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PDEs FOR THE JOINT DISTRIBUTIONS OF THE DY SON,
AIRY AND SINE PROCESSES

BY MARK ADLER! AND PIERRE VAN MOERBEKE
Brandeis University and Université de Louvain

In a celebrated paper, Dyson shows that the spectrumsofanrandom
Hermitian matrix, diffusing according to an Ornstein—Uhlenbeck process,
evolves as: noncolliding Brownian motions held together by a drift term.
The universal edge and bulk scalings for Hermitian random matrices, applied
to the Dyson process, lead to the Airy and Sine processes. In particular, the
Airy process is a continuous stationary process, describing the motion of
the outermost particle of the Dyson Brownian motion, when the number of
particles gets large, with space and time appropriately rescaled.

In this paper, we answer a question posed by Kurt Johansson, to find a
PDE for the joint distribution of the Airy process at two different times.
Similarly we find a PDE satisfied by the joint distribution of the Sine
process. This hinges on finding a PDE for the joint distribution of the Dyson
process, which itself is based on the joint probability of the eigenvalues
for coupled Gaussian Hermitian matrices. The PDE for the Dyson process
is then subjected to an asymptotic analysis, consistent with the edge and
bulk rescalings. The PDEs enable one to compute the asymptotic behavior
of the joint distribution and the correlation for these processes at different
timesr andtp, whenr, — 11 — oo, as illustrated in this paper for the Airy
process. This paper also contains a rigorous proof that the extended Hermite
kernel, governing the joint probabilities for the Dyson process, converges to
the extended Airy and Sine kernels after the appropriate rescalings.

1. Statingtheresults. TheDyson Brownian motiofd]
()\'1([)9 s )\n(t)) € Rl’l
with transition densityp (¢, 1, 1) satisfies the diffusion equation
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Roughly speaking, it represenisBrownian motions repelling one another, with
the exponential irb (1) having the effect of preventing the system from flying out

to infinity. In his beautiful paper, Dyson generalizes the random matrix ensembles
in such a way thathe Coulomb gas model acquires a meaning as a dynamical
systemrather than a static modeHe shows the repelling Brownian motion above
corresponds to the motion of the eigenvaligs(z), ..., A,(¢)) of a Hermitian
matrix B, evolving according to the Ornstein—Uhlenbeck process

2
RY | 92 1 9
1.1 — = “@A+68)— +—=—B;; | P,
(L.1) . izjﬂ( e A 1Ty )

with transition densityd := e"/“z)

P(t,B,B)=2"1 1 o~ (1/(@A=c*) Tr(B—cB)*
(1— 62)n2/2

The B;;'s in (1.1) denote the? free (real) parameters in the Hermitian matix
with the B;;’s being its diagonal elements. In the limit> oo, this distribution
tends to the stationary distribution

n
Z—le—(l/az)TrBde — Z_lAZ()\.) l_[e—)\iz/az d)\-l
1

With this invariant measure as initial condition, the joint distribution reads

P(B(0) e dB1, B(t) € dBp)

(1.2) _ -1 dB1dBy  _1)2-c2))Tr(B2-20B1 By BY)

(1— c2)n2/2 ’
for which a nonlinear PDE will be found in Theorem 1.1. According to [9],
the joint probabilities for the\;’s can also be expressed in terms of a Fredholm
determinant of the so-called extended Hermite keﬁ‘;@}i" (x, y), amatrix kernel,
defined in Section 7. As elaborated in that section, Aprand E> C R, we have,
forl<i<n,

(L.3) P(all2(11) € Ex, all 2;(12) € E2) = dell — (xze Kt X ) 1. 0<2)-
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Since expression (1.2) is symmetric 1 and B>, the probability (1.3) for the
Dyson process is symmetric i, and E». Throughout the paper, we normalize
the problem, by setting = 1.

The Airy processis defined by an appropriate rescaling of the largest eigen-
value i, in the Dyson diffusion,

(1.4) A = lim_~2n"8(x, (Y31 — V/2n),

in the sense of convergence of distributions for a finite numbesof his process

was introduced by Prahofer and Spohn [12] in the context of poly-nuclear growth
models and further investigated by Johansson [8]. Préhofer and Spohn showed
the Airy process is a stationary process with continuous sample paths; thus the
probability P(A(t) < u) is independent of, and is given by the Tracy—Widom
distribution [14],

(1.5) P(A(t) <u) = Fo(u) := exp(— /Oo(oz —uw)q%(a) da),

with g () the solution of théPainlevéll equation,

o~ @/a¥?
(16) ¢"=ag+24° withg@) = | 2/maiA’ 014/
—a/2, for o N\ —o0.

Here, the joint probabilities for the procedsr) can also be expressed in terms of
the Fredholm determinant of the extended Airy kerﬁﬁ;j (x, ), another matrix
kernel, which is an appropriate limit of the extended Hermite kernel above; see
[6, 8,11, 12]. It leads to

(1.7)  P(A(1n1) € E1, A(1p) € Ep) =det(I — (XE;Kfrjxgg)lg,jgz),

which is also symmetric ir£; and E», as a consequence of the symmetry for the
Dyson process.

At MSRI (Sept. 2002), Kurt Johansson, whom we thank for introducing us
to the Airy process, posed the question whether a PDE can be found for the
joint probability of this process; see [8]. The present paper answers this question
(Theorem 1.2), which enables us to derive the asymptotics of the large time
correlations for the Airy process (Theorem 1.6); this question was posed in [12].
Our results on the Airy process for the special case of semi-infinite intervals
appeared in [2], as well as the asymptotics.

The Sine procesds an infinite collection of noncolliding processes(r),
obtained by rescaling the bulk of the Dyson process in the same way as the bulk of
the spectrum of a large Gaussian random matrix; namely,

2
(1.8) Si(@) = nli_)moo ?An/zﬂ(%) for —c0o<i <
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in the sense of convergence of distributions for a finite numbesoT his process

was defined by Tracy and Widom in [17]. Similarly, by taking the bulk scaling
limit of the extended Hermite kernel (1.3), the joint probabilities for $fie can

also be expressed in terms of the Fredholm determinant of the extended sine kernel
K[?;j (x, y), yet another matrix kernel,

(1.9) P(all S;(11) € Ef, all S;(12) € E5) =defl — (xz, Kp, Xz, )1k .0<2)»

where herek1 and E2 must be compact for it to make sense. Note this probability
is, as usual, symmetric ifiy and E2. These kernels will be discussed in Section 7.
For this process, Theorem 1.4 gives a PDE for the joint probabilities.

The disjoint union of intervals

r N
E1:=|Jlazi—1,a2i] and Ez:=|(J[bai—-1,b2] SR,
i=1 i=1
andr = — 11 specify linear operators, setting=¢"/,
2r 2s
d a
A= " tcy o
1 8aj 1 abj
2r 2s
0 0
=cC Z P + Z PV
1 861] 1 8bj
(1.10)

Az—ZaJ——i-cszJ 9, +(1—c2)— —(32

0
22(1] +Zb]8b —I—(l—cz)——c2
The dualitya; <> b; reflects itself in the dualityt; <> B;. We now state:
THEOREM 1.1 (Dyson process).Givenr; < tp andtr = r2 — t1, the logarithm
of the joint distribution for the Dyson Brownian motiohy (¢), ..., A, (?)),
(2.11) G,(t;a1,...,a2;b1,...,by) = IogP(alI Ai(t) € Eq, all 1;(12) € Ez),

satisfies a third-order nonlinear PDE in the boundary point&gfand E, andz,
which takes on the simple forsettingec = e,

BoA1G, 2 A281G,
Y 81A1G, +2nc T ALB1Gy + 20C

(1.12)

The proof of this theorem will be given in Section 3.
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Similarly, the disjoint union of intervals

r N

(1.13) Ey:=|Jluzi-1.,u2] and Ez:=|Jlva_1,v2] CR,
i=1 i=1
andr = r» — 11 define another set of linear operators
Lo 2r 9 Lo 2s 9
u ~— 1 auiv v aviv
(1.14)

A 3 o
Eu::ZuiE)—u,-—i_tg’ U._Zvl_vl—i_ -
1

We now give the equations for the joint probabilities of the Airy and Sine
processes, which will be proven in Section 4:

THEOREM 1.2 (Airy process). Givent; < rp and t = 1o — 1, the joint
distribution for the Airy procesd (z),
G(t;uq,...,uz;v1,...,02) = |OgP(A(t1) e E1,A() € Ez),

satisfies a third-order nonlinear PDE in the, v; andz, in terms of the Wronskian
(O, ety =" Mey) — f(e'W,

(Ly 4+ L) (LyEy — LyEy) 4 12(Ly — Ly)LyLy)G

(1.15)
= %{(ng - LE)G7 (Lu + LU)ZG}LH—FLU-

COROLLARY 1.3. In the case of semi-infinite intervals, and E», the PDE
for the Airy joint probability

Hit:x, y) = IogP(A(rl) R IE %)

takes on the following simple formin y and#2, with r = > — t1, also in terms of
the Wronskian

*H d d\(9?H 9°H 3°H 9°H
(1.16) 2 =<t2——x—><———>+8{—,—} ,
dt dx 0y ax dy /) \ 9x? dy? dxdy’ dy2

REMARK. Note for the solutior (¢; x, y),

. . (yt+x y—x
lim H (t; =log F: .
tl\mo (r;x,y)=log 2<m|n( 5> ' o ))

THEOREM 1.4 (Sine process). For 1 < t2, and compactt; and E> C R, the
log of the joint probability for the sine processg&sr),

G(t;u1, ..., uz;v1,...,v2) :=log P(all S;(r1) € EY, all S;(r2) € ES),
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satisfies the third-order nonlinear PDE

(2E,L, + (E, — E, — 1)L,)G
(Lu + LU)ZG + 772
_ L (ZEMLU + (Eu - EU - 1)LM)G
Y (Ly + L)2G + 72

L,

(1.17)

COROLLARY 1.5. In the case of a single intervahe logarithm of the joint
probability for the Sine process

H(t;x,y) =log P(S(t1) ¢ [x1+ x2, x1 — x2], S(t2) ¢ [y1 + y2, y1 — y21)

satisfies
KB (2E,0/0x1+ (Ey — Ex —1)9/dy1)H
(1.18) dx1 (8/9x1+3/9y1)2H + 2
' 0 (2E.3/oy1+ (Ex —Ey —1)0/dx))H
ay1 (8/8x1+3/8y1)2H+n2

In a recent paper, Tracy and Widom [16] express the joint distribution of the
Airy process for several times, ..., t,, in terms of an augmented system of
auxiliary variables, which satisfy an implicit closed system of nonlinear PDEs.
In [17], Tracy and Widom define the Sine process and find an implicit PDE for
this process, with methods similar to the one used by them in the Airy process.
The quantities involved are entirely different from ours and their methods are
functional-theoretical; it remains unclear what the connection is between their
results and ours.

The PDEs obtained above provide a very handy tool to compute large time
asymptotics for these different processes, with the disadvantage that one usually
needs an assumption concerning the interchange of sums and limits; see Section 6
and the Appendix. This is now illustrated for the Airy process, for which we prove
the following theorem, assuming some conjecture, mentioned below. This will be
discussed in Section 6. A rigorous proof of expansion (1.19) was given later by
Widom [18]; his proof was based on the Fredholm determinant expression for the
joint distribution.

THEOREM 1.6 (Large time asymptotics for the Airy process}or large
t = o — 11, the joint probability admits the asymptotic series

P(A(r1) <u, A(r) <)

(1.19) Fl(u)F), ® ® 1
= Fo(u) Fo(v) + 2(”:2 2(v) + (u, U); (. u) + 0(—),
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with the functiorny = ¢ («) as is the functiorf1.6) and

([ ae) ([ o)

00 2
®(u, v) = Fo(u) Fa(v) +q2(u)(%q2(v>_%</ qzdoz>>

o
+ / da(2(v — a)g®+q’% — q4)/ q°da
v u
Moreoverthe covariance for large = r» — t1 behaves as
1 c
(1.20) E(A(2)A(n1)) — E(A(12))E(A(n1)) = ) + s +--

where

c:=2// O (u,v)dudv.
R2

CONJECTURE The Airy process satisfies the nonexplosion condition for
fixed x:

(1.21) Z[)mooP(A(t) >x+z|A0) <—z)=0.

This conjecture will be discussed in Section 6, just before the proof of
Theorem 1.6 and in the Appendix.

Finally, in Section 7, we give a rigorous proof of the convergence of the
extended Hermite kernel to the Airy and Sine kernels, under the substitutions

u
' x+—>«/2n+l+\/§n1/6
51.= IHm,SI—)m, . 2n+1+ v y
Y ﬁnl/ﬁ
3 ¢ 7T2t 77.'2S Tu TV
=1t —,§> — X —, V> —— (.
2n 2n 2 Y

The precise formula for these kernels will be given later in the beginning of
Section 7.

PropPOSITION1.7. Under the substitutiong, and 4», the extended Hermite
kernel tendsrespectivelyto the extended Airy and Sine kernethenn — oo,
uniformly foru, v € compact subsets R:

. H.,n _ A
n||_>moo K5 (x,y) dy‘51 = K/ s(u,v)dv,

: H.n _ = (7?2 (t-s) S
n||_>moo K, 5 (x,y) dy‘52 =e Kps(u,v)dv.
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2. The spectrum of coupled random matrices. Consider a product ensem-
ble (M1, M>) € J(’,f = JH, x #, of n x n Hermitian matrices, equipped with a
Gaussian probability measure,

(2.1) cn dM szefTr(Mf+M2272chM2)/2’

whered M1 d M3 is the Haar measure on the prodwéf, with eachd M;,

n n
(2.2) dMy=A3(x)[[dxidUs and dMz= Ai(y)[]dyidUs
1 1

decomposed into radial and angular parts. In [1], we defined differential operators
Ay, By of “weight” k, which form a closed Lie algebra, in terms of the coupling
constant, appearing in (2.1), and the boundary of the set

(2.3) E = E1 x Eg:=|Jlazi—1,az] x | Jb2i—1, b2i] C R%.
i=1 i=1

Here we only need the first few ones:

"A:’l:c2l—1<iaaj e Z )
D

1

P 1 < 2 Kl )
1=
1—c? 1 0a; 1

(2.4)
0
Ar=aj " —c -,
2= Zaj(')aj c ac
0 0
Bo= b —.
2= Z Tab; ~ “ac

j=1

In [1], we proved the following theorem in terms of the Wronskigfig}x =
g(Xf) — f(Xg), with regard to the first-order differential operatérand based
on integrable and Virasoro theory:

THEOREMZ2.1. Given the joint distribution
(2.5) P,(E):= P(all (M1-eigenvaluepe E1, all (M»-eigenvaluese E»),
the functionF,(c; a1, ..., a2, b1, ...,by) :=log P,(E) satisfies the nonlinear
third-order partial differential equation

{£2A1Fn,£m1F b }
-1 Ay
2.6)

-~ -~ - c
— {AzJBJ_Fn, A1B1F, + 2—} =0.
cc—1 B,
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REMARK. Note that bothP,(E1 x E2) and P,(E{ x E%) satisfy the same
equation.

3. Thejoint distribution for the Dyson Brownian motion.

PROOF OFTHEOREM 1.1. Using the notation of Section 2 and the change of
variables

B;
Va—c?)2

one computes far=1, — 11 > 0, withe™" =,

(3.1) M; =

Gn(taalvaazrablaabzs)
:=log P(all 4;(t1) € E1,all ;(t2) € E»)
=log P (all (B(r1)-eigenvaluepe E1, all (B(r2)-eigenvaluese E2)

= log / / ~1_dB1dB2  _(1/a-c2)Tr(B3+B3-2c818)
all Bi-eigenvalues=E 1- C2)n2/2

all By-eigenvaluessE»

=lo / / Z'YdMidM;
g all Mq-eigenvaluessE1/(x/(1—c?)/2)
all My-eigenvaluessEs/(x/ (1—c2)/2)

e—Tr(Mlz+M572chM2) /2

X
:Fn(, al g s ey azr a
‘ V(=22 V(=22

b1 by )

Va-c32  Va-¢y2/)

in terms of the functiorF,, defined in Theorem 2.1. Setting
Fy(c;a1,...,a2;5b1,...,D2)
=Gu(t; a1V (L —c?/2,...,a2:V (1= ¢?)/2;
VA= D)2, ... b/ A= D)2)

=Gn(t7é1,-,&2r751,,523)

in (2.6) leads to the following equation f@F, := G, (t; ax, ..., azr: ba, . .., boy),
namely,

= ~ = nce ~ = ~ = nc
{824:6,.8:41G, + 5" |~ [AeiGr i + 55 ). =0
C 1 A1 cc—1 B1
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where
A,‘Fn(c; ai,...,az; b1, ..., by) :JZ,‘Gn(l‘; aiz,...,d; 51, e, 1;2;),
BiFa(ciat, ... ami by, ... ba) =BiGu(t: a1, ...z b1, ..., bay),

with the 4;, B; as in (2.4), and

= 1 A 9
S — — ey — |,
ea-d (? TR 8bj)

2s
1 daj 21:
(3.2) , "
= 1 r~ a 2 ~ 8 8
a — +c b—~ +—,
= (Lo )+
~ 1 2r 9 2v~ 9 9
= c aj— + bj— |+ —
2 <1—c2>< 2 sz, ¥’ab,-> o

Then clearing the denominators in (3.2) leads to
(3.3) {BoA1G,, B1A1G, + 2nc)py = {A2B1Gp, ALB1G, + 2nc) g4,

for the operators (1.10), witld/, = G, (¢;ax,...,a; b1,...,by). This estab-
lishes Theorem 1.1.0]

REMARK. Inview of the remark in Section 2, here the expressions

log P(all 1;(t1) € E1, all 1;(t2) € E2)
(3.4) G,=4o0r
log P (all A; (1) € E, all 1; (1) € ES)

also satisfy the same equation.
4. Thejoint distribution for the Airy process.

PROOF OF THEOREM 1.2. Consider as in (1.13), the disjoint union of
intervals

(4.1) Ev:=|Jluzi—1.u2] and Ez:=|J[vai_1.v2] CR.
i=1 i=1



1336 M. ADLER AND P. vaN MOERBEKE

Then, setting = 12 — 11,

H,(t;uq,...,ux;v1,...,02)
—log («/énl/G()»n(n_l/Stl) —V2n) e E1,>
V2V, (n7Y31) — V/2n) € Ez
=log P (A, (n"31y) € E1, 0, (n7V310) € E)

(4.2)

-1/3_. .
=Gn(” /Taal,---,Cer,bl,---,bZS)

for the disjoint union of intervals

r N

(4.3) E1:=|Jlazi-1.a2] and Ep:=|J[bai_1. b2,
i=1 i=1

with

(4.4) */_+¢§n1/6 and b_@Jrfl/G

The method here is to do asymptotics on (3.3)#darge. In the notation (1.14),
define

(4.5) L:=L,+L,,  E:=E,+E,,

with the understanding thatin E now gets replaced by. Settingk := n'/6 and
changing variables,

MG (n Y3z aq,. .. ay; by, ..., bay)

= A1H, (t; —k(2k3 — V2a1), . ..; —k(2k3 = V/2Dy), ...)
4.6 2r a 2r 8
(4.6) — k2 Z——i—e_r/kzZ— Hy(t;uq, ..., u2;5 01, ...,02)
1 ou; 1 ov;

= Alla—n{ Hl’l(t; M]_, et u2r; vla cec UZI’)a
b—v

where the operatorg,; and 8B; are now expressed im, v, T-coordinates, using
the change of coordinates (4.4) and the chain rule. In these new coordinates, the
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A; andB;, Taylor expanded in /k, for largek, read as follows:

T 72 3 1
=vV2%([L—-|—=— L,
AL=12 ( <k2 2%4 6k6> +0<k8))
T 72 3 1
=V2(L-(= — L, ,
B1 ‘[( <k2 2k4 6k6> L+O(k8)>

27
Ap = 2k4<L — ﬁLU

T 4 2 1
kG( 14272 )+0(k8))

2t 1
Q(BZ = 2k4(L — ﬁLu + ﬂ(E -1+ 4T2Lu)

T 4, 1
t(m-1eden) vo(2))

+ —(E —1+472L,)
4.7) 2k*

Hence, from (4.7),

szs ———BoA1

T
=L _p(L'i‘Lu)L

! (L(E —2) + t%(4L, (L + L,) + LL,))

2k4
T 1 7?2
1
+0(53)
1
2 Bt
> T o 2 /1 > 3 /1 2 1
=L G124 (5L Luly ) = 15| L7+ Lulv ) + O 15 )
As will be shown in Proposition 7.1, using also (7.13), we have ot
(u1,...,uz;) andv = (vy, ..., va) (also for their derivatives with regard to the
endpoints of the intervals)
(4.9) Hy(t;u,v)|,—16 = G(t;u,v) +0(1/k) for k — oo,

with
G(t,u,v):=logP(A(11) € E1, A(12) € E2),

which will be used below. Proposition 7.1 actually implies that the error in (4.9)
has orderk—2logk. Equation (3.3), with (4.7) and (4.8) substituted, is a series
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in k2, for largek, but where the three leading coefficients, namely the onéé,of
k2 andk®, vanish:

1 1 ok
0= { Bo1H,, BiALH, + 2k5 }
2./2k5 gFrel AL/(V2h)
1 2
A2B1H,y, A1B1H, + 2kBe™T/K }
{zﬁk5 el " ) B1/(V2K)
21

= k_2|:((Lu +L)(L,E, — L,E,)+ fz(Lu - Lv)LuLv)Hn
4.10
(4.10) L .
_5{(L — L%)H,, (L, + L,)?H, bLiL, }+0(k3>

21’ 2
|:((L + Ly)(LyEy — LyEy) +t°(Ly — Lv)LuLv)G

_ _{(L2 — L%G, (L, +Lv)2G}L +L, ]+ 0<k13>

using (4.9). In this calculation, we used the linearity of the Wronsk#r'}, in
the three arguments and the following commutation relations:

(4 11) [LI,ME ] LM? [LquU]=[LM’LU]=[LM’T]=O9 [Euvt]:ta

including their dual relations by <> v; also{L?G, 1}, 1, = {L(L,—L,)G, 1}

It is also useful to note in (4.10), that the two Wronskians in the first expression
are dual to each other by« v. The point of the computation is to preserve the
Wronskian structure up to the end. This proves Theorem 1.2.

PROOF OFCOROLLARY 1.3. Equation (1.15) for the probability
G(t;u,v):=logP(A(t1) <u,A(r2) <v), T=T2—11,

takes on the explicit form

Tﬂ<a_2_a_2> 3% < 82G+ G %G
at\ou2  9v2)  u2dv\ 9?2  dudv  du?
3G (,9°G 3G %G )

_81)2814( 8u2+8u8v_8v2_u+v >

+(83G 3 093G a><a N a)G

qud v 9vd Au/\ou  dv

This equation enjoys an obvious< v duality. Finally the change of variables in
the statement of Corollary 1.3 leads to (1.16)]

+u—v—r2)

(4.12)
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5. Thejoint distribution for the Sine process.

PrROOF OFTHEOREM1.4. Consider as in (1.13), the disjoint union of (in this

case) compact intervalBy := |J;_q[uzi—1, uz;] and Ez := (J;_4[v2i—1, v2i] € R.
Then, again setting = o — 11,

Hn(f;ula'--vMZr; Ulv-"avzs)

T2
=log (all 2\/_)»(,1/2)4_,( ) e Ef, all ka(n/2)+,( ) € EZ)

1 72
IogP(aII )M(n/2)+z < > € El’ all )\.(n/2)+l ( ) € EZ)

ZGH(E;al,-.-,azr;bl,-.-,bzs)

for the disjoint union of intervals

(5.1)

r N
(5.2) Ey:=|Jlazi—1.a2] and Ez:=|Jlbai_1.b2].
i=1 i=1
with
u; ;i
5.3 i =5 b :=—=.
(5.3) =5 NG

Note hereG, refers to the second formula in (3.4). Setting= n'/2, using the
change of variables (5.3) and the chain rule,

A1G,(T/k% a1, ... ay: b, ... ba)
= A1H,(t; 2kas, ...; 2kbq,...)

2r 2r
0 g2 0
=2k<28 ‘+e t/k Za—l)i)Hn(r;ul,...,uzr;vl,...,vzr)

1 Ui 1

= A1 gu Ho (T U1, .o u2r; 01, .00, 02).
b—v

In these new, v, T-coordinates, the operatars andB;, Taylor expanded in 1k

for largek, read as follows:
1
et o(m)

oi-a(u co(L))

Ar=E—1— 2(E —1)+0<

A1 = 2k<L

(5.4)

)
)

iIH T;IH

Bp=E—1— 2(E —1)+0<
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Moreover, as will be shown in Proposition 7.3 (Section 7.3) we have the following
asymptotic estimate (and similarly for its derivatives with regard to the endpoints
of the intervals):

(5.5) Hy(t;u,v)|,_;2=G(t;u,v) +0(1)  fork — oo,
with

(5.6) G(z,u,v) —IogP(aII «/ZrS( >eEC,a|| V2rS; (2 > E2>

Using the expansions (5.4) of th&;, and B; and later the commutation
relations (4.11), yields the following for the Wronskian:

{BoALH,, ByoALH, + 2k2e™/%) A1

-l B ) ) o)
(- oo ) ol 2)

(2k)? T 1
ol
2 k k 2k (L—(t/k2)Ly+0 (1/k%))

(2K)*

={((E—1)L—i—;(Eu—1)L— —(E — 1)er+0(k14)>H

1 1
L?H, —I————(LH +2) 0(

o))
2 k2 k) -,
n

+
= {((E — 1L — %(Z(Eu —DL+(E4+1Ly) + 0<k—14>>H .
+

L%H, —i—}——(LZH +1> 0
2 k2 2

()]

k) -,
1

+3)

1
= {(E —1)LH,, L°H, + —} - 1{(5: —1)LH,, L°H,
2 L k2 L

_ i{(E —1)LH,. L?H, + }}
k2 n» n 2 Lv

o 1 1
kz{(Z(E ~DL+(E+DLy)Hy, L Hn+2} +0<k4>
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Hence, subtracting the previous formula from its dual and using (5.5),

K 1 2
0= —— (181 H,, BiA1H, + 2k 7/*
. (2k)4({ 2A1 1A1H, + 2k“e ba

1

— {A281H,,, A1B1H, + Zkze_T/kz}gel)

1
—{& - vLm, 170, + 5}
2,1,

- {(Z(Eu — DL+ (E+1)Ly)Hy, LH, + %}
L

1 1
+ {(Z(Ev — DL +(E+1)Ly)Hy, LH, + §}L + 0(ﬁ>

|
={(E—1)LG,LZG+—}
2,1,

— {(Z(Eu — DL+ (E+1L,)G,LG +

A

}L +o(D)

NI~ NI

+ {(Z(Ev —~ DL+ (E+1L,)G, LG +

P |
={(E—1)LG,L2G+—}
2,1,

+l@E, - oL+ B+ DL, - L) 126 + %} +o(1).
L

Upon division by(L2G + $)2, one finds

(E-1)LG
0= (L, — L) ——"——
( )(LZG +1/2)
L+ Lv)((Z(Ev — E)L + (E+ (L = Lv))G)
L2G +1/2

_; (E-DL+2E,— E)L+(E+D(Ly — L))G
S L2G +1/2

(—(E — 1)L +2(Ey, — E,)L + (E + 1)(L, — L,))G

+L .
’ L2G +1/2

1341
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oy 2EuLu+t (Ey— By = DL)G
! L2G +1/2
oy @EuLy+ (Ey— Ey —DL)G
’ L2G +1/2 '

In view of (5.6), the function

G(r,u,v)=logP(all S;(r1) € Ef, all S;(r2) € ES)
2
= G(%, \/_2.7'[14, \/érrv)
satisfies (1.17) of Theorem 1.4[]

PROOF OFCOROLLARY 1.5. Setting
up=x1+x2, U = X1 — X2,
v =y1+y2, V2 =y1-— Y2,
the function
(5.7)  H(t; x1,x2; y1, y2) := G(t; X1+ x2, X1 — X2; Y1+ Y2, y1 — ¥2)
satisfies (1.18), ending the proof of Corollary 1.51]

6. Large time asymptotics for the Airy process. This section aims at
proving Theorem 1.6, for which we need the following lemma:

LEMMA 6.1. The following ratio of probabilities admits the asymptotic
expansion for large > 0 in terms of functiong; (i, v), symmetric inu and v:

P(AQ) <u. Aty <v) filu,v)
PAO <0PAD <w) —TL "7

i>1

(6.1)

from which it follows that
t[}moo P(A0) <u, A(t) <v) = P(A0) <u)P(A(t) <v) = F2(u) F2(v);

this means the Airy process decouplesat

ProoFr This will be done in Section 7.5, using the extended Airy kernel.
Note, since the probabilities in (6.1) are symmetriaziandv, the coefficientsf;
are symmetric as well. The last equality in the formula above follows from
stationarity. [



PDEs FOR DYSON AND AIRY PROCESSES 1343

CONJECTURE The coefficientsf; (u, v) have the property

(6.2) MILmOO fitu,v)=0 for fixedv e R
and
(6.3) Zli_)moO fi(=z,z+x)=0 for fixedx € R.

The justification for this plausible conjecture will now follow: First, considering
the following conditional probability:

P(AG) <01 A0 i) = ZED =LA D

- Fz(v)(1+ > @)

i>1

and lettingv — oo, we have automatically

1= vli_)moo P(A() <v|A(Q) <u)= Uli_)moo[Fz(v)<l + Z fi(;’ v))}
i1
_ : Ji(u,v)
o 1+v“—>mooz ti ’

i>1

which would imply, assuming the interchange of the limit and the summation is
valid,

(6.4) uleoo fiu,v)=0
and, by symmetry
ﬂg;ﬁ@hv)zo.
To deal with (6.3), we assume the followimgpnexplosioncondition, whose

plausibility is discussed in the Appendix: for any fixed> 0, x € R, the
conditional probability satisfies

(6.5) ZILmOOP(A(t) >x+z|A0) <—z)=0.
Hence, the conditional probability satisfies, upon setting
v=2z+Xx, u=-z,
and using lim_, o F2(z + x) = 1, the following:
Z+x)

1= lim P(A() < z+x|AQ) = —2) = 1+Z|Lmoo;,—
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which, assuming the validity of the same interchange, implies that
Z[}mooﬁ(—z,z—kx):o for alli > 1.

PROOF OFTHEOREM 1.6. Putting the log of the expansion (6.1)
G(t;u,v) =logP(A(0) <u, A(t) <v)
hi(u,v)

= l0g F2(u) +10g F2(v) + 3 =

(6.6) izl
= log F2(u) + log F2(v)

+ﬁ%w)+hmw%gﬁmwﬁ+“.

k]

in (4.12), leads to:
(i) aleading term of order, given by

(6.7) Lh1=0,
where
9 9\ a2
6.8) L= <— _ —) .
du 0v/oudv

The most general solution to (6.7) is given by
ha(u,v) =r1(u) +r3(v) +ra(u +v),
with arbitrary functions-, r2, r3. Hence,

P(A(Q) <u, A(t) <v) = Fz(u)Fz(v)<1+ hl(’:’ L >

with h1(u, v) = f1(u,v) asin (6.1). Applying (6.2),
ri(u) + r3(00) + ra(00) =0 forallu e R,
implying
r1(u) = constants r1(oc0),
and similarly
r3(u) = constant= r3(00).

Therefore, without loss of generalityy, we may absorb the constants
r1(o0) andrs(oo) in the definition ofro2 (1 + v). Hence, from (6.6),

S1(u,v) = hi(u,v) =ra2(u +v)
using (6.3),
0= ZIi)mOo fi(=z,z+x) =ra(x)

implying that the1(u, v)-term in the series (6.6) vanishes.
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(i) One computes that the terip(u, v) in the expansion (6.6) ofi (¢; u, v)
satisfies

83g 82g 83g 82g

ud 9v2  9v3 du?

This is the term of order®, by putting the series (6.6) in (4.12). The most general
solution to (6.9) is

(6.9) Lhy = with g(u) :=log Fa(u).

ho(u,v) = g’ (u)g' (v) + ri(u) + ra(v) + ra(u + v).
Then
P(A0) <u, A(t) <v) =0V
h; (u v)

= Fa(u)F2(v) expy_ —
i>2

—Fz(u)Fz(v)<1—|— (t” v) )

In view of the explicit formula for the distributioR2 and the behavior (1.6) @f(«)
for @ 7 oo, we have that

uli_)moog'(u) = Iim (|OgF2(u))/

IIm / q (oz) da =
Hence
0= lim_fa(u,v) = lim ha(u,v) =ri(c0) + r3(v) + ra(0),

showingrz and similarlyr; are constants. Therefore, by absorbingoo) and
r3(o00) into r2(u + v), we have

fa(u, v) = ho(u, v) = g'(u)g'(v) + ra(u +v).
Again, by the behavior af(x) at +oo and—oo, we have for large > 0,

g,(—z)g/(z—l—x) = q (a)da/ q (oc)da <cz 3/2 —22,/3.

—Z
Hence
0= lim fo(—z,z+x)=r2(x)
7—> 00
and so
fa(u, v) = ha(u,v) = g'(w)g' (v),
yielding the ¥/¢2 term in the series (6.6).
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(iii) Next, setting

G(t;u,v)=logP(A(0) <u, A(t) <v)
(6.10)

:g(u)Jrg(v)Jrg(u)f @ |, h3w.v)

/3
in (4.12), we find for the 1 term:
Lhz=0.
As in (6.7), its most general solution is given by
h3(u,v) =ri(u) +r3() +ra(u +v).
By exponentiation of (6.6), we find

P(AQ) <u, A(r) <)

g/(u)(zg/(v) N ri(u) +r3() +rz2(u + v) L. )

= Fz(u)Fz(v)(l-i- 3

The precise same arguments lea@4@:, v) = 0.
(iv) So, at the next stage, we have, remembepiag = log Fo(u),

(6.11) G(t;u,v) = g) + g(v) + 8 (u)f (v) n h4(tL: V) L
with
(612)  fau,v) = ha(u,v) + 3h50e,v) = ha(u,v) + 38 )8 ()",

Setting the series (6.11) in (4.12), we find for thé term:
Lham 4&(&)2 _ &(&)2) N &&(S_g - %)
u3\ 9v2 av3\ du? qud dv3\ou v

N }(“_gi(a_gf _ &i(a_gf)

2\ ou?dv \ dv Av4 ou \ du

33ga’g  3%ga%g 5 B%gag 3% g
<Wﬁ ﬁﬁ)(u o+ <8u3 v 903 8u>
=2(29(w)q' w)(q(v)q'(v) + 1)

~ 4" Wa*®) ~ (¢ @)%*w) [ ¢?
+2q(u)(qw)q' (W)q" (v) + ¢'W)g(v)g" (V) — 29 W g3 W)’ (v))
— same withu < v.

(6.13)
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The latter is an expression i), g(v) and its derivatives and im;foqz(a)da
andf;* g?%(a)da. Itis obtained by substituting in the previous expression

o 2
gu) = / (u — a)q(@) de
u
and the Painlevé Il differential equation fgtu),

uq () =q" (u) — 2 u)®,
in order to eliminate the explicit appearance:adndv. Now introduce

g = [ - aqP@ade
g1(u) =[ (u — a)q?(@)da,

g2(u) = /Oo(u —a)g*(@) da.

Note g'(u) = [;° q*() da, " (u) = —¢*(u) and g} (u) = [ ¢"*(e) dat, gh(u) =
[ g*(a) da. The most general solution to (6.13) is given, modulo the null-space
of £, by

1 " / 2 " ’ 2 " "
ha(u, v) = é(g w)g' () +g"(W)g' W+ g"wg" (v))

+ &' (1) (2g(v) + g1 (v) — g5(v))

+ &' (v)(2g () + g1 (1) — g5(u))

(614) 2 1 00 2
=q2(u)(q flv) - 5(/1} qz(a)da) )

o0 0
+ [ P@da [0 - 0@ + 4@ - ¢*@) da
+ same withu < v.
This form, together with (6.12), implies for the functigia(u, v):
fa(u, v) = ha(u, v) + 38" ()2g' () + ri(u) + ra(v) + ra(u + v)

=Y ai(w)bi(v) + r1(u) + ra(v) + ra(u +v).

1
Using the asymptotics af(«), one finds

ce %,
ai(u), bi(u) < 3
clul®, u— —00,

u — 00,

and so, by the same argument,

ri(u) =ro(u) =r3(u) =0.
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Therefore, we have
fa(u, v) = ha(u, v) + 38’ )%g' (v),

with h4(u, v) as in (6.14), thus yielding (1.19).
Finally, to prove (1.20), we compute from (1.19), after integration by parts,
taking into account the boundary terms, using (1.6),

82
du dv

E(A0)A(®1)) =/fRzuv P(A(0) <u, A(r) <v)dudv

— /oo uF(u)du /Oo vF5(v) dv
1 [ o
+t_2./—oo Fz/(u)du/_oo F(v)dv
_}_%//Rz(cb(u,v)—i—cb(v,u))dudv

+0(%)
= EGAO)+ 5+ 5+0(5),
where
c:i= //RZ(CID(u,v)+CI>(v,u))dudv=2/A‘§2d>(u,v)dudv,

thus ending the proof of Theorem 1.6.]
7. The extended kernels. The joint probabilities for the Dyson, Airy and
Sine processes can also be expressed in terms of the Fredholm determinant of

matrix kernels, the so-called extended Hermite, Airy and Sine kernels (considered
in [6], [11] and especially in [12] and [8]), defined for subs&tsc R,

(7.1) Kyt (x,y) = Xge () Kyt (x, e ()

with Kyt being one of the following kernels:

(0,0)
Z e—k(zi—zj)(pn_k(x)%_k(y), if 4 >1¢;,
k=1
Kﬁ}"(x, )= 0
— Z ek(tj_ti)(/)n—k(x)gon—k(y)’ if 7 < Ijs
k=—00
o0
/ e UTDAI(x + A (y +2)dz,  if >ty
0
Ky (x,y) = 0
_/ eZ(tJ'*’i)Ai(x+Z)Ai(y+Z)dZs if 4 <tj,
—0Q
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1 (7 .

S ;/0 ezz(“_tf)/ZCOSz(x —y)dz, if 7 >1;,
Kt,-tj(x»y) = 1 00 2
—;/ e~ T2 cosz (x — y) dz, if t; <t;,
T
where
—x%/2 for k > 0, with _ B
72) ot — { P pi(a). 20, with pi(x) = 5o,
0, fork <O;

pr(x) are the normalized Hermite polynomials, andJ4iis the Airy function.
Now we make a few comments about these kernels.

7.1. The Fredholm determinant of extended kernelsetting x (¢) denote either
the largest eigenvalug, (¢) in the Dyson process, or the Airy proces§), or the
collection of S;(z)’s in the Sine process, the probability is now defined by (drop
the superscripts ik 7", K4, K)

P(x(t) € Ei,1<i <m)

= det(/ — 2(Kyi))1zij<m)|,_1

_1+ Z( Z)N Z / Hdot(l) l_[dO{(m)

O<r; <N
S ri=

) k 4
X det((Ktklé (O‘i( )’ 05‘5- ))) F;Srk >1<k <m
<J=rp — =

where theN-fold integral above is taken over the range

—00 < ozil) < oz(ll) <00

=1

R= :
—co<ai™ <<l <o
with integrand equal to the determinant of Ainx N matrix, with blocks given by
thery x ry matrlces(K,k,l (a(k) < ))) 1<i<r, . IN particular, form = 2, we have

1<j<ry

P(x(tl) e E1,x(1) € Ez)

=1+ (2" ) / gz ]‘[ da; ﬂ dp;

N=1 0<r,s<N {*00<f31<'“<f3v<0°
r+s=N

(I%tlll (ai, aj))lgi,jgr (Ielllz (e, B))) 1si=r
x det . ==

(Ktztl(/gi»aj)) i-;?r (Ktzzz(,Bia ﬁj))lfi,jfs

z=1
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7.2. The extended Hermite kernel tends to the extended Airy ker@@len the
substitution

t XN +[ 1/6
(73) /Sl =1l m, 1/31 ’
yi>2n4+ 14+ — «/_ 16

we have:

PROPOSITION7.1. The extended Hermite kernel tends to the extended Airy
kerne| whenn — oo, uniformly foru, v € compact subsets R:

logn
K" (. y) dyyy, = Kl v)dv| = O(W)
Before proving this proposition, we need the following estimate:

LEMMA 7.2. For large n > 0 and —Mon*/3logn < k < Mon'/3logn, with
fixed Mg > 0, we have

(7.4) ¢ k(¢—+

21/4 . k
\/—2,11/6) = nl/lZAI <“ + m)(lJr E,(k,n)),

with the following uniform bound in € compact subsefR:
logn
|E(krow<0< 23>

PROOF Here one needs the asymptotics for the Hermite polynomials when
z € Ca5, as in Figure 1; it is given by (see [3]):

on(zv/21) = pp(z/20)e™E

1+01/n)([z+1 /4
(7.5) = (2n)1/4 {( fn( )) Al (fn(2))
B (z +1
Z —_—

the error term being uniform i@’ 5, for somesg > 0. This captures the case> 0

in the statement of Lemma 7.2. The case: 0 would be captured by a similar
estimate valid in the regio@1 s. To explain (7.5), the equilibrium measure for the
Gaussian distribution is given by the well-known Wigner semicircle

—1/4
(z)) Ai/(fn<z))},

2
V() =—(1- y2)12



PDEs FOR DYSON AND AIRY PROCESSES 1351

Cas
S
1-6 146

FiG. 1.

fal2) = <n>2/3( ) (/ wy)dy)Z/3
=_( 2)2/3(\/——z arccog)?’°.

Settingz = 1+ x for smallx > 0, one computes

and

fu(L4x) =202 <1+_+ )

10
and
1 1/4 3
<Z+ fn(Z)) zx/inl/e(l—k—_x_{_)
z=1+x 20
Definingx such that
von+1+ [ 6= 2(n — k) (1 +x),

one computes, fat = Mnt/3logn and|M| < Mo,
u 2k+1 ku
=BT T2 T4
Mlogn+u 1  Mulogn
ST 228 @ aAn T
Thus for x behaving as (7.6) and fat = Mn'/3logn, we deduce from the
formulae above

(7.6)

— _ 10n\2/3 i o
Jn—k(@|z=14x = 2(n — k) x(l + 10 + )

2k
ot B o)
n<'°x 3n+ +10+

| 1 Mlogn
=M0gn+u+2nl/3+0 23 )

=v2(n - k)1/6(1+ %x + - )

_k(z>)l/4

(z+1
z—1

z=1+x
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k 3
Vn (1 =+ )<1+20x+ )

—v2nlS(1+ O(M»

2/3

and

1 1 k 1 Mlogn
(n —k)L/4 ~ L1/4 <1+ an +) /4 (1 0( n2/3 ))

Using the asymptotics (7.5), one computesifes Mn'/3logn and|M| < Mo,

On— k<V2n+ +[n1/6>
= On—k (\/ 2n — k)1 + x))

_1+00/(n—K)[(z+1 14
= (2(1’[ _ k))l/4 {( fn k(Z)) Al (fn—k(Z))

z+1 4
— (z — —k(Z)) Ai (fn—k(Z))} s
1+ 0(1/n) Mlogn
= e (” 0( n2/3 ))

y {\/énl/G(l‘*' 0(%))
x Ai (Mlogn +u+ anl/s + 0(%))
_ ﬁil/ﬁ (1+ 0(%))
x Al (Mlogn +u+ anl/s + 0(%»}

2Y4(1 + O (M logn /n?/3))
- n1/12

| o(T2E)

X [Ai (Mlogn + u) +

Ai'(Mlogn + u) M logn
g+ 0( %z )|

Mlogn Ai'(Mlogn + u) Mlogn
(oS )| o (5]
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21/4

Mlogn
l/leI (u+ Mlogn)[lJr 0(}127/2)]

e k M logn
1/12A' ( 1/3) [1 + 0( 12/3 )}
ending the proof of Lemma 7.2

PROOF OFPROPOSITION7.1. As afirst step, in a recent paper Krasikov [10]
shows the following inequality fot > 6 and for a universal constat

k! 2k 4k — 2 12
(7.7) max| Hy (x)|e /2 < ¢ < ) .

x (k/2)! \k1/6/8k2 — 8k + 3
From Stirling’s formulan! = «/2mn n"e " (1 4+ O(1/n)), it follows that

sram=(=) (+o(3)

This estimate, estimate (7.7) and formula (7.2) show thatk fersome fixedkg
and some constaant,

/
2/2<

(7.8) max|eg (x)| = max| Hy(x)|e™ /% < K1z

1
2k/2. [l /4
Using both estimates (7.4) and (7.8) in (7.1), one computes fof, taking into
account substitutioy, as in (7.3),

H,
‘Kt,sn(xvy)dylgl

[Mn/3logn]

_ —<k/nl/3)<r—s>Ai( L)
> e Ut 173

k=0
Ai( * : )(21/4>2 2dn” ‘
AV s )\ i J2n1/6

—(k/nta=s) k(\/2n—+1 [nl/e)
X @n— («/—1 /2n 1/6)
- [Mn:iéogn] —(k/nY3) (- s)nz/ 2A| (,,, + ];/3)(1+E (k,n))
(7.9) X %Ai <v+ f/3>(l+E (k, ”))‘\/g,:l/e
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k . k dv
A'( 1/3)AI (v + m> J/2n1/6

[Mn1/3 IOgn]
1/3 21/
n ~k/n* 3 (t=5) 2
) I

k=0
x |1— (14 Ey(k,n))(1+ Ey(k,n))|
< z": o~ k/n3) (1)
k=[Mn1/3logn]+1
u
dv
X Pn—k f 1/6 )| /2,1/6

dv
L1/3
1/6(M logn)" 2/3(1+ ())ﬁnl/6
—1—[Mn3logn]
< dv (C/Zn Xn: " e—(n—m)(z‘—s)/nl/3 1
= 1/6
V2n1/8 = ml/

2
i C/’M(I(:g—/’;)(l + 0(1))),

wherec” is determined by the maximum of the Airy function(&j on the semi-
infinite interval (0, co).

Settingn’ =n — 1 — [Mn'/3logn], the sum in the last expression is estimated
as follows:

1 "’ 1 1/3
2 : - 6€—(n—m)(t—s)/n /
/2n1/6 = m /

1 (@—1 1/3 1 "’ 1/3
< } :e—(n—m)(t—s)/n } :e—(n—m)(t—s)/n
— 1/6

«/_2111/6 5 01/ 7

_ 1 1 —(—t4+D)(1—5)/nP _ —(n+1)(—s)/n3
 /201/61 — e—(t=5)/n? [e €

+ Zfl/G(ef(nfn/)(tfs)/nl/g _ ef(nff+1)(tfs)/nl/3)]

1/3
x~ Lt / [e—("—”l)(t—s)/nl/3 _ o~ D t—s)/n*/3
216t —s
T P e O L 1}
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Picking £ = 0(n/2), all terms above tend to 0 exponentially fast, except the
term (x), which requires some attention. Choosirig= n — [Mn/3logn] — 1, so
thatn —n’ = O (nY/3logn), the coefficient of that term i® (n =M —%)). Therefore
that term gets small, when— oo and? = 0 (n/2),

1 nl/3
/2n1/6 ¢1/6

The proof is ended by observing that the second term in the first difference
of (7.9) is a Riemann sum converging to the extended Airy kernel, that is,

O(n~Mt=9) - 0,

[Mn*/3logn] MRS
5 o= (k/n3)a=s) p (u + ]fs)Ai (v + 53)< 21/12> dv
k=0 / nt/3)\nt/12) /2n1/6

00 Mlo
=dv/ e I AI(u 4+ DA (v +2)dz + 0(%)
0 ni/

This establishes the convergencefor s.

Fort < s, one computes, again using in (7.1) the estimates (7.4) of Lemma 7.2
and (7.8),

H,
‘Kt,s”(x’ ndy,

[Mon*/3logn] 1/4 \ 2
+ om0 pi (1, — K\ k 2v dv
o 13 T )\Wiz) 16
ad 1/3
< |3 e Py, < >
=\ VIt o
X§0n+k(\’ +«/_ 1/6)
[Mon/3logn]
o (k/nts3 24 k
- > (k/m ) (s=1) 1/12A|<u 1/3)(1+E(k n))
k=0
24 k dv
X mAI (v 1/3)(1—i- E(k,n)) Tonije
[Mn*/3logn]
- "Z "t 27 ‘AI( k )Ai(v+i) v
13 13
= nl/6 / nl/ /2n1/6

(7.10) x |1= (14 Ey(k,n))(1+ Ey(k,n))|
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2
< C//M% (1+0(D)

o0
+ 3 o~ k/n3)(s=1)
k=[Mn1/3logn]+1

u
<ot (VBT T m)
1 dv
dv P i e~ k/n3)(s=1) ,(logn)?
< ¢ ¢ LM (1+0(D)
/2016 ( k:[Mnl/glzogn]-i-l (n+k)Y/° ni/2
__av (C/Zn—M(s—t)—l/G i o= (m/n3s—1)
\/_2n1/6 —
(logn)?
/!
+c"'M 12 (14 0(D) .

The rest of the proof goes the same way as before, ending the proof of
Proposition 7.1. [J

7.3. The extended Hermite kernel tends to the extended Sine kefigen the
substitution

2 2
t
(7.12) 52:={t|—>%,sr—>2,xr—>ﬂ,y|—>ﬁ},

2n vn

N

we have:

PropPOSITION7.3. The extended Hermite kernel tends to the extended Sine
kerne| whenn — oo, uniformly foru, v € compact subsets R:

—(22/2)(1—
KZI:{;”(X, y) dy|52 — e (m=/2)(t S)KIS:S(M’ U) dv.
SKETCH OF PROOF From [13], page 198, it follows that fgx| < M,

o) = ——— 12 (x)
2k/2mnl/4

i
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GJ— sm(xdﬁ— —) + 0k 1)>

_ <k—>1/4<cos<m1x - —) + 0(5%))

Using the substitutio, as in (7.11), one computes in (7.1) fos s,

‘Ktl,_{v’n(x’ y) dylg

n—1
—n2(t—s)/2_T 72(t—s)k/2n < wu > < TV >
—e — e k | — | dv
vn k=X€—:f—1 v vn v vn

¢
2 T 2 Tu TV
_ |92 oT2—)k/2n (_) (—)dv
(7.12) ‘ «/Zn/; V2 )"\
<92 T T (ZJF Z )
k=0 k=a+1
2 Tu TV
R RETNEI
=)+,

wherea > 0 is the minimal integer above which Krasikov’s estimate (7.8) holds.
But then expression (I) tends to 0 exponentially, whetends tooo, and (Il) is
estimated as follows:

/2

(||)_\/_ Z k1/6_f/%55/6

k=a+1

which tends to 0 fo, n — oo such thatz>¢/n1/2 — 0. Then the sum appearing
at the first line of (7.12) can be estimated as follows:

n—1
2 w 2 Tu v
o 2—5)/2 T ke ( ) ( )dv
Von N\ )"\

k=t+1

-1 1/2

— o 2=9)/2 "Z }eﬂzkas)k/(z:z)(ﬁ) /

n k
k=t+1
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-1 1/2
=e—n2(t—s)/2 nx: ienzk(t—s)/(Zn)(f) /
k=e+12” k

k1
x | coy w(u —v) ;4—5
o [k 1 k
+ (1 +v) ;—i—i—nn;
+0<i> dv
Ve

1 dx enz(x—l)(t—s)/Z

~Jun2dx
X [Cos(n(u —v)/x)

+ coq(m (u + v)/x — nmx) + O(%) + 0(%)] dv

_1 / T dpem =92
w/l/n

X [cos(z(u —v)) 4 cogz(u 4 v) — nz?/7)

1 1
o|— o|—)|d
+0( 7)o ()]
N Ee—ﬂz(l‘—s)/z /n dze(22/2)(t_s) Coqz(u — U)) dv
T 0

= T I2KS (U, v)

when ¢ and n tend to co. The integral involving the second cosine in the
expression(x) above is an oscillatory integral and thus tends to zero faster than
any power ofz by the Riemann—Lebesgue lemma. The gase proceeds along
similar lines, establishing Proposition 7.3

7.4. Convergence of Fredholm determinants and their derivativetere we
give a schematic argument, based on the customary formula Igg-dek) =
Trlog(I — K), whereK is a kernel restricted to a disjoint union of intervalsand
whereK + §K tends toK. Then, from

detl — K — 5K) =det(/ — K)det(/ — (I — K)"15K)

(7.13)
=det/ — K)(1—Tr(I — K)"1K + 0(5K)),
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one sees that dgt— K — §K) tends to datf — K), whendK tends to 0. Also,
given p1, ..., p2- the endpoints of the sdt (see [7, 15]),

0
—logde(/ — K) = (D" 'k (1 = K) " X(px. po).
dpk
where here =" means “kernel of,” evaluated &py, pr) and so
0
—logde(l — (K +6K)
3, 09 96l )

= (D" MK +8K)I — K = 8K) " (pr. pi)
= (DK - K) X pr, pio)
+ (8K —K)7?
+ K —K)SKI = K)™)(pro pi) +0(8K)]

= i logde(l — K) + O(6K).
APk

Since by Propositions 7.1 and 7.3 the extended Hermite kernel converges to
the extended Airy and Sine kernels, this argument shows the convergence
of the corresponding Fredholm determinants and their first derivatives with respect
to the end points off. In a similar fashion one proves the result for higher
derivatives.

7.5. An a priori asymptotic expansion for the joint Airy probabilityThe proof
of Theorem 1.6 in Section 6 was based on an a priori asymptotic expansion for the
ratio below in ¥t for larget = o — t1. This can be found in [18] and proceeds as
follows:

P(A(t) <u, A <v) _ detldl —(K{) )1zij=2)
P(A(t) <w)P(A(r2) <v)  det] — K/, detd — R,
_ (0 K2
(7.14) B det<l (JCzl 0 ))
= det(/ — K12K21)
— 1+ Z .fl(ulv U) ,
i>1 !

where
-1
K12:= (I = Xiu,00) ) KGo s ) X000 ) Xl,00) (I KE (X, ¥) X[v,00) (9

-1
K21 := (I = Xpv,00) ) KGo(X, ) Xiv,00) (1)) ™ Kiw,00) O K00, ¥) Xu,00) ()
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with
A oo . .
K& (x, y) =/o Ai (x + 2)Ai (y + 2) dz,

Kio(wn) = [ A+ DA +2)dz = OW ),

0
Ko == [ eAiG+ DAy +2)dz = 0L/,

—o0

APPENDIX: REMARK ABOUT THE “NONEXPLOSION” CONJECTURE

To discuss the conjecture (1.21), consider the Dyson Brownian motion

(A1(0), ..., Ay (1)) and the corresponding Ornstein—Uhlenbeck process on the ma-
trix B. Then, using the change of variables
B;
M= —F——=,
V(d—c?/2

and furtherM2 — M := M> — ¢cM1 in the M»-integrals below and noting that
max(specM1) < —z and maxspecMy) > a imply max(spe¢M> — cMy)) > a +
cz, we have for the conditional probability, the following inequality:

P(hn(t) > a| 2n(0) < —2)

—(1—c)TrmM?/2 —Tr(Ma—cM1)%/2
_ Jmaxspeauy <—; M€ (e T/ Jmaxspeaviy)=a AM2€ F(Mz—cMy*/

—(1-c)Trm2/2 _ — M2
fmaX(SPEFMDE—Z dMq e~ A=) TrMg/ szeJ{’n d My e~ Tr(Mz—cM1)2/2

—(1-cATrm?/2 —TrM2?/2
< fmax(spedwl)s—z dMye~ =) TML/ fmax(spedw)za+cz dM e~ T/

—(A=c®)TrM?/2 - 2
fmax(sped\/Il)g—szle (=) TrMy/ fMlen dM e=TrM%/2

= P(xn(1) = a +cz),
implying
Jim P (xn(1) = a | 2, (0) < —2) =0,
and a fortiori,
Jim P (1) 2 x + 21 An(0) < —2) =0.
It is unclear why the limit (6.5) remains valid when— oo, using the Airy

scaling (1.4).
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