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STOCHASTIC EQUIVARIANT COHOMOLOGIES AND
CYCLIC COHOMOLOGY

BY RÉMI LÉANDRE

Université de Bourgogne

We give two stochastic diffeologies on the free loop space which allow
us to define stochastic equivariant cohomology theories in the Chen–Souriau
sense and to establish a link with cyclic cohomology. With the second one,
we can establish a stochastic fixed point theorem.

1. Introduction. Let us consider a finite-dimensional orientable manifoldM

of even dimension. Let us suppose that it is endowed with an action of the
circle S1, that is, a smooth map of groupst → ψt from the circle into the set
of diffeomorphisms of the manifold. We can suppose since the circle is compact
that it is an action by isometries.d/dtψ0 = X is called the Killing vector field
onM .

Duistermaat and Heckman [16] and Berline and Vergne [8] have considered an
integral of the following type:∫

M
exp[−dX − |X|2] ∧ µ(1.1)

and have shown that this integral is equal to an integral over the fixed point set of
the circle action, that is, the manifold where the Killing vector field vanishes. We
have only, in order to show this localization formula, to suppose that(d + iX)µ = 0
(this means thatµ is equivariantly closed) and thatµ is of even degree. In order to
understand (1.1), let us remark that we can endowM with a Riemannian structure
invariant under the circle action.X can be considered alternatively as a vector field
or as a 1-form: in (1.1),dX is considered as the exterior derivative of the 1-form
X and |X|2 = iXX is a scalar. Forms of even degree constitute a commutative
algebra. Therefore exp[−dX −|X|2] = exp[−|X|2]∑ (−1)n

n! dX∧n and in (1.1), we
consider the integral of the top degree form.

This leads to the concept ofS1-equivariant cohomology ofM . We consider the
set of invariant forms under the circle action onM . If a form is invariant under
rotation, its Lie derivative for the Killing vector field(d + iX)2 = diX + iXd

is equal to 0. This shows that the equivariant exterior derivatived + iX defines
a complex on the set of forms invariant by rotation. This complex is called the
S1-equivariant complex. The main theorem of Jones and Petrack [30] is that the
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S1-equivariant cohomology is equal to the de Rham cohomology of the fixed point
set under the circle action of the manifold.

Let us recall how Jones and Petrack proceed in order to prove this theorem. They
remark that the fixed point set of the Killing vector field (the set whereX = 0) is
a manifold. They assume that there is a neighborhoodT of the fixed point set
which is invariant under rotation and which retracts equivariantly on{X = 0}.
They deduce that the equivariant cohomology ofT is equal to the de Rham
cohomology of the fixed point set: namely, the equivariant cohomology of the fixed
point set is equal to the traditional de Rham cohomology of it, becauseX = 0 on
the fixed point set. They remark that the equivariant cohomology of{X �= 0} is
trivial: namely,X considered as a 1-form is such that(d + iX)X is invertible in
the algebra of forms invariant under rotation on{X �= 0}. They conclude by a
Mayer–Vietoris argument: namely, the equivariant cohomology ofT is equal to
the de Rham cohomology of the fixed point set, and the equivariant cohomology
of T ∩ {X �= 0} and of{X �= 0} is equal to 0. We get a cover ofM by open subset
invariant by rotation, such that we can apply the mechanism of the long exact
sequence of Mayer and Vietoris.

We are interested in an infinite-dimensional generalization of this work.
Namely, in theoretical physics, people consider the free loop space ofM of smooth
mapsγ from the circleS1 into M . Let us consider a compact spin manifold such
that the smooth free loop spaceL∞(M) of smooth mapsγ from the circleS1
into M is orientable. It carries a natural circle action, and the fixed point set is
the manifold itself. The generator of this circle actionX∞, called the canonical
Killing vector field, is the vector over a loop which tos associatesdγ

ds
. Namely,

the fiber inγ of the tangent space ofL∞(M) coincides with the space of smooth
sections of the bundle on the circleγ ∗T (M) whereT (M) is the tangent bundle
of M . It consists of smooth maps from the circles → X(s) into T (M) such that
X(s) belongs to the fiber of the tangent bundle onγ (s). s → X∞(s) = d/dsγ (s)

is such a smooth map because we consider the smooth loop space.
Following Atiyah [6], the index of the Dirac operatorD+ overM should satisfy

IndD+ = C

∫
L∞(M)

exp[−dX∞ − |X∞|2](1.2)

such that the index theorem over the manifold should be a localization formula in
infinite dimension in the manner of Duistermaat and Heckmann [16] or Berline and
Vergne [8]. In (1.2), Atiyah considered theL2 metric on the tangent spaceγ ∗T (M)

of a loopγ . In particular, we remark thar|X∞|2 is nothing else but the energy of
the loopγ

∫
S1 |d/dsγ (s)|2 ds. Bismut [10, 11] pioneered the relation between the

equivariant cohomology of the loop space and the index theory by considering
the Dirac operator overM tensorized by an auxiliary bundle. He introduced the
Bismut–Chern character over the free loop space, which is equivariantly closed,
and which is related to the index theorem of the Dirac operator. The Bismut–Chern
character is associated to the bundleξ∞ on the free loop space deduced from the
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bundleξ onM as follows: the fiber ofξ∞ on γ consists of smooth sections of the
bundle onS1(γ ∗ξ ). The reader interested in further developments about this topic
by physicists can see the book of Szabo [60] and the references therein.

So the equivariant cohomology of the free loop spaces gives topological
invariants. Jones and Petrack [30] show that the equivariant cohomology of the
smooth loop space is equal to the cohomology of the manifold, by localization.
Getzler, Jones and Petrack [22] introduce iterated integrals and establish a link
between the equivariant cohomology of the loop space and the cyclic cohomology.
Inspired by this, Getzler [21] defines algebraically a current over the loop space,
which by localization gives the index theorem.

Our motivation is to give an analytical meaning to the current of Getzler [21].
For that, we need a measure over the free loop space. We choose the B–H–K
measure, which is invariant under rotation [10, 11, 25]. Let us recall quickly the
definition of the B–H–K measure. Let� be the Laplace–Beltrami operator onM .
Letpt(x, y) be the heat kernel associated to the heat semigroup onM . LetdP1,x be
the law of the Brownian bridge starting fromx and coming back at time 1 tox.
The B–H–K measure is given by

dµ = p1(x, x) dx ⊗ dP1,x∫
M p1(x, x) dx

.(1.3)

In some sense, it is the unique measure on the free loop space which is invariant
under rotation [18] and which is constructed from the Brownian bridge measure.

The first remark is that the equivariant cohomology of the free loop space is
related to a series of forms of arbitrary degree. Jones and Léandre [29] have
introduced a Hilbert tangent space over a random loop, which was given in
a preliminary form by Bismut [9]. This allows us to define anLp theory of
forms over the loop space and to show that the Bismut–Chern character belongs
to all the Lp. By using the integration by parts over the free loop space of
Léandre [33, 38], we can establish in the line of Malliavin calculus a Sobolev
cohomology theory over the Brownian bridge, show that the Sobolev cohomology
groups of the loop space are equal to the Hochschild cohomology groups [35,
37, 41, 43, 45] if the manifold is simply connected, and show therefore that the
Sobolev cohomology groups are equal to the cohomology groups of the smooth
loop space.

In functional analysis, there are differential calculi that are different from the
classical calculus. Let us recall, for instance, what is a Frölicher space [31] (or
a space endowed with a smooth structure). A spaceM endowed with a vector
spaceFM of maps fromM into R and a setCM of maps fromR into M is called
a Frölicher space if and only if the two following conditions hold:

(i) f belongs toFM if and only if for all c in CM , f ◦c is a smooth map fromR
into R.

(ii) c belongs toCM if and only if for all f in FM , f ◦c is a smooth map fromR
into R.
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Let (M,FM,CM) and(M ′,F ′
M,C′

M) be two Frölicher spaces. A mapφ from M

into M ′ is said to be smooth iff ′ ◦ φ belongs toFM as soon asf ′ belongs toF ′
M ,

or, equivalently, ifφ ◦ c belongs toC′
M as soon asc belongs toCM [31].

There is another calculus, which deals with forms, and which was introduced
by Chen and Souriau, which is analogous to Frölicher calculus. Let us recall
what a diffeology on a topological spaceM is. It is constituted of a collection
of maps(φU ,U) from any open subsetU of any R

n satisfying the following
requirements:

(i) If j :U1 → U2 is a smooth map fromU1 into U2, and if(φU2,U2) is a plot,
(φU2 ◦ j,U1) is still a plot called the composite plot.

(ii) The constant map is a plot.
(iii) If U1 and U2 are two open disjoint subsets ofR

n and if (φU1,U1) and
(φU2,U2) are two plots, the union mapφU1∪U2 realizes a plot fromU1∪U2 into M .

This allows Chen and Souriau to define a form. A formσ is given by the
data of formsφ∗

Uσ on U associated to each plot(φU ,U). The system of forms
overU φ∗

Uσ has moreover to satisfy the following requirement: if(φU2 ◦ j,U1) is
a composite plot,(φU2 ◦ j)∗σ is equal toj∗φ∗

U2
σ .

The exterior derivativedσ of σ is given by the datadφ∗
Uσ .

The main example of Souriau is the following: letM be a manifold endowed
with an equivalence relation∼. We can consider the quotient spaceM̃ . Letπ be the
projection fromM ontoM̃ . A mapφ̃ from an open subsetU of a finite-dimensional
linear space is a plot with values iñM if, by definition, there is a smooth liftφ
from U into M such thatφ̃ = π ◦ φ.

The ideas of Chen and Souriau lead to another stochastic differential calculus,
which deals with forms almost surely defined as in Malliavin calculus, and which
is more flexible: it is the stochastic Chen–Souriau calculus (see [13, 26, 59] in the
deterministic case). There are many diffeologies which lead to different stochastic
de Rham cohomology theories, but in general these stochastic cohomology
theories are equal to the de Rham cohomology groups of the smooth loop space or
the Hölder loop space [40, 44, 46, 49].

The fact that the stochastic Chen–Souriau calculus is more flexible than the
Sobolev calculus allows us in this present work to deal with the stochastic
equivariant cohomology of the free loop space, althoughX∞ is not defined over
the Brownian bridge, because the Brownian loop is not differentiable.

In the first part, we define a poor diffeology, which is very simple, and allows
us to define a stochastic equivariant cohomology of the free loop space. There are
a few stochastic plots, such that we get many forms, smooth in the Chen–Souriau
sense: let us recall, for example, that if a diffeology is included in a second one,
a form for the second one is still a form for the first one. We require that the
operationψt gotten by rotating a loop is smooth for the considered diffeology,
that it transforms a stochastic plot into a stochastic plot. This shows that the
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set of stochastic forms is invariant under rotation. We establish a link between
the equivariant cohomology in this sense and the cyclic cohomology. We show
that the stochastic equivariant cohomology ofL(M) − M is zero, but we cannot
prove by using this diffeology a fixed point theorem, because we cannot produce
a retract of an equivariant small contractible neighborhood of the constant loop
which is compatible with this diffeology. Namely, we have to produce a retract
which satisfies the two requirements: it is smooth for the considered diffeology
and commutes withψt for all t in S1.

For that reason, we consider in the second part a richer diffeology, but more
artificial than the first one, which allows us to produce this retract. This gives a
fixed point theorem: the equivariant cohomology with respect to this diffeology is
equal to the cohomology ofM . The relation with cyclic cohomology is performed
by using the theory of anticipative Stratonovitch integrals of Léandre [35] over the
loop space.

Let us recall the previous work in order to defineX∞: in [38], the stochastic
Killing vector field is defined as an antisymmetric operator of order 1, which
is densely defined, therefore closable. But this construction does not work for
forms. In [36] the interior product by the stochastic Killing vector field is
defined as a fermionic Hida distribution [24], but the program failed because the
iterated integral does not belong in the domain of this distribution. White noise
analysis [24] has defined the derivative of the flat Brownian motion in another
way. Léandre [51] has defined the speed of the curved Brownian bridge as a white
noise distribution operating on stochastic iterated Chen integrals. Léandre [50] has
considered the case of the hypoelliptic bridge; the difference with the work here
is that the considerations of Léandre [50] are not intrinsic, because Hörmander’s
type operator is written under a nonintrinsic form. Moreover, the relation with
Léandre [50] and index theory is not clear.

The reader can see the two surveys of Léandre about analysis over loop space
and topology [42, 48] and the survey of Albeverio [2] about analysis on loop space
and mathematical physics.

2. Study of the first diffeology. Let us consider the free loop space of finite
energyL1(M), that is, the set of mapsγ from the circleS1 into M such that∫ 1

0
|d/dsγ (s)|2 ds < ∞.(2.1)

It is a Hilbert manifold. A deterministic plotφdet of dimensionm is given by the
following data:

(a) U an open subset ofRm,
(b) a smooth mapφdet from U into L1(M).

The set of all deterministic plots ofL1(M) constitutes a diffeology [13, 26, 59].
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DEFINITION 2.1. A deterministic formσdet on L1(M) is given by the
following: to each plotφdet, we associate a smooth formσU = φ∗

detσdet over U .
Moreover, the set of finite-dimensional formsφ∗

detσdet satisfies the following
property: if j :U1 → U2 is a smooth map and ifφ2,det is a plot with parameter
spaceU2, we can consider the plotφ1,det= φ2,det◦ j . Then

φ∗
1,detσdet= j∗φ∗

2,detσdet.(2.2)

REMARK. Since a smooth function fromU into R is smooth if and only if
its restriction to each smooth path inU is smooth, it is equivalent to saying that
a functional is smooth in the Chen–Souriau sense or is smooth in the Frölicher
sense. We take asCL1(M) the space of smooth curves fromR into L1(M) and
as CL1(M) the space of mapsf from L1(M) into R such thatf ◦ c is smooth
for all c in CL1(M). But L1(M) is a Hilbert manifold. A curvec from R into a
Hilbert spaceH is smooth if for allh in H , 〈h, c〉 is smooth fromR into R ([31],
Theorem 2.14).

REMARK. Our notion of form is an adaptation in our situation of the notion
of functional smooth in the Gateaux sense on the loop space.

A Frechet smooth form gives a deterministic form in this sense. We can consider
n vector fieldsXi on U . φ∗

detσdet = σ(φdet)(DX1φdet, . . . ,DXnφdet) because since
φdet is Frechet-smooth,DXi

φdet realizes naturally an element of the tangent bundle
of L1(M) in φdet. A tangent vectors → Xs on a loop belonging toL1(M) can be
written s → τsHs whereτs is the parallel transport on the loop. Moreover,s → Hs

is of finite energy. Therefore the fiber over a loop of the tangent bundle of the
loop space is a Hilbert space. We can define the cotangent bundle as usual and the
n-exterior power of the tangent bundle. We get a Hilbert bundle	n(L1(M)) of
n-form overL1(M) and ann-form is a smooth section of this bundle.

On the free loop space, there is a natural circle actionψt :γ → {s → γ (t + s)},
which is a smooth transformation of the finite energy loop space. Its generator is
called X∞,det and is not a vector field overL1(M): X∞,det(γ )(s) = d/dsγ (s).
(In a more convenient way, we should look to the smooth loop space in order to
speak of a smooth circle action, which is endowed with the strucure of a Frechet
manifold, and replace the previous considerations by the Frechet topology on the
smooth loop space. In the sequel, we should replace the polygonal approximation
by approximation by convolution.) We can consider forms in the present sense
weaker than an ordinary form overL∞(M), the smooth free loop space endowed
with the Frechet topology. As before, a traditional form overL∞(M) is a form
in this sense. Namely, a vector over a smooth loopγ coincides to a smooth
section overγ of the tangent bundle ofM , such that ann-form coincides with
ann-antilinear distribution, which depends smoothly onγ in L∞(M). A tangent
vector over a loops → Xs is writtens → τsHs wheres → Hs is smooth such that
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τ1H1 = H0. The tangent space ofγ is a Frechet space. The cotangent space ofγ

coincides with the dual of the Frechet space which gives the tangent space ofγ .
We denote itT ∗

γ . We can consider the bundle ofn forms	n(L∞(M)) of L∞(M).
An n-form can be seen as the set of alternated continuous forms onTγ . Since
the tangent bundle ofL∞(M) is locally trivialized and sinceγ → τ1 is smooth
for the Frechet topology onL∞(M), ann-form can be seen as a smooth section
of 	n(L∞(M)) (see [31] for analogous discussions). The previous considerations
are easier to see on the based loop spaceLx,∞(M) of loops starting fromx and
arriving atx. A tangent vectorX(·) on a loopγ can be seen asX(s) = τ(s)H(s)

whereτ(s) is the parallel transport fromγ (0) to γ (s) along the loopγ andH(·) is
a smooth path inTγ (0)(M) such thatH(0) = H(1) = 0. The tangent bundle of
the smooth based loop space is therefore trivial.T ∗

γ can therefore be realized
as a fixed space of distributions, endowed with its dual topology. A 1-form is a
smooth application in the Frechet sense in this space of distributions. A natural
extension can be done for the definition of Frechet-smoothn-form on the smooth
based loop space. In the sequel, we will use the notion of forms smooth in
the Chen–Souriau sense weaker than the traditional definition of forms smooth
in the Frechet sense, because it is more consistent with the framework of this
work. We define the exterior derivative of a deterministic formσdet by the set of
relationsd(φ∗

detσdet) = φ∗(dσdet) for any plot. This checks clearly the relations of
Definition 2.1.

In the following, we will use the notion of extended plotφext
det(u, t) of a plot:

u ∈ U ; t ∈ S1:

φext
det(u, t)(s) = ψtφdet(u)(s).(2.3)

DEFINITION 2.2. iX∞,detσdet is given for a plotφdet by

φ∗
detiX∞,detσdet(u) = i∂/∂tφ

ext∗
det σdet(u,0).(2.4)

DEFINITION 2.3. A formσdet is called invariant under the circle action if for
all t frozen

φ
ext,∗
det σdet(u, t) = φ

ext,∗
det σdet(u,0).(2.5)

Let us recall thatφext,∗
det σdet(u, t) is a form onU × S1. ∂

∂t
is a vector field

on U × S1. [i∂/∂tφ
ext∗
det σdet(u,0) is the formφext∗

det σdet(u,0)( ∂
∂t

, ·).] If σdet is issued
from a form in the classical sense over the Frechet manifoldL∞(M), we have
thatφext∗

det σdet(u,0)(·, ∂
∂t

) = σdet(·, ∂
∂t

ψ0(φdet(u))). But the quantity∂
∂t

ψ0(φdet(u))

is nothing else thanX∞,det(φdet(u)). So Definition 2.2 is consistent.
Over U × S1, we have a natural circle action. Ann-form is invariant under

the circle action over the free loop space if for all plots, the formφext∗
det σdet is

invariant under the circle action onU × S1. X∞,det corresponds to the vector
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field ∂
∂t

on U × S1. On U × S1, the invariant forms under rotation are written
σ(u) + σ1(u) ∧ dt whereσ(u) andσ1(u) are forms onU which do not depend
on t .

If a deterministic form is invariant under rotation, we have, by seeing plots:

d
(
iX∞,detσdet

) + iX∞,det(dσdet) = 0.(2.6)

Namely, we can consider the Lie derivative of theφext∗
det σdet(u, t), which does

not depend ont , in the t direction. Then we use the formula expressing the Lie
derivativeLX along a vector fieldX in terms of the exterior derivative and the
interior product along the vector field:LX = diX + iXd. Sinced2 = 0 and since a
double interior productiX∞,detiX∞,detσdet= 0, we deduce the following theorem:

Let 	ev
det be the set of formal series of deterministic forms invariant by

rotation overL∞(M) of even degree and let	odd
det be the set of formal series of

deterministic forms invariant by rotations of odd degrees. We define	2k
det = 	ev

det
and	2k+1

det = 	odd
det .

THEOREM 2.4. d + iX∞,det realizes a complex from	k
det into 	k+1

det for all k.

Let L(M) be the continuous free loop space. Let� be the Laplace–Beltrami
operator associated to the Riemannian metric over the compact manifold, which
is imbedded isometrically inRd . The heat semigroup has a heat kernelpt(x, y).
Let dP1,x be the law of the Brownian bridge starting fromx and coming back at
time 1 atx. We put (see [10, 11, 25]):

dµ = p1(x, x) dx ⊗ dP1,x∫
M p1(x, x) dx

.(2.7)

It is a probability measure overL(M), which is invariant under the natural circle
action on the loop space.

DEFINITION 2.5. A stochastic plot of dimensionm φst = (U,φi,�i)i∈N is
given by the following data:

(a) a fixed open subsetU of R
m,

(b) a countable measurable partition�i of L(M),
(c) a family of smooth applications(u, s, y) → Fi(u, s, y) from U × S1 × M

bounded with bounded derivatives of all orders (if we work initially over the finite
energy loop space, we suppose only it has finite energy ins) and a family of
applicationri :U → S1 constants on each connected component ofU ,

(d) over�i , φi(u) = {s → Fi(u, s, γ (s + ri(u)))} belongs toL(M).

REMARK. The system ofFi tells us how we deform the random loopγ :
we allow to deform the random loop via cylindrical functional as, for instance,
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F(s, s, γs) = expγi(s)
[u(γ (s) − γi(s))] where expγi(s)

[v] is the Riemannian expo-
nential centered inγi(s) and wherev is a vector inTγi(s). (γ (s) − γi(s) = w is the
unique vector such that expγi(s)

[w] = γ (s) for a smooth loopγi close fromγ .) In
the third part, we will give an extended way to deform the loopγ : we refer to [43]
for a way of deforming the loopγ in all the class of semimartingales.

We remark thatψtφst is still a stochastic plot. It is given bys → Fi(u, s +
t, γ (s + ri(u))) on ψt�i . (We consider the coverψt�i of the free loop space
instead of the cover�i .)

Let �N be the set of loops such that sup|s−t |<1/N d(γ (s), γ (t)) < r where
d is the Riemannian distance overM and r is a small positive real number.
By considering the partition�i ∩ �N , we can suppose that in Definition 2.5,
each�i is imbedded in an�N . If γ ∈ �N , we denote byγ N its polygonal
approximation by broken geodesics, if we work over the finite energy loop space.
If we work over the smooth loop space, we regularize the loopγ as follows: we
consider its convolution inRd , where the regularizing kernel is a support smaller
than 1/N ; we get a loopγ̃ N in R

d which is never far fromM . We consider
the projection functionπ from a tubular neighborhood ofM (which is supposed
imbedded inR

d ) into M conveniently extended toRd , and we putγ N = πγ̃ N .
For the stochastic integrals which are considered in this part, the two types
of approximations lead to the same result, because we consider nonanticipative
Stratonovitch integrals, but in the next part, this will lead to some complications.
Let φst = (U,φi,�i) be a stochastic plot. We define the approximated plot in
the deterministic loop spaceφN

st of lengthN associated toφst by: if �i ⊆ �N ,
φN

i (u) = {s → Fi(u, s, γ (s + ri(u)))N } overφ−1
i �N .

Let us remark thatφ−1
i ON is included intoφ−1

i �N+1 and their union is equal
to U over�i .

φN
st defines a random plot overL1(M), or in order to be more rigorous, a

stochastic plot overL∞(M) the smooth free loop space, if we use the convolution
approximation. We can give the notion of stochastic form in a way which is a little
bit more sophisticated than in [40]. In the remaining part of this work, we will
work always onL∞(M).

DEFINITION 2.6. A stochastic formσst is given by the following data:

(i) A deterministic formσdet overL∞(M) which is called the skeleton of the
deterministic form.

(ii) To each stochastic plotφst = (U,φi,�i)i∈N, φN∗
st σdet tends in probability

to a random form overU φ∗
stσst for the smooth topology with compact support.

This means that over each�i , over eachφ−1
i �N , φN ′∗

i σdet for N ′ > N tends for
this topology to the restriction ofφ∗

stσst to this open subset ofU .
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REMARK. σdet is only defined byσst, because we can consider the plot
u → {s → F(u, s)} with values inL∞(M). Namely, a smooth functionφU :U →
L∞(M) can be seen as a smooth function formU × S1 with values in
M(u, s) → φU(s).

REMARK. Let j :U1 → U2 be a deterministic map fromU1 into U2. Let
φ2

st = (U2, φ
2
i ,�i)i∈N be a stochastic plot and letφ1

st = (U1, φ
2
i ◦ j,�i)i∈N be

the composite plot. We get almost surely as random form

j∗φ2∗
st σst = φ1∗

st σst.(2.8)

Moreover, letφ1
st = (U,φ1

i ,�
1
i )i∈N andφ

j
st = (U,φ2

j ,�
2
j )j∈N be two stochastic

plots. Let us suppose that there exists a random transformation� from some�1
i

into some�2
j such thatφ2

j = φ2
i ◦ �. Then, almost surely,

φ1∗
j σst = φ2∗

i σst ◦ �(2.9)

as random form overU .
The two properties (2.8) and (2.9) constitute the basic properties of a random

form in our previous works [40, 46].
A random formσst is said to be invariant by rotation if its skeletonσdet is

invariant by rotation. By the second property of Definition 2.6, ifσst is a
random form with skeletonσdet, dσst is still a random form and its skeleton
is dσdet. Namely,dσst satisfies clearly the requirement of Definition 2.6 because
φN∗

st dσdet = dφN∗
st σdet. Therefore the stochastic exterior derivative defines a

complex over the set of random form. It is not the same foriX∞σst, whereX∞ is
the stochastic Killing vector field which formally generates the circle action over
the free loop space.

DEFINITION 2.7. A stochastic formσst with skeletonσdet has an interior
product iX∞ if iX∞,detσdet defines a stochastic form. This stochastic form is
callediX∞σst.

REMARK. Let us see what these definitions mean with some examples. If
Fdet = ∫

S1 |d/dsγ (s)|2 ds, Fdet does not define a stochastic functional. Ifω is a
one form onM , Fdet = ∫

S1〈ω(γ (s)), dγ (s)〉 defines a stochastic functional. Let
es be the evaluation mapγ (·) → γ (s). e∗

s ω = σdet defines a stochastic form, but
this stochastic form does not admit an interior product by the stochastic Killing
vector field, unlike the stochastic form

∫
S1 e∗

s ω ds.

Clearly, if iX∞σst exists,iX∞iX∞σst = 0. If iX∞σst exists,diX∞σst exists, but it
is not clear thatiX∞dσst exists.
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DEFINITION 2.8. 	2k
st is the set of formal series of even stochastic forms

which are invariant under rotation and which admit an interior product byX∞.
	2k+1

st is the set of formal series of odd stochastic forms which are invariant under
rotation and which admit an interior product byX∞.

If a form of given degree invariant under rotation admits an interior product
by X∞, its skeletonσdet satisfies

d
(
iX∞,detσdet

) + iX∞,det(dσdet) = 0.(2.10)

ThereforeiX∞dσst exists and we have the relation

d
(
iX∞σst

) + iX∞(dσst) = 0.(2.11)

We therefore get:

THEOREM 2.9. d + iX∞ defines a complex from	k
st to 	k+1

st . It is called the
stochastic equivariant complex.

Its cohomology groupsH odd
st and H ev

st are called the stochastic equivariant
cohomology groups with respect to this diffeology.

Let us give an example. Let̃ωn be an element of the algebraic tensor product
�(M) ⊗ �·(M)⊗n−1 where�(M) denotes the space of smooth forms overM

and �·(M) denotes the space of smooth forms of degree not equal to 0. If
ω̃n = ω1 ⊗ ω2 ⊗ · · · ⊗ ωn, we define its degree by

degω̃n = degω1 +
n∑

i=1

(
deg(ωi) − 1

)
.(2.12)

In the sequel, we will denote byC2k the sum of finite sums of elementary tensor
products of even degree. We get an analogous definition ofC2k+1.

Let ω̃n = ω1 ⊗ ω2 ⊗ · · · ⊗ ωn. Let us introduce the Hochschild boundary:

b(ω̃n) =
n−1∑
i=1

εiω1 ⊗ · · · ⊗ ωi ∧ ωi+1 · · · ⊗ ωn

+ εnωn ∧ ω1 ⊗ ω2 · · · ⊗ ωn−1(2.13)

+
n∑

i=1

ε′
iω1 ⊗ · · · ⊗ ωi−1 ⊗ dωi ⊗ · · · ⊗ ωn.

The signsεi and ε′
i are given in [22]. The Hochschild boundary increases the

degree by one unit.
Let us define the cyclic boundary operatorB of Connes [14, 22, 53]:

B(ω̃n) =
n∑

i=1

ε′′
i 1⊗ ωi · · · ⊗ ωn ⊗ ω1 ⊗ ω2 ⊗ · · · ⊗ ωi−1.(2.14)

The signsε′′
i are given in [22].B decreases the degree by one unit.
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Let us recall (see [22]) thatb + B realizes a complex fromCk into Ck+1

called the cyclic complex. Let us introduce the equivariant stochastic integral�ω̃n

defined by

�ω̃n =
∫ 1

0
e∗
s ω1 ∧

∫
s<s2<s3<···<sn<s+1

e∗
s2

ω2
(
dγs2, ·

) ∧ · · · ∧ e∗
sn

ωn

(
dγsn, ·

)
(2.15)

wherees denotes the evaluation mapγ → γ (s). Let us clarify what we mean
by e∗

s ω(dγs, ·). It is nothing else thaniX∞,dete
∗
s ω(·) ds, if we work overL∞(M).

�ω̃n realizes a smooth form overL∞(M). The Hochschild boundary corresponds
to the exterior product of the iterated integral. The Connes operator corresponds to
the interior product of the iterated integral by the canonical deterministic Killing
vector fieldX∞,det. In general, Chen forms are obtained when we remove the first
integral

∫ 1
0 in (2.15) and we takes = 0. These nonequivariant Chen forms will lead

to stochastic forms which do not admit an interior product by the stochastic Killing
vector field, unlike the equivariant one in (2.15).

We get from the rules of approximation of nonanticipative Stratonovitch
integrals the following theorem:

THEOREM 2.10. �ω̃n defines a random form�stω̃
n.

Let us explain Theorem 2.10. Let us considerω̃ = ω1 ⊗ ω2 ⊗ · · · ⊗ ωn, where
the degree ofωi is equal tori . We extend the formωi by forms with bounded
derivatives of all orders overRd . Let φi(u) = {s → Fi(u, s, γ (s + ri(u)))} be a
stochastic plot and letφN

i be its regularization by convolution. LetXij be some
vector fields overU whereij ∈ [1, ri − 1] if i > 1 and 1j ∈ [1, r1]. Modulo some
antisymmetrization which is due to the fact that we take some exterior product in
the iterated integrals we get

φN∗
i �ω̃

(
X11, . . . ,X1r1

,X21, . . . ,X2r2−1, . . . ,Xn1, . . . ,Xnrn−1

)
=

∫ 1

0

〈
ω1

(
(φN

i )(s1)
)
,DX11

φN
i (s1), . . . ,DX1r1

φN
i (s1)

〉
ds1

×
∫
s1<s2<···<sn<s1+1

∏〈
ωj

(
φN

i (sj )
)
, d/dsjφ

N
i (sj ),(2.16)

DXj1
φN

i (sj ), . . . ,DXjrj −1
φN

i (sj )
〉
dsj

+ c.c.

The counterterm appears when we shuffle theXj,k , because we consider a wedge
product of forms in the definition of the iterated integrals. The stochastic integral
converges in probability for the smooth topology onU to the limit nonanticipative
Stratonovitch integral, where we replace formally in (2.16)φN

i (sj ) by φi(sj )
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andd/dsjφ
N
i (sj ) by the Stratonovitch differentialdsj φi(sj ) (see [27]). After this

formal manipulation, we get a random smooth form onU .
Let us justify this limiting argument: let us consider a semimartingales → Ys

with values in M and some 1-formωi on M . We define iterativelyIn,t =∫ t
0 In−1,s〈ωn(Ys), dYs〉 with I1,t = ∫ t

0〈ω1(Ys), dYs〉. We can replaceYt by YN
t .

We get random variablesIN
n,t . By induction, we can show thatIN

n,t tends in
probability toIn,t (see [27]).

Let us explain the formulas by a simpler example. Let us suppose that
ω̃ = ω1 ⊗ ω2 where ω1 is a 1-form andω2 is a 2-form. We extend them to
bounded forms with bounded derivatives of all orders overRd . Let φi(u) = {s →
Fi(u, s, γ (s + ri(u)))} and letφN

i be the approximated plot. LetX andY be two
canonical vector fields overRm. We have

φN∗
i �ω̃(X,Y ) =

∫ 1

0

〈
ω1

(
φN

i (s)
)
, ∂XφN

i (s)
〉
ds

×
∫ s+1

s

〈
ω2

(
φN

i (s)
)
, d/dsφN

i (s), ∂Y φN
i (s)

〉
ds

(2.17)

−
∫ 1

0

〈
ω1

(
φN

i (s)
)
, ∂Y φN

i (s)
〉
ds

×
∫ s+1

s

〈
ω2

(
φN

i (s)
)
, d/dsφN

i (s), ∂XφN
i (s)

〉
ds.

The counterterm in (2.16) is here very simple to write. These stochastic integrals
converge in probability for the smooth topology inU over the limit nonanticipa-
tive Stratonovitch integral. The ordinary integral inds gives an equivariant form.
We produce by this procedure a map between the stochastic equivariant cohomol-
ogy and the cyclic cohomology, which extends this classical correspondence on
the smooth loop space (see [22]).

Let M be the fixed point set ofL(M) under the circle action. LetTε(M) =
{γ : sups,t d(γ (s), γ (t)) < ε} for a small real nuimberε. It is an equivariant
neighborhood ofM . Let h(s, t) = d2(γ (s), γ (t)) if γ (s) andγ (t) are close and
equal to 1 ifγ (s) and γ (t) are far. We introduce a functiong(h(s, t)) = 1, if
h(s, t) < r1, which behaves as(r2 − h(s, t))−k for a big k if h(s, t) → r2− and
is equal to infinity ifh(s, t) > r2. We supposeg is smooth over[0, r2[ and larger
than 1. Letf be a smooth function from[1,∞[ into [0, 1] equal to 1 at 1 and with
compact support. We consider the functional

Hr1,r2(γ ) = 1− f

(∫ 1

0

∫ 1

0
g
(
h(s, t)

)
ds dt

)
.(2.18)

We defineOε = L(M)−T ε(M). It is an equivariant open subset ofL(M). We find
ε and ε′ with ε′ > ε such thatHr1,r2 with support inOε is equal to 1 inOε′ .
In the sequel, in order to get this property, we will work on the Hölder loop
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space. It is not a problem, because the Brownian bridge is almost surely Hölder.
If the first property is satisfied, we sayHr1,r2 satisfies property H. The cutoff
functionalHr1,r2 is Frechet smooth for the Hölder topology, and a fortiori smooth
for the smooth topology (see [46]).

We say that a stochastic form belongs to	st(Oε) if for all mollifier func-
tionsHr1,r2 satisfying the property H the formHr1,r2σdet is a stochastic form over
the full loop spaceL(M). This defines a skeletonσdet overL∞(M)∩Oε such that
for all mollifier functionsHr1,r2σst determines a stochastic form over the free loop
space.

SinceOε is invariant by rotation, we can repeat the considerations of before
for stochastic forms overOε, define an interior product by the stochastic Killing
vector field and define an equivariant exterior derivative. We get two stochastic
cohomology groupsH odd

st (Oε) andH ev
st (Oε). The end of this part is devoted to

showing the following proposition:

PROPOSITION2.11. H ev
st (Oε) = H odd

st (Oε) = 0.

The main difficulty to repeat the argument of Jones and Petrack [30] is that the
Brownian loop is of infinite energy.

Let us remark that overOε,
∫ 1
0 |d/dsγ (s)|2 ds > a > 0 for a given constanta.

Let us consider the cover of]0,∞[ by the intervals] a
8(k+1)

, a
4k

[ where a
0 = ∞.

Let us consider a partition of unityf k associated to this cover. Let us introduce a
functiong from R into [0,1] equal to 1 overR− and equal to zero over[a/2,∞[.
We imbedM into R

d , and we denote by〈·, ·〉x the Riemannian tensor inx in R
d

which extends the Riemannian metric overM . We put

FN,k(γ ) = f k

(∫ 1

0
dt

∫ 1

0
〈d/dsψt(γ

N)(s), d/dsψt(γ )(s)〉ψt (γ )(s) ds

)
.(2.19)

FN,k is invariant under rotation. We put

GN(γ ) =
N−1∏
i=1

g

(∫ 1

0
dt

∫ 1

0
〈d/dsψt(γ

i)(s), d/dsψt(γ )(s)〉ψt (γ )(s) ds

)
.(2.20)

GN is invariant under rotation.GN andFN,k define clearly stochastic functionals
with respect to the diffeology, by replacingd/dsψtγ (s) ds by the stochastic
integraldsψtφi(s). Moreover, overL∞(M), we have

∞ >
∑
N,k

GNFN,k = � > 0.(2.21)

The sum is in fact finite. LetON,k be the open subset:{
γ :

∫ 1

0

∫ 1

0
ds dt〈d/dsψt(γ

N)(s),

(2.22)

d/dsψt(γ )(s)〉ψt (γ )(s) ∈
]

a

8(k + 1)
,

a

4k

[}
.
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F̃ N,k = GNFN,k

�
constitutes a partition of unity associated to the coverON,k of

L∞(M) ∩ Oε. Moreover F̃ N,k constitutes a smooth stochastic functional with
respect to the previous diffeology. It constitutes a stochastic partition of unity
of Oε. That is, if we consider a stochastic plotφst = (U,φi,�i)i∈N, we have almost
surely as smooth function overU for all integersM :∑

N,k

F̃ N,k(φM
i (u)

) = 1(2.23)

over each�i and the sum is almost surely finite.
In the sequel, we put(N, k) = α. Over the set of indices, there is a natural or-

der. We consider a set of indices(α1 < · · · < αn) = In. OIn = Oα1,...,αn = ⋂
Oαi .

We say that a stochastic form is defined overOIn if for all smooth func-
tion hj with compact support in] a

8(kj+1)
, 2

4kj
[, the form

∏
hj (

∫ 1
0

∫ 1
0 ds dt <

d/dsψt(γ
Nj )(s), dsψt (γ )(s) >ψt (γ )(s))σst defines a stochastic form overL(M).

Since OIn is invariant by rotation, we can define a stochastic equivariant
complex overOIn . We get equivariant stochastic cohomology groups called
H ev

st (In) andH odd
st (In).

LEMMA 2.12. If n �= 0, Hst(In) = 0.

PROOF. Let us considerN1 such that α1 = (N1, k1). We consider the
stochastic equivariant 1-form:

αN1 =
∫ 1

0
ds

∫ 1

0
dt〈d/dsψt(γ

N1)(s), ·〉ψt (γ )(s).(2.24)

For a stochastic plotφ = (U,φi,�i)i∈N , we get ifX is a vector field overU :

φ∗αN1(X)
(2.25)

=
∫ 1

0
dt

∫ 1

0
〈d/dsψt(φ(u))N1(s), ∂Xψt(φ(u))(s)〉ψt (φ(u))(s) ds.

We have

iX∞αN1 =
∫ 1

0
dt

∫ 1

0
〈d/dsψt(γ

N1)(s), dsψt (γ )(s)〉ψt (γ )(s).(2.26)

This interior product is therefore larger thana
8(k1+1)

. Therefore,

(
d + iX∞

)
αN1 = (

iX∞αN1
)(

1+ dαN1

iX∞αN1

)
.(2.27)

iX∞αN1 is a functional in our weaker sense strictly larger thana8(k1+1)
overOIn .

We can define 1
iX∞αN1

. It is therefore still a functional in our sense inOIn . We see
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that the stochastic forms invariant under rotation overOIn having an interior
product by the stochastic Killing vector field constitute an algebra for the stochastic
wedge product. Moreover,(

d + iX∞
)
(σst ∧ σ ′

st) = (
d + iX∞

)
σst ∧ σ ′

st + (−1)degσstσst ∧ (d + iX∞)σ ′
st(2.28)

by pulling back this formula through a plot and approximating the plot. Therefore,
(d + iX∞)αN1 has an inverse over the algebra of stochastic forms overOIn : it is
given by the formula

βN1 = (
iX∞αN1

)−1
(∑

(−1)j
(dαN1)j

(iX∞αN1)j

)
.(2.29)

Moreover, (
d + iX∞

)
βN1 = 0(2.30)

by (2.27) and (2.28), becauseαN1 is invariant under rotation and because

βN1 ∧ (
d + iX∞

)
αN1 = 1.(2.31)

It remains to remark that(
d + iX∞

)
(σ ∧ σ ′) = ((

d + iX∞
)
σ

) ∧ σ ′ + signσ ∧ ((
d + iX∞

)
σ ′).(2.32)

Let us choose a stochastic formσst overOIn such that(d +iX∞)σst = 0. We deduce
that

σst = (
d + iX∞

)
(αN1 ∧ βN1 ∧ σst).(2.33)

Therefore the result holds (see [30] for a proof of the same result in the
deterministic case).�

Let In −αj = I
j
n . A stochastic form associated toI j

n clearly defines a stochastic
form associated toIn. There is a bigraduation over the form associated toIn:
the degree in the sense of Theorem 2.4 and the length ofIn. We call the space
of associated stochastic form	r

st,In
. We deduce a bicomplex:

(a) the equivariant stochastic derivatived + iX∞ which transforms	r
st,In

into 	r+1
st,In

,
(b) the Cech complex:

(δσst)In = ∑
(−1)jσst,In−αj

(2.34)

where we take in (2.34) the restriction ofσst,In−αj
to OIn .

These two complexes commute. We can conclude now:

PROOF OFPROPOSITION2.11. Let us recall, when there is a first quadrant
bicomplex(d, δ) with complexes commuting(dδ = δd) 	p,q , we can consider its
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total complexd + signδ = dtot which operates onEn = ∑
p+q=n 	p,q . dtot goes

from En into En+1 and is such thatd2
tot = 0. There are some total cohomology

groups which are related to the total complex Kerdtot E
n+1/ Imdtot E

n. There is an
algebraic procedure in order to approximate the total cohomology groups called
spectral sequence. We approximate iteratively the total cohomology by a sequence
of cohomology groups associated to some complexesdr which applies	p,q

to 	p+r,q−r+1. More precisely, at the further step, we start from the cohomology
groups of the previous step. At a first step, we considerd alone, and we get
E

p,q
1 = Hd(	p,q), the cohomology groups deduced fromd. At a second step,

we consider the differentialδ alone, and we apply that to the spaces obtained
from the second step, and we getE

p,q
2 = Hδ(Hd(	p,q)). This approximations

procedure converges when we iterate to the total cohomology of the total complex
(see [12]). We would like to apply the spectral sequence formalism in our context,
mimicking the classical proof of Bott and Tu ([12], pages 166–167) that the Cech
cohomology of a manifold is equal to the de Rham cohomology of the manifold.
For that, we replace the bicomplex(δ, d) by the bicomplex(δ, d + iX∞). Following
Warner ([61], page 202), ifδσst = 0, thenσst = δσst,1, because of the existence of
partition of unity invariant under rotationon the open subsetOε of the Hölder
loop space given previously. We have

(σst,1)In = ∑
α

F̃ α(σst)α,α1,...,αn.(2.35)

Namely,F̃ α defines a stochastic functional invariant under rotation with support
included inOα such thatF̃ α(σst)α,α1,...,αn is a stochastic form onOIn invariant
under rotation. SinceF̃ α is invariant under rotation, we get a form which
is invariant under rotation. We can repeat the proof of Bott and Tu ([12],
pages 166–167). In the spectral sequence associated to the bicomplex(δ, d + iX∞),
the first termsE

p,q
1 are equal to 0, except in the first column where we

find 	
p
st(Oε). The second termsEp,q

2 are all 0 except for the first column where
we find the cohomology groups ford + iX∞ of 	

p
st(Oε). Therefore, the spectral

sequence degenerates after the second order, and we find that the stochastic
equivariant cohomology groups ofOε are equal to the total cohomology groups
of the bicomplex, because the higher derivativesdr are trivially 0 and at each step
of the spectral sequence, the cohomology groups considered remain invariant.

We invert the role of the two complexes. Since the stochastic cohomology
for the equivariant stochastic exterior derivative overOIn is equal to zero, all
the termsEp,q

1 are equal to 0. This shows that the total stochastic cohomology
groups of the total bicomplex are equal to 0, because the first cohomology groups
at each step of the spectral sequence are 0, and because the cohomology groups
at stepr + 1 of the spectral sequence are deduced from the cohomology groups at
stepr of the spectral sequence, supposed inductively equal to 0.

Therefore the result holds, because we have computed the total cohomology
groups of the bicomplex in two ways, which are equal.�
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We can state an analogous proposition:

PROPOSITION 2.13. Let ε′ > ε > 0. Then the stochastic equivariant coho-
mology groups ofOε ∩ Tε′ are equal to0.

3. Study of the second diffeology. Let Tε be the equivariant open subset
defined by{γ : sups,t d(γ (s), γ (t)) < ε}. We would like to show that its equivariant
stochastic cohomology groups are equal to the de Rham cohomology groups ofM ,
if ε is small enough. We need a retraction map fromTε to M which commutes with
the natural circle action. Letr ∈ [0,1]. We choose

F
(
r, γ (s), γ (t)

) = expγ (s)

[
r
(
γ (t) − γ (s)

)]
(3.1)

conveniently extended overRd by a functional with values inRd with bounded
derivatives of all orders.γ (t)−γ (s) is the vector overγ (s) of the unique geodesic
joining γ (s) to γ (t) if γ (t) is closed fromγ (s). This gives a retraction mapF(r)

from the loopt → γ (t) to the constant loopt → γ (s). Moreover,F(r) transforms
a plot into a plot; that is,F(r) is smooth for the considered diffeology. But we
do not haveψtF (r) = F(r)ψt , because we contract the small loopt → γ (t) into
the constant loopt → γ (s). We request a retractH(r) which is smooth for the
considered diffeology and which commutes with the circle action.F(r) is not
equivariant under the natural circle action because we choose the times. We
average under the natural circle action: we get

∫
S1

F(r, γ (s), γ (t)) ds which is
not far of M if γ ∈ T (ε) and we look at the projection mapπ conveniently
extended overRd onM : π(

∫
S1

F(r, γ (s), γ (t)) ds) = H(r, γ )(t). The mapH(r, ·)
commutes with the natural circle action. ButH(r) does not transform a plot into a
plot. This leads to the introduction of a new stochastic diffeology.

DEFINITION 3.1. A stochastic plotφst = (U,φi,�i)i∈N is given by the
following data:

(i) any finite sequence of deterministic integersj ,
(ii) a deterministic open subsetU of R

m,
(iii) a countable measurable partition�i of L(M),

(iv) two applicationsF
j
i from U × (Rd)n

j
i × R

d into R
d and h

j
i from

U × R
d × R

d smooth with bounded derivatives of all orders and an applicationr
j
i

from U into S1 which is constant on the connected component ofU ,
(v) let us denoteH

h
j
i ,F

j
i

(u)(s) the quantityφi(u)(s) = h
j
i (

∫
(S1)

n F
j
i (u, γ (s1),

. . . , γ (sn), γ (s + r
j
i (u))) ds1 · · · dsn). The iterationHh1

i ,F
1
i

◦ · · · ◦ Hhn
i ,Fn

i
(u)(·)

belongs toL(M) over�i .

The main remark is the following: ifφst = (U,φi,�i) is a plot, (r, u) →
H(r,φst(u)) is still a plot indexed byU × [0,1]. This stochastic diffeology is
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compatible with the restriction map. Ifφst = (U,φi,�i)i∈N is a plot with respect
to this diffeology, we get an extended plotφext

st from U × [0,1] into L(M) by
putting

(u, r) → {
s → H

(
r,φst(u)

)
(s)

}
(3.2)

which contracts the stochastic plotφst with values inT (ε) into a plot with values
in M . This says that the retraction map is smooth for this new diffeology.

We can repeat the consideration of Section 2 to study the stochastic equivariant
cohomology associated to this diffeology.

In particular, we get:

PROPOSITION3.2. H ev
st (Oε) = H odd

st (Oε) = 0.

We also get:

PROPOSITION 3.3. If ε′ > ε > 0, the stochastic equivariant cohomology of
Oε ∩ Tε′ is equal to0.

In order to show this theorem, we do as in the previous section. There is a small
difficulty which appears, because in

∫ 1
0 〈d/dsψt(γ

N)(s), d/dsψt(γ (s)〉ψt (γ (s)) ds,
there are some anticipative Stratonovitch stochastic integrals which appear.
We replace this expression by

∫ 1
0 〈d/dsψt(γ

N)(s), d/dsψt(γ (s))〉ψt (γ N )(s) ds and
we integrate by parts in order to remove the stochastic integral, if we replace
d/dsψt(γ (s)) ds by the anticipative Stratonovitch differentialdsψt (φst) where
φst is a plot.

PROPOSITION3.4. The stochastic equivariant cohomology groups ofTε are
equal to the cohomology groups ofM if ε > 0 is small enough.

PROOF. Let H(r, ·) be the applicationγ → {s → H(r, γ )(s)}. It commutes
over the smooth loop space to the circle action. Therefore over the smooth loop
space, we have

X∞,det
(
H(r, γ )

) = DH(r, γ )X∞,det.(3.3)

Namely,ψt ◦ H(r) = H(r) ◦ ψt and we differentiate this formula att = 0.
We denote byXr the vector ∂

∂r
H(r, ·). This realizes a Frechet vector field

onL∞(M); more precisely,Xr(γ ) belongs toTHr(γ ). We use the retraction Cartan
formula for a deterministic formσdet overT (ε). We get

σdet = H 0∗σdet+ d

∫ 1

0
Hr,∗iXr σdetdr +

∫
Hr∗iXr

(
d + iX∞,det

)
σdetdr

(3.4)

−
∫ 1

0
Hr,∗iXr iX∞,detσdetdr.
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If σdet were a traditional form overL∞(M), this formula would be nothing else
than the integrated formula which expresses the Lie derivatives along a flow in
terms of the exterior derivative and the interior product along the vector field
of the flow of the considered deterministic formd/drHr∗σdet = dHr∗iXr σdet +
Hr∗

iXr dσdet. But, here, we have to take care, because we consider a weaker
notion of form. So, we have to look at this formula through a plot, and consider
the extended retracted plot. We apply this formula to the form associated to the
finite-dimensional form which is given by the extended plot. By (3.3),

Hr,∗iX∞,detσdet= iX∞,detH
r,∗σdet.(3.5)

Therefore, ifσdet is equivariantly closed, then we have the equivariant retraction
formula:

σdet= H 0,∗σdet+ (
d + iX∞,det

) ∫ 1

0
Hr,∗iXr σdetdr.(3.6)

This formula is still true for the stochastic form. Namely, ifφst is the stochastic
plot, we have an augmented stochastic plot(r, u) → H(r,φst(u)) called φ

aug
st .

We can defineφaug,∗
st σst, and its approximation(r, u) → (φ

aug
r,t (r, u))N (see [50] for

similar considerations).H(r)∗(σst) is defined by taking the plotu → φ
aug
st (r, u)

where r is frozen. It admits an interior product by the stochastic Killing
vector field, and the approximating formula (3.6) when we pull-backσst by the
approximating plots goes to the limit. Therefore, if(d + iX∞)σst = 0, we have

σst = H(0)∗σst + (
d + iX∞

) ∫ 1

0
H(r)∗iXr σstdr.(3.7)

H(0)∗σdet is a stochastic form overM , therefore a deterministic smooth form.
It remains to show thatH(r)∗iXr σst is a stochastic form having an interior product
by the Killing vector field. But we can use the fact thatiX∞H(r)∗iXr σst =
−H(r)∗iXr iX∞σst and the fact thatσst admits an interior product by the stochastic
Killing vector field in order to show this statement. This proves the proposition.

�

By using Propositions 3.2, 3.3 and 3.4, we can show a stochastic fixed point
theorem.

THEOREM 3.5. The stochastic equivariant cohomology groups with respect
to the stochastic diffeology of Definition3.3are equal to the de Rham cohomology
groups ofM .

PROOF. Let 0< ε < ε′. We have a cover ofL(M) by T (ε) andO(ε). These
subsets are invariant under rotation. We have a partition of unity associated to
this cover [see (2.17)] for the Hölder topology, which is invariant under rotation,
which is therefore smooth for the Frechet topology over the smooth loop space,
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and which provides therefore a partition of unity associated to our cover, invariant
under rotation, for the stochastic Chen–Souriau calculus, because a functional
Frechet-smooth on the Hölder free loop space realizes clearly a functional smooth
in the stochastic Chen–Souriau sense. We can produce a Mayer–Vietoris long exact
sequence for the stochastic equivariant cohomology (see [12], pages 22–23). This
Mayer–Vietoris argument says that we have an exact sequence:

0→ 	st(L(M)) → 	st(Tε′) ⊕ 	st(Oε) → 	st(Tε′ ∩ Oε) → 0(3.8)

for stochastic forms invariant under rotation because the mollifierHr1,r2 is
invariant by rotation. The first map gives the restriction ofσst to Tε′ and Oε.
There is a partition of unity Frechet smooth for the Hölder topology associated
to the coverTε′ andOε of L∞(M). The functionsρTε′ andρOε associated to this
partition of unity are invariant under rotation.(−ρOεσst, ρTε′ σst) realize an element
of 	st(Tε′) ⊕ 	st(Oε) which projects onσst which belongs to	st(Tε ∩ Oε).
From this short exact sequence, we deduce a long exact sequence in cohomology
(see [12]). We use the complexd + iX∞ , which is compatible with the maps
of (3.8). This long sequence in cohomology arises by an abstract argument.
Propositions 3.2, 3.3 and 3.4 show the result. Namely,Hst(Tε′ ∩ Oε) = 0 =
Hst(Oε) and Hst(Tε′) = H(M). We deduce thatHst(L(M)) = H(M) by the
Mayer–Vietoris long sequence in cohomology:

· · · → H ·
st(L(M)) → H ·

st(Tε′) ⊕ H ·
st(Oε)

(3.9)
→ H ·

st(Tε′ ∩ Oε) → H ·+1
st (L(M)) → ·· · ,

where the image of a map in (3.9) is equal to the kernel of the map which follows.
�

In order to show that an iterated integral in the manner of (2.15) defines a
stochastic form with respect to this diffeology, we have to study the approximation
of anticipative Stratonovitch integrals by convolution. It is a refinement of the
theory of Léandre [35].

We work over the based path space, that is, the space of continuous paths
starting fromx endowed with the Brownian motion measure. Let us recall what is
the Sobolev Nualart–Pardoux calculus of Léandre [35, 37, 45]. The tangent space
of a pathγ is the set of maps → τsHs whereτs is the parallel transport along the
pathγ and wheres → Hs is a path inTx(M) of finite energy. We take as Hilbert
norm

‖X·‖2
γ =

∫ 1

0
|d/dsHs |2 ds.(3.10)

If H· is deterministic, we have an integration by parts formula [9, 15, 33]:

E[〈dF,X〉] = E[F divX],(3.11)
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where F is a cylindrical functional. This allows us to define the notion of
H -derivative:

〈dF,X〉 =
∫ 1

0
〈k(s), d/dsHs〉ds.(3.12)

We can iterate this notion of stochastic derivative, by using the connection∇ on
the path space:

∇τ·H· = τ·DH·.(3.13)

If dr∇F is defined, we put

dr+1
∇ F(X1, . . . ,Xr+1)

(3.14)
= 〈d(

dr∇(X1, . . . ,Xr)
)
,Xr+1〉 − ∑

dr∇F
(
X1, . . . ,∇Xr+1Xi,Xr

)
.

dr∇F is anr-cotensor and is defined by a kernel:

dr∇F(X1, . . . ,Xr)
(3.15)

=
∫ 〈

k(s1, . . . , sr ), d/dsHs1, . . . , d/dsHsr

〉
ds1 · · · dsr

and we put as curved Sobolev norm:

‖F‖p
r = E

[(∫
|k(s1, . . . , sr )|2 ds1 · · · dsr

)p/2]1/p

(3.16)

(see [33, 38]).
We define the Nualart–Pardoux Sobolev norms fors → H(s) with values

in R
d . We consider the kernels ofdr∇H(s) called H(s, s1, . . . , sr ). We suppose

that outside the diagonals

‖H(s, s1, . . . , s2) − H(s′, s′
1, . . . , s

′
r )‖Lp

(3.17)
≤ Cp,r(H)

(∑√
|si − s′

i | +
√

|s − s′|
)

and we suppose that for alls, s1, . . . , sr

‖H(s, s1, . . . , sr )‖Lp ≤ C′
p,r(H) < ∞.(3.18)

The smallest quantitiesCp,r(H) andC′
p,r(H) constitute the system of Nualart–

Pardoux norms of the processH(·).
We imbed the manifold intoRd . We suppose thath and F are bounded

functionals fromR
d into R

d [F from (Rd)n+1 into R
d ] with bounded derivatives

of all orders. Let us introduceY(s) which is a finite iteration of operations of the
typeh(

∫
[0,1]n F (γ (s1), . . . , γ (sn), γ (s +s0)) ds1 · · · dsn) and its approximation by

convolution:

YN(s) =
∫

gN(s − u)Y (u)du.(3.19)
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We will choose the regularizing functiongN later.
We remark thatY(s) satisfies the Nualart–Pardoux conditions by the following

lemma:

LEMMA 3.6. Let us suppose thats → Y(s) satisfies the Nualart–Pardoux
conditions. Then the random processs → h(

∫
[0,1]n F (Y (s1), . . . , Y (sn),

Y (s + s0)) ds1 · · ·dsn) satisfies the Nualart–Pardoux conditions.

PROOF. The proof comes from the proof of Lemme A.2 of [35] and from
the fact(s1, . . . , sn, s) → (Y (s1), . . . , Y (sn), Y (s)) satisfies the Nualart–Pardoux
conditions(s1, . . . , sn, s) ∈ [0,1]n+1 included. (We have a natural extension to this
case of the notion of Nualart–Pardoux conditions.)�

By an integration by parts, and using a primitiveg1
N of gN , we get that

YN(s) =
∫

g1
N(s − u)duY (u)(3.20)

such that

d/dsYN(s) =
∫

gN(s − u)duY (u).(3.21)

We have the following lemma:
We choose a regularizing functiongN such thatgN

2N
is equal to 1 over[−1/N +

1/Nk,1/N − 1/Nk] for a big k and which takes its values in[0,1], and which
is equal to 0 outside[−1/N;1/N], such that the Nualart–Pardoux norms of∫ −1/N+1/Nk

−1/N gN(s − t) dtYt are bounded byN−j for a big j as well as the

Nualart–Pardoux norms of
∫ 1/N

1/N−1/Nk gN(s − t) dtYt . The sum of these two terms
is calledδN(s). The integral ∫

〈HN(s), δN(s)〉ds(3.22)

goes to 0 by the same considerations as below. So in order to simplify the notation,
we can replacedYN by

2N

∫ 1/N

−1/N
duY (u − s) = 2N

∫ s+1/N

s−1/N
duY (u).(3.23)

Therefore we have to study the behavior of

2N

∫ t

0

∫ s+1/N

s−1/N
〈IN(s) ds, dvY (v)〉

(3.24)

= 2N

∫ 1/N

−1/N
dv

∫ t

0
〈HN(s + v), dY (s)〉.
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In order to computeduψ(u) where we consider only one iteration we use the chain
rule:

duψ(u) = h′
(∫

[0,1]n
F

(
γ (s1), . . . , γ (sn), γ (s)

)
ds1 · · ·dsn

)

×
∫
[0,1]n

〈dF
(
γ (s1), . . . , γ (sn), γ (u)

)
, dγ (u)〉(3.25)

= 〈A(u), dγ (u)〉.
The same result is true when we consider a finite number of iterations as in
Definition 3.1, whereA(u) checks all the Nualart–Pardoux conditions,u included.
So we recognize in (3.23) the anticipative Stratonovitch integal:

2N

∫ 1/N

−1/N
dv

∫ t

0
〈HN(s + v),A(s) dγ (s)〉.(3.26)

We can writedγ (s) = τsdB(s) where dB(s) is a flat Brownian motion. The
anticipative Stratonovitch integral

∫ t
0〈HN(s + v),A(s) dγ (s)〉 is equal to the

anticipative Stratonovitch integral for the flat Brownian motionB(s)

∫ t

0
〈HN(s + v),A(s)τ (s) dB(s)〉 =

∫ t

0
〈τ(s)−1At

sH
N(s + v), dB(s)〉.(3.27)

The system of Nualart–Pardoux Sobolev norms for the curved Brownian motion is
equivalent to the system of Nualart–Pardoux norms for the flat Brownian motion
(see [35, 37, 45]). Letus be a process with values inRd . Let us(v) be the kernel
of its flat derivatives. This means that ifh is an element of the Cameron–Martin
space of the flat Brownian motion,Dhvs = ∫ 1

0 〈vs(v), d/dvh(v)〉dv. Seeδt (u) the
Skorohod integral in timet (see [55]). Then the Stratonovitch integral

∫ t

0
〈us, dB(s)〉 = δt (u) + 1

2

∫ t

0

(
lim

v→s−us(v) + lim
v→s+us(v)

)
ds(3.28)

(see [55], page 567). (We do as if we were inR in order to simplify the notation.)
Moreover, we can estimate theLp norm of δt (u) in terms of theLp norms

of us(v) (see [54], page 158) (i.e., in terms of the flat first-order Sobolev norms
of s → us ).

LEMMA 3.7.
∫ t
0〈τ−1

s At
s

1
2(HN(s + v) + HN(s − v)), dBs〉 tends whenv → 0

to the anticipative Stratonovitch integral
∫ t
0〈τ−1

s At
sH

N
s (s), dBs〉 in all theLp.

PROOF. Let αs(v) be the processs → τ−1
s At

sH
N
s (s + v). αs(v) tends toαs(0)

in all the first-order Sobolev space for the flat Brownian motion. Therefore
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δs(α·(v + α·(−v))) tends toδs(0) in all theLp. Moreover, ifv > 0,

E

[∣∣∣∣
∫ t

0

1
4

(
lim

t→s−
(
αs(v)(t) + αs(−v)(t)

)

+ lim
t→s+

(
αs(v)(t) + αs(−v)(t)

))
(3.29)

− 1
2

(
lim

t→s+αs(0)(t) + lim
t→s−αs(0)(t)

)∣∣∣∣
p

ds

]
= 0.

Namely, whenv > 0, limt→s+ αs(v)(t) = limt→s+ αs+v(t), limt→s− αs(v)(t) =
limt→s− αs+v(t). Moreover, limt→s+ αs(−v)(t) = limt→s+ αs−v(t) and
limt→s− αs(−v)(t) = limt→s− αs−v(t). Since the Nualart–Pardoux conditions
are checked outside the diagonals, we see that limv→0+ limt→s+ αs+v(t) =
limv→0+ limt→s− αs+v(t) = limt→s− αs(t) and limv→0+ limt→s+ αs−v(t) =
limv→0+ limt→s− αs−v(t) = limt→s+ αs(t). �

From Lemma 3.7, we deduce that 2N
∫ 1/N
−1/N 〈∫ t

0 τ−1
s At

s
1
2(H(s + v) + H(s −

v)), dB(s)〉 tends in all theLp to
∫ t
0〈H(s), dB(s)〉.

We would like to get the same theorem for iterated integrals. We choose

ψ
j
k (s) = h

j
k

(∫
[0,1]k

F
j
k

(
γ (s1), . . . , γ (sn), γ (s)

)
ds1 · · ·dsn

)
,(3.30)

whereh
j
k andkj are smooth with bounded derivatives of all orders. By using the

composite of theψj
k , in j as in Definition 3.1, we deduce an elementYk(s). We

choose a functionFk from Rd into Rd which is smooth with bounded derivatives
of all orders. We define inductively

I k+1,N (t) =
∫ t

0
I k,N(s)〈Fk(Y

N
k+1)(s), dYN

k+1(s)〉.(3.31)

In order to study the convergence ofIN+1(t), it is enough to study the convergence
of 1

2(ξ(v) + ξ(−v)) whereξ(v) = ∫ t
0

1
2(I k,N(s + v))〈τ−1

s Ak+1,t
s Fk+1(Y

N
k+1)(s +

v), dB(s)〉. The flat derivative of
∫ t
0 I

k,N
s+v 〈τ−1

s Ak+1,t
s Fk(Y

N
k+1)(s + v), dB(s)〉 is

defined by taking formally the derivative under the sign
∫

(see [35]).
Let h(s) be a process. Leth(s, s1, . . . , sn) be the kernels of its flat derivatives.

Let K be a subset of(1, . . . , n) and letεK be a collection of signεj associated
to the element ofK . εc

K is the collection of opposite sign. We denote by
hK,εK

(s, uj )j∈Kc the limit of h(s, u1, . . . , un) whenuj → sεj
for j in K . If the

Nualart–Pardoux conditions are checked, these expressions exist.
We introduce the following hypothesis of recurrence:
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HYPOTHESIS H 1(k). For an iterated integral of length smaller thank, if
v > 0, uniformly inN and ins ∈ [0,1]m whenv → 0,

E

[∣∣∣∣∣
∑

K,εK

∫ ∏
j∈Kc

duj
1
2

(
I

k,N
K,εK

(s + v)(uj )j∈Kc

+ I
k,N
K,εK

(s − v)(uj )j∈Kc

)
(3.32)

− I
k,N
K,εK

(s)(uj )j∈Kc

∣∣∣∣∣
p]

→ 0.

In order to show this property, we have to take the derivatives ofI k+1,N (t). The
only problem is when we do not take the derivative ofdBs . This leads to some
anticipative Stratonovitch integrals, which can be treated by (3.28). IfH 1(k) is
checked,H 1(k + 1) is checked.H 1(0) is clearly checked.

This shows us that in the approximation procedure, we can replace the integral
between−1/N and 1/N by a constant. We do the hypothesis of recurrence where
I k(t) denotes the Stratonovitch integral and where we do no approximation:

HYPOTHESISH 2(k). For all n, we have whenN → ∞ uniformly ins

E

[∣∣∣∣∣
∫ ∏

j∈Kc

duj

∑
K,εK

I
k,N
K,εK

(s)(uj )j∈Kc − I k
K,εK

(s)(uj )j∈Kc

∣∣∣∣∣
p]

→ 0.(3.33)

If H 2(k) is checked,H 2(k + 1) is checked. Namely, the only problem is when
we do not take the derivative of the lastdBt in I k+1,N (t) which leads to the study
of some anticipative Stratonovitch integrals, which can be treated by (3.28). It is
checked fork = 0.

We deduce:

PROPOSITION 3.8. IN(t) converges in all the flat Sobolev spaces to the
anticipative Stratonovitch integral

I (t) =
∫

0<s1<s2<···<sn<t
〈F1(Y (s1)), dY1(s1)〉 · · · 〈Fn

(
Yn(sn)

)
, dYn(sn)

〉
.(3.34)

Let us suppose thatψk(s) depends smoothly on a finite-dimensional parame-
teru:

Y
j
k (u, s) = h

j
k

(
u,

∫
[0,1]n

F k
j

(
u,γ (s1), . . . , γ (sn), γ (s)

)
ds1 · · ·dsn

)
(3.35)

and let us consider the compositeψk(u, s) as in Definition 3.1. The corresponding
approximated integral has a smooth version inu, and each of its derivatives in
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a givenu converges in all the flat Sobolev spaces to the corresponding iterated
anticipative Stratonovitch integral where we take formally the derivatives inu

of the terms which appear in this stochastic integral. But we can estimate the
Lp norm of these derivatives over the curved based loop space in terms of the
flat Sobolev norms of these derivatives over the flat model, by using the tools
of quasi-sure analysis (see [1]). We deduce that the derivative in the parameter
space of the approximated integrals converges in all theLp over the curved
Brownian bridge to the derivative in the parameter space of the Stratonovitch
integral over the Brownian bridge. By the Sobolev imbedding theorem, we deduce
that the approximating integral over the based loop space converges for the smooth
topology with compact support in the parameter space inL2.

Let ω̃n = ω1 ⊗ ω2 ⊗ · · · ⊗ ωn be an element of�(M) ⊗ �·(M)n−1. We extend
the differential formsωi in smooth forms overRd bounded with bounded
derivatives of all orders. Proposition 3.8 allows us to state the following theorem:

THEOREM 3.9. �ω̃n defines a stochastic form with respect to the diffeology
of Definition3.1.
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