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This article describes a purely analytic approach to urn models of the
generalized or extended Pélya—Eggenberger type, in the caseodypes
of balls and constant “balance,” that is, constant row sum. The treatment
starts from a quasilinear first-order partial differential equation associated
with a combinatorial renormalization of the model and bases itself on
elementary conformal mapping arguments coupled with singularity analysis
techniques. Probabilistic consequences in the case of “subtractive” urns are
new representations for the probability distribution of the urn’s composition
at any timen, structural information on the shape of moments of all orders,
estimates of the speed of convergence to the Gaussian limit and an explicit
determination of the associated large deviation function. In the general
case, analytic solutions involve Abelian integrals over the Fermat curve
x" + y" = 1. Several urn models, including a classical one associated with
balanced trees (2—3 trees and fringe-balanced search trees) and related to a
previous study of Panholzer and Prodinger, as well as all urns of balance
1 or 2 and a sporadic urn of balance 3, are shown to admit of explicit
representations in terms of Weierstraf3 elliptic functions: these elliptic models
appear precisely to correspond to regular tessellations of the Euclidean plane.

0. Introduction. In this study, we revisit the most basic urn model, namely
the “generalized” (or “extended”) P6lya—Eggenberger urn model twithtypes of
balls, as described in the reference book of Johnson and Kotz (1977). Under this
model an urn may contain two types of balls, say “black” (B) and “white” (W).
The composition of the urn at time 0 is fixed. At time a ball in the urn is
randomly chosen and its color abserved(thus the ball is selected, examined
and then placed back into the urn): if it is black, themlack andg white balls
are subsequently inserted; if it is white, therblack balls ands white balls are
inserted. The evolution rule is then summarized by>aZ2matrix

Received March 2003; revised July 2004.

AMS 2000 subject classificatiorrimary 60C05, 33E05; secondary 41A60, 60K99, 60Fxx.

Key words and phraseblrn model, Pélya urn, large deviations, analytic function, elliptic
function, search tree.

1200



ANALYTIC URNS 1201

Negative values of the diagonal entrigss are permissible and interpreted as an
extraction (rather than an insertion) of balls; a model with both diagonal entries
negative will be called here amrn with subtraction(of balls of the color chosen).
The off-diagonal entrieg, y are always taken to be nonnegative.

The urn model is said to bealancedif « + 8 = y + §, in which case the
common sum of the matrix rows is thmlance denoted throughout by. The
2 x 2 urn model may lead to widely differing behaviors depending on the values
of the integer entries, 8,y and . For instance, Kotz, Mahmoud and Robert
(2000) mention the (balanced) urn with mat(§< (1)) for which the number of
white balls picked inn steps grows stochastically likel/4. Strikingly, Kotz,
Mahmoud and Robert (2000) also study the (imbalanced) urn associa(ﬁed?p
and show the corresponding number ta-be/ logx in probability under a Poisson
model. We do not address in this article models with more than two colors; see
the paper of Smythe (1996) for a thorough probabilistic treatment, the works
of Aldous (1991), Aldous, Flannery and Palacios (1988) for a discussion of almost
sure convergence issues, and the comprehensive and independent recent studies
of Janson (2004, 2005).

Our interest throughout this article is in urn models that are balanced. The
conditions of having a matrix

Q) Mz(;'/l §> witha+8=y+6=s,>0,y >0,
are invariably assumed. We also allow ourselves on occasion to desdribe
linearly as(«, 8; v, 8). In such a case, each elementary action on the urn results

in having the total number of balls increase by the fixed quantityo that the
population at time: has a predictable cardinality, which is exaagy- sn if 7g is

the initial size at time 0. For urns involving subtraction, certain simple arithmetic
conditions on the parameters, calleghability (the Webster dictionary defines
“tenable” as meaning “capable of being maintained”), ensure that the process
cannot be “blocked”; these conditions are recalled in Section 1, (6), and are
assumed to hold.

Balanced 2< 2 urn models have been in particular considered by Bagchi and
Pal (1985) who show the following: under a supplementary technical condition,
namely that the ratio between eigenvalues of the mattix- 8)/(« + B), lies
in (—oo, %), the distribution of the number of balls of one color obeys in the
limit a normal distribution. Gouet (1993) further shows, under the assumptions of
Bagchi and Pal, convergence of the discrete urn evolution to a stochastic Gaussian
process, and he also investigates other cases using martingale arguments. Aldous,
Flannery and Palacios (1988) observe that such results can be supplemented by
almost sure convergence properties—their treatment extends the relation between
branching processes and urn models to be found in the book by Athreya and Ney
[(1972), Section V.9]. Thanks to the works of these and many other authors, the
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normal evolution of the process in the central regime can thus be regarded as well
understood.

In this article, we revisit urn models under the radical angle of analysis. [Aldous
(2991) otherwise provides an insightful comparison of the scopes of the traditional
probabilistic approach and the modern methods of analysis of algorithms in
his introductory section.] Our main results provide a complete analytic solution
describing the composition of the urn at each instant, but, although our methods
potentially apply to all the Z 2 balanced urn schemes, we focus attention in
this paper on urns involvingubtraction that is, having negative diagonal entries.
The matrix can accordingly be taken under the f@rra, a + s; b + 5, —b), with
balances > 0 and diagonal coefficientsa, —b < 0. (The urn’s initial composition
is fixed with zg balls in total of whichag are of the first type.) Such models with
negative diagonal entries are occasionally mentioned by some authors as a harder
nut to crack, since the direct embedding of urn schemes into branching processes
explained in the book of Athreya and Ney [(1972), Section V.9] ceases to be
directly applicable. [This position is perhaps to be taken with caution given the
discussion in Aldous, Flannery and Palacios (1988) of extensions of the classical
probabilistic framework.]

In the first part of the article (Sections 1 and 2), we introduce the patrtial
differential equation approach to urn models with two types of balls and constant
row sum. Our analysis starts witlpartial differential equatior{PDE) that is linear
of the first order and that describes exactly snapshots of the urn compositions
at all times. The solution of this partial differential equation, obtained by the
standard method of “characteristics,” provides an indirect expression for a bivariate
generating function that encodes the possible configurations of the urn at each
time n. Itis found that this bivariate generating function is expressed in terms of a
fundamental function, which is defined implicitly by an equation of the form

) v (I () = Q(u,v).

There (u, v) lies on a Fermat curve” + v =1 with h =a + b + s a sort

of “complexity index,” the quantityQ being a rational function on the curve,
andI (u) an Abelian integral on that same curve—that is, the integral of a rational
function on the curve. The parameterization (2) suffices in all cases to determine
the dominant singularities af together with the associated singular expansions.
As a consequence, analytic principles provide the (known) Gaussian law for the
urn’s composition at large instants, together with a precise determination of the
speed of convergence as well as an explicit form of the large deviation function in
terms of the Abelian integrdl(x) [see (3) for a specific instance]. In generalis
associated with algebraic curves of genus strictly higher than 1. (Note: The Fermat
curve is of high topological genus [Lang (1982)], namgly (h — L)(h — 2)/2,

so that one already hgs= 10 in the case of th&, 3 model discussed below. This
makes the occasional existence of elliptic function solutions, which are objects of
genus 1, quite remarkable.)
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Our investigations were initially motivated by a desire to understand the specific
urn model7 3 := (_i _g), which forms the subject of theecond partof this
article. This particular urn process intervenes as a model of several schemes
for managing an important data structure of computer science known as the
search tree [Knuth (1998) and Mahmoud (1992)] and it surfaces in the analysis
of 2-3 trees and fringe-balanced binary search trees [Aldous (1991), Aldous,
Flannery and Palacios (1988), Bagchi and Pal (1985), Eisenbarth et al. (1982),
Panholzer and Prodinger (1998) and Yao (1978)]. What is striking about this urn
is that the model can be completely resolved in termsligfitic functionsof the
Weierstrald type. For instance, our general results express that the probability of
large deviations at time is exponentially small im with a rate that is a simple
transform of the integral

3 K () L[y
3) W= G—ums ), Gt

A parallel elliptic connection had been uncovered earlier by Panholzer and
Prodinger (1998) using rather different methods. Their penetrating analysis
depends on the specific relationship that #ag model entertains with a special
type of “fringe-balanced” search trees—a root decomposition of the tree then
leads to a perturbed nonlinear ordinary differential equation (of the rough form
Y"” =Y’? +...) akin to the one satisfied by the Weierstr@&unction. In this
particular case, our elliptic connection for tiiez urn model could alternatively be
deduced by reverse-engineering of the Panholzer-Prodinger treatment, combined
with an easy reduction of a special urn model studied by Mahmoud (1998).
We do not proceed along those lines since Panholzer and Prodinger’s nonlinear
differential approach is problem-specific, and, for example, it would not yield the
other elliptic cases listed in (4).

The general character of our analytic results, Theorems 1 and 2, actually permits
us to single out all the cases where elliptic solutions prevail, namely, all urns of
balance 1 or 2 and a sporadic urn of balance 3, corresponding sixtimatrices

<_42 _33)’ (_31 _22>, (_21 _21>’
(—31 _31>’ <—51 _33)’ (—51 _42)‘

We have chosen to illustrate the specificity of the elliptic models in a concrete

way by developing properties of tt#® 3 model (Section 3) and then proving our
classification theorem regarding the elliptic cases (Theorem 4 and Section 4).

(4)

1. Analytic solution of the general case. We now take up thgeneral case
of a balanced urn model with two types of balls and negative diagonal entries. The
matrix is of the form

(5) MZ(b_—ifls aj;)s)’ a,b>0,
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with s > 0 the balance. Start witliy balls of the first type (“black”) an@g balls

of the second type (“white”), so thai = ag + bg is the initial size; the size of the

urn at timen is then exactly theleterministicquantity ¢, = ro + ns. In order for

the urn not to be blocked by an infeasible request, the usual “tenability” conditions
[Bagchi and Pal (1985) and Gouet (1993)] for urns with subtraction are assumed:

©6) { (To) :a dividesag andb dividesbyg;
(T1) :a dividesb + s andb dividesa + s.

We shall see soon that all such models are “solvable by quadrature” in the
sense of Taylor [(1996), page 86]. In other words, only elementary algebraic
functions, composition and inversion, as well as integration are involved in the
solution, as is expressed by the general statement of Theorem 1. There results a
complete characterization of dominant singularities, as summarized by Theorem 2.
Probabilistic consequences are subsequently explored in Section 2.

1.1. Algebraic approach. Based on formal operator calculus, there is an
elegant symbolic approach to the derivation of PDE’s for urn models, which
establishes a transparent connection between the combinatorial structure of a
model and the PDE that expresses it.

The combinatorial modelconsiders all balls involved in the game to be
distinguished by distinct integer stamps: balls present at time 0 are stamped, say,
1,...,ap for type B andag + 1, ..., 1o for type W. New balls are stamped with
“new” numbers: the balls that are taken away from the urn are (conventionally)
the ball selected as well as others taken according to a deterministic policy,

for example, by starting from smallest numbers. For instance, thef‘@rn _g)
initialized with two balls of type B stamped with 1 and 2 may give rise to an
evolution history starting as

Time 0 1 2 3

choose 2 choose 3 choose 6 choose 1
——
Un  1g,28, 1g,3w,4w, 1B,58,68,78, 1B,58,78,8w, 9w,

with subscripts indicating colors/types of the corresponding balls.

In what follows, we consistently uge”] f to denote the coefficient af’ in the
formal power series or analytic functigh

One first needs to relate combinatorics and probability. W& jdie the random
number of balls of type B at time, and denote by, (1) its probability generating
function (PGF). Leth, (1) be thecountinggenerating function of the evolution
histories of lengthz, whereu marks the number of balls of type B: the coefficient
[u¥1h, (u) is the number of histories comprisimgtransformations of the urn and
resulting ink balls of type B. We haveg(u) = u? as well asig(u) = u?, and in
general

hy, (u)
to(to+5)--- (fo+ (n — 1)s)’

(7) pn(u) =
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since the total number of possible histories of length

n+ty/s — l)

n

(8) fo(to+s)---(to+ (n — Ds) =nls" (

as results from multiplication of elementary choices. (Naturally, the balance con-
dition is crucial to this connection.) Introduce finally the exponential generating
function of theh,, (1), so that

9) Hzu) = 3 ha(i)

n>0

is a bivariate generating function (BGF). Az — 1, the bivariate generating
function H (z, u) degenerates into a simple algebraic functiéiiz, 1) = (1 —
sz) /s since it then only counts histories in accordance with (8). TS, «)
is a priori a “deformation” of a simple algebraic function.
For u a variable, we letd, = % be the corresponding partial differential
operator. It is notationally convenient to make use of the modified operator
a
0, =ud, sothat 6,f = u—f.
ou
Differential operators are well known to correspond combinatorially to a “point-

ing” operation. For instance, one has

duu® = au 1, O,u’ = au®,

so thatd, may be interpreted as “selectuaelement in all possible ways and
remove it” while 6, means “select a-element in all possible ways and keep
it.” There are many instances in the combinatorics literature of such a usage of
differential operators; see, for example, Bergeron, Labelle and Leroux [(1998),
Section 2.1], Flajolet and Sedgewick (2003) and Goulden and Jackson [(1983),
page 45].

Consider now an urn model defined by a matdof the form (5), and represent
momentarily a particular urn configuration withwhite balls andu black balls by
the monomialn;_ , = u”v#. The partial differential operator (associatedy,

(10) Y =u"0, +u'TPv b0,

is such that the application of tom, , describes all the possible successors of the

urn represented by, , = u*v* when one step of ball replacement is performed.
Start with an urn of initial typeao, bo) represented by“ov?o. Let h(u, v)

be the polynomial describing all possible evolutions of the urm isteps. [In

particularﬁ,,(u, 1) = h,(u).] Then, one has

hy(u, v) = Y" o (u®yb0).
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We opt for exponential generating functions and define
~ —~ 7"
Hz,u,v) =) hn(u, )=
n>0 :
One has symbolically
H(z,u,v) ="' o (u"),
where the exponential of operators is defined in the usual way:
Z}’l
e“og::Z—'(T"og).
r n!
Then, the definition of the exponential immediately implies the differential relation
3T og)="eTog.
In other words,ﬁ satisfies the PDE
(11) a.H=ToH.

The last equation is almost the PDE we are looking for but not quite (it has
a supplementary variable,). Given the balance condition, the urn population
increases by exactly at each step. Accordingly/ involves three variables, v
and z, but their exponents i are bound by a homogeneity condition, each
monomial generated being of the fomv*z" with A + i = sn + fo. In other
words, each monomiah composingH satisfies

(12) (Ou + 0y — 50 )m = fom,

and the relation extends by linearity &b itself. R
In summary, a system of two equations now determigsvith 6, = ud,):

azﬁ =YoH,
6y + 6, — s6,)H = 1oH.

One can then eliminate the explicit differential dependency (the operatos,)
and get from (10) and (13)

3Zﬁ:u_avl+a9uﬁ+u1+bvl_b(sezﬁ _euﬁ _toﬁ)

(13)

At this stage it becomes possible to set 1, that is, completely eliminate the
redundant variable itself. In this way one obtains tfandamental PDE

oH oH
(14) (1 _ SZMb+S)8— 4 (ub+s+1 _ ul—a)a_ _ toub+sH — O,
< u

whereH = H(z,u) = H(z; u, 1).
The main result is then:
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THEOREM 1. Consider the urn specified by matr{g{ “*}), with initial
conditions(ag, bg) and tg := ag + bg, assuming it to be tenahl&he probability
generating function at time of the urris composition is

I'(n+ DI (10/5)
pn(u) = P
s"'(n +tg/s)
where the bivariate generating functidi(z, «) is given by

H(z,u) = 8w)"°¢ (z8(w)* + 1 (w)),

[2"1H (z, w),

with
A1/ h u o gt
S(u)y =A—-u")"", I(u)::/c; Wdt, h:=a+b+s,
and the functiony is defined implicitly by
ap
1 = —.
VW) =50

PROOF We make use of the classical method of characteristics exposed in
most textbooks, for example, Zwillinger [(1989), Section 94]. Following this
method, one first associates to the linear first-order partial differential equation (14)
theordinary differential system

dz du dw
1— szub-ﬁ-s - ustb+1l _ yl—a - toub—i—sw ’

(15)

wherew “represents”H, and look for its first integrals.
The equation bindingy andu allows for separation of variables,

dw . uh—1
=1
w ulh —1

so that a first integral of (15) is
(16) wd(u) 0 =Cy.
The equation binding andu is similar but inhomogeneous:

dz uh—l uu—l
EZ_SZuh—l—i_uh—l'

The homogeneous equation is solved by separation of variables=as- (1 —
u)=s/_ By the variation-of-constant technique, one finds

du,

u a—1
c=E@A-u s =— [ a—;hwd“

so that a first integral of (15) is
(17) 28(u)* + I (u) = Ca.
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According to the method of characteristics, the general solution to the
fundamental PDE (14) is obtained by coupling the two first integrals (16) and (17),
namely

O(H(z,u)8(u)~", z8(u)* +1(u)) =0,

for an arbitrary bivariate functio®. Solving symbolically forH puts the solution
in the form

(18) H(z,u) = 8w) ¢ (z8(u)* + I (u)),

for an arbitrary univariate functioty. The initial conditionH (0, u) = u“ finally
identifiesyr as defined implicitly through inversion df(x), namely,y (I (u)) =
u/8(u)'.

We observe next thak (z) is analytic at 0. Indeed the tenability conditions of (6)
imply thata must divideag anda must divideb + s, hencez dividesh =a+b+ 5.
In particular, the general form of the parameterization-afear 0 isyr (u?) =< u,
that is, v (z) =< u%/%, which is compatible with analyticity. In fact, the expansions
involved are of the form

w<u“ ijujh> =ua°<2 ,ujujh>,
j=0 j=0
for some real coefficients.;, u; and « ranging in a small enough complex
neighborhood of 0. Examination of the exponents involved in the inversion shows
thaty (z) can be expanded as a power series iand analyticity ofy at O results.
O

Sensitivity to initial conditions. When the initial state of the urn is changed,
the functions involved still live in the same general class. Indeedytifienction
corresponding to an initial urn of compositi@ng, bg) factorizes, in accordance
with Theorem 1, as

(19) ¥ (2) = Y1(2)" -y ()77,

wherey, ¥ are determined implicitly by

u \“ 1\
20 I = | — , I _ — ,
(20) niw)=(5s) e = (5
corresponding to an urn initialized with = ag = a andtg = bg = b, respectively.
The analytic treatment given below extends to both functigpsy,, and it is
seen that the main determinant of the category of special functions encountered
is the indexi of the Fermat curve and the integials). Equations (19) and (20)
thus give us flexibility for the choice of the initial conditions, as is done repeatedly
below.
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In the case where andb are each at least1, balls have a “descendance” and
the evolution of descendants are combinatorially independent. Accordingly, the
factorization (20) can be viewed as expressing the fact that the histories of all the
initial balls can be freely shuffled. (It is known that shuffle products correspond to
products of exponential generating functions.) A parallel decomposition underlies
the probabilistic reduction of this class of urn models to multitype branching
processes [Athreya and Ney (1972)], at least in the case where no diagonal entry
is below—1, so that the disappearances of balls are not coupled.

1.2. Complex-analytic structures.For notational simplicity, we shall adopt in
this section the initial conditiongg = 79 = a, that is, the urn is initialized with
exactly a balls of the first type (B): by (19), (20) and the ensuing remarks, no
essential loss of generality is implied by such a choice.

We make use of the quantity=a + b + s. The functionv = §(«) corresponds
to the complex Fermat curve,

uh—i—vh:l,

which has topological genug = (h — 1)(h — 2)/2. Following a classical
terminology, the integral (1) = [ u®~tv=¢" is a particular Abelian integral over
this curve. The diagram that summarizes the parameterizatigniothen

u
1w y N\ 7 ) Ty ="~

S(u)e’
2z T Y@

The major characteristics of an urn model turn out to be determined by the nature
of the mapu — I (u) in the complex plane, witl/ («) playing only a secondary
role.

As observed in the proof of Theorem 1, the functignis analytic at 0 and it
satisfiesy (z) < z%/¢ there. Also, the nature of the parameterization near 0, where
I (u) < u® implies that/ («) effects ana-fold covering of a neighborhood of the
origin and thaty (z) is of the form

(21) U (z) = 2999 (),

for some ¢ analytic at the origin. In other words, in order to defige
parametrically by means of, it suffices to letu range in a secto¢ of angle
2 /(h/a) at the origin, and from now on, we shall do so. (As already noted, the
tenability conditions precisely imply thatdividesh.)

Consider first the complex plane with rays emanating from 0 and having
directions given by all théth roots of unity. The sectaf; is defined as

. 2j 2(j +1
S = z,zzRe’9,0<R<oo,JTn<9<W}.
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I(e%”/h)

I(400)
£2br/h

1(0) p=1I(1)

FIG. 1. The elementary kite is the image of a small seStpr

We claim (and prove below) that the image & by I («) is the interior of a
guadrilateral (Figure 1), with vertices at the points

0, 1(D), [ (4+00), (27 My,

and call this quadrilateraK the elementary kite[Note: The incomplete Beta
integrals that make ugr are related to hypergeometric functions as well as to the
Schwarz—Christoffel integrals of conformal mapping theory. For the latter aspects,
see, e.g., the book of Nehari (1975), his Exercise 4, page 196, and his Chapter V.]
One has

1 121 1 (a s 1T (a/h)T(s/h)
I)=| —dt=-B|—, - |="——"" """~
@D /o (1 — thy@+b)/h = (h’h) h T((a+s)/h)’
where use has been made of the usual Eulerian Beta integral [Whittaker and
Watson (1927)]

Lo - I'(a)I'(B)
o a=lq _ ~B=1 7, _
(22) B(a, B): fo A =0 de Fath)
We henceforth denote the quantityl) by p.

The local mapping properties corresponding to the four vertices of the
elementary kite are determined by the local behavior @f): (i) at 0, I(u)
multiplies angles by, so that the angle of the kite at 0 %ﬂ; (i) at 1, I'(u)
multiplies angles by;, so that the angle of the kite at vertéxl) is 7> [and
similarly for vertexI (¢%7/M)]; (iii) at infinity, I(«) multiplies angles by, so that
the angle atl (+o0) is %. In order to see thai(x) maps the boundary ofg
to that of X, observe first thaf (1) maps|[0, 1] onto the segmeni0, 7 (1)] by
monotonicity of the integrand. Then, ascontinues to increase alon@, +oo)
passing above 1, the functiédiiuz) becomes a complex number of fixed argument
“hibn. In other words,I maps the ray{1, +oc] to the segmenti[(1), I (+00)]
(with 400 here understood as lying insid®). A similar discussion gives the
mapping properties associated with the other two sides of thexkite
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(/
N
e

FIG. 2. The elementary kit¢in black and the fundamental polygon associated with the urn
(-1,4;4,-1).

Next, we turn to sectorsy, .... Let ¢ := ¢%™/" The image of secto§; is
simply obtained as the image ¢t by I(uz/), which, by a linear change of
variables [smcel(ug“f) = ¢ /%I (w)] is the image of the elementary kite under
a rotation of angle-= 2jan . gep Figure 2 for a particular instance. Because of (21)

and the accompanylng remarks, it is sufficient to consider;jO< Z

DerFINITION 1. Thefundamental polygonf an urn model is the (closure of)
the union of /a regularly rotated versions of the elementary kite about the origin.

We state:

THEOREMZ2. Consider abalanced x 2 urn with subtraction as in Theorefn
and let it be initialized withag = a, bg = 0. The corresponding functiog is
analytic for z in the fundamental polygon of Definitioh Furthermore it is
analytic in|z| < p, where

1 a1 1 /a s 1T (a/h)(s/h)
=I)=] —  _gr=-B(=, )= 7
p=1) /o (1= @b/ =y (h h) h T((a+s)/h)
On |z| = p, the functiony is singular atp and at the pointsow’ wherew =

exp2im 7) is an (h/a)th root of unity regular at the other pointslts singular
expansion ag — p is of the form

(23) Y (z) =5 (p — )7 A((p — ),

with 4 analytic at0, 4(0) = 1, 4A’(0) # 0. (Principal determinations as — p~
are assumed This expansion extends to a sector of opening larger thai o.

At the points = pw/, the singular expansion is determined from the expansion
at z = p by the fact that) (z)z~%/¢ is invariant under the mapping— wz.
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The expansion (23) givag(z) as the product of a main singular part of the form
(p — z)~'/s multiplied by a Puiseux series, that is, a series in fractional powers of
(p — z). We shall occasionally refer to the quantitys as thePuiseux exponent
of . It plays a special role in the discussion of elliptic urns in Sections 3 and 4,
in which case it reduces to an integer value.

PrROOF OFTHEOREM 2. First, the fact thaf (1) assumes each value K
once and only once whene Sg is a consequence of basic properties of conformal
mapping theory, which we recall. Lgtbe an arbitrary number interior t&. The
numberv(B) of times that/ (u) assumes the valyge K for u interior to Sg is by
the residue theorem

/
v =5 [,
2im Josog I (w) — B

whered X represents the boundary of a regi&@horiented positively. Then, the
change of variables(u) = x gives

1
=5 [ Tt

it Jox x — B
where the reduction to the value 1 is due to the fact ghiatby assumption interior
to X. This implies that the functional inverse= I~V (z) is well defined (and
analytic) forz interior to.X, and so i3/ (z) sincey (z) = J (u) while J (u) depends
analytically onu. These properties extend in turn to the fundamental polygon by
rotations of the base sector.

We next examine the behavior ¢gf nearp = (1), corresponding ta in the

vicinity of 1 (say,u — 17, to fix ideas). The expansion can be constructed by
means of a local uniformizing parameter, here; 4 = t”. Write

5(y)=AMAL-nY",
so thatA(y) is analytic aty = 1. By the change of variables— 1 — ", one finds

1) —1I(uw)= hfor(l— YaIIA L — yhymabys 1y,

_ 1o un s( (h(b—a+2)—a—>b)s , )
= o 2h(s + 1) T
(24)
J )_M
W)= A@=chyo
— h(2ag — to) + to
_(1/h 1 _ nledo —1Iio) 710 _p
- 0(1 2n >

where nowr — 0 corresponds te — 1 (the series expansions proceed by powers
of ). Thus the parameterization is of the form

p—z= ;1<h1/’“r>SU(rh>, ¥(z)= (o) ov (e,



ANALYTIC URNS 1213

whereU, V are analytic at 0 and’/(0) = V(0) = 1. By analytic inversion, this
shows that there exists a full expansion of the type (23), withnalytic at 0. In
other words, the poing is a singularity of that is a branch point with dominant
singular exponent equal terg/ h.
By rotational symmetry, an expansion of a nature similar to (23) also holds at
the conjugate pointpw’/ wherew = %7/ is anhth root of unity. Sincey (z)
has nonnegative coefficients, it satisfies Pringsheim’s theorem and is thus analytic
in |z| < p. By the triangle inequality, we havé (ue'?)| < I (u) for u € (0, 1) and
0 € (—m, ). Since the nonzero terms composing the Taylor expansidrabthe
origin are of the form:“+7"  the inequality I (ue’?)| < I (u) is strict as soon a&is
not a multiple of% andI (u) is invertible. From there, it results thdtis analytic
on |z| = p except for the regularly spaced singularities quoted in the statement.
This provides the analytic continuation ¢f in the fundamental polygon as
well as in the disc of radiug. If the fundamental polygon is such thagth > %
analytic continuation ofy outside its disc of convergence is granted and the
proof is completed—this is the situation exemplified by Figure 2. Otherwise,
the convergent character ¢f provides the analytic continuation gf in sectors
rooted at singularities and extending beyond the disco. (This last situation is
encountered in th&> 3 model detailed below; see Figures 3 and 4.)

For instance, the ur(1_41 _i’) gives rise to the fundamental polygon displayed

in Figure 2. One has= 3, 1 =5 ands (1) = (1 — u°)%/°, so that the fundamental
polygon is a star with five branches. At the origin, we fih@d) = u + 1—15u6 + -

and ¥ (z) =z + 1—25z6 + ---. There is an algebraic branch point atwhere

¥ (p—x) = (p—x)~1/3and at the conjugate pointsy’ wherew® = 1. The nature
of the branch point of/ at p is

¥(@) =B (1- 5B - B +-),  Zi=(p-2),
the Puiseux exponent associated wilbeing the fractional numbér/s =5/3.

2. Probabilistic consequences. Singularity analysis [Flajolet and Odlyzko
(1990) and Odlyzko (1995)] makes it possible to extract very precise information
on coefficients of a generating function once the function is recognized to have
isolated singularities on the boundary of its disc of convergence. Under such
conditions, assuming first unicity of the dominant singulatityan asymptotic
estimate for a functior¥ of the form

F(@) ~ c(l=z/0)™"

valid in a complex region beyonsl (a sector centered atof opening angle larger
thanz and including the disc of convergence) entails a matching estimate for the
function’s coefficients:

na—l

MNa)

["1F(z) ~ co™
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Full asymptotic expansions can be transferred from functions to coefficients in
a similar way [Flajolet and Odlyzko (1990)]. Also, in the presence of several
dominant singularities, contributions to coefficients are to be composed additively.
(This technology based on Hankel contours is of the complex Tauberian type.)
It applies to the functiony (z) itself, and sincey (z) = H(z,0), it provides
immediately sharp estimates of the probabilities that all balls are of the same color
at epochn, which corresponds to extreme large deviations.

COROLLARY 1 (Extreme large deviations).For any balanced® x 2 urn with
subtraction(i.e., negative diagonal entrig¢sthe probability that balls at time are
all of the same color and of the second tyj#é) is

ﬁ(sp)_"_")/s (1+ 0(%)) forn = @<modﬁ).
a n't/s

a a

PrROOF The singularity at = p of H(z, 0) = (z) contributes tdz"]y (z) a

term
to/s—1 1
" S (40 )
(sp)"°"p T (t0/5) +O0\ G5 ) )

We have the periodicity expressed by (21). Thus,#dn a suitable congruence
class, there aré/a similarly behaving singularities to be combined. The total
number of histories of length is, from (8), asymptotic to

to/s—1
n

C(to/s)
The result follows after normalization by the latter quantitiy

nls

Next, we summarize the basic technology used to derive a Gaussian limit by the
following statement, a simplified form of what is often referred to as the “quasi-
powers theorem” and originates in works of Bender (1973) and Hwang (1998).
Throughout this article, we udé andV to denote the expectation and variance
operators.

LEMMA 1 (Quasi-powers theorem).Let g,(u) = E(u) be a family of
probability-generating functions relative to discrete random varialilesAssume
that there exist two functions («), B(u) analytic in a neighborhoo® of u = 1,
such thatin this neighborhood the quasi-power approximation

(25) gn(u) = A(u)Bw)" (1+ &, ()) asn — oo

holds where |e,(u)] = O(n~Y2) uniformly with respect tou, that is
Sup,cy len ()] = O (n~Y?). Assume also theariability condition

Y,

=B"(1)+ B'() — B' (12

(26) o02#0  whereo?:= lim_
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[Equivalence between the two formssdfis granted under conditiof25).] Then
the random variables;,, converge in law to a Gaussian limiwith speed of
convergence® (n~/2): for anyx, one has

Yo —E(¥n) _ Lo e (i)
27) IP’( - gx)_m/ooe av+0o( 7).

PrROOF [Sketch; see Bender (1973) and Hwang (1998) for details]. The
characteristic functiom, (¢'’) of the ¥, is by assumption closely approximated
by annth power. The variabl&,, is next centered around its mean and scaled by
its standard deviation in the usual way. A calculation similar to the usual case of
independent random variables [e.g., Billingsley (1986), page 367] then shows the

standardized version af, (¢'') to converge toe‘fz/z, which is the characteristic
function of a Gaussian law. The speed of convergence estimate finally results from
the Berry—Esseen inequality found in Lukacs (197@)1

In order to apply the quasi-powers theorem, we choose a small complex
neighborhood ofi = 1 and keep in this neighborhood. The BGH (z, u) rewrites
as

(28) H(z,u) =8)°y (o — 8u)* (K (u) —z)),
where

1 ta—l
(29) K@) :=

dt,
S(M)S u 5(u)“+b

and K (1) has a removable singularity at 1 witki(1) = 1/s. Treatingu as

a parameter, we find that, as a function gf the quantity H(z,u) has a
singularity atz = K (1) that gets smoothly displaced wheanvaries. Because of
the nature of the singularity af at p, the singular exponent remains equal to the
constant-rg/s. Thus, for some functiofi (1) that is analytic a = 1, one has

["1H (z, u) = L) K <“>_"”t°/s_1(1+ O(hi/»
n

the error term being uniform by virtue of uniformity of the singularity analysis
process [Flajolet and Odlyzko (1990)]. This has the shape of a bona fide quasi-
powers approximation for the probability generating function,

CMHG L) (K 1
P = HG D L) (m)) <1+ O(HM))-

The quasi-powers theorem then applies and gives:

COROLLARY 2 (Gaussian law and speed)For any balanced® x 2 urn with
subtraction the random variableX,, representing the number of balls of the first
color (B) at timen is asymptotically Gaussian with speed of convergence to the
limit O(n—1/2), as expressed b27).
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The fact that the limit distribution is Gaussian was first observed by Bagchi
and Pal (1985). These authors applied the moment method and determined the
main asymptotic orders of moments of the centered varighle- E(X,,). Their
method does not, however, appear to give access to the speed of convergence as
expressed above. This speed is on the other hand neatly implied by the functional
limit theorem of Gouet (1993). Here, we emphasize that the speed of convergence
comes out almost immediately from the analytic approach.

In general, the moments are computable systematically from the exact ex-
pressions of Theorem 1 by successive differentiation with respeat wpon
settingu = 1 and making use of the singularities ¥fand its derivatives as ex-
pressed by Theorem 2. All moments happen to be expressiblesad form

COROLLARY 3 (Moments). For any balance@® x 2 urn with subtraction and
anyr > 0, therth factorial moment of the distribution &f,, is of hypergeometric
type it is a finite linear combination of terms of the form

(n-l—to/s—&—i—kh/s—l)

(”l+l‘0r{3—1) , O<k,t<r.
The existence of sudlinite binomial forms for moments dll orders does not
seem to have been previously noticed. Explicit forms are given by Kotz, Mahmoud
and Robert (2000), but only for the first moment and at the cost of some labor,
in the case of the urn modé4, 0; 3, 1). Bagchi and Pal (1985) obtained such
expressions for a wide class of urns, but in the case of the first two moments only.

PROOF OFCOROLLARY 3. The quantity

1
(3, H(z,u)),_q =[(u— D 1H(z, u)

xr(2) = 3
r.

is a generating function of theh factorial moment of(,, in the sense that
[z"1xr(2)
[2"]x0(2)’

where the notatiorX” is the usual notation for falling factorials [Graham, Knuth
and Patashnik (1989)], namely,

E(X%) =

(30) ac=aa@—-1)---(a—r+1).

In order to gain access to such moments, we make use of the singular
expansion ofy nearp. Given the variant form oH (z, u) from (28), the singular
expansion (23) of Theorem 2 provides the alternative representation

(31) H(z,u) =57 (K u) — 2) " (L — u") (K () — 2)").
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which is our starting point. This expansion is analytically valid when (say)
|z| < p/2 providedu stays in a small enough neighborhood of 1. Writéw) =
> k=oarw*. One then has

(32) H(Z’ u) — Zak(l _ Mh)k(K(u) _ Z)kh/S*IO/S‘
k>0

Clearly, for therth moment, it suffices to consider the sum in (32) with the index
restricted to values in the intervgd, r], so that

1 _ —to/s s
(33) xr(2) = 5 Zak(ag((l —u"(K (u) - z) to/s+kh/: Dy
" k=0

The functionk («) is analytic atx = 1. Accordingly, the quantityK (u) — z)~1
and its derivatives at = 1 are of the form
s s2K'(1) 253K’ (D)2 s2K"(1)

1-sz° (1-s9)? (1-s523 (1-s2)2

and so on, with similar formulas holding for fractional powers. Thygz) is
invariably an algebraic function of a very special form, namely a finite linear
combination of terms of the type

(K1) —z) ‘=

(1 — sz)~lo/stkh/s=t O<k, £<r.

The statement then follows by coefficient extractiofl

As a consequence, one gets mechanically,

2
S+bsn, V(X,,)NSh (s—i—a)(s—l—b)n’
s+h (s + h)2(s + 2h)
which is consistent with the estimates of Bagchi and Pal [(1985), pages 395-397].
Finally, we turn to large deviations, for which the book of den Hollander (2000)
can serve as a smooth introduction. It is known from the works of Hwang (1996)
that a quasi-power approximation (in the sense of Lemma 1) for a family of PGFs
leads to very precise “moderate deviation” estimates valid in some range not too
far from the center of the distribution. We recycle here the technology of Hwang
(1996), though the range is a little different. The large deviation rate is fully
characterized by the following statement:

E(X,) ~

COROLLARY 4 (Large deviations). Consider any balance@ x 2 urn with

subtraction Let& be any number of the open interv@, s%). One has

(34) im % logP(X, <& -n)=—-R(&),
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where the rate functiotr is determined fronk (u) defined in(29) by

_ 3
(35) R(E) = Arergg})f)log(sk K)).
Equivalently
36 R(&) = log(sA5K (h0))
(36) .. XK' (%)
whereig € (0, 1) sa’usflesW +&=0.
0

[Put another wayiR (£) is the Legendre transform of logk (¢)).]

PROOF Notice thatE(X,,) ~ %sn, so that (34) quantifies the left part of the
distribution as approximately given ky”"®©) . The basic ingredient is Cramér’s
technigue of “shifting the mean” conjugated with upper bounds of the saddle point
(equivalently, Chernoff) type as well as lower bounds based on the quasi-powers
theorem in a shifted region.

First, one has

Pn(ut)

P(Xy < ém) =17,

since multiplication by(1 — u)~1 sums coefficients of generating functions.
Next, for any f (1) analytic at O having nonnegative Taylor coefficients, the easy
inequality [1u¥] £ («) < f(*»)A»~% holds provided the positive quantity is taken
inside the disc of convergence ¢fu). There results from these two observations
the majorization

Pn(X)

(37) P(X, <én) < m,

valid for anyx € (0, 1).

In order to derive ampper boundon large deviations, it suffices to choose (as
usual) the best possible valuejoin (37). Now, for fixed positiver. € (0, 1), the
function H(z, ») has a dominant singularity of the algebraic typezat K (1),
see (23). A simple calculation based on the fact that the dominant singularities
of ¢ are atow/ and thatl () increases from 0 td (1) = p for u € (0, 1) shows
further thatH (z, A) has fori € (0, 1) a unique singularity ak (1) on|z| = K (}).
Therefore one has by straight singularity analysis,

(38) Pa) ~ CrsTKO)T,

for some constant (depending smoothly ok). Whené¢ lies in any fixed compact

subinterval of(0, s%), the upper bound (37) can then be rewritten as

P(X, <&n) <Cs"K(1)"A~5"
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for some constant. This is a form amenable to optimization. Lej be such that
K (»)~A~¢ attains its minimum ove(0, 1) at .g. General convexity properties of
probability generating functions imply thaty exists and is unique.

The value ofiq is obtained by cancelling the derivative &f(A)~11»—¢ and is
thus a root of the second equation in (36). Up to factors that are subexponential
in n, the upper bound in (38) is of the forav"®® with R (&) as given by (36)
and (35). We have thus established “one half” of (34), namely,

% logP(X, <&n) < —R(&) +o(D),

with R (&) determined by (36).

There finally remains to argue that the upper bound is tight, that is, derive a
lower boundon the probability values. This results from Cramér’s technique of
shifting the mean. The shifted law, , = [u*]r, (1) defined by the probability
generating function

DPn(Aou)

pn()\O)
satisfies a standard quasi-powers approximation and is itself amenable to Lemma 1.
Assume first that the variability condition (26) holds for the shifted law given
by r, (). In that case the sum of probabiliti{sén_ﬁ<k5§n ra.x Of the shifted
law tends to a nonzero constant as it is approximated by a Gaussian integral.
By construction, the, ; are thep, = [u*]p,(u) multiplied by a quantityx’(‘,
which varies betweea=?"33" and 0(1)A5". Thus, the corresponding sum
> en—Jn<k<én Pnk 1S, UP to subexponential factors (themselves of the form

ran(u) ==

e~ 0 of the typee &) This implies a lower bound, hence the “other half”

of the equality in (34). Finally, if the variability condition ap is not satisfied (this

can only happen at isolated points), then an even stronger type of concentration
holds for the shifted distribution, x; in that case, the variance of the shifted dis-
tribution iso(n), which, by Chebyshev’s inequality, entails the stated lower bound
on the sum of the, x, hence the lower bound on partial sums of the.. [

The dual regime of large deviations on the right tail of the distribution is
determined upon exchanging the roles of quantiiesndb.

3. The 72,3 “tree” model. The model is determined by its matrix and the
initial conditions

-2 3
To3= ( 4 _3), ag=2, bo=0.

It has motivated much of the study of subtractive urns over the past two decades,
given its relevance to several data structures of computer science [Aldous, Flannery
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and Palacios (1988), Bagchi and Pal (1985), Eisenbarth et al. (1982), Panholzer
and Prodinger (1998) and Yao (1978)]. In this section, we arrive at the elliptic
connection expressed by Theorem 3 and closely related to earlier works of
Panholzer and Prodinger (1998). Our reason for treating this example in detail
is twofold: first, it serves as a concrete illustration of the general treatment of
Sections 1 and 2; second, it paves the way to our eventual characterization of the
elliptic urn models in Section 4.

3.1. Basic analytic structure. Takingag = 2 andbg = 0 corresponds tg) = 2.
Theorem 1 provides an expression fdtz, u):
H(z,u) =8 )%y (z8(u) + I (w)).
Hereh = 6, so that
u u
Su):=1—-u®HY8 T = /0 5(% dr = fo G—IW dr,
and the functiony is defined implicitly by

2 M2

u
Sw)?  (L—u®3
The results of Section 1 apply directly to this case. The elementary kite, which
is the image of the sectafy of opening 3, is a quadrilateral with vertices at

(0, p, I (00e?™/12) pw), wherew := ¢%7/3, We find after a simple computation,
upon following the proper branch &f

2
0

v(I(w)=Ju) whereJ(u):=

(1— wb)5/6
el /11 —6v/3
_ ,_ im/6~ i _ /6 Y™
=p—e 6B<6, 2) p(l e > )

Thus, aa: varies from 0 tot+oo, passing through 1 (and above it u) describes
first the segment fron0, p], then the segmernp, p(1 + w)/2]. The kite in this
case happens to be a triangle and we shall refer to it as the “elementary triangle”
(Figure 3).

There is also a “double parameterization” [due to evenness of baih
and J (u)], so that we may freely identify points and —u. To this effect, we
define

(39) H = {z|(3(z) > 0) v ((3(z) =0) A (N(z) = 0))}.

Then, asz ranges ovet#, the fundamental polygon is obtained by gluing three
rotated images of the elementary triangle. It is thus an equilateral triangle with
center at the origin (Figure 4)—we call it the “fundamental triangle.”
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T(eM=/%) = o

o [(1)=p

Fic. 3. The"elementary kitg here a triangle Ty (right) is the image of the basic sectsg (left)
via the mapping: — I (u).

Next, the local analysis o at its dominant singularity = p results from the
general treatment offered in Section 1. We find

(40) v =2z2-174 L7904 ... zZ:=p-=z

What is noteworthy here is the presence of a pole, rather than an algebraic
singularity that prevails in the general case covered by Theorem 2. Similarly, the
points pw andpw? are double poles, so that the function

(41) w<>—( t ,t .1 )
Y02 o—22 " (pw?—2)?

is analytic in a dis¢z| < R for someR > p.

The fact that the dominant singularities ¥fare poles naturally led us to look
for the next layer of singularities, as this would provide very precise information
on the exponential smallness of error terms. In so doing, much to our surprise,
we uncovered a lattice structure commonly associated with elliptic functions
(Figure 5).

i = |'|:__'_I

p=I(1)

-

purt = I{(?)

Fic. 4. The “fundamental polygah here a triangle T (right) is the image of the slit upper
half-plane(#) (left) via the mapping: — I (u).



1222 P. FLAJOLET, J. GABARRO AND H. PEKARI

Fic. 5. Rotated copies of the fundamental triangle aroungw, pw? shown against the circle of
convergence of (z).

3.2. The elliptic structure. An elliptic function is a function that is meromor-
phic in the whole complex plane and is doubly periodic. Amongst the many dif-
ferent ways to develop the corresponding theory, perhaps the simplest is the one
originally proposed by Weierstral3, where elliptic functions are defined as sums
of rational functions taken over lattices. [Accessible introductions appear in the
books by Whittaker and Watson (1927) and Chandrasekharan (1985).]

DEFINITION 2. A lattice A with generators, n € C is defined as the set of
complex numbers

A&, n) = {n1§ +naniny, n2 € Zj.

The Weierstralfp-functionrelative toA is classically defined as

(42) pEA =5+ Y <(z—w)2 =)

weA\(0) w

(The Weierstrasg-function is by construction doubly periodic.)

We shall make use here of the “hexagonal” lattitedefined as the lattice
generated by'™/6, ¢~i7/6 see Figure 5,

(43) Anex:= {n1"™® + npe™%n1, np € 7},

and its associated Weierstral3 zeta functiory; Anex). We state:
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THEOREM 3 (Elliptic connection). They-function of the7> 3 model initial-
ized with two balls of the first typ@o = 1o = 2) is exactly

1 z—p . 1T (1/3)I'(1/6)
PREEA e e e v
wheregp (z) := o (z; Anex) IS the Weierstral3 function of the hexagonal lattite

particular, the bivariate generating function of the model is expressible in terms of
elliptic functions

(44) V(z) =

NoTE. The functiony can be alternatively written ag(z) = g (z—p | 0, —4)
whereg is specified by the lattice invariangs = 0 andgz = —4.

PROOF OFTHEOREM3. Consider the whole complex plane tiled by nonover-
lapping copies of the hexagon of centeradiusp~/3, having vertices at the points
P + pv/3Anex.

We claim that any complex point is reachable as a valuE(y (1)), where
the notation! (y (1)) indicates that the integral definingis to be taken along
a pathy (1) that starts at 0 and ends at Similarly, J(y («)) will represent the
determination of/(u) along pathy (1) that is obtained by continuity from the
principal determination at 0. Otherwise said, we are walking on the Riemann
surface of the Fermat curdgu).

The algorithm is as follows. Assume for simplicity thats the center of one
of the equilateral triangles in which the hexagonal tiling decomposes. The straight
line Lo from 0 toz can be first slightly deformed into a cur¢g that avoids all the
vertices of the tiling. Thid.1 can then be transformed into a polygonal lingthat
connects centers of successive equilateral triangles. Finally, each segnient of
can be changed into a pair of segments going through one of the vertices of the
lattice and forming an angle a positive multiple of3. The resulting polygonal
line, L3, will be called thestandardz-path See Figure 6 for a graphic rendering.

The contoury, called thestandardu-path is then obtained from the standard
z-path L3 by first applying a contraction by a factpr then executing the following
routine:

e turn by an angle of @ wheneverL turns at an angle @f (whereé is a multiple
of /3) around a vertex of the lattice,

e turn by an angle /2 (wheref is a multiple of 2r/3) wheneverLs turns by6
around the center of one of the equilateral triangles.

The construction is then easily modified to accommodate points that are not centers
of triangles of the tiling.

For anyz in C that is not a vertex of the tiling, the algorithm described above
determines constructively a pafh(u). By design, along such a path, one has
I(y(n)) = z. Indeed, the standang-path is precisely such that it “undoes” the
effect of I (u) on angles at points either vertices of the tiling or centers of the
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pPw

Fic. 6. A standard path in the-plane from0 to P = z and the contoury above the:-plane that
realizes it viau > z = I (y (u)).

triangles; at the same time, the variation/@f) along a segment from a poing
above 0 to a poink;, above some/ is precisely of modulug and thus gives rise

to a segment with the “right” length. See once more Figure 6. In this way, we find
that I (v (1)) reaches any poing of the complex plane that is not a vertex of the
tiling, and at the final point/ (y («)) is locally analytic, so thar is itself analytic

at z. Thus,y¥ (z) can be continued to the complex plane punctured at vertices of
the tiling.

Whenz = w is one vertex of the lattice, then it is approached from a certain
direction by a pathy (1), whereu is nearz® ¢! or ¢2. Along the path a
certain determinatiod®(u) of § is in force, where all determinations are of the
form ¢"6(u) with O < r < 6. Then, the very same determinatiéf must be
adopted in/ (y (1)) that tends to infinity ag (y (1)) approaches . A local analysis
entirely analogous to the one conducted for the three dominant poles shows that
Y has a double pole at, and that its principal part there consistently exhibits the
same dominant coefficient and residue.

The analytic continuation ofr (z) along such pathg therefore has the same
dominant parts and residues at double poles as the right-hand side of (44), namely
the function

@)= — p(z_p)
C (o332 \pV3)
Consequently, the differenag(z) — ¥ (z) is an entire function. That this entire
function reduces to 0 results from Liouville’s theorem, as we finally argue.

Draw discs of some sufficiently small but fixed radius around the six roots of
unity in the u-plane and consider these as excluded regions in the construction
of u-paths. Then the image= I(y (v)), asy (u) varies, avoids the plan stripped of
small ovals around the corresponding lattice points ottpé&ne. But, at the same
time J (v (1)) remains bounded. Therefore, on the complex plane with “holes,”
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¥ (z) is uniformly bounded by a constant. From the fact tds doubly periodic,
there results that it is also bounded over the plane with holes, hence

1Y (z) — ¥ (2)] < c1,

for somec; > 0. In particular, the bound holds on an infinity of near-circular
contours centered at the origin and having arbitrarily large diameter. Then, by
virtue of a known variant of Liouville’'s theorem (an entire function bounded in
modulus along large contours is a constant), one must have identically

¥ () — ¥ (z) =d,

for some complex constadj. This constant is actually equal to O as is seen from
comparing the expansions @f(z) andy(z) at 0. The proof of the theorem is
completed. O

3.3. Probabilistic consequences of the analytic modelifps. We are now in

a position to exploit the analytic solutions expressed by Theorem 3. The general
theory of Sections 1 and 2 applies, giving the large deviation rate function and
the limit Gaussian law. In addition, curious exact representations as sums over
lattice points result for the probability generating functions describing the urn
composition (Section 3.3.1). Surprisingly perhaps, a very precise form of all
moments can be obtained in terms of a family of polynomials of “binomial type”
[Rota (1975)]; see Section 3.3.2.

3.3.1. Exact representations and Gaussian law$he lattice structure that
underlies the Weierstral3 function is directly reflected at the level of coefficients.
The resulting form below is naturally very strong, as it isexactdescription of
the probability generating function at time

COROLLARY 5 (Elliptic structure of72,3). For the 72 3 mode] the probability
generating functiorp, (1) = E(u*») admits anexactformula valid for alln > 1,

+00 —n_2
45  paw)= ) (K(u)+gg—[f’(nleiﬂ/unze—in/s)) ,
ni,np=—00 u

where
t
K@u):=— | ——dt, S(u) = (1— u®)v/8.
u) Ju
PROOF From Theorem 3, we need to extragf'18%y (5z + I), where

¥ admits a decomposition as a sum of rational fractions over elements of the
lattice A. Then, after a simple calculation, one gets

1 ("] 1
m=5 T (15 20)

weA*
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whereA* is a translated and scaled versionAaf

«_PV3
A= 8(u)A+K(H)'

The result follows. [

Corollary 2 regarding general Gaussian limits applies here. Thus, for the
72,3 model, the random variablg’,, representing the number of balls of the
first type at timen is asymptotically Gaussian with speed of convergence to
the limit O(n~1/?), in the sense of (27). The random variablg superficially
resembles a sum of independent random variables since its probability generating
function is essentially anth power of the fixed functiork («)~1. It is, however,
of interest to observe that the functidh(x) 1, though analytic at 0 and satisfying
K (1) =1, is not a probability generating function, as its Taylor coefficients of
index § 12,18, ... turn out to be negative:

K (u)~1=0.713+ 0.254/% + 0.09Q:* — 0.086:% + 0.02248 + . . ..

3.3.2. The shape of momentsAn interesting consequence of the elliptic
connection concerns moments of the distribution of the urn’s composiign,
Bagchi and Pal, Mahmoud, and Panholzer and Prodinger have determined the
exact form of the first two moments, while Bagchi and Pal have obtained further
asymptotic information on the moments of higher order. This already involved
a certain amount of calculational effort with recurrences. In fact, globally, the
moments have an amazingly simple form deriving from the elliptic connection.

COROLLARY 6 (Moments of7,3). For the 723 mode] exact polynomial
forms of moments @nyorder are availablethe factorial moments satisfy
E(X)H)=Pn+2), n>6r—1,

where theP, are polynomials generated by

(46) et =% h—'Pr(v) and L(h)=—logK 1+ h).
r=0 r

Using a symbolic manipulation system, the polynomials are easily computed
from the expansion ok atu = 1. To wit:

KA+h)=1—3n+30n?+30p% 10894 ...

One then finds mechanically

4y 4y
P1(v) = 7’ P(v) = E(SZV +17),

8
P3(v) = W;m (1976,2 + 1938 — 11063.
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In particular, the mean and varianceXsf are
EX)=3n+2), V(X)) =220 4272

PROOF OFCOROLLARY 6. Take the fundamental PDE, isola® (z, u) and
repeatedly differentiate with respectitpthen setr = 1. This provides a triangular
system from which one can “pump” in succession the generating functions of
moments of order 12,3, .... One then verifies by induction that the ordinary
generating function of the moments of ordes of the form

P.(2)
(1 _ Z)r+1

Y E(Xh" = +0,(2),

whereP,, O, are polynomials and
degP.(x)) <r,  degQ,(z)) <6r—2.

This argument grants usnconstructivelyhe existence of a polynomial represen-
tation for each moment as soonmass large enough.

There remains to identify the particular class of polynomials involved. Start
from the fact that

pn(u) = K@) "2+ exponentially small terms in.
Since the factorial moment of ordeisatisfies
E(X7) = (0, pn()) ,_q = [ — D 1p, (),

it can be obtained, up to exponentially small error terms, by exparkliag "2
aroundu = 1. Retaining only the polynomial part (i),

[(M o 1)r]K(u)—n—2 — [(l/l _ 1)7’]6—(I’l+2) log K (u) — [hr]e—(n—l—Z) |OgK(l+h)’

we get what the statement asserts]

3.3.3. Large deviations. Corollary 4 applies to the effect that the large
deviation rate function is a transform &f(x). An immediate consequence of the
analysis of the polar singularities ¢f is a very precise quantification ektreme
large deviations

COROLLARY 7 (Extreme large deviations df2 3). The probability that at
time3n + 1 in the 7, 3 mode) all balls are of the second coldWV) is (any A < 8):

3p—3n—3(1+ O(A_n))

ProOOF The functiony (z) is exactly the BGF of the urn at = 0. Thus
(n + D7 Y"¥ (2) is the probability for the urn not to contain any ball of the
first type. The property then results immediately from the fact that the next layer
of polesisonz| =2p. O
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4. The dliptic cases. In this section, we list all the cases of urns with
subtraction which, like thé> 3 model, lead to elliptic functions; such urns are,
as in the previous section, attached to exact lattice representations and simplified
moment forms. We shall say that an urneltiptic if, for some choice of initial
conditions &g, bg), the fundamental functiotr is a fractional power of an elliptic
function,

(47) ¥ (z) = T(z; AP/,

wherell is meromorphic and admits a period lattiae The power will depend
on the initial conditions, but by taking the initial configuration determined:py
and bg sufficiently large, one can always render the exponent integral; see the
remarks on “sensitivity to initial conditions” as well as (19) and (20). Obviously,
for urns with subtraction, one need only consider models thaaaitemetically
irreducible: by this is meant that the matri = (§ #) defining the umn has
coprime entries: gad, 8, v, 8) = 1.

The key characters in this section are the following six urns:

A:<_42 —33>’ B:<_31 —22>’ C:<_21 —21>’
=3 %) (3 5) (3 %)

The urnA is of course ther, 3 model. As is easily checked, any urn of balance
s = 1 is necessarily of typd, B or C and any arithmetically irreducible urn of
balance 2 can only be of type or E. Thus, the first five cases exhaust all possible
types of urns with subtraction having balance- 1, 2. The urnF is one of the
four possible irreducible urns having balance 3. We state:

(48)

THEOREM4. All balanced2 x 2 urns with balance =1 (casesA, B and(C)
are elliptic. All urns with balance = 2 (casesD, E) are also elliptic There exists
one*“sporadi¢ urn (caseF) of balances = 3 that is elliptic These six matrices
represent the only arithmetically irreducible models of urns with subtraction that
are elliptic.

PrROOF For 2-3 trees, the matriXd corresponds tar = 2,6 = 3,5 = 1,
h = 6. As seen in Section 3.2, it is associated to a regular tiling of the plane by
equilateral triangles. Itg function has, by virtue of Theorems 2 and Jj@uble
poleat p and all other points of the lattice and is a Weierstgaflinction.

Next, we turn to the other urns of balance 1. The corresponding mapping
properties are represented in Figure 7. The madehs an elementary kite which
is a right triangle with vertices,®, ip, so that the fundamental polygon is the
square with verticep, ip, —p, —ip. This fundamental square tiles the plane. The
modelC leads to a lattice much similar to the 2—3 tree case. Theorem 2 shows that
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FiG. 7. The six elliptic cases in ordet, B, C, D, E, F: the diagrams formed by the fundamental
polygon together with its rotated imagg$he elementary kite is darkengd

in all the three cases, B andC, ther function has a pole at since the principal
exponent at the singularityy/s as well as the Puiseux exponents of (23) are
integers (hera = 1). Double periodicity then results from arguments similar to
those developed in the proof of Theorem 3.

An analogous discussion applies to the two urns of balance 2, namahd .
In the case oD, the function! (u) is even exactly a lemniscatic integral:

u dt
I(u):/(; T

Finally, among the four urns of balance 3, namely

-1 4 -1 4 -1 4 -2 5
(7 %) (5 %) (7% (¥5)
one found to be elliptic has = 3, 2 = 6, so thath/s = 2 is integral: this is
F = (_é _g). By the usual reasoning, the functignleads to an elliptic function
when one starts withg = 3 andbg = 0.

Note a necessary condition for an urn to be elliptic: in addition to the tenability
conditions,s should divider, in accordance with Theorem 2 and (23); that is, the
Puiseux exponerit/s should be integral. (Otherwise, all powersypfinherently
have branch points and hence cannot be meromorphic.) The other three cases
of balances = 3, including the “pentagonal” urn of Figure 2, correspond to a
fractional value of the Puiseux exponénts in (23) and therefore cannot be
reduced to elliptic functions.
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There finally remains to prove that all elliptic urns have indeed been found. The
condition that the Puiseux exponénts is integral, arithmetic irreducibility, and
the tenability conditions taken together imply the existence of triptes, z) of
integers, representing up to possible permutation the vaétuéss), such that

(49) gedx,y,z2) =1, x|y+z, ylz+x, zlx+y.

Simple arithmetic shows that the only values for which the system admits a
solution are permutations of the basic types

(50) 1,11, 1,12, 1,23,

and, in particular, one must haye< 3. The arithmetic argument goes as follows.
Takex <y <z.One hag < 2y sincez < x + y by the third divisibility condition

in (49); then note the stronger property thaty, z are pairwise coprime (proof:

a contrario). Then sef + x = gy, whereg < 3; the first divisibility condition
then impliesx|(¢ + 1)y, and sincexr andy are coprimex|4 so thatx € {1, 2, 4}.

This in turn impliesy < z < y + 4 while z must dividey + x. Combining this

with the second and third divisibility conditions of (49), we see that there are only
finitely many possibilities which are then easily tested. Finally, completeness of
the list (50) implies that elliptic cases have indeed all been fouhd.

It is pleasant to note that the elliptic urns correspond tocitystallographic
groupsof the Euclidean plane, that is, groups of isometries acting discontinuously
(in fact, the ones which admit a compact fundamental domain). As is well known,
these groups themselves describe the possible regular tessellations of the plane
by polygonal tiles and are in finite number; see, for example, Berger (1977) and
Yoshida (1997).

5. Discussion. A probabilist may legitimately expect more than standard-
issue central limit theorems and Cramér approximations to come out of an analytic
treatment of urn models. We would like to offer a few comments.

1. The combinatorial derivation to the fundamental PDE of (14) applies (with
only notational adjustments) to any urn model witbre than two colorsrovided
it remainsbalanced The resulting PDE is invariably first order and linear. This
study has exhibited a class, the subtractive balance@® 2nodels, for which the
associated ordinary differential system provided by the method of characteristics
and the corresponding generating functions prove to be analytically tractable. This
suggests to look for other cases where analysis can be made to work.

2. On the algebraic—analytic front, Theorems 1 and 2, though they appear
to admit no universak x r extension wherr > 2, can at least be adapted
and generalized to several models [work in progress with V. Puyhaubert (2003—
2004)]:
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() 2 x 2 balanced urns withpositive entries of the type of “Bernard
Friedman’s urn” [Friedman (1949)]. Interestingly enough, an adapted form of the
algebraic solution expressed by Theorem 1 holds (only integration constants need
to be changed). This may be seen as an elicitation of some of Friedman'’s remarks
concerning his differential recurrences [Friedman (1949), pages 61 and 62].
Developments parallel to Theorem 2 appear to be possible, they then open access
to non-Gaussian lawg/hich have not been previously made explicit.

(i) 2 x 2 balanced urns corresponding nonnegative triangulamatrices.
Gouet (1993) shows strong functional limits to exist, but some of the involved
characteristics have remained inaccessible due to nonconstructive aspects of
martingale theory. In that case, we can supplement Gouet's finding and derive
explicitly stable lawsand alocal limit theorem.

(i) Balanced urns withthree colorsand a nonnegativiriangular matrix, as
well as some special cases of triangulas r urns forr > 3.

3. The determination of thiarge deviation ratds obtained by standard argu-
ments of Cramér type, once the relevant analytic forms have been established, but,
to the best of our knowledge, it is new. We observe that the asymptotic approxima-
tions we have obtained, when combined with the saddle point method, can provide
strong forms of large deviation estimates, complete with subexponential factors
and multipliers. As we have seen in the case of moment estimates and Gaussian
laws, a precise determination of the speed of convergence to the asymptotic regime
is a boon provided by the analytic machinery. We also observe that the general
algebraic solutions supplied by Theorem 1, when coupled with (19) and (20) (sen-
sitivity to initial conditions), make it possible, in principle, to analyze the evolution
of the urn starting with a large number of balls of each color. This could be put to
use in order to analyze finely the distribution of sample paths, in the central or
large deviation regime.

4. Besides integer partitions and theta functiclBptic modelsoccasionally
pop up in combinatorics, some models related to permutations having been
found by Dumont, Flajolet, Francon and Viennot about 1980. The present work
contributes a new kindjrn histories themselves equivalent to certain weighted
lattice paths. On another register, given that algebraic functions of higher genus
can be uniformized by theta-Fuchsian functions, we may even fantasize about the
possibility of “nonprobabilistic” representations for urns of genus higher than 1 in
terms of tessellations of the hyperbolic plane.
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