant
under rotation [18] and which is constructed from the Brownian bridge measure.

The first remark is that the equivariant cohomology of the free loop space is
related to a series of forms of arbitrary degree. Jones and Léandre [29] have
introduced a Hilbert tangent space over a random loop, which was given in
a preliminary form by Bismut [9]. This allows us to define &f theory of
forms over the loop space and to show that the Bismut—Chern character belongs
to all the L?. By using the integration by parts over the free loop space of
Léandre [33, 38], we can establish in the line of Malliavin calculus a Sobolev
cohomology theory over the Brownian bridge, show that the Sobolev cohomology
groups of the loop space are equal to the Hochschild cohomology groups [35,
37, 41, 43, 45] if the manifold is simply connected, and show therefore that the
Sobolev cohomology groups are equal to the cohomology groups of the smooth
loop space.

In functional analysis, there are differential calculi that are different from the
classical calculus. Let us recall, for instance, what is a Frélicher space [31] (or
a space endowed with a smooth structure). A spcendowed with a vector
spaceF; of maps fromM into R and a setC,, of maps fromR into M is called
a Frolicher space if and only if the two following conditions hold:

(i) f belongs taFy, if and only if for allc in Cyy, f ocis a smooth map froriR
into R.

(ii) ¢ belongstaCy, ifand onlyifforall f in Fy, f ocis asmooth map froriR
into R.
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Let(M, Fy, Cy) and(M’, F,,, C},) be two Frélicher spaces. A magprom M
into M’ is said to be smooth if’ o ¢ belongs toF,; as soon ag’ belongs toF;,,
or, equivalently, if¢ o ¢ belongs toC’, as soon as belongs taCy, [31].

There is another calculus, which deals with forms, and which was introduced
by Chen and Souriau, which is analogous to Frélicher calculus. Let us recall
what a diffeology on a topological spadé is. It is constituted of a collection
of maps (¢y, U) from any open subsdt/ of any R” satisfying the following
requirements:

(i) If j:U1 — Uzis asmooth map frony into Uz, and if (¢y,, Uz) is a plot,
(¢u, o j, Uy) is still a plot called the composite plot.
(i) The constant map is a plot.
(i) If Uy and Uz are two open disjoint subsets &* and if (¢y,, U1) and
(¢u,, Uz) are two plots, the union mafy;,uy, realizes a plot front/1 U Uz into M.

This allows Chen and Souriau to define a form. A fosmis given by the
data of formsg;;c on U associated to each plopy, U). The system of forms
overU ¢;,0 has moreover to satisfy the following requirementdf, o j, Uy) is
a composite plot(¢y, o j)*o is equal toj*qbz;za.

The exterior derivativéo of o is given by the datd¢;;o.

The main example of Souriau is the following: &t be a manifold endowed
with an equivalence relation. We can consider the quotient spadeLetr be the
projection fromM ontoM . A map¢ from an open subsét of a finite-dimensional
linear space is a plot with values i if, by definition there is a smooth lift
from U into M such thap = 7 o ¢.

The ideas of Chen and Souriau lead to another stochastic differential calculus,
which deals with forms almost surely defined as in Malliavin calculus, and which
is more flexible: it is the stochastic Chen—Souriau calculus (see [13, 26, 59] in the
deterministic case). There are many diffeologies which lead to different stochastic
de Rham cohomology theories, but in general these stochastic cohomology
theories are equal to the de Rham cohomology groups of the smooth loop space or
the Holder loop space [40, 44, 46, 49].

The fact that the stochastic Chen—Souriau calculus is more flexible than the
Sobolev calculus allows us in this present work to deal with the stochastic
equivariant cohomology of the free loop space, althodgh is not defined over
the Brownian bridge, because the Brownian loop is not differentiable.

In the first part, we define a poor diffeology, which is very simple, and allows
us to define a stochastic equivariant cohomology of the free loop space. There are
a few stochastic plots, such that we get many forms, smooth in the Chen—Souriau
sense: let us recall, for example, that if a diffeology is included in a second one,
a form for the second one is still a form for the first one. We require that the
operationy,; gotten by rotating a loop is smooth for the considered diffeology,
that it transforms a stochastic plot into a stochastic plot. This shows that the
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set of stochastic forms is invariant under rotation. We establish a link between
the equivariant cohomology in this sense and the cyclic cohomology. We show
that the stochastic equivariant cohomologylagfM) — M is zero, but we cannot
prove by using this diffeology a fixed point theorem, because we cannot produce
a retract of an equivariant small contractible neighborhood of the constant loop
which is compatible with this diffeology. Namely, we have to produce a retract
which satisfies the two requirements: it is smooth for the considered diffeology
and commutes withy, for all 7 in S2.

For that reason, we consider in the second part a richer diffeology, but more
artificial than the first one, which allows us to produce this retract. This gives a
fixed point theorem: the equivariant cohomology with respect to this diffeology is
equal to the cohomology aif. The relation with cyclic conomology is performed
by using the theory of anticipative Stratonovitch integrals of Léandre [35] over the
loop space.

Let us recall the previous work in order to defilig,: in [38], the stochastic
Killing vector field is defined as an antisymmetric operator of order 1, which
is densely defined, therefore closable. But this construction does not work for
forms. In [36] the interior product by the stochastic Killing vector field is
defined as a fermionic Hida distribution [24], but the program failed because the
iterated integral does not belong in the domain of this distribution. White noise
analysis [24] has defined the derivative of the flat Brownian motion in another
way. Léandre [51] has defined the speed of the curved Brownian bridge as a white
noise distribution operating on stochastic iterated Chen integrals. Léandre [50] has
considered the case of the hypoelliptic bridge; the difference with the work here
is that the considerations of Léandre [50] are not intrinsic, because Hoérmander’s
type operator is written under a nonintrinsic form. Moreover, the relation with
Léandre [50] and index theory is not clear.

The reader can see the two surveys of Léandre about analysis over loop space
and topology [42, 48] and the survey of Albeverio [2] about analysis on loop space
and mathematical physics.

2. Study of thefirst diffeology. Let us consider the free loop space of finite
energyLi(M), that is, the set of maps from the circleS; into M such that

1
(2.1) /0 |d/dsy (s)|?ds < oo.

It is a Hilbert manifold. A deterministic plapget Of dimensiorm is given by the
following data:

(&) U an open subset &,
(b) a smooth maggetfrom U into L1(M).

The set of all deterministic plots df1(M) constitutes a diffeology [13, 26, 59].
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DEFINITION 2.1. A deterministic formoget On L1(M) is given by the
following: to each plotpger, We associate a smooth foroy = ¢j.odet Over U.
Moreover, the set of finite-dimensional formg odet Satisfies the following
property: if j: U1 — Uz is a smooth map and iy get iS a plot with parameter
spacelz, we can consider the plgl get= ¢2.deto j. Then

(22) ¢ide10'det = j*¢zdelo'det-

REMARK. Since a smooth function fror@¥ into R is smooth if and only if
its restriction to each smooth path &h is smooth, it is equivalent to saying that
a functional is smooth in the Chen—Souriau sense or is smooth in the Frélicher
sense. We take &Sy, (v the space of smooth curves froRninto L1(M) and
as Cr,u) the space of mapg from L1(M) into R such thatf o ¢ is smooth
for all ¢ in Cr,m). But L1(M) is a Hilbert manifold. A curver from R into a
Hilbert spaceH is smooth if for allz in H, (h, ¢) is smooth fromR into R ([31],
Theorem 2.14).

REMARK. Our notion of form is an adaptation in our situation of the notion
of functional smooth in the Gateaux sense on the loop space.

A Frechet smooth form gives a deterministic form in this sense. We can consider
n vector fieldsX; onU. ¢ 0det= 0 (¢ded (Dx;Pdet. - - - » Dx, Pdet) DECaAUSE Since
¢detis Frechet-smoothD x, ¢get realizes naturally an element of the tangent bundle
of L1(M) in ¢get. A tangent vectos — X, on a loop belonging td.1(M) can be
writtens — 1, H; wherert, is the parallel transport on the loop. Moreover> H;
is of finite energy. Therefore the fiber over a loop of the tangent bundle of the
loop space is a Hilbert space. We can define the cotangent bundle as usual and the
n-exterior power of the tangent bundle. We get a Hilbert burrdi€éL,(M)) of
n-form overL,(M) and amm-form is a smooth section of this bundle.

On the free loop space, there is a natural circle aafipry — {s — y (t + )},
which is a smooth transformation of the finite energy loop space. Its generator is
called X~ det and is not a vector field ovel1(M): Xoo.det(y)(s) = d/dsy (s).
(In a more convenient way, we should look to the smooth loop space in order to
speak of a smooth circle action, which is endowed with the strucure of a Frechet
manifold, and replace the previous considerations by the Frechet topology on the
smooth loop space. In the sequel, we should replace the polygonal approximation
by approximation by convolution.) We can consider forms in the present sense
weaker than an ordinary form ovér, (M), the smooth free loop space endowed
with the Frechet topology. As before, a traditional form o¥gg (M) is a form
in this sense. Namely, a vector over a smooth lgogoincides to a smooth
section overy of the tangent bundle o#f, such that am-form coincides with
ann-antilinear distribution, which depends smoothly prtin L., (M). A tangent
vector over a loop — X is writtens — 1, H; wheres — H, is smooth such that
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t1H1 = Hp. The tangent space of is a Frechet space. The cotangent space of
coincides with the dual of the Frechet space which gives the tangent space of
We denote i1T;‘. We can consider the bundle ®forms A" (Lo (M)) of Loo(M).
An n-form can be seen as the set of alternated continuous forni, o8ince
the tangent bundle of (M) is locally trivialized and sincez — 11 is smooth
for the Frechet topology ol (M), ann-form can be seen as a smooth section
of A" (L (M)) (see [31] for analogous discussions). The previous considerations
are easier to see on the based loop sgaceg (M) of loops starting fromx and
arriving atx. A tangent vectoX (-) on a loopy can be seen a% (s) = t(s) H (s)
wherert (s) is the parallel transport from(0) to y (s) along the loops andH (-) is
a smooth path i}, o (M) such thatH (0) = H(1) = 0. The tangent bundle of
the smooth based loop space is therefore trivigi.can therefore be realized
as a fixed space of distributions, endowed with its dual topology. A 1-form is a
smooth application in the Frechet sense in this space of distributions. A natural
extension can be done for the definition of Frechet-smaeitrm on the smooth
based loop space. In the sequel, we will use the notion of forms smooth in
the Chen—Souriau sense weaker than the traditional definition of forms smooth
in the Frechet sense, because it is more consistent with the framework of this
work. We define the exterior derivative of a deterministic farga; by the set of
relationsd (¢ j.0det = ¢*(dogep for any plot. This checks clearly the relations of
Definition 2.1.

In the following, we will use the notion of extended plp§Xi(u, t) of a plot:
uelU;teS.

(2:3) ottt () = Vidaetu)(s).
DEFINITION 2.2, ix_, 4OdetiS given for a plotget by
(2.4) Pt Xoo.de0det(1t) = iy Gat Odetu, 0).

DEFINITION 2.3. A formogetis called invariant under the circle action if for
all t frozen
(2.5) Pant " Tdet, 1) = Pau “ogetu, 0).

Let us recall thagSs *odeu, ) is a form onU x St. 2 is a vector field
onU x SL. [ig/9: 55 odet(u, 0) is the forme$X¥oger(u, 0) (L, ).] If oetis issued
from a form in the classical sense over the Frechet manifQld /), we have
that it oget(ut, 0)(-, 57) = odet(-, 37 ¥o(¢derw))). But the quantitys; vo(daet(u))
is nothing else thaX « det(¢det(2)). SO Definition 2.2 is consistent.

Over U x S1, we have a natural circle action. Anform is invariant under
the circle action over the free loop space if for all plots, the fa] %*adet is
invariant under the circle action ot x S1. X o.det COrresponds to the vector
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field 2 on U x S. On U x S%, the invariant forms under rotation are written
o(u) + o1(u) A dt whereo (u) andoy(u) are forms ony which do not depend
ont.

If a deterministic form is invariant under rotation, we have, by seeing plots:

(26) d(iXoo,detUdet) + iXm,det(dUdet) =0.

Namely, we can consider the Lie derivative of tm%{*odet(u,t), which does
not depend on, in ther direction. Then we use the formula expressing the Lie
derivative Ly along a vector fieldX in terms of the exterior derivative and the
interior product along the vector field:y = dix + i xd. Sinced? = 0 and since a
double interior produdly ., 4. x ., «@det= 0, we deduce the following theorem:

Let A§Y; be the set of formal series of deterministic forms invariant by
rotation overL (M) of even degree and let33¢ be the set of formal series of
deterministic forms invariant by rotations of odd degrees. We defiffe= AS),

2k+1 _ 4 odd
andAdet = Aget-

THEOREM2.4. d +ix_ 4, realizes a complex from¥, into A&5! for all k.

Let L(M) be the continuous free loop space. lletbe the Laplace—Beltrami
operator associated to the Riemannian metric over the compact manifold, which
is imbedded isometrically ifR¢. The heat semigroup has a heat kerpgl, y).
Letd P1 . be the law of the Brownian bridge starting froimand coming back at
time 1 atx. We put (see [10, 11, 25]):

dx ®@dP
2.7) Ay = p1(x,x)dx @ d Py
fM pl(-x’x)dx

It is a probability measure ovdt(M), which is invariant under the natural circle
action on the loop space.

DEFINITION 2.5. A stochastic plot of dimensian ¢st = (U, ¢;, Q2i)ieN IS
given by the following data:

(a) afixed open subsét of R™,

(b) a countable measurable partiti@n of L(M),

(c) a family of smooth applicationg, s, y) — Fi(u,s,y) fromU x S1 x M
bounded with bounded derivatives of all orders (if we work initially over the finite
energy loop space, we suppose only it has finite energy) iand a family of
applicationr; : U — S constants on each connected componeiit of

(d) overR2;, ¢;(u) ={s — Fi(u,s, y(s +r;(u)))} belongs toL(M).

REMARK. The system ofF; tells us how we deform the random logp
we allow to deform the random loop via cylindrical functional as, for instance,
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F(s,s,v5) = exp, o [u(y(s) — yi(s))] where exp, (s [v] is the Riemannian expo-
nential centered ify; (s) and wherev is a vector inTy, ). (v (s) — yi(s) = w is the
unigue vector such that expwl=y(s) for a smooth loop; close fromy.) In
the third part, we will give an extended way to deform the lgopve refer to [43]
for a way of deforming the loop in all the class of semimartingales.

We remark thaty, ¢t is still a stochastic plot. It is given by — F;(u,s +
t,y(s + ri(n))) on ¥, Q;. (We consider the covey,2; of the free loop space
instead of the cove®;.)

Let QV be the set of loops such that SUR <N d(¥(s), v (@) <r where
d is the Riemannian distance ov#f andr is a small positive real number.
By considering the partitior2; N QV, we can suppose that in Definition 2.5,
each; is imbedded in arQ”. If y € QV, we denote byy" its polygonal
approximation by broken geodesics, if we work over the finite energy loop space.
If we work over the smooth loop space, we regularize the lpags follows: we
consider its convolution ifiR?, where the regularizing kernel is a support smaller
than I/N; we get a loopy" in R? which is never far fromM. We consider
the projection functionr from a tubular neighborhood d@# (which is supposed
imbedded inR¢) into M conveniently extended t&“, and we puty = 7y,
For the stochastic integrals which are considered in this part, the two types
of approximations lead to the same result, because we consider nonanticipative
Stratonovitch integrals, but in the next part, this will lead to some complications.
Let ¢st = (U, ¢;, ;) be a stochastic plot. We define the approximated plot in
the deterministic loop spagg of length N associated tes; by: if Q; € QV,
oN () ={s — Fi(u,s,y(s +ri(w))V} overp Q.

Let us remark thabi‘lON is included into¢>i‘lQ]‘“rl and their union is equal
to U overQ;.

¢ defines a random plot ovet;(M), or in order to be more rigorous, a
stochastic plot ovel. (M) the smooth free loop space, if we use the convolution
approximation. We can give the notion of stochastic form in a way which is a little
bit more sophisticated than in [40]. In the remaining part of this work, we will
work always onl ., (M).

DEFINITION 2.6. A stochastic forna; is given by the following data:

(i) A deterministic formoget OVer Lo, (M) which is called the skeleton of the
deterministic form.

(i) To each stochastic plapsi = (U, ¢;, 2;)ieN, ¢Q{*adet tends in probability
to a random form ovet/ ¢gos: for the smooth topology with compact support.
This means that over ea&k;, over eachzsl.‘lQN, ¢I.N’*odet for N’ > N tends for
this topology to the restriction @f%ost to this open subset @f .
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REMARK. oget is only defined byos, because we can consider the plot
u— {s - F(u,s)} with values inL,(M). Namely, a smooth functio#gy : U —
Lo(M) can be seen as a smooth function foth x S with values in

Mu,s) — ¢y(s).

REMARK. Let j:U; — Uz be a deterministic map fron/; into U». Let
¢2 = (U2, ¢?, Q)ien be a stochastic plot and lgt; = (U1, ¢? o j, Q)ien be
the composite plot. We get almost surely as random form

(2.8) j*¢§t*gst = d’ét*ast-

Moreover, letpl,= (U, 1, @1)icn andepd = (U, ¢2, Q?)J-GN be two stochastic
plots. Let us suppose that there exists a random transformdtimam somte.1
into som&Q? such thatbjz. = ¢? o W. Then, almost surely,

(2.9) ¢ ost= ¢ osto W

as random form ovel.

The two properties (2.8) and (2.9) constitute the basic properties of a random
form in our previous works [40, 46].

A random formoyg; is said to be invariant by rotation if its skelet@Re; is
invariant by rotation. By the second property of Definition 2.6,0i is a
random form with skeletomwget, dost is still a random form and its skeleton
is doget. Namely,dog; satisfies clearly the requirement of Definition 2.6 because
qbé\t’*dadet: dqﬁg{*adet. Therefore the stochastic exterior derivative defines a
complex over the set of random form. It is not the same fQrost, whereX o, is
the stochastic Killing vector field which formally generates the circle action over
the free loop space.

DEFINITION 2.7. A stochastic fornvg with skeletonoget has an interior
productix  if ix_ 4odet defines a stochastic form. This stochastic form is
calledix_ ost.

REMARK. Let us see what these definitions mean with some examples. If
Faet= [s1 |d/dsy (s)|?ds, Fget does not define a stochastic functionalwlfis a
one form onM, Fget= [q1(w(y(s)).dy(s)) defines a stochastic functional. Let
es be the evaluation map(-) — y (s). efw = oget defines a stochastic form, but
this stochastic form does not admit an interior product by the stochastic Killing
vector field, unlike the stochastic forfig: ejw ds.

Clearly, ifix ost exists,ix_ix.ost= 0. If ix_ ost exists,dix_ ost €Xists, but it
is not clear thaty_ dost exists.
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DEFINITION 2.8. A% is the set of formal series of even stochastic forms
which are invariant under rotation and which admit an interior produckky
A%+1Lis the set of formal series of odd stochastic forms which are invariant under
rotation and which admit an interior product &y.

If a form of given degree invariant under rotation admits an interior product
by X, its skeletornyyet satisfies

(210) d(iXoo,dePdet) + iXoo,de[(deet) =0.
Thereforeix_ dos; exists and we have the relation
(2.11) d(ix.,0st) + ix, (dosp = 0.

We therefore get:

THEOREM2.9. d + iy, defines a complex from¥, to A% Itis called the

stochastic equivariant complex

lts cohomology groupsH3® and HE' are called the stochastic equivariant
cohomology groups with respect to this diffeology.

Let us give an example. Lét" be an element of the algebraic tensor product
QM) ® Q.(M)®"1 whereQ (M) denotes the space of smooth forms owér
and Q.(M) denotes the space of smooth forms of degree not equal to O. If
" =w1 Qw2 ® -+ Q w,, we define its degree by

n
(2.12) dega” = degwi + »_(degw;) — 1).
i=1
In the sequel, we will denote bg? the sum of finite sums of elementary tensor
products of even degree. We get an analogous definitiafof’.
Letd" =w1 @ w2 ® - - - ® wy,. Let us introduce the Hochschild boundary:
n—1
b@) =) 6i01® - @wi Awit1 ®wp

i=1

(2.13) +ewp A1 Qw2+ Q@ wy_1

n
+) Ew1®  Qwi—1®dw; ® - ® wy.
i=1
The signse; ande; are given in [22]. The Hochschild boundary increases the
degree by one unit.
Let us define the cyclic boundary opera®of Connes [14, 22, 53]:

n
(2.14) B@ =) e/l0w  Qu,@w1®02® - Q@ wj_1.
i=1

The signs:] are given in [22].B decreases the degree by one unit.
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Let us recall (see [22]) thak + B realizes a complex fronC* into Ck+1
called the cyclic complex. Let us introduce the equivariant stochastic intEgral
defined by

1
(2.15) T = / ety A / ¢ w2 dysg ) A A S on(dr,. )
0 §<Sp<S53<<§py <s+1

wheree; denotes the evaluation map— y (s). Let us clarify what we mean
by efw(dys, -). It is nothing else thaiy . e5w(-)ds, if we work overLoo(M).
" realizes a smooth form ovér,, (M). The Hochschild boundary corresponds
to the exterior product of the iterated integral. The Connes operator corresponds to
the interior product of the iterated integral by the canonical deterministic Killing
vector field X« det. In general, Chen forms are obtained when we remove the first
integralfo1 in (2.15) and we take = 0. These nonequivariant Chen forms will lead
to stochastic forms which do not admit an interior product by the stochastic Killing
vector field, unlike the equivariant one in (2.15).

We get from the rules of approximation of nonanticipative Stratonovitch
integrals the following theorem:

THEOREM2.10. X&" defines a random forgiw”.

Let us explain Theorem 2.10. Let us consides w1 @ w2 ® - - - ® w,,, Where
the degree ofy; is equal tor;. We extend the formw; by forms with bounded
derivatives of all orders oveR?. Let ¢; (u) = {s — F;(u,s, y(s +ri(u)))} be a
stochastic plot and IeﬁiN be its regularization by convolution. Lef;; be some
vector fields ovelU wherei; € [1,r;, —1]if i > 1 and J; € [1, r1]. Modulo some
antisymmetrization which is due to the fact that we take some exterior product in
the iterated integrals we get

Nx < ~
P; Ea)(Xll, el Xlrl’ D, & FP erz—l’ cos Xpgsoen, an”_l)

1
- fo (01(@N) D). Dy, @ s, Dy, 8 (s2) sy

(2.16) [Tlw; (@ (s)). d/ds;el s)).

<
§1<Sp<---<§p<s1+1
N N
Dy, ¢;" (sj), ..., DX_irj71¢i (sj))ds;
+c.c.

The counterterm appears when we shuffleXhg, because we consider a wedge
product of forms in the definition of the iterated integrals. The stochastic integral
converges in probability for the smooth topology @rto the limit nonanticipative
Stratonovitch integral, where we replace formally in (Z.Hﬁ‘}(sj) by &;(s;)
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andd/de(piN(Sj) by the Stratonovitch differential;; ¢; (s;) (see [27]). After this
formal manipulation, we get a random smooth formiéon

Let us justify this limiting argument: let us consider a semimartingale Y;
with values in M and some 1-formw; on M. We define iterativelyl, , =
J hi—1.5(@n (Ys), dYs) with 11, = [§(w1(Ys), dYs). We can replace;, by Y.
We get random variables),. By induction, we can show thaty, tends in
probability to 7, ; (see [27]).

Let us explain the formulas by a simpler example. Let us suppose that
o =w1® w2 Wherewy is a 1-form andw; is a 2-form. We extend them to
bounded forms with bounded derivatives of all orders avérLet ¢; (u) = {s —
Fi(u,s,y(s +ri(u))} and Iet¢>iN be the approximated plot. Léf andY be two
canonical vector fields ové®™. We have

1
B 2o X V) = [ (016! 5)). 050! 0))ds

s+1
X / (w2( (5)), d/dsol (s), dy ) (s))ds
(2.17) :

1
- /0 (w1(dY (5)). dy Y () ds

s+1
x/ (w2( (5)), d/dsol (s), dxpY (5))ds.

The counterterm in (2.16) is here very simple to write. These stochastic integrals

converge in probability for the smooth topology lihover the limit nonanticipa-

tive Stratonovitch integral. The ordinary integraldm gives an equivariant form.

We produce by this procedure a map between the stochastic equivariant cohomol-
ogy and the cyclic cohomology, which extends this classical correspondence on

the smooth loop space (see [22]).

Let M be the fixed point set of. (M) under the circle action. LeT, (M) =
{ysup ,d(y(s),y()) < ¢} for a small real nuimbeg. It is an equivariant
neighborhood of\. Let h(s, 1) = d?(y (s), y (1)) if ¥(s) andy(¢) are close and
equal to 1 ify(s) and y(¢r) are far. We introduce a functiogp(i(s, t)) = 1, if
h(s,t) < r1, which behaves a6, — h(s,t))* for a bigk if h(s,t) — ro_ and
is equal to infinity ifa(s, t) > ro. We suppose is smooth ovefO, r»[ and larger
than 1. Letf be a smooth function frorfi, oo[ into [0, 1] equal to 1 at 1 and with
compact support. We consider the functional

(2.18) H'2(y)=1— f</01 folg(h(s, 1) ds dt).

We define0, = L(M) —T.(M). Itis an equivariant open subsetiofM ). We find
¢ and &’ with ¢’ > ¢ such thatH"t"2 with support inO; is equal to 1 inO,.
In the sequel, in order to get this property, we will work on the Hélder loop
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space It is not a problem, because the Brownian bridge is almost surely Holder.
If the first property is satisfied, we say’!"2 satisfies property H. The cutoff
functional H"t"2 is Frechet smooth for the Holder topology, and a fortiori smooth
for the smooth topology (see [46]).

We say that a stochastic form belongs Agi( O, ) if for all mollifier func-
tions H'!-"2 satisfying the property H the forrii""20¢et is a stochastic form over
the full loop spacd.(M). This defines a skeletaryetover Lo (M) N O, such that
for all mollifier functionsH"!""205; determines a stochastic form over the free loop
space.

Since O; is invariant by rotation, we can repeat the considerations of before
for stochastic forms ove®,, define an interior product by the stochastic Killing
vector field and define an equivariant exterior derivative. We get two stochastic
cohomology groupsH;‘tdd(Og) and HEY(0,). The end of this part is devoted to
showing the following proposition:

PROPOSITION2.11. HE(0,) = H3%(0,) = 0.

The main difficulty to repeat the argument of Jones and Petrack [30] is that the
Brownian loop is of infinite energy.

Let us remark that ove®,, fol |d/dsy (s)|?ds > a > 0O for a given constani.
Let us consider the cover @0, oo[ by the intervals]ﬁ, j—k[ where% = 00.

Let us consider a partition of unity* associated to this cover. Let us introduce a
functiong from R into [0, 1] equal to 1 ovelR~ and equal to zero ovét /2, oof.

We imbedM into R?, and we denote by, -), the Riemannian tensor inin R4
which extends the Riemannian metric ovér We put

1 1
(2.19) FN”‘(J/)=f"<fO dt /0 <d/ds1/ft<yN><s>,d/ds%(y)(s»w,(m)ds).

FN-kis invariant under rotation. We put
N-1 1 1 .

@20) "= T o( [ ar [ asdswr o). dldstnI 6o ds )
i=1

GV is invariant under rotatiorG" and FV-* define clearly stochastic functionals
with respect to the diffeology, by replacing/dsy,y (s)ds by the stochastic
integrald; 1 ¢; (s). Moreover, ovell (M), we have
(2.21) co>Yy GNFVr=g>0

N .k
The sum is in fact finite. LeO ™ be the open subset:

1 ,1
{y: [ [ asarasaspryo.
(2.22) 070

a a
d/dsye(y)($))y(y)s) € }m’ 4_k“
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FNk = GVENE constitutes a partition of unity associated to the cogéb* of

Loo(M) N O,. Moreover FN-¥ constitutes a smooth stochastic functional with
respect to the previous diffeology. It constitutes a stochastic partition of unity
of O.. Thatis, if we consider a stochastic pfat = (U, ¢;, ;)i cn, We have almost
surely as smooth function ovéf for all integersM:

(2.23) YEVE@M ) =1
N,k

over each?; and the sum is almost surely finite.

In the sequel, we putV, k) = «. Over the set of indices, there is a natural or-
der. We consider a set of indicé®;, < - -- < o) = I,. O = 0%+ % =M 0%,
We say that a stochastic form is defined owef» if for all smooth func-
tion h/ with compact support inlgz . %j[, the form [Th/(f§ [3dsdt <

d/dsyr; (yNi)(s), dsr (1) (s) >, (y)(s))0st defines a stochastic form ove(M).

Since 0! is invariant by rotation, we can define a stochastic equivariant
complex overO*. We get equivariant stochastic cohomology groups called
HE'(I,) and HQY(1,).

LEMMA 2.12. If n #0, Hy(I,,) =0.

PrROOFE Let us considerN; such thata; = (Ng, k1). We consider the
stochastic equivariant 1-form:

1 1
(2.24) o™ Z/o dS/O di(d/dsyr (v ") (). V)6 -
For a stochastic plag = (U, ¢;, Q2i)ien, We get ifX is a vector field ovei/:

¢ (X)
(2.25)

1 1
- /O dt /0 (d/ds ()M (5). Dx s (6 (1)) (8)) o6 )5 5.
We have

1 1
2.26) iy M= fo dt /O (d /ds v (y M), st (V) 9)) v 160

This interior product is therefore larger th%. Therefore,

(2.27) d+ix, )™= (ixooole)(l + ,d“Nl )

ix, oM

ix,,a™ is a functional in our weaker sense strictly larger t"é@ﬁﬁ) over O,
We can definﬁ. It is therefore still a functional in our sensedn”. We see
Xoo
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that the stochastic forms invariant under rotation og@r having an interior
product by the stochastic Killing vector field constitute an algebra for the stochastic
wedge product. Moreover,

(228) (d + iXoo)(USt/\ Js/t) = (d + iXOO)O'st/\ (Is/t-l- (—l)degTSt(Tst/\ (d+ iXoo)Us/t

by pulling back this formula through a plot and approximating the plot. Therefore,
(d+ iXoc)OlNl has an inverse over the algebra of stochastic forms oVerit is
given by the formula

(2.29) gL — (iXooaNl)1<Z(—1)j%>.

Moreover,

(2.30) d+ix, )" =0

by (2.27) and (2.28), becauaé’ is invariant under rotation and because
(2.31) BNMA(d +ix, )M =1.

It remains to remark that
(232) (d+ix,)ono)y=(d+ix,)o) Ao +signo A((d+ix,)o’).

Let us choose a stochastic forrg over O/ such thatd +ix_ )ost = 0. We deduce
that

(2.33) ost=(d +ix, ) @™ A BN A o).
Therefore the result holds (see [30] for a proof of the same result in the
deterministic case).

Letl, —a; = I,{ . A stochastic form associatedl,é clearly defines a stochastic
form associated td,. There is a bigraduation over the form associated,to
the degree in the sense of Theorem 2.4 and the lengih.diVe call the space
of associated stochastic forny, , . We deduce a bicomplex:

(a) the equivariant stochastic derivative+ ix,, which transformsAg,
into AL,

(b) the Cech complex:
(2.34) Gosvr, = (=1 ost1,—a;
where we take in (2.34) the restrictioncfg‘un_aj to O'n.

These two complexes commute. We can conclude now:

PROOF OFPROPOSITION2.11. Let us recall, when there is a first quadrant
bicomplex(d, §) with complexes commuting/é = éd) A1, we can consider its
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total complexd + signé = diot Which operates o™ = 3", _, AP*9. diot go€S

from E” into E"*! and is such tha#2; = 0. There are some total conomology
groups which are related to the total complex KeE"+1/1mg,, E". There is an
algebraic procedure in order to approximate the total conomology groups called
spectral sequence. We approximate iteratively the total cohomology by a sequence
of cohomology groups associated to some complekesvhich appliesA?-4

to AP*4="+1 More precisely, at the further step, we start from the cohomology
groups of the previous step. At a first step, we consilerlone, and we get
Ef"’ = Hy(AP-9), the cohomology groups deduced fraim At a second step,

we consider the differential alone, and we apply that to the spaces obtained
from the second step, and we g@fq = Hs(Hy(AP-9)). This approximations
procedure converges when we iterate to the total cohomology of the total complex
(see [12]). We would like to apply the spectral sequence formalism in our context,
mimicking the classical proof of Bott and Tu ([12], pages 166—-167) that the Cech
cohomology of a manifold is equal to the de Rham cohomology of the manifold.
For that, we replace the bicompléx d) by the bicomplexé, d +ix_,). Following
Warner ([61], page 202), fiost = 0, thenost = dost 1, because of the existence of
partition of unity invariant under rotationon the open subse?, of the Holder

loop space given previously. We have

(235) (GSLl)In = Z Fa (Ust)a,al,...,a,1 .
a

Namely, F* defines a stochastic functional invariant under rotation with support
included in 0% such thatﬁ"‘(ast)o[,ol1 ,,,,, «, 1S @ stochastic form o’ invariant
under rotation. SinceF® is invariant under rotation, we get a form which
is invariant under rotation. We can repeat the proof of Bott and Tu ([12],
pages 166—-167). In the spectral sequence associated to the bicofnplexix ),
the first termsEf"’ are equal to 0, except in the first column where we
find AL(O,). The second termg5°? are all 0 except for the first column where
we find the cohomology groups far+ ix. of AL(O.). Therefore, the spectral
sequence degenerates after the second order, and we find that the stochastic
equivariant cohomology groups @f, are equal to the total cohomology groups
of the bicomplex, because the higher derivatidésire trivially 0 and at each step
of the spectral sequence, the cohomology groups considered remain invariant.
We invert the role of the two complexes. Since the stochastic cohomology
for the equivariant stochastic exterior derivative ot is equal to zero, all
the termsEf’q are equal to 0. This shows that the total stochastic cohomology
groups of the total bicomplex are equal to 0, because the first cohomology groups
at each step of the spectral sequence are 0, and because the cohomology groups
at stepr + 1 of the spectral sequence are deduced from the cohomology groups at
stepr of the spectral sequence, supposed inductively equal to 0.
Therefore the result holds, because we have computed the total cohomology
groups of the bicomplex in two ways, which are equall
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We can state an analogous proposition:

PROPOSITION2.13. Lete’ > ¢ > 0. Then the stochastic equivariant coho-
mology groups o, N T, are equal ta0.

3. Study of the second diffeology. Let T, be the equivariant open subset
defined by{y :sup ,d(y (s), y(t)) < e}. We would like to show that its equivariant
stochastic cohomology groups are equal to the de Rham cohomology graups of
if & is small enough. We need a retraction map frinto M which commutes with
the natural circle action. Lete [0, 1]. We choose

(3.1) F(r,y(s), y (1)) = exp, [ (y (1) — v ()]

conveniently extended ové&? by a functional with values iiR¢ with bounded
derivatives of all orders: (t) — y (s) is the vector ovey (s) of the unique geodesic
joining y (s) to y (¢) if v (¢) is closed fromy (s). This gives a retraction map(r)
from the loopr — y (¢) to the constant loop— y (s). Moreover,F (r) transforms
a plot into a plot; that isF(r) is smooth for the considered diffeology. But we
do not havey, F (r) = F (r)y,, because we contract the small loop> y (¢) into
the constant loop — y (s). We request a retradt (+) which is smooth for the
considered diffeology and which commutes with the circle actiBtr.) is not
equivariant under the natural circle action because we choose thes tilve
average under the natural circle action: we gﬁtF(r, y(s), y(t))ds which is
not far of M if y € T(e) and we look at the projection map conveniently
extended oveR? on M: 71([51 F(r,y(s),y())ds)=H(r,y)(). The mapH (r, -)
commutes with the natural circle action. Bd{r) does not transform a plot into a
plot. This leads to the introduction of a new stochastic diffeology.

DEFINITION 3.1. A stochastic plots; = (U, ¢;, 2i)ien IS given by the
following data:

(i) any finite sequence of deterministic integgrs

(i) a deterministic open subsét of R™,

(iii) a countable measurable partitisty of L(M),

(iv) two applications F/ from U x (RY)" x R into RY and A/ from
U x R4 x RY smooth with bounded derivatives of all orders and an applicaﬁon
from U into ST which is constant on the connected componert pf

(v) letus denoteHh{-’Fij (u)(s) the quantitye; (u)(s) = h{(f(sl)n Fij (u, y(s1),

v (sn), v (s + rl))dsy--- dsy). The iterationH1 1 0 -+ o Hyr o (1)(:)

belongs toL (M) over ;.

The main remark is the following: ifs; = (U, ¢;, 2;) is a plot, (r,u) —
H(r, pst(n)) is still a plot indexed byU x [0, 1]. This stochastic diffeology is
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compatible with the restriction map. ¢kt = (U, ¢;, 2))icn iS a plot with respect
to this diffeology, we get an extended plpg from U x [0, 1] into L(M) by
putting

(3.2) (u,ry = {s = H(r, ¢st(u))(s)}

which contracts the stochastic plpd; with values inT (¢) into a plot with values
in M. This says that the retraction map is smooth for this new diffeclogy.

We can repeat the consideration of Section 2 to study the stochastic equivariant
cohomology associated to this diffeology.

In particular, we get:

PROPOSITION3.2. HE'(0.) = H3%(0,) =0.
We also get:

PrRoPOSITION3.3. If ¢/ > ¢ > 0, the stochastic equivariant cohomology of
0. N T, is equal toO.

In order to show this theorem, we do as in the previous section. There is a small
difficulty which appears, becausefgl(d/dsw,(yN)(s), d/dsyri (v ($))y,(y(s)) dS,
there are some anticipative Stratonovitch stochastic integrals which appear.
We replace this expression Lfg((d/dszp,(yN)(s), d/dsyi(y (s)))y, (Vs dS and
we integrate by parts in order to remove the stochastic integral, if we replace
d/dsy, (v (s))ds by the anticipative Stratonovitch differentidly, (¢s) where
¢stis a plot.

PropPosSITION3.4. The stochastic equivariant conomology groupgofire
equal to the cohomology groups &f if ¢ > 0 is small enough

PROOF Let H(r,-) be the applicatiory — {s — H(r, y)(s)}. It commutes
over the smooth loop space to the circle action. Therefore over the smooth loop
space, we have

(33) Xoo,det(H(”» )/)) = DH(}", V)Xoo,det-

Namely,y; o H(r) = H(r) o ¥, and we differentiate this formula at= 0.

We denote byX, the vector%H(r, ). This realizes a Frechet vector field
on L, (M); more preciselyX, (y) belongs tdl'y-(,). We use the retraction Cartan
formula for a deterministic formget OverT (). We get

1
odet= Hoget+ d / H"*ix, ogerdr + / H™ix, (d + ix. g) Odetdr
(3.4) 0

1
3 .
_/0 H erlXOO_detO'detdr.
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If oget Were a traditional form oveL (M), this formula would be nothing else
than the integrated formula which expresses the Lie derivatives along a flow in
terms of the exterior derivative and the interior product along the vector field
of the flow of the considered deterministic fotidr H *oget= d H *ix, odet +
H’*iX, dodet. But, here, we have to take care, because we consider a weaker
notion of form. So, we have to look at this formula through a plot, and consider
the extended retracted plot. We apply this formula to the form associated to the
finite-dimensional form which is given by the extended plot. By (3.3),

ok = Tk
(35) H lXoo,detadet_ lXoo,detH Odet.

Therefore, ifoget is equivariantly closed, then we have the equivariant retraction
formula:

1
(36) Odet= HO’*O'det-i- (d + iXoc,det)/(; Hr’*inO'detdr.

This formula is still true for the stochastic form. Namelygif; is the stochastic
plot, we have an augmented stochastic flou) — H (r, pst(u)) called ¢,
We can defingg; " ost, and its approximatiotr, u) — (¢r,Ar, u))™ (see [50] for
similar considerations)H (r)*(osp is defined by taking the plat — ¢& %r, )
where r is frozen. It admits an interior product by the stochastic Killing
vector field, and the approximating formula (3.6) when we pull-baglby the

approximating plots goes to the limit. Therefore(df+ ix_ )ost= 0, we have

1
(37) ost= H(0)*ost+ (d + iXoc)A H(r)*ix,_astdr.

H(0)*og4et is a stochastic form oveM, therefore a deterministic smooth form.

It remains to show thall (r)*ix, ost is a stochastic form having an interior product

by the Killing vector field. But we can use the fact that H(r)*ix,ost =

—H(r)*ix, ix, ost and the fact thatst admits an interior product by the stochastic

Killing vector field in order to show this statement. This proves the proposition.
]

By using Propositions 3.2, 3.3 and 3.4, we can show a stochastic fixed point
theorem.

THEOREM 3.5. The stochastic equivariant cohomology groups with respect
to the stochastic diffeology of Definiti@3 are equal to the de Rham cohomology
groups ofM.

PROOF LetO< ¢ <¢&’. We have a cover of.(M) by T'(¢) andO(¢). These
subsets are invariant under rotation. We have a patrtition of unity associated to
this cover [see (2.17)] for the Holder topology, which is invariant under rotation,
which is therefore smooth for the Frechet topology over the smooth loop space,
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and which provides therefore a partition of unity associated to our cover, invariant
under rotation, for the stochastic Chen—Souriau calculus, because a functional
Frechet-smooth on the Hélder free loop space realizes clearly a functional smooth
in the stochastic Chen—Souriau sense. We can produce a Mayer—Vietoris long exact
sequence for the stochastic equivariant cohomology (see [12], pages 22—-23). This
Mayer-Vietoris argument says that we have an exact sequence:

(38) 0= As(L(M)) = AsTe) ® Ast(Og) = Ast(Ter N Og) > 0

for stochastic forms invariant under rotation because the mollifiér"2 is
invariant by rotation. The first map gives the restrictionogf to T, and O;.
There is a partition of unity Frechet smooth for the Hélder topology associated
to the coverT, and O, of Lo (M). The functionspr, andpo, associated to this
partition of unity are invariant under rotatiof- po, ost, or,, ost) realize an element

of As(T.) ® Ast(O,) which projects onos; which belongs toAs(T, N O,).

From this short exact sequence, we deduce a long exact sequence in cohomology
(see [12]). We use the complek+ ix, which is compatible with the maps

of (3.8). This long sequence in cohomology arises by an abstract argument.
Propositions 3.2, 3.3 and 3.4 show the result. Namély(7,, N O,) = 0 =
Hs(O.) and Hs(T,) = H(M). We deduce thatHg(L(M)) = H(M) by the
Mayer-Vietoris long sequence in cohomology:

9 o= HYy(L(M)) — H(Ty) @ He(Og)
' — HY(Ty N Op) — HGHL(M)) — -+,

where the image of a map in (3.9) is equal to the kernel of the map which follows.
O

In order to show that an iterated integral in the manner of (2.15) defines a
stochastic form with respect to this diffeology, we have to study the approximation
of anticipative Stratonovitch integrals by convolution. It is a refinement of the
theory of Léandre [35].

We work over the based path space, that is, the space of continuous paths
starting fromx endowed with the Brownian motion measure. Let us recall what is
the Sobolev Nualart—Pardoux calculus of Léandre [35, 37, 45]. The tangent space
of a pathy is the set of map — t, H; wherer, is the parallel transport along the
pathy and wheres — H; is a path inT, (M) of finite energy. We take as Hilbert
norm

1
(3.10) 1X.112 :/ \d/ds Hy|? ds.
0

If H.is deterministic, we have an integration by parts formula [9, 15, 33]:

(3.11) E[(dF, X)] = E[Fdiv X],
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where F is a cylindrical functional. This allows us to define the notion of
H -derivative:

1
(3.12) (dF, X) =fo (k(s),d/ds Hy) ds.

We can iterate this notion of stochastic derivative, by using the connevgtion
the path space:

(3.13) VtH =t.DH.
If d3, F is defined, we put
A F (X1, .. X1
= (d(d%(Xla e Xr)), XI‘+1> - Zd%F(X].? LR er+1Xi’ Xr)
dy F is anr-cotensor and is defined by a kernel:
dyF(X1,...,X)

(3.14)

(3.15)
= /(k(sl, ceoySy),d/dsHs,, ...,d/dsH)ds1--- ds,

and we put as curved Sobolev norm:

p/291/p
(3.16) ||F||£’:E[</|k(s1,...,sr)|2ds1---dsr> }

(see [33, 38)).

We define the Nualart—Pardoux Sobolev norms for> H(s) with values
in RY. We consider the kernels of, H(s) called H(s, s1,...,s,). We suppose
that outside the diagonals

| H(s,81,...,52) — H(', 89, -, s)ILe

= Cpr ()X lsi = i1+ /s = ')
and we suppose that for allsq, ..., s,
(3.18) IH (s, 51,..,8)|lLr < C), ,(H) < 00.

(3.17)

The smallest quantitie§, ,(H) and C/N(H) constitute the system of Nualart—
Pardoux norms of the process(-).

We imbed the manifold intoR?. We suppose that and F are bounded
functionals fromR? into R¢ [F from (R¢)"*+1 into R¢] with bounded derivatives
of all orders. Let us introducg (s) which is a finite iteration of operations of the
typeh(f[o,l]n F(y(s1),...,y(sn), y(s+s0))dsy -+ dsy) and its approximation by
convolution:

(3.19) YN(s):/gN(s—u)Y(u)du.
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We will choose the regularizing functiqgy later.
We remark that’ (s) satisfies the Nualart—Pardoux conditions by the following
lemma:

LEMMA 3.6. Let us suppose that — Y(s) satisfies the Nualart—Pardoux
conditions Then the random process — h(f[o’lln F(Y(s1),...,Y(sp),
Y (s +s0))dsy---ds,) satisfies the Nualart—Pardoux conditions

PrROOFE The proof comes from the proof of Lemme A.2 of [35] and from
the fact(s1,...,s,,5) — (Y(s1),...,Y(s,), Y(s)) satisfies the Nualart—Pardoux
conditions(sy, ..., s, s) € [0, 1]"*1 included. (We have a natural extension to this
case of the notion of Nualart—Pardoux conditiong.)

By an integration by parts, and using a primitTg/# of gn, we get that

(3.20) Ve = [eht-wdyw
such that
(3.21) d/dsY" (s) :/gN(s —u)d, Y (u).

We have the following lemma:
We choose a regularizing functign, such thatf¥: is equal to 1 ovef—1/N +
1/N*,1/N — 1/N*] for a big k and which takes its values ii®, 1], and which

is equal to O outsidd—1/N;1/N], such that the Nualart—Pardoux norms of
k .
f__ll//]{,VJrl/N gn(s — 1)d,Y, are bounded byN~/ for a big j as well as the

Nualart—Pardoux norms qfll//li,v_l/Nk gn(s —t)d,Y;. The sum of these two terms
is calledsy (s). The integral

(3.22) /(HN(S), 8N (s))ds
goes to 0 by the same considerations as below. So in order to simplify the notation,
we can replacdY” by
1/N s+1/N
(3.23) ZN/ dyY(u—s)= 2N/ dyY (u).
—1/N s—1/N

Therefore we have to study the behavior of

t ps+1/N
N
2N/0 /S_l/N (I (s)ds, dy Y (v))

(3.24) N I
:ZN/ dvfo (HN (s +v),dY (s)).
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In order to computéd, i (1) where we consider only one iteration we use the chain
rule:

dor@ =0 ([P0 v @) ds---ds,)

(3.25) x f @F(y(s). ..y (). 7)), dy @)
[0,1]"
— (A, dy ).

The same result is true when we consider a finite number of iterations as in
Definition 3.1, whered (1) checks all the Nualart—Pardoux conditionsncluded.
So we recognize in (3.23) the anticipative Stratonovitch integal:

(3.26) 2N/1/N f (HN (s +v), A(s) dy (5)).

We can writedy (s) = 1,dB(s) wheredB(s) is a flat Brownian motion. The
anticipative Stratonovitch integraﬁé(HN(s + v), A(s)dy(s)) is equal to the
anticipative Stratonovitch integral for the flat Brownian moti®¢)

(3.27) /;(HN(S +v), A(s)T(s)dB(s)) = f(:<z(s)—1AgHN(s +v), dB(s)).

The system of Nualart—Pardoux Sobolev norms for the curved Brownian motion is
equivalent to the system of Nualart—Pardoux norms for the flat Brownian motion
(see [35, 37, 45]). Lei, be a process with values R¢. Let u,(v) be the kernel

of its flat derivatives. This means that/ifis an element of the Cameron—Martin
space of the flat Brownian motiol), vy, = fol(vs(v), d/dvh(v))dv. Sees;(u) the
Skorohod integral in time (see [55]). Then the Stratonovitch integral

t t
(3.28) /0 (ug, dB(s)) =68;(u) + %/0 <virp_ ug(v) + vir?+us(v)> ds

(see [55], page 567). (We do as if we wereRinn order to simplify the notation.)
Moreover, we can estimate the” norm of §,(x) in terms of theL? norms

of uy(v) (see [54], page 158) (i.e., in terms of the flat first-order Sobolev norms

of s — uy).

LEMMA 3.7, [§(r;TALS(HN (s +v) + HY (s — v)), d B;) tends when — 0
to the anticipative Stratonovitch integrdl (z; AL HN (s), d By) in all the L?.

PROOF Letay(v) be the process— 1, YA HN (s +v). a;(v) tends taw (0)
in all the first-order Sobolev space for the flat Brownian motion. Therefore
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3s(a.(v + a.(—v))) tends tas; (0) in all the L. Moreover, ifv > 0,

EWO %1([&1‘_(%(”)0) + a5 (—v)(1))

(3.29) + lim (a0 + s (~0)0) )
p
—%( lim o (0)(1) + lim ozs(O)(t)> ds}zO.
r—s+ t—>s—
Namely, whenv > 0, lim,— 1 o (v)(#) = liM; oy oy (1), liMo s a (V) (1) =
liM;—s— a5y (r). Moreover, lim_ i oas(—v)(t) = lim; 4 o0,_() and

liM;o_ o, (—v)(@) = lim;_s_ ay_, (7). Since the Nualart—Pardoux conditions
are checked outside the diagonals, we see thaj Jgmlim,_ 4 as4, () =
limyop iMooy (®) = lim o ag(r) and limy_oplim; o5y (1) =
Iimv—>0+ lim; s as () = Iimt—>s+ as(). U

From Lemma 3.7, we deduce thaNJl/ll/VN f’ —1A’%(H(s +v)+ H(s —

v)),dB(s)) tends in all thel.? to fo (H(s),dB(s)).
We would like to get the same theorem for iterated integrals. We choose

(330) () =h ( f[ oy LDy ).y () dsy - -dsn),

whereh,{ andk’/ are smooth with bounded derivatives of all orders. By using the

composite of theﬁ,{, in j as in Definition 3.1, we deduce an eleméfpts). We
choose a functiorF; from R? into R¢ which is smooth with bounded derivatives
of all orders. We define inductively

t
(3.31) 1k+1’N(z)=/0 5N () (F(Y D (5), Y4 (9)).

In order to study the convergenceld\‘“(t), itis enough to study the convergence
of 3(¢(v) + &(—v)) where£(v) = [ (1k Nis + )t T A B (N D (s +
v),dB(s)). The flat derivative off} 157 ( (ry LA B (YN ) (s + ), dB(s)) is
defined by taking formally the derivative under the sjg(see [35]).

Let i(s) be a process. Léi(s, s1, ..., s,) be the kernels of its flat derivatives.
Let K be a subset ofl, ...,n) and letex be a collection of sigr; associated
to the element ofK. &% is the collection of opposite sign. We denote by
hi ex (s,uj)jeke the limit of h(s, uq, ..., u,) whenu; — Se; for j in K. If the
Nualart—Pardoux conditions are checked, these expressions exist.

We introduce the following hypothesis of recurrence:
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HyPoTHESIS H1(k). For an iterated integral of length smaller thah, if

v > 0, uniformly in ¥ and ins € [0, 1] whenv — 0,
E|: Z / l_[ duj%(lllz”ng(s—i-v)(uj)jeKc
K.ex " jeke

(3.32) + TN (s —v)u))jexe)

kLN
— I e ($)(u)jeke

p
:|—>0.

In order to show this property, we have to take the derivativd$ of" (r). The
only problem is when we do not take the derivativeddf;. This leads to some
anticipative Stratonovitch integrals, which can be treated by (3.28y1%) is
checked H1(k + 1) is checked H1(0) is clearly checked.

This shows us that in the approximation procedure, we can replace the integral
between-1/N and YN by a constant. We do the hypothesis of recurrence where
1% (1) denotes the Stratonovitch integral and where we do no approximation:

HYPOTHESISH?(k). For all n, we have whe®N — oo uniformly ins

p
j|—>0.

If H2(k) is checked H2(k + 1) is checked. Namely, the only problem is when
we do not take the derivative of the lasB; in 7tV (r) which leads to the study
of some anticipative Stratonovitch integrals, which can be treated by (3.28). It is
checked fork = 0.

We deduce:

(3.33) E[

/ [T du; 3 18N )W) jere — Ik o ()W) jexe

jekKe K,ex

ProPOsITION 3.8. IV(r) converges in all the flat Sobolev spaces to the
anticipative Stratonovitch integral

(3.34) I(n) =/ (F1(Y (s1)), dY1(s1)) - - (Fu (Yu (), d Y (sp)).

O<sy<sp<-<sy<t

Let us suppose thaty (s) depends smoothly on a finite-dimensional parame-
teru:

(3.35) ij(u, §)= h,i <u, /[O " ij(u Y(s1), ..., y(sn), y(5)) dsl---dsn)

and let us consider the compositg(u, s) as in Definition 3.1. The corresponding
approximated integral has a smooth version:jrand each of its derivatives in
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a givenu converges in all the flat Sobolev spaces to the corresponding iterated
anticipative Stratonovitch integral where we take formally the derivatives in
of the terms which appear in this stochastic integral. But we can estimate the
L? norm of these derivatives over the curved based loop space in terms of the
flat Sobolev norms of these derivatives over the flat model, by using the tools
of quasi-sure analysis (see [1]). We deduce that the derivative in the parameter
space of the approximated integrals converges in all tReover the curved
Brownian bridge to the derivative in the parameter space of the Stratonovitch
integral over the Brownian bridge. By the Sobolev imbedding theorem, we deduce
that the approximating integral over the based loop space converges for the smooth
topology with compact support in the parameter spade?in

Letd" =1 @ w2 ® - -- ® w, be an element a2 (M) ® Q.(M)"~1. We extend
the differential formsw; in smooth forms overR? bounded with bounded
derivatives of all orders. Proposition 3.8 allows us to state the following theorem:

THEOREM 3.9. X" defines a stochastic form with respect to the diffeology
of Definition3.1.
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