
The Annals of Probability
2005, Vol. 33, No. 3, 1200–1233
DOI 10.1214/009117905000000026
© Institute of Mathematical Statistics, 2005
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This article describes a purely analytic approach to urn models of the
generalized or extended Pólya–Eggenberger type, in the case oftwo types
of balls and constant “balance,” that is, constant row sum. The treatment
starts from a quasilinear first-order partial differential equation associated
with a combinatorial renormalization of the model and bases itself on
elementary conformal mapping arguments coupled with singularity analysis
techniques. Probabilistic consequences in the case of “subtractive” urns are
new representations for the probability distribution of the urn’s composition
at any timen, structural information on the shape of moments of all orders,
estimates of the speed of convergence to the Gaussian limit and an explicit
determination of the associated large deviation function. In the general
case, analytic solutions involve Abelian integrals over the Fermat curve
xh + yh = 1. Several urn models, including a classical one associated with
balanced trees (2–3 trees and fringe-balanced search trees) and related to a
previous study of Panholzer and Prodinger, as well as all urns of balance
1 or 2 and a sporadic urn of balance 3, are shown to admit of explicit
representations in terms of Weierstraß elliptic functions: these elliptic models
appear precisely to correspond to regular tessellations of the Euclidean plane.

0. Introduction. In this study, we revisit the most basic urn model, namely
the “generalized” (or “extended”) Pólya–Eggenberger urn model withtwo types of
balls, as described in the reference book of Johnson and Kotz (1977). Under this
model an urn may contain two types of balls, say “black” (B) and “white” (W).
The composition of the urn at time 0 is fixed. At timen, a ball in the urn is
randomly chosen and its color isobserved(thus the ball is selected, examined
and then placed back into the urn): if it is black, thenα black andβ white balls
are subsequently inserted; if it is white, thenγ black balls andδ white balls are
inserted. The evolution rule is then summarized by a 2× 2-matrix
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Negative values of the diagonal entriesα, δ are permissible and interpreted as an
extraction (rather than an insertion) of balls; a model with both diagonal entries
negative will be called here anurn with subtraction(of balls of the color chosen).
The off-diagonal entriesβ,γ are always taken to be nonnegative.

The urn model is said to bebalancedif α + β = γ + δ, in which case the
common sum of the matrix rows is thebalance, denoted throughout bys. The
2 × 2 urn model may lead to widely differing behaviors depending on the values
of the integer entriesα,β, γ and δ. For instance, Kotz, Mahmoud and Robert
(2000) mention the (balanced) urn with matrix

(4 0
3 1

)
for which the number of

white balls picked inn steps grows stochastically liken1/4. Strikingly, Kotz,
Mahmoud and Robert (2000) also study the (imbalanced) urn associated to

(1 0
1 1

)
and show the corresponding number to be∼ n/ logn in probability under a Poisson
model. We do not address in this article models with more than two colors; see
the paper of Smythe (1996) for a thorough probabilistic treatment, the works
of Aldous (1991), Aldous, Flannery and Palacios (1988) for a discussion of almost
sure convergence issues, and the comprehensive and independent recent studies
of Janson (2004, 2005).

Our interest throughout this article is in urn models that are balanced. The
conditions of having a matrix

M =
(

α β

γ δ

)
with α + β = γ + δ = s, β ≥ 0, γ ≥ 0,(1)

are invariably assumed. We also allow ourselves on occasion to describeM

linearly as(α,β;γ, δ). In such a case, each elementary action on the urn results
in having the total number of balls increase by the fixed quantitys, so that the
population at timen has a predictable cardinality, which is exactlyt0 + sn if t0 is
the initial size at time 0. For urns involving subtraction, certain simple arithmetic
conditions on the parameters, calledtenability (the Webster dictionary defines
“tenable” as meaning “capable of being maintained”), ensure that the process
cannot be “blocked”; these conditions are recalled in Section 1, (6), and are
assumed to hold.

Balanced 2× 2 urn models have been in particular considered by Bagchi and
Pal (1985) who show the following: under a supplementary technical condition,
namely that the ratio between eigenvalues of the matrix,(α − β)/(α + β), lies
in (−∞, 1

2), the distribution of the number of balls of one color obeys in the
limit a normal distribution. Gouet (1993) further shows, under the assumptions of
Bagchi and Pal, convergence of the discrete urn evolution to a stochastic Gaussian
process, and he also investigates other cases using martingale arguments. Aldous,
Flannery and Palacios (1988) observe that such results can be supplemented by
almost sure convergence properties—their treatment extends the relation between
branching processes and urn models to be found in the book by Athreya and Ney
[(1972), Section V.9]. Thanks to the works of these and many other authors, the
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normal evolution of the process in the central regime can thus be regarded as well
understood.

In this article, we revisit urn models under the radical angle of analysis. [Aldous
(1991) otherwise provides an insightful comparison of the scopes of the traditional
probabilistic approach and the modern methods of analysis of algorithms in
his introductory section.] Our main results provide a complete analytic solution
describing the composition of the urn at each instant, but, although our methods
potentially apply to all the 2× 2 balanced urn schemes, we focus attention in
this paper on urns involvingsubtraction, that is, having negative diagonal entries.
The matrix can accordingly be taken under the form(−a, a + s;b + s,−b), with
balances ≥ 0 and diagonal coefficients−a,−b < 0. (The urn’s initial composition
is fixed with t0 balls in total of whicha0 are of the first type.) Such models with
negative diagonal entries are occasionally mentioned by some authors as a harder
nut to crack, since the direct embedding of urn schemes into branching processes
explained in the book of Athreya and Ney [(1972), Section V.9] ceases to be
directly applicable. [This position is perhaps to be taken with caution given the
discussion in Aldous, Flannery and Palacios (1988) of extensions of the classical
probabilistic framework.]

In the first part of the article (Sections 1 and 2), we introduce the partial
differential equation approach to urn models with two types of balls and constant
row sum. Our analysis starts with apartial differential equation(PDE) that is linear
of the first order and that describes exactly snapshots of the urn compositions
at all times. The solution of this partial differential equation, obtained by the
standard method of “characteristics,” provides an indirect expression for a bivariate
generating function that encodes the possible configurations of the urn at each
timen. It is found that this bivariate generating function is expressed in terms of a
fundamental functionψ , which is defined implicitly by an equation of the form

ψ(I (u)) = Q(u,v).(2)

There (u, v) lies on a Fermat curveuh + vh = 1 with h = a + b + s a sort
of “complexity index,” the quantityQ being a rational function on the curve,
andI (u) an Abelian integral on that same curve—that is, the integral of a rational
function on the curve. The parameterization (2) suffices in all cases to determine
the dominant singularities ofψ together with the associated singular expansions.
As a consequence, analytic principles provide the (known) Gaussian law for the
urn’s composition at large instants, together with a precise determination of the
speed of convergence as well as an explicit form of the large deviation function in
terms of the Abelian integralI (u) [see (3) for a specific instance]. In general,ψ is
associated with algebraic curves of genus strictly higher than 1. (Note: The Fermat
curve is of high topological genus [Lang (1982)], namelyg = (h − 1)(h − 2)/2,
so that one already hasg = 10 in the case of theT2,3 model discussed below. This
makes the occasional existence of elliptic function solutions, which are objects of
genus 1, quite remarkable.)
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Our investigations were initially motivated by a desire to understand the specific
urn modelT2,3 := (−2 3

4 −3

)
, which forms the subject of thesecond partof this

article. This particular urn process intervenes as a model of several schemes
for managing an important data structure of computer science known as the
search tree [Knuth (1998) and Mahmoud (1992)] and it surfaces in the analysis
of 2–3 trees and fringe-balanced binary search trees [Aldous (1991), Aldous,
Flannery and Palacios (1988), Bagchi and Pal (1985), Eisenbarth et al. (1982),
Panholzer and Prodinger (1998) and Yao (1978)]. What is striking about this urn
is that the model can be completely resolved in terms ofelliptic functionsof the
Weierstraß type. For instance, our general results express that the probability of
large deviations at timen is exponentially small inn with a rate that is a simple
transform of the integral

K(u) := 1

(1− u6)1/6

∫ 1

u

t

(1− t6)5/6 dt.(3)

A parallel elliptic connection had been uncovered earlier by Panholzer and
Prodinger (1998) using rather different methods. Their penetrating analysis
depends on the specific relationship that theT2,3 model entertains with a special
type of “fringe-balanced” search trees—a root decomposition of the tree then
leads to a perturbed nonlinear ordinary differential equation (of the rough form
Y ′′′ = Y ′2 + · · · ) akin to the one satisfied by the Weierstraß℘-function. In this
particular case, our elliptic connection for theT2,3 urn model could alternatively be
deduced by reverse-engineering of the Panholzer–Prodinger treatment, combined
with an easy reduction of a special urn model studied by Mahmoud (1998).
We do not proceed along those lines since Panholzer and Prodinger’s nonlinear
differential approach is problem-specific, and, for example, it would not yield the
other elliptic cases listed in (4).

The general character of our analytic results, Theorems 1 and 2, actually permits
us to single out all the cases where elliptic solutions prevail, namely, all urns of
balance 1 or 2 and a sporadic urn of balance 3, corresponding to thesix matrices(−2 3

4 −3

)
,

(−1 2
3 −2

)
,

(−1 2
2 −1

)
,(−1 3

3 −1

)
,

(−1 3
5 −3

)
,

(−1 4
5 −2

)
.

(4)

We have chosen to illustrate the specificity of the elliptic models in a concrete
way by developing properties of theT2,3 model (Section 3) and then proving our
classification theorem regarding the elliptic cases (Theorem 4 and Section 4).

1. Analytic solution of the general case. We now take up thegeneral case
of a balanced urn model with two types of balls and negative diagonal entries. The
matrix is of the form

M =
( −a a + s

b + s −b

)
, a, b > 0,(5)
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with s > 0 the balance. Start witha0 balls of the first type (“black”) andb0 balls
of the second type (“white”), so thatt0 = a0 + b0 is the initial size; the size of the
urn at timen is then exactly thedeterministicquantity tn = t0 + ns. In order for
the urn not to be blocked by an infeasible request, the usual “tenability” conditions
[Bagchi and Pal (1985) and Gouet (1993)] for urns with subtraction are assumed:{

(T0) :a dividesa0 andb dividesb0;

(T1) :a dividesb + s andb dividesa + s.
(6)

We shall see soon that all such models are “solvable by quadrature” in the
sense of Taylor [(1996), page 86]. In other words, only elementary algebraic
functions, composition and inversion, as well as integration are involved in the
solution, as is expressed by the general statement of Theorem 1. There results a
complete characterization of dominant singularities, as summarized by Theorem 2.
Probabilistic consequences are subsequently explored in Section 2.

1.1. Algebraic approach. Based on formal operator calculus, there is an
elegant symbolic approach to the derivation of PDE’s for urn models, which
establishes a transparent connection between the combinatorial structure of a
model and the PDE that expresses it.

The combinatorial modelconsiders all balls involved in the game to be
distinguished by distinct integer stamps: balls present at time 0 are stamped, say,
1, . . . , a0 for type B anda0 + 1, . . . , t0 for type W. New balls are stamped with
“new” numbers: the balls that are taken away from the urn are (conventionally)
the ball selected as well as others taken according to a deterministic policy,

for example, by starting from smallest numbers. For instance, the urn
(−1 2

3 −2

)
initialized with two balls of type B stamped with 1 and 2 may give rise to an
evolution history starting as

Time 0 1 2 3

Urn

choose 2︷ ︸︸ ︷
1B,2B ,

choose 3︷ ︸︸ ︷
1B,3W,4W,

choose 6︷ ︸︸ ︷
1B,5B,6B,7B,

choose 1︷ ︸︸ ︷
1B,5B,7B,8W,9W, · · ·

with subscripts indicating colors/types of the corresponding balls.
In what follows, we consistently use[zn]f to denote the coefficient ofzn in the

formal power series or analytic functionf .
One first needs to relate combinatorics and probability. We letXn be the random

number of balls of type B at timen, and denote bypn(u) its probabilitygenerating
function (PGF). Lethn(u) be thecountinggenerating function of the evolution
histories of lengthn, whereu marks the number of balls of type B: the coefficient
[uk]hn(u) is the number of histories comprisingn transformations of the urn and
resulting ink balls of type B. We havep0(u) = ua0 as well ash0(u) = ua0, and in
general

pn(u) = hn(u)

t0(t0 + s) · · · (t0 + (n − 1)s)
,(7)
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since the total number of possible histories of lengthn is

t0(t0 + s) · · · (t0 + (n − 1)s
) = n!sn

(
n + t0/s − 1

n

)
,(8)

as results from multiplication ofn elementary choices. (Naturally, the balance con-
dition is crucial to this connection.) Introduce finally the exponential generating
function of thehn(u), so that

H(z,u) := ∑
n≥0

hn(u)
zn

n!(9)

is a bivariate generating function (BGF). Asu → 1, the bivariate generating
function H(z,u) degenerates into a simple algebraic functionH(z,1) = (1 −
sz)−t0/s, since it then only counts histories in accordance with (8). Thus,H(z,u)

is a priori a “deformation” of a simple algebraic function.
For u a variable, we let∂u ≡ ∂

∂u
be the corresponding partial differential

operator. It is notationally convenient to make use of the modified operator

θu = u∂u so that θuf = u
∂f

∂u
.

Differential operators are well known to correspond combinatorially to a “point-
ing” operation. For instance, one has

∂uu
a = aua−1, θuu

a = aua,

so that∂u may be interpreted as “select au-element in all possible ways and
remove it” while θu means “select au-element in all possible ways and keep
it.” There are many instances in the combinatorics literature of such a usage of
differential operators; see, for example, Bergeron, Labelle and Leroux [(1998),
Section 2.1], Flajolet and Sedgewick (2003) and Goulden and Jackson [(1983),
page 45].

Consider now an urn model defined by a matrixM of the form (5), and represent
momentarily a particular urn configuration withλ white balls andµ black balls by
the monomialmλ,µ = uλvµ. The partial differential operator (associated toM),

ϒ = u−avs+aθu + us+bv−bθv,(10)

is such that the application ofϒ to mλ,µ describes all the possible successors of the
urn represented bymλ,µ = uλvµ when one step of ball replacement is performed.

Start with an urn of initial type(a0, b0) represented byua0vb0. Let ĥn(u, v)

be the polynomial describing all possible evolutions of the urn inn steps. [In
particular,̂hn(u,1) = hn(u).] Then, one has

ĥn(u, v) = ϒn ◦ (ua0vb0).
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We opt for exponential generating functions and define

Ĥ (z, u, v) = ∑
n≥0

ĥn(u, v)
zn

n! .

One has symbolically

Ĥ (z, u, v) = ezϒ ◦ (ua0vb0),

where the exponential of operators is defined in the usual way:

ezϒ ◦ g := ∑
n≥0

zn

n! (ϒn ◦ g).

Then, the definition of the exponential immediately implies the differential relation

∂z(e
zϒ ◦ g) = ϒezϒ ◦ g.

In other words,Ĥ satisfies the PDE

∂zĤ = ϒ ◦ Ĥ .(11)

The last equation is almost the PDE we are looking for but not quite (it has
a supplementary variable,v). Given the balance condition, the urn population
increases by exactlys at each step. Accordingly,̂H involves three variables,u, v

and z, but their exponents in̂H are bound by a homogeneity condition, each
monomial generated being of the formuλvµzn with λ + µ = sn + t0. In other
words, each monomialm composingH satisfies

(θu + θv − sθz)m = t0m,(12)

and the relation extends by linearity tôH itself.
In summary, a system of two equations now determinesĤ (with θu ≡ u∂u):

∂zĤ = ϒ ◦ Ĥ ,

(θu + θv − sθz)Ĥ = t0Ĥ .
(13)

One can then eliminate the explicit differential dependency onv (the operator∂v)
and get from (10) and (13)

∂zĤ = u−av1+aθuĤ + u1+bv1−b(sθzĤ − θuĤ − t0Ĥ ).

At this stage it becomes possible to setv = 1, that is, completely eliminate the
redundant variablev itself. In this way one obtains thefundamental PDE

(1− szub+s)
∂H

∂z
+ (ub+s+1 − u1−a)

∂H

∂u
− t0u

b+sH = 0,(14)

whereH ≡ H(z,u) = Ĥ (z;u,1).
The main result is then:
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THEOREM 1. Consider the urn specified by matrix
(−a a+s
b+s −b

)
, with initial

conditions(a0, b0) and t0 := a0 + b0, assuming it to be tenable. The probability
generating function at timen of the urn’s composition is

pn(u) = �(n + 1)�(t0/s)

sn�(n + t0/s)
[zn]H(z,u),

where the bivariate generating functionH(z,u) is given by

H(z,u) = δ(u)t0ψ
(
zδ(u)s + I (u)

)
,

with

δ(u) := (1− uh)1/h, I (u) :=
∫ u

0

ta−1

δ(t)a+b
dt, h := a + b + s,

and the functionψ is defined implicitly by

ψ(I (u)) = ua0

δ(u)t0
.

PROOF. We make use of the classical method of characteristics exposed in
most textbooks, for example, Zwillinger [(1989), Section 94]. Following this
method, one first associates to the linear first-order partial differential equation (14)
theordinary differential system

dz

1− szub+s
= du

us+b+1 − u1−a
= dw

t0ub+sw
,(15)

wherew “represents”H , and look for its first integrals.
The equation bindingw andu allows for separation of variables,

dw

w
= t0

uh−1

uh − 1
du,

so that a first integral of (15) is

wδ(u)−t0 = C1.(16)

The equation bindingz andu is similar but inhomogeneous:

dz

du
= −sz

uh−1

uh − 1
+ ua−1

uh − 1
.

The homogeneous equation is solved by separation of variables asz = ξ · (1 −
uh)−s/h. By the variation-of-constant technique, one finds

z = ξ(u)(1− uh)−s/h, ξ(u) = −
∫ u ta−1

(1− th)(a+b)/h
dt,

so that a first integral of (15) is

zδ(u)s + I (u) = C2.(17)
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According to the method of characteristics, the general solution to the
fundamental PDE (14) is obtained by coupling the two first integrals (16) and (17),
namely



(
H(z,u)δ(u)−t0, zδ(u)s + I (u)

) = 0,

for an arbitrary bivariate function
. Solving symbolically forH puts the solution
in the form

H(z,u) = δ(u)t0ψ
(
zδ(u)s + I (u)

)
,(18)

for an arbitrary univariate functionψ . The initial conditionH(0, u) = ua0 finally
identifiesψ as defined implicitly through inversion ofI (u), namely,ψ(I (u)) =
ua0/δ(u)t0.

We observe next thatψ(z) is analytic at 0. Indeed the tenability conditions of (6)
imply thata must dividea0 anda must divideb+ s, hencea dividesh = a+b+ s.
In particular, the general form of the parameterization ofψ near 0 isψ(ua) 	 ua0,
that is,ψ(z) 	 ua0/a , which is compatible with analyticity. In fact, the expansions
involved are of the form

ψ

(
ua

∑
j≥0

λju
jh

)
= ua0

(∑
j≥0

µju
jh

)
,

for some real coefficientsλj ,µj and u ranging in a small enough complex
neighborhood of 0. Examination of the exponents involved in the inversion shows
thatψ(z) can be expanded as a power series inz, and analyticity ofψ at 0 results.

�

Sensitivity to initial conditions. When the initial state of the urn is changed,
the functions involved still live in the same general class. Indeed, theψ function
corresponding to an initial urn of composition(a0, b0) factorizes, in accordance
with Theorem 1, as

ψ(z) = ψI (z)
a0/a · ψII (z)

b0/b,(19)

whereψI ,ψII are determined implicitly by

ψI (I (u)) =
(

u

δ(u)

)a

, ψII (I (u)) =
(

1

δ(u)

)b

,(20)

corresponding to an urn initialized witht0 = a0 = a andt0 = b0 = b, respectively.
The analytic treatment given below extends to both functionsψI ,ψII , and it is
seen that the main determinant of the category of special functions encountered
is the indexh of the Fermat curve and the integralI (u). Equations (19) and (20)
thus give us flexibility for the choice of the initial conditions, as is done repeatedly
below.
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In the case wherea andb are each at least−1, balls have a “descendance” and
the evolution of descendants are combinatorially independent. Accordingly, the
factorization (20) can be viewed as expressing the fact that the histories of all the
initial balls can be freely shuffled. (It is known that shuffle products correspond to
products of exponential generating functions.) A parallel decomposition underlies
the probabilistic reduction of this class of urn models to multitype branching
processes [Athreya and Ney (1972)], at least in the case where no diagonal entry
is below−1, so that the disappearances of balls are not coupled.

1.2. Complex-analytic structures.For notational simplicity, we shall adopt in
this section the initial conditionsa0 = t0 = a, that is, the urn is initialized with
exactly a balls of the first type (B): by (19), (20) and the ensuing remarks, no
essential loss of generality is implied by such a choice.

We make use of the quantityh = a + b + s. The functionv = δ(u) corresponds
to the complex Fermat curve,

uh + vh = 1,

which has topological genusg = (h − 1)(h − 2)/2. Following a classical
terminology, the integralI (u) ≡ ∫

ua−1v−a−b is a particular Abelian integral over
this curve. The diagram that summarizes the parameterization ofψ is then

u

I (u) ↙ ↘ J (u)

z
ψ−→ ψ(z)

J (u) ≡ ua

δ(u)a
.

The major characteristics of an urn model turn out to be determined by the nature
of the mapu �→ I (u) in the complex plane, withJ (u) playing only a secondary
role.

As observed in the proof of Theorem 1, the functionψ is analytic at 0 and it
satisfiesψ(z) 	 za0/a there. Also, the nature of the parameterization near 0, where
I (u) 	 ua implies thatI (u) effects ana-fold covering of a neighborhood of the
origin and thatψ(z) is of the form

ψ(z) = za0/aψ̂(zh/a),(21)

for some ψ̂ analytic at the origin. In other words, in order to defineψ
parametrically by means ofu, it suffices to letu range in a sectorH of angle
2π/(h/a) at the origin, and from now on, we shall do so. (As already noted, the
tenability conditions precisely imply thata dividesh.)

Consider first the complex plane withh rays emanating from 0 and having
directions given by all thehth roots of unity. The sectorSj is defined as

Sj :=
{
z, z = Reiθ ,0< R < ∞,

2jπ

h
< θ <

2(j + 1)π

h

}
.
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FIG. 1. The elementary kite is the image of a small sectorS0.

We claim (and prove below) that the image ofS0 by I (u) is the interior of a
quadrilateral (Figure 1), with vertices at the points

0, I (1), I (+∞), I (e2iπ/h),

and call this quadrilateralK the elementary kite. [Note: The incomplete Beta
integrals that make upψ are related to hypergeometric functions as well as to the
Schwarz–Christoffel integrals of conformal mapping theory. For the latter aspects,
see, e.g., the book of Nehari (1975), his Exercise 4, page 196, and his Chapter V.]
One has

I (1) =
∫ 1

0

ta−1

(1− th)(a+b)/h
dt = 1

h
B

(
a

h
,
s

h

)
= 1

h

�(a/h)�(s/h)

�((a + s)/h)
,

where use has been made of the usual Eulerian Beta integral [Whittaker and
Watson (1927)]

B(α,β) :=
∫ 1

0
tα−1(1− t)β−1 dt = �(α)�(β)

�(α + β)
.(22)

We henceforth denote the quantityI (1) by ρ.
The local mapping properties corresponding to the four vertices of the

elementary kite are determined by the local behavior ofI (u): (i) at 0, I (u)

multiplies angles bya, so that the angle of the kite at 0 is2πa
h

; (ii) at 1, I (u)

multiplies angles bys
h
, so that the angle of the kite at vertexI (1) is πs

h
[and

similarly for vertexI (e2iπ/h)]; (iii) at infinity, I (u) multiplies angles byb, so that
the angle atI (+∞) is 2πb

h
. In order to see thatI (u) maps the boundary ofS0

to that of K , observe first thatI (u) maps[0,1] onto the segment[0, I (1)] by
monotonicity of the integrand. Then, asu continues to increase along(1,+∞)

passing above 1, the functionδ(u) becomes a complex number of fixed argument
a+b
h

π . In other words,I maps the ray[1,+∞] to the segment [I (1), I (+∞)]
(with +∞ here understood as lying insideS0). A similar discussion gives the
mapping properties associated with the other two sides of the kiteK .



ANALYTIC URNS 1211

FIG. 2. The elementary kite(in black) and the fundamental polygon associated with the urn
(−1,4;4,−1).

Next, we turn to sectorsS1, . . . . Let ζ := e2iπ/h. The image of sectorSj is
simply obtained as the image ofS0 by I (uζ j ), which, by a linear change of
variables [sinceI (uζ j ) = ζ−jaI (u)] is the image of the elementary kite under
a rotation of angle−2jaπ

h
; see Figure 2 for a particular instance. Because of (21)

and the accompanying remarks, it is sufficient to consider 0≤ j < h
a
.

DEFINITION 1. Thefundamental polygonof an urn model is the (closure of )
the union ofh/a regularly rotated versions of the elementary kite about the origin.

We state:

THEOREM2. Consider a balanced2×2 urn with subtraction as in Theorem1
and let it be initialized witha0 = a, b0 = 0. The corresponding functionψ is
analytic for z in the fundamental polygon of Definition1. Furthermore, it is
analytic in |z| < ρ, where

ρ = I (1) =
∫ 1

0

ta−1

(1− th)(a+b)/h
dt = 1

h
B

(
a

h
,
s

h

)
= 1

h

�(a/h)�(s/h)

�((a + s)/h)
.

On |z| = ρ, the functionψ is singular atρ and at the pointsρωj whereω =
exp(2iπ a

h
) is an (h/a)th root of unity, regular at the other points. Its singular

expansion asz → ρ is of the form

ψ(z) = s−t0/s(ρ − z)−t0/sA
(
(ρ − z)h/s),(23)

with A analytic at0, A(0) = 1, A′(0) �= 0. (Principal determinations asz → ρ−
are assumed.) This expansion extends to a sector of opening larger thanπ at ρ.

At the pointsz = ρωj , the singular expansion is determined from the expansion
at z = ρ by the fact thatψ(z)z−a0/a is invariant under the mappingz �→ ωz.
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The expansion (23) givesψ(z) as the product of a main singular part of the form
(ρ − z)−t0/s multiplied by a Puiseux series, that is, a series in fractional powers of
(ρ − z). We shall occasionally refer to the quantityh/s as thePuiseux exponent
of ψ . It plays a special role in the discussion of elliptic urns in Sections 3 and 4,
in which case it reduces to an integer value.

PROOF OF THEOREM 2. First, the fact thatI (u) assumes each value inK
once and only once whenu ∈ S0 is a consequence of basic properties of conformal
mapping theory, which we recall. Letβ be an arbitrary number interior toK . The
numberν(β) of times thatI (u) assumes the valueβ ∈ K for u interior toS0 is by
the residue theorem

ν(β) = 1

2iπ

∫
∂S0

I ′(u)

I (u) − β
du,

where∂X represents the boundary of a regionX oriented positively. Then, the
change of variablesI (u) = x gives

ν(β) = 1

2iπ

∫
∂K

dx

x − β
= 1,

where the reduction to the value 1 is due to the fact thatβ is by assumption interior
to K . This implies that the functional inverseu = I (−1)(z) is well defined (and
analytic) forz interior toK , and so isψ(z) sinceψ(z) = J (u) while J (u) depends
analytically onu. These properties extend in turn to the fundamental polygon by
rotations of the base sector.

We next examine the behavior ofψ nearρ = I (1), corresponding tou in the
vicinity of 1 (say,u → 1−, to fix ideas). The expansion can be constructed by
means of a local uniformizing parameter, here, 1− u = τh. Write

δ(y) = �(y)(1− y)1/h,

so that�(y) is analytic aty = 1. By the change of variablesu �→ 1− τh, one finds

I (1) − I (u) = h

∫ τ

0
(1− yh)a−1�(1− yh)−a−bys−1 dy,

= 1

s
(h1/hτ )s

(
1+ (h(b − a + 2) − a − b)s

2h(s + 1)
τh + · · ·

)
,

J (u) = (1− τh)a0

�(1− τh)t0

= (h1/hτ )−t0

(
1− h(2a0 − t0) + t0

2h
τh + · · ·

)
,

(24)

where nowτ → 0 corresponds tou → 1 (the series expansions proceed by powers
of τh). Thus the parameterization is of the form

ρ − z = 1

s
(h1/hτ )sU(τh), ψ(z) = (h1/hτ )−t0V (τh),
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whereU,V are analytic at 0 andU(0) = V (0) = 1. By analytic inversion, this
shows that there exists a full expansion of the type (23), withA analytic at 0. In
other words, the pointρ is a singularity ofψ that is a branch point with dominant
singular exponent equal to−t0/h.

By rotational symmetry, an expansion of a nature similar to (23) also holds at
the conjugate pointsρωj whereω = e2iπ/h is anhth root of unity. Sinceψ(z)

has nonnegative coefficients, it satisfies Pringsheim’s theorem and is thus analytic
in |z| < ρ. By the triangle inequality, we have|I (ueiθ )| ≤ I (u) for u ∈ (0,1) and
θ ∈ (−π,π). Since the nonzero terms composing the Taylor expansion ofI at the
origin are of the formua+jh, the inequality|I (ueiθ )| < I (u) is strict as soon asθ is
not a multiple of2π

h
andI (u) is invertible. From there, it results thatψ is analytic

on |z| = ρ except for the regularly spaced singularities quoted in the statement.
This provides the analytic continuation ofψ in the fundamental polygon as

well as in the disc of radiusρ. If the fundamental polygon is such thats/h > 1
2,

analytic continuation ofψ outside its disc of convergence is granted and the
proof is completed—this is the situation exemplified by Figure 2. Otherwise,
the convergent character ofA provides the analytic continuation ofψ in sectors
rooted at singularities and extending beyond the discz < ρ. (This last situation is
encountered in theT2,3 model detailed below; see Figures 3 and 4.)�

For instance, the urn
(−1 4

4 −1

)
gives rise to the fundamental polygon displayed

in Figure 2. One hass = 3, h = 5 andδ(u) = (1− u5)1/5, so that the fundamental
polygon is a star with five branches. At the origin, we findI (u) = u + 1

15u
6 + · · ·

and ψ(z) = z + 2
15z

6 + · · · . There is an algebraic branch point atρ where
ψ(ρ −x) 	 (ρ −x)−1/3 and at the conjugate pointsρωj whereω5 = 1. The nature
of the branch point ofψ atρ is

ψ(z) = (3Z)−1/3(1− 9
40(3Z)5/3 − 1143

10400(3Z)10/3 + · · ·), Z := (ρ − z),

the Puiseux exponent associated withA being the fractional numberh/s = 5/3.

2. Probabilistic consequences. Singularity analysis [Flajolet and Odlyzko
(1990) and Odlyzko (1995)] makes it possible to extract very precise information
on coefficients of a generating function once the function is recognized to have
isolated singularities on the boundary of its disc of convergence. Under such
conditions, assuming first unicity of the dominant singularityσ , an asymptotic
estimate for a functionF of the form

F(z) ∼
z→σ

c(1− z/σ)−α

valid in a complex region beyondσ (a sector centered atσ of opening angle larger
thanπ and including the disc of convergence) entails a matching estimate for the
function’s coefficients:

[zn]F(z) ∼
n→∞ cσ−n nα−1

�(α)
.
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Full asymptotic expansions can be transferred from functions to coefficients in
a similar way [Flajolet and Odlyzko (1990)]. Also, in the presence of several
dominant singularities, contributions to coefficients are to be composed additively.
(This technology based on Hankel contours is of the complex Tauberian type.)
It applies to the functionψ(z) itself, and sinceψ(z) = H(z,0), it provides
immediately sharp estimates of the probabilities that all balls are of the same color
at epochn, which corresponds to extreme large deviations.

COROLLARY 1 (Extreme large deviations).For any balanced2 × 2 urn with
subtraction(i.e., negative diagonal entries), the probability that balls at timen are
all of the same color and of the second type(W) is

h

a
(sρ)−n−t0/s

(
1+ O

(
1

nh/s

))
for n ≡ a0

a

(
mod

h

a

)
.

PROOF. The singularity atz = ρ of H(z,0) = ψ(z) contributes to[zn]ψ(z) a
term

(sρ)−t0/sρ−n nt0/s−1

�(t0/s)

(
1+ O

(
1

nh/s

))
.

We have the periodicity expressed by (21). Thus, forn in a suitable congruence
class, there areh/a similarly behaving singularities to be combined. The total
number of histories of lengthn is, from (8), asymptotic to

n!sn nt0/s−1

�(t0/s)
.

The result follows after normalization by the latter quantity.�

Next, we summarize the basic technology used to derive a Gaussian limit by the
following statement, a simplified form of what is often referred to as the “quasi-
powers theorem” and originates in works of Bender (1973) and Hwang (1998).
Throughout this article, we useE andV to denote the expectation and variance
operators.

LEMMA 1 (Quasi-powers theorem).Let qn(u) = E(uYn) be a family of
probability-generating functions relative to discrete random variablesYn. Assume
that there exist two functionsA(u),B(u) analytic in a neighborhoodV of u = 1,
such that, in this neighborhood the quasi-power approximation

qn(u) = A(u)B(u)n
(
1+ εn(u)

)
asn → ∞(25)

holds, where |εn(u)| = O(n−1/2) uniformly with respect tou, that is,
supu∈V |εn(u)| = O(n−1/2). Assume also thevariability condition

σ 2 �= 0 whereσ 2 := lim
n→∞

VYn

n
≡ B ′′(1) + B ′(1) − B ′(1)2.(26)
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[Equivalence between the two forms ofσ 2 is granted under condition(25).] Then,
the random variablesYn converge in law to a Gaussian limit, with speed of
convergenceO(n−1/2): for anyx, one has

P

(
Yn − E(Yn)√

VYn

≤ x

)
= 1√

2π

∫ x

−∞
e−y2/2 dy + O

(
1√
n

)
.(27)

PROOF [Sketch; see Bender (1973) and Hwang (1998) for details]. The
characteristic functionqn(e

it ) of the Yn is by assumption closely approximated
by annth power. The variableYn is next centered around its mean and scaled by
its standard deviation in the usual way. A calculation similar to the usual case of
independent random variables [e.g., Billingsley (1986), page 367] then shows the
standardized version ofqn(e

it ) to converge toe−t2/2, which is the characteristic
function of a Gaussian law. The speed of convergence estimate finally results from
the Berry–Esseen inequality found in Lukacs (1970).�

In order to apply the quasi-powers theorem, we choose a small complex
neighborhood ofu = 1 and keepu in this neighborhood. The BGFH(z,u) rewrites
as

H(z,u) = δ(u)t0ψ
(
ρ − δ(u)s

(
K(u) − z

))
,(28)

where

K(u) := 1

δ(u)s

∫ 1

u

ta−1

δ(u)a+b
dt,(29)

and K(u) has a removable singularity at 1 withK(1) = 1/s. Treating u as
a parameter, we find that, as a function ofz, the quantity H(z,u) has a
singularity atz = K(u) that gets smoothly displaced whenu varies. Because of
the nature of the singularity ofψ at ρ, the singular exponent remains equal to the
constant−t0/s. Thus, for some functionL(u) that is analytic atu = 1, one has

[zn]H(z,u) = L(u)K(u)−nnt0/s−1
(

1+ O

(
1

nh/s

))
,

the error term being uniform by virtue of uniformity of the singularity analysis
process [Flajolet and Odlyzko (1990)]. This has the shape of a bona fide quasi-
powers approximation for the probability generating function,

pn(u) = [zn]H(z,u)

[zn]H(z,1)
= L(u)

L(1)

(
K(u)

K(1)

)−n(
1+ O

(
1

nh/s

))
.

The quasi-powers theorem then applies and gives:

COROLLARY 2 (Gaussian law and speed).For any balanced2 × 2 urn with
subtraction, the random variableXn representing the number of balls of the first
color (B) at timen is asymptotically Gaussian with speed of convergence to the
limit O(n−1/2), as expressed by(27).
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The fact that the limit distribution is Gaussian was first observed by Bagchi
and Pal (1985). These authors applied the moment method and determined the
main asymptotic orders of moments of the centered variableXn − E(Xn). Their
method does not, however, appear to give access to the speed of convergence as
expressed above. This speed is on the other hand neatly implied by the functional
limit theorem of Gouet (1993). Here, we emphasize that the speed of convergence
comes out almost immediately from the analytic approach.

In general, the moments are computable systematically from the exact ex-
pressions of Theorem 1 by successive differentiation with respect tou upon
settingu = 1 and making use of the singularities ofψ and its derivatives as ex-
pressed by Theorem 2. All moments happen to be expressible inclosed form.

COROLLARY 3 (Moments). For any balanced2× 2 urn with subtraction and
anyr ≥ 0, ther th factorial moment of the distribution ofXn is of hypergeometric
type: it is a finite linear combination of terms of the form(n+t0/s+�−kh/s−1

n

)(n+t0/s−1
n

) , 0≤ k, � ≤ r.

The existence of suchfinite binomial forms for moments ofall orders does not
seem to have been previously noticed. Explicit forms are given by Kotz, Mahmoud
and Robert (2000), but only for the first moment and at the cost of some labor,
in the case of the urn model(4,0;3,1). Bagchi and Pal (1985) obtained such
expressions for a wide class of urns, but in the case of the first two moments only.

PROOF OFCOROLLARY 3. The quantity

χr(z) := 1

r!
(
∂r
uH(z,u)

)
u=1 = [(u − 1)r ]H(z,u)

is a generating function of ther th factorial moment ofXn in the sense that

E(Xr
n) = [zn]χr(z)

[zn]χ0(z)
,

where the notationXr is the usual notation for falling factorials [Graham, Knuth
and Patashnik (1989)], namely,

ar = a(a − 1) · · · (a − r + 1).(30)

In order to gain access to such moments, we make use of the singular
expansion ofψ nearρ. Given the variant form ofH(z,u) from (28), the singular
expansion (23) of Theorem 2 provides the alternative representation

H(z,u) = s−t0/s
(
K(u) − z

)−t0/sA
(
(1− uh)

(
K(u) − z

)h/s)
,(31)
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which is our starting point. This expansion is analytically valid when (say)
|z| < ρ/2 providedu stays in a small enough neighborhood of 1. WriteA(w) =∑

k≥0 akw
k . One then has

H(z,u) = ∑
k≥0

ak(1− uh)k
(
K(u) − z

)kh/s−t0/s .(32)

Clearly, for ther th moment, it suffices to consider the sum in (32) with the indexk

restricted to values in the interval[0, r], so that

χr(z) = 1

r!
r∑

k=0

ak

(
∂r
u

(
(1− uh)k

(
K(u) − z

)−t0/s+kh/s))
u=1.(33)

The functionK(u) is analytic atu = 1. Accordingly, the quantity(K(u) − z)−1

and its derivatives atu = 1 are of the form

(
K(1) − z

)−1 ≡ s

1− sz
, − s2K ′(1)

(1− sz)2 ,
2s3K ′(1)2

(1− sz)3 − s2K ′′(1)

(1− sz)2 ,

and so on, with similar formulas holding for fractional powers. Thusχr(z) is
invariably an algebraic function of a very special form, namely a finite linear
combination of terms of the type

(1− sz)−t0/s+kh/s−�, 0≤ k, � ≤ r.

The statement then follows by coefficient extraction.�

As a consequence, one gets mechanically,

E(Xn) ∼ s + b

s + h
sn, V(Xn) ∼ sh2(s + a)(s + b)

(s + h)2(s + 2h)
n,

which is consistent with the estimates of Bagchi and Pal [(1985), pages 395–397].
Finally, we turn to large deviations, for which the book of den Hollander (2000)

can serve as a smooth introduction. It is known from the works of Hwang (1996)
that a quasi-power approximation (in the sense of Lemma 1) for a family of PGFs
leads to very precise “moderate deviation” estimates valid in some range not too
far from the center of the distribution. We recycle here the technology of Hwang
(1996), though the range is a little different. The large deviation rate is fully
characterized by the following statement:

COROLLARY 4 (Large deviations). Consider any balanced2 × 2 urn with
subtraction. Let ξ be any number of the open interval(0, s s+b

s+h
). One has

lim
n→∞

1

n
logP(Xn ≤ ξ · n) = −R(ξ),(34)
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where the rate functionR is determined fromK(u) defined in(29) by

R(ξ) = max
λ∈(0,1)

log
(
sλξK(λ)

)
.(35)

Equivalently,

R(ξ) = log
(
sλ

ξ
0K(λ0)

)
(36)

whereλ0 ∈ (0,1) satisfies
λ0K

′(λ0)

K(λ0)
+ ξ = 0.

[Put another way,R(ξ) is the Legendre transform of log(sK(et )).]

PROOF. Notice thatE(Xn) ∼ s+b
s+h

sn, so that (34) quantifies the left part of the
distribution as approximately given bye−nR(ξ). The basic ingredient is Cramér’s
technique of “shifting the mean” conjugated with upper bounds of the saddle point
(equivalently, Chernoff ) type as well as lower bounds based on the quasi-powers
theorem in a shifted region.

First, one has

P(Xn ≤ ξn) = [uk]pn(u)

1− u
,

since multiplication by(1 − u)−1 sums coefficients of generating functions.
Next, for anyf (u) analytic at 0 having nonnegative Taylor coefficients, the easy
inequality [uk]f (u) ≤ f (λ)λ−k holds provided the positive quantityλ is taken
inside the disc of convergence off (u). There results from these two observations
the majorization

P(Xn ≤ ξn) ≤ pn(λ)

(1− λ)λ�ξn� ,(37)

valid for anyλ ∈ (0,1).
In order to derive anupper boundon large deviations, it suffices to choose (as

usual) the best possible value ofλ in (37). Now, for fixed positiveλ ∈ (0,1), the
function H(z,λ) has a dominant singularity of the algebraic type atz = K(λ),
see (23). A simple calculation based on the fact that the dominant singularities
of ψ are atρωj and thatI (u) increases from 0 toI (1) = ρ for u ∈ (0,1) shows
further thatH(z,λ) has forλ ∈ (0,1) a unique singularity atK(λ) on |z| = K(λ).
Therefore one has by straight singularity analysis,

pn(λ) ∼
n→∞Cλ · s−nK(λ)−n,(38)

for some constantC (depending smoothly onλ). Whenξ lies in any fixed compact
subinterval of(0, s s+b

s+h
), the upper bound (37) can then be rewritten as

P(Xn ≤ ξn) ≤ Cs−nK(λ)−nλ−ξn
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for some constantC. This is a form amenable to optimization. Letλ0 be such that
K(λ)−1λ−ξ attains its minimum over(0,1) atλ0. General convexity properties of
probability generating functions imply thatλ0 exists and is unique.

The value ofλ0 is obtained by cancelling the derivative ofK(λ)−1λ−ξ and is
thus a root of the second equation in (36). Up to factors that are subexponential
in n, the upper bound in (38) is of the forme−nR(ξ), with R(ξ) as given by (36)
and (35). We have thus established “one half” of (34), namely,

1

n
logP(Xn ≤ ξn) ≤ −R(ξ) + o(1),

with R(ξ) determined by (36).
There finally remains to argue that the upper bound is tight, that is, derive a

lower boundon the probability values. This results from Cramér’s technique of
shifting the mean. The shifted lawrn,k = [uk]rn(u) defined by the probability
generating function

rn(u) := pn(λ0u)

pn(λ0)

satisfies a standard quasi-powers approximation and is itself amenable to Lemma 1.
Assume first that the variability condition (26) holds for the shifted law given
by rn(u). In that case the sum of probabilities

∑
ξn−√

n<k≤ξn rn,k of the shifted
law tends to a nonzero constant as it is approximated by a Gaussian integral.
By construction, thern,k are thepn,k ≡ [uk]pn(u) multiplied by a quantityλk

0

which varies betweene−O(
√

n )λ
ξn
0 and O(1)λ

ξn
0 . Thus, the corresponding sum∑

ξn−√
n<k≤ξn pn,k is, up to subexponential factors (themselves of the form

e−O(
√

n )), of the typee−nR(ξ). This implies a lower bound, hence the “other half”
of the equality in (34). Finally, if the variability condition atλ0 is not satisfied (this
can only happen at isolated points), then an even stronger type of concentration
holds for the shifted distributionrn,k ; in that case, the variance of the shifted dis-
tribution iso(n), which, by Chebyshev’s inequality, entails the stated lower bound
on the sum of thern,k , hence the lower bound on partial sums of thepn,k . �

The dual regime of large deviations on the right tail of the distribution is
determined upon exchanging the roles of quantitiesa andb.

3. The T2,3 “tree” model. The model is determined by its matrix and the
initial conditions

T2,3 =
(−2 3

4 −3

)
, a0 = 2, b0 = 0.

It has motivated much of the study of subtractive urns over the past two decades,
given its relevance to several data structures of computer science [Aldous, Flannery
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and Palacios (1988), Bagchi and Pal (1985), Eisenbarth et al. (1982), Panholzer
and Prodinger (1998) and Yao (1978)]. In this section, we arrive at the elliptic
connection expressed by Theorem 3 and closely related to earlier works of
Panholzer and Prodinger (1998). Our reason for treating this example in detail
is twofold: first, it serves as a concrete illustration of the general treatment of
Sections 1 and 2; second, it paves the way to our eventual characterization of the
elliptic urn models in Section 4.

3.1. Basic analytic structure. Takinga0 = 2 andb0 = 0 corresponds tot0 = 2.
Theorem 1 provides an expression forH(z,u):

H(z,u) = δ(u)2ψ
(
zδ(u) + I (u)

)
.

Hereh = 6, so that

δ(u) := (1− u6)1/6, I (u) :=
∫ u

0

t

δ(t)5 dt =
∫ u

0

t

(1− t6)5/6 dt,

and the functionψ is defined implicitly by

ψ(I (u)) = J (u) whereJ (u) := u2

δ(u)2 = u2

(1− u6)1/3 .

The results of Section 1 apply directly to this case. The elementary kite, which
is the image of the sectorS0 of opening π

3 , is a quadrilateral with vertices at
(0, ρ, I (∞e2iπ/12), ρω), whereω := e2iπ/3. We find after a simple computation,
upon following the proper branch ofδ,

I (+∞e2iπ/12) = ρ − eiπ/6
∫ 1

0

w2 dw

(1− w6)5/6

= ρ − eiπ/61

6
B

(
1

6
,

1

2

)
= ρ

(
1− eiπ/6

√
3

2

)
.

Thus, asu varies from 0 to+∞, passing through 1 (and above it),I (u) describes
first the segment from[0, ρ], then the segment[ρ,ρ(1 + ω)/2]. The kite in this
case happens to be a triangle and we shall refer to it as the “elementary triangle”
(Figure 3).

There is also a “double parameterization” [due to evenness of bothI (u)

and J (u)], so that we may freely identify pointsu and −u. To this effect, we
define

H := {
z|(�(z) > 0

) ∨ ((�(z) = 0
) ∧ (�(z) ≥ 0

))}
.(39)

Then, asz ranges overH , the fundamental polygon is obtained by gluing three
rotated images of the elementary triangle. It is thus an equilateral triangle with
center at the origin (Figure 4)—we call it the “fundamental triangle.”
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FIG. 3. The“elementary kite,” here a triangle, T0 (right) is the image of the basic sectorS0 (left)
via the mappingu �→ I (u).

Next, the local analysis ofψ at its dominant singularityz = ρ results from the
general treatment offered in Section 1. We find

ψ(z) = Z−2 − 1
7Z4 + 1

637Z
10 + · · · , Z := ρ − z.(40)

What is noteworthy here is the presence of a pole, rather than an algebraic
singularity that prevails in the general case covered by Theorem 2. Similarly, the
pointsρω andρω2 are double poles, so that the function

ψ(z) −
(

1

(ρ − z)2 + 1

(ρω − z)2 + 1

(ρω2 − z)2

)
(41)

is analytic in a disc|z| < R for someR > ρ.
The fact that the dominant singularities ofψ are poles naturally led us to look

for the next layer of singularities, as this would provide very precise information
on the exponential smallness of error terms. In so doing, much to our surprise,
we uncovered a lattice structure commonly associated with elliptic functions
(Figure 5).

FIG. 4. The “ fundamental polygon,” here a triangle, T (right) is the image of the slit upper
half-plane(H) (left) via the mappingu �→ I (u).



1222 P. FLAJOLET, J. GABARRÓ AND H. PEKARI

FIG. 5. Rotated copies of the fundamental triangle aroundρ,ρω,ρω2 shown against the circle of
convergence ofψ(z).

3.2. The elliptic structure. An elliptic function is a function that is meromor-
phic in the whole complex plane and is doubly periodic. Amongst the many dif-
ferent ways to develop the corresponding theory, perhaps the simplest is the one
originally proposed by Weierstraß, where elliptic functions are defined as sums
of rational functions taken over lattices. [Accessible introductions appear in the
books by Whittaker and Watson (1927) and Chandrasekharan (1985).]

DEFINITION 2. A lattice � with generatorsξ, η ∈ C is defined as the set of
complex numbers

�(ξ,η) = {n1ξ + n2η|n1, n2 ∈ Z}.
The Weierstraß℘-functionrelative to� is classically defined as

℘(z;�) = 1

z2 + ∑
w∈�\{0}

(
1

(z − w)2 − 1

w2

)
.(42)

(The Weierstrass℘-function is by construction doubly periodic.)

We shall make use here of the “hexagonal” lattice� defined as the lattice
generated byeiπ/6, e−iπ/6, see Figure 5,

�hex := {n1e
iπ/6 + n2e

−iπ/6|n1, n2 ∈ Z},(43)

and its associated Weierstraß zeta function,℘(z;�hex). We state:
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THEOREM 3 (Elliptic connection). Theψ-function of theT2,3 model initial-
ized with two balls of the first type(a0 = t0 = 2) is exactly

ψ(z) = 1

(ρ
√

3)2
℘

(
z − ρ

ρ
√

3

)
with ρ := 1

6

�(1/3)�(1/6)

�(1/2)
,(44)

where℘(z) := ℘(z;�hex) is the Weierstraß function of the hexagonal lattice. In
particular, the bivariate generating function of the model is expressible in terms of
elliptic functions.

NOTE. The functionψ can be alternatively written asψ(z) = ℘(z−ρ |0,−4)

where℘ is specified by the lattice invariantsg2 = 0 andg3 = −4.

PROOF OFTHEOREM 3. Consider the whole complex plane tiled by nonover-
lapping copies of the hexagon of centerρ, radiusρ

√
3, having vertices at the points

ρ + ρ
√

3�hex.
We claim that any complex pointz is reachable as a valueI (γ (u)), where

the notationI (γ (u)) indicates that the integral definingI is to be taken along
a pathγ (u) that starts at 0 and ends atu. Similarly, J (γ (u)) will represent the
determination ofJ (u) along pathγ (u) that is obtained by continuity from the
principal determination at 0. Otherwise said, we are walking on the Riemann
surface of the Fermat curveδ(u).

The algorithm is as follows. Assume for simplicity thatz is the center of one
of the equilateral triangles in which the hexagonal tiling decomposes. The straight
line L0 from 0 toz can be first slightly deformed into a curveL1 that avoids all the
vertices of the tiling. ThisL1 can then be transformed into a polygonal lineL2 that
connects centers of successive equilateral triangles. Finally, each segment ofL2
can be changed into a pair of segments going through one of the vertices of the
lattice and forming an angle a positive multiple ofπ/3. The resulting polygonal
line, L3, will be called thestandardz-path. See Figure 6 for a graphic rendering.

The contourγ , called thestandardu-path, is then obtained from the standard
z-pathL3 by first applying a contraction by a factorρ, then executing the following
routine:

• turn by an angle of 6θ wheneverL3 turns at an angle ofθ (whereθ is a multiple
of π/3) around a vertex of the lattice,

• turn by an angleθ/2 (whereθ is a multiple of 2π/3) wheneverL3 turns byθ

around the center of one of the equilateral triangles.

The construction is then easily modified to accommodate points that are not centers
of triangles of the tiling.

For anyz in C that is not a vertex of the tiling, the algorithm described above
determines constructively a pathγ (u). By design, along such a path, one has
I (γ (u)) = z. Indeed, the standardu-path is precisely such that it “undoes” the
effect of I (u) on angles at points either vertices of the tiling or centers of the
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FIG. 6. A standard path in thez-plane from0 to P ≡ z and the contourγ above theu-plane that
realizes it viau �→ z = I (γ (u)).

triangles; at the same time, the variation ofI (u) along a segment from a pointu0
above 0 to a pointu1 above someζ j is precisely of modulusρ and thus gives rise
to a segment with the “right” length. See once more Figure 6. In this way, we find
that I (γ (u)) reaches any pointz of the complex plane that is not a vertex of the
tiling, and at the final point,J (γ (u)) is locally analytic, so thatψ is itself analytic
at z. Thus,ψ(z) can be continued to the complex plane punctured at vertices of
the tiling.

Whenz = w is one vertex of the lattice, then it is approached from a certain
direction by a pathγ (u), where u is near ζ 0, ζ 1 or ζ 2. Along the path a
certain determinationδ◦(u) of δ is in force, where all determinations are of the
form ζ rδ(u) with 0 ≤ r < 6. Then, the very same determinationδ◦ must be
adopted inJ (γ (u)) that tends to infinity asI (γ (u)) approachesw. A local analysis
entirely analogous to the one conducted for the three dominant poles shows that
ψ has a double pole atw, and that its principal part there consistently exhibits the
same dominant coefficient and residue.

The analytic continuation ofψ(z) along such pathsγ therefore has the same
dominant parts and residues at double poles as the right-hand side of (44), namely
the function

ψ̃(z) := 1

(ρ
√

3)2
℘

(
z − ρ

ρ
√

3

)
.

Consequently, the differenceψ(z) − ψ̃(z) is an entire function. That this entire
function reduces to 0 results from Liouville’s theorem, as we finally argue.

Draw discs of some sufficiently small but fixed radius around the six roots of
unity in theu-plane and consider these as excluded regions in the construction
of u-paths. Then the imagez = I (γ (u)), asγ (u) varies, avoids the plan stripped of
small ovals around the corresponding lattice points of thez-plane. But, at the same
time J (γ (u)) remains bounded. Therefore, on the complex plane with “holes,”
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ψ(z) is uniformly bounded by a constant. From the fact thatψ̃ is doubly periodic,
there results that it is also bounded over the plane with holes, hence

|ψ(z) − ψ̃(z)| < c1,

for somec1 > 0. In particular, the bound holds on an infinity of near-circular
contours centered at the origin and having arbitrarily large diameter. Then, by
virtue of a known variant of Liouville’s theorem (an entire function bounded in
modulus along large contours is a constant), one must have identically

ψ(z) − ψ̃(z) = d1,

for some complex constantd1. This constant is actually equal to 0 as is seen from
comparing the expansions ofψ(z) and ψ̃(z) at 0. The proof of the theorem is
completed. �

3.3. Probabilistic consequences of the analytic model forT2.3. We are now in
a position to exploit the analytic solutions expressed by Theorem 3. The general
theory of Sections 1 and 2 applies, giving the large deviation rate function and
the limit Gaussian law. In addition, curious exact representations as sums over
lattice points result for the probability generating functions describing the urn
composition (Section 3.3.1). Surprisingly perhaps, a very precise form of all
moments can be obtained in terms of a family of polynomials of “binomial type”
[Rota (1975)]; see Section 3.3.2.

3.3.1. Exact representations and Gaussian laws.The lattice structure that
underlies the Weierstraß function is directly reflected at the level of coefficients.
The resulting form below is naturally very strong, as it is anexactdescription of
the probability generating function at timen.

COROLLARY 5 (Elliptic structure ofT2,3). For theT2,3 model, the probability
generating functionpn(u) = E(uXn) admits anexactformula valid for alln ≥ 1,

pn(u) =
+∞∑

n1,n2=−∞

(
K(u) + ρ

√
3

δ(u)
(n1e

iπ/6 + n2e
−iπ/6)

)−n−2

,(45)

where

K(u) := 1

δ(u)

∫ 1

u

t

δ(t)5 dt, δ(u) = (1− u6)1/6.

PROOF. From Theorem 3, we need to extract[zn]δ2ψ(δz + I ), where
ψ admits a decomposition as a sum of rational fractions over elements of the
lattice�. Then, after a simple calculation, one gets

pn(u) = 1

n + 1

∑
w∈��

(
[zn] 1

(w − z)2

)
,
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where�� is a translated and scaled version of�:

�� = ρ
√

3

δ(u)
� + K(u).

The result follows. �

Corollary 2 regarding general Gaussian limits applies here. Thus, for the
T2,3 model, the random variableXn representing the number of balls of the
first type at timen is asymptotically Gaussian with speed of convergence to
the limit O(n−1/2), in the sense of (27). The random variableXn superficially
resembles a sum of independent random variables since its probability generating
function is essentially annth power of the fixed functionK(u)−1. It is, however,
of interest to observe that the functionK(u)−1, though analytic at 0 and satisfying
K(1) = 1, is not a probability generating function, as its Taylor coefficients of
index 6,12,18, . . . turn out to be negative:

K(u)−1 .= 0.713+ 0.254u2 + 0.090u4 − 0.086u6 + 0.022u8 + · · · .
3.3.2. The shape of moments.An interesting consequence of the elliptic

connection concerns moments of the distribution of the urn’s composition,Xn.
Bagchi and Pal, Mahmoud, and Panholzer and Prodinger have determined the
exact form of the first two moments, while Bagchi and Pal have obtained further
asymptotic information on the moments of higher order. This already involved
a certain amount of calculational effort with recurrences. In fact, globally, the
moments have an amazingly simple form deriving from the elliptic connection.

COROLLARY 6 (Moments ofT2,3). For the T2,3 model, exact polynomial
forms of moments ofanyorder are available: the factorial moments satisfy

E((Xn)
r) = Pr(n + 2), n ≥ 6r − 1,

where thePr are polynomials generated by

evL(h) =
∞∑

r=0

hr

r! Pr(v) and L(h) = − logK(1+ h).(46)

Using a symbolic manipulation system, the polynomials are easily computed
from the expansion ofK atu = 1. To wit:

K(1+ h) = 1− 4
7 h + 10

91 h2 + 300
1729h3 − 1689

8645h4 + · · · .
One then finds mechanically

P1(ν) = 4ν

7
, P2(ν) = 4ν

637
(52ν + 17),

P3(ν) = 8ν

84721
(1976ν2 + 1938ν − 11063).



ANALYTIC URNS 1227

In particular, the mean and variance ofXn are

E(Xn) = 4
7(n + 2), V(Xn) = 432

637(n + 2)2.

PROOF OFCOROLLARY 6. Take the fundamental PDE, isolateG′
u(z, u) and

repeatedly differentiate with respect tou, then setu = 1. This provides a triangular
system from which one can “pump” in succession the generating functions of
moments of order 1,2,3, . . . . One then verifies by induction that the ordinary
generating function of the moments of orderr is of the form∑

n

E(Xr
n)z

n = P̃r (z)

(1− z)r+1 + Q̃r(z),

whereP̃r , Q̃r are polynomials and

deg(P̃r (z)) ≤ r, deg(Q̃r(z)) ≤ 6r − 2.

This argument grants usnonconstructivelythe existence of a polynomial represen-
tation for each moment as soon asn is large enough.

There remains to identify the particular class of polynomials involved. Start
from the fact that

pn(u) = K(u)−n−2 + exponentially small terms inn.

Since the factorial moment of orderr satisfies

E(Xr
n) = (

∂r
upn(u)

)
u=1 = [(u − 1)r ]pn(u),

it can be obtained, up to exponentially small error terms, by expandingK(u)−n−2

aroundu = 1. Retaining only the polynomial part (inn),

[(u − 1)r ]K(u)−n−2 = [(u − 1)r ]e−(n+2) logK(u) = [hr ]e−(n+2) logK(1+h),

we get what the statement asserts.�

3.3.3. Large deviations. Corollary 4 applies to the effect that the large
deviation rate function is a transform ofK(u). An immediate consequence of the
analysis of the polar singularities ofψ is a very precise quantification ofextreme
large deviations:

COROLLARY 7 (Extreme large deviations ofT2,3). The probability that, at
time3n+ 1 in theT2,3 model, all balls are of the second color(W) is (anyA < 8):

3ρ−3n−3(1+ O(A−n)
)
.

PROOF. The functionψ(z) is exactly the BGF of the urn atu = 0. Thus
(n + 1)−1[zn]ψ(z) is the probability for the urn not to contain any ball of the
first type. The property then results immediately from the fact that the next layer
of poles is on|z| = 2ρ. �
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4. The elliptic cases. In this section, we list all the cases of urns with
subtraction which, like theT2,3 model, lead to elliptic functions; such urns are,
as in the previous section, attached to exact lattice representations and simplified
moment forms. We shall say that an urn iselliptic if, for some choice of initial
conditions (a0, b0), the fundamental functionψ is a fractional power of an elliptic
function,

ψ(z) = �(z;�)p/q,(47)

where� is meromorphic and admits a period lattice�. The power will depend
on the initial conditions, but by taking the initial configuration determined bya0
and b0 sufficiently large, one can always render the exponent integral; see the
remarks on “sensitivity to initial conditions” as well as (19) and (20). Obviously,
for urns with subtraction, one need only consider models that arearithmetically
irreducible: by this is meant that the matrixM = (α β

γ δ

)
defining the urn has

coprime entries: gcd(α,β, γ, δ) = 1.
The key characters in this section are the following six urns:

A =
(−2 3

4 −3

)
, B =

(−1 2
3 −2

)
, C =

(−1 2
2 −1

)
,

D =
(−1 3

3 −1

)
, E =

(−1 3
5 −3

)
, F =

(−1 4
5 −2

)
.

(48)

The urnA is of course theT2,3 model. As is easily checked, any urn of balance
s = 1 is necessarily of typeA, B or C and any arithmetically irreducible urn of
balance 2 can only be of typeD or E. Thus, the first five cases exhaust all possible
types of urns with subtraction having balances = 1,2. The urnF is one of the
four possible irreducible urns having balances = 3. We state:

THEOREM 4. All balanced2× 2 urns with balances = 1 (casesA,B andC)
are elliptic. All urns with balances = 2 (casesD,E) are also elliptic. There exists
one“sporadic” urn (caseF ) of balances = 3 that is elliptic. These six matrices
represent the only arithmetically irreducible models of urns with subtraction that
are elliptic.

PROOF. For 2–3 trees, the matrixA corresponds toa = 2, b = 3, s = 1,

h = 6. As seen in Section 3.2, it is associated to a regular tiling of the plane by
equilateral triangles. Itsψ function has, by virtue of Theorems 2 and 3, adouble
poleatρ and all other points of the lattice and is a Weierstraß℘-function.

Next, we turn to the other urns of balance 1. The corresponding mapping
properties are represented in Figure 7. The modelB has an elementary kite which
is a right triangle with vertices 0, ρ, iρ, so that the fundamental polygon is the
square with verticesρ, iρ,−ρ,−iρ. This fundamental square tiles the plane. The
modelC leads to a lattice much similar to the 2–3 tree case. Theorem 2 shows that
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FIG. 7. The six elliptic cases in orderA,B,C,D,E,F : the diagrams formed by the fundamental
polygon together with its rotated images. (The elementary kite is darkened.)

in all the three casesA,B andC, theψ function has a pole atρ since the principal
exponent at the singularityt0/s as well as the Puiseux exponenth/s of (23) are
integers (heres = 1). Double periodicity then results from arguments similar to
those developed in the proof of Theorem 3.

An analogous discussion applies to the two urns of balance 2, namelyD andE.
In the case ofD, the functionI (u) is even exactly a lemniscatic integral:

I (u) =
∫ u

0

dt√
1− t4

.

Finally, among the four urns of balance 3, namely(−1 4
4 −1

)
,

(−1 4
5 −2

)
,

(−1 4
7 −4

)
,

(−2 5
8 −5

)
,

one found to be elliptic hass = 3, h = 6, so thath/s = 2 is integral: this is
F = (−1 4

5 −2

)
. By the usual reasoning, the functionψ leads to an elliptic function

when one starts witha0 = 3 andb0 = 0.
Note a necessary condition for an urn to be elliptic: in addition to the tenability

conditions,s should divideh, in accordance with Theorem 2 and (23); that is, the
Puiseux exponenth/s should be integral. (Otherwise, all powers ofψ inherently
have branch points and hence cannot be meromorphic.) The other three cases
of balances = 3, including the “pentagonal” urn of Figure 2, correspond to a
fractional value of the Puiseux exponenth/s in (23) and therefore cannot be
reduced to elliptic functions.
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There finally remains to prove that all elliptic urns have indeed been found. The
condition that the Puiseux exponenth/s is integral, arithmetic irreducibility, and
the tenability conditions taken together imply the existence of triples(x, y, z) of
integers, representing up to possible permutation the values(a, b, s), such that

gcd(x, y, z) = 1, x | y + z, y | z + x, z | x + y.(49)

Simple arithmetic shows that the only values for which the system admits a
solution are permutations of the basic types

(1,1,1), (1,1,2), (1,2,3),(50)

and, in particular, one must haves ≤ 3. The arithmetic argument goes as follows.
Takex ≤ y ≤ z. One hasz ≤ 2y sincez ≤ x + y by the third divisibility condition
in (49); then note the stronger property thatx, y, z are pairwise coprime (proof:
a contrario). Then setz + x = qy, whereq ≤ 3; the first divisibility condition
then impliesx|(q + 1)y, and sincex andy are coprime,x|4 so thatx ∈ {1,2,4}.
This in turn impliesy ≤ z ≤ y + 4 while z must dividey + x. Combining this
with the second and third divisibility conditions of (49), we see that there are only
finitely many possibilities which are then easily tested. Finally, completeness of
the list (50) implies that elliptic cases have indeed all been found.�

It is pleasant to note that the elliptic urns correspond to thecrystallographic
groupsof the Euclidean plane, that is, groups of isometries acting discontinuously
(in fact, the ones which admit a compact fundamental domain). As is well known,
these groups themselves describe the possible regular tessellations of the plane
by polygonal tiles and are in finite number; see, for example, Berger (1977) and
Yoshida (1997).

5. Discussion. A probabilist may legitimately expect more than standard-
issue central limit theorems and Cramér approximations to come out of an analytic
treatment of urn models. We would like to offer a few comments.

1. The combinatorial derivation to the fundamental PDE of (14) applies (with
only notational adjustments) to any urn model withmore than two colors, provided
it remainsbalanced. The resulting PDE is invariably first order and linear. This
study has exhibited a class, the subtractive balanced 2× 2 models, for which the
associated ordinary differential system provided by the method of characteristics
and the corresponding generating functions prove to be analytically tractable. This
suggests to look for other cases where analysis can be made to work.

2. On the algebraic–analytic front, Theorems 1 and 2, though they appear
to admit no universalr × r extension whenr > 2, can at least be adapted
and generalized to several models [work in progress with V. Puyhaubert (2003–
2004)]:
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(i) 2 × 2 balanced urns withpositive entries of the type of “Bernard
Friedman’s urn” [Friedman (1949)]. Interestingly enough, an adapted form of the
algebraic solution expressed by Theorem 1 holds (only integration constants need
to be changed). This may be seen as an elicitation of some of Friedman’s remarks
concerning his differential recurrences [Friedman (1949), pages 61 and 62].
Developments parallel to Theorem 2 appear to be possible, they then open access
to non-Gaussian lawswhich have not been previously made explicit.

(ii) 2 × 2 balanced urns corresponding tononnegative triangularmatrices.
Gouet (1993) shows strong functional limits to exist, but some of the involved
characteristics have remained inaccessible due to nonconstructive aspects of
martingale theory. In that case, we can supplement Gouet’s finding and derive
explicitly stable lawsand alocal limit theorem.

(iii) Balanced urns withthree colorsand a nonnegativetriangular matrix, as
well as some special cases of triangularr × r urns forr > 3.

3. The determination of thelarge deviation rateis obtained by standard argu-
ments of Cramér type, once the relevant analytic forms have been established, but,
to the best of our knowledge, it is new. We observe that the asymptotic approxima-
tions we have obtained, when combined with the saddle point method, can provide
strong forms of large deviation estimates, complete with subexponential factors
and multipliers. As we have seen in the case of moment estimates and Gaussian
laws, a precise determination of the speed of convergence to the asymptotic regime
is a boon provided by the analytic machinery. We also observe that the general
algebraic solutions supplied by Theorem 1, when coupled with (19) and (20) (sen-
sitivity to initial conditions), make it possible, in principle, to analyze the evolution
of the urn starting with a large number of balls of each color. This could be put to
use in order to analyze finely the distribution of sample paths, in the central or
large deviation regime.

4. Besides integer partitions and theta functions,elliptic modelsoccasionally
pop up in combinatorics, some models related to permutations having been
found by Dumont, Flajolet, Françon and Viennot about 1980. The present work
contributes a new kind,urn histories, themselves equivalent to certain weighted
lattice paths. On another register, given that algebraic functions of higher genus
can be uniformized by theta-Fuchsian functions, we may even fantasize about the
possibility of “nonprobabilistic” representations for urns of genus higher than 1 in
terms of tessellations of the hyperbolic plane.
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