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Let BH be ad-dimensional fractional Brownian motion with Hurst
parameterH € (0, 1). Assumed > 2. We prove that the renormalized self-
intersection local time

T t T t
e:/ /S(B,H—BSH)dsdt—E</ fzS(B,H—BSH)dsdt>
o Jo 0 Jo

exists in L2 if and only if H < 3/(2d), which generalizes the Varadhan
renormalization theorem to any dimension and with any Hurst parameter.

Motivated by a result of Yor, we show that in the case&t3 H > %,

r(e)¢e converges in distribution to a normal law (0, Taz), as ¢ tends
to zero, wherel, is an approximation of¢, defined through (2), and
r(e) = |loge|~Lif H =3/(2d), andr(e) =9=3/CH) it 3/(2d) < H.

1. Introduction. The fractional Brownian motion oR“ with Hurst parame-
ter H € (0, 1) is ad-dimensional Gaussian proceB§ = {Bf’,t > 0} with zero
mean and covariance function given by

E(B/ By = %(r”’ + 52— )21,

wherei,j =1,...,d, ands,t > 0. We will assume that/ > 2. The sef-
intersection local time of BY is formally defined as

T prt
(1) I :/ f So(BF — BH)ds dr,
0 0

whereédp(x) is the Dirac delta function. It measures the amount of time that the
process spends intersecting itself on the time intef@al’] and has been an
important topic of the theory of stochastic process. A rigorous definition of this
random variable may be obtained by approximating the Dirac function by the heat
kernel

pe(x) = (2me) " ? expl—|x|?/(2¢)},
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ase > 0 tends to zero. We denote the approximated self-intersection local time by

T t
2) I, :/ / pe(BE — BH)ds dt,
0 0

and a natural question is to study the behaviof.adse tends to zero.

For H = 1/2, the processBY is a classical Brownian motion. The self-
intersection local time of the Brownian motion has been studied by many authors
[see Albeverio, Hu and Zhou (1997), Calais and Yor (1987), He, Yang, Yao
and Wang (1995), Hu (1996), Imkeller, Pérez-Abreu and Vives (1995), Varadhan
(1969), Yor (1985) and the references therein]. In the case of the planar Brownian
motion, Varadhan (1969) has proved tHatdoes not converge 2 but it can
be renormalized so thdf — % log(1/e) converges in.2 ase tends to zero. The
limit is called therenormalized self-intersection local time of the planar Brownian
motion. This result has been extended by Rosen (1987) to the (planar) fractional
Brownian motion, where itis proved that fofd < H < 3/4,1, — Cy Te~1+1/H)
converges in.? ase tends to zero, wher€ is a constant depending only dh
[see also (4)Cyx = Ch 2]

On the other hand, for classical Brownian motion and when the dimension
d > 3, Yor (1985) and Calais and Yor (1987) have proved that the random variables

(log(1/e)~Y%(I, - E(I)),  ifd=3,
ed2=3/2(1, — E(Ip)), if d > 3,
converge in law to normal distribution (with a different approximation).

The first aim of this paper is to extend Rosen’s and Varadhan’s results to
arbitrary dimensions and with Hurst parametex 3/4. Along this line, we have
established the following result.

THEOREM1. Let I, betherandom variable defined in (2). We have:

(i) If H <1/d, then I, convergesin L? as ¢ tends to zero.
(i) 1f1/d < H <3/(2d), then

(3) I, —TCy dg_d/2+1/(2H)

convergesin L2 as ¢ tends to zero, where
o0
(a) Cha= @02 [~ 41712z,
0

(i) I1f1/d = H < 3/(2d), then

T
(5) I, 72 109(1/0)

 2H(2n

convergesin L? as ¢ tends to zero.
(iv) If H > 3/(2d), then the difference I, — E(I,) does not convergein L2.
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That means, i < 3/(2d), the differencd, — E(1,) converges irL.? ase tends
to zero to thaenormalized self-intersection local time.

In the caseH > 3/(2d) we have established the following version of the central
limit theorem.

THEOREMZ2. Suppose 3/(2d) < H < 3/4. Then the random variables

(log(1/e))~Y2(1, — E(lp)),  if H=3/(2d),

6
©) £/2-3/H) (1 _(1,)), if H > 3/(2d),

converge as ¢ tends to zero in distribution to a normal law N (0, T'o2), where o2
isa constant depending on d and H.

We conjecture that, as functions of the terminal tiffie these processes
converge in law tdo By, T > 0}, where By is a Brownian motion. We plan to
discuss this problem in a forthcoming paper.

For H > 3/4 our method of proof of Theorem 2 does not work and the study of
the fluctuations of, — [E(Z;) in this case is an open problem.

The proof of Theorem 1 is based on some estimates deduced by Hu in (2001)
from the local nondeterminism property of the fractional Brownian motion. The
proof of Theorem 2 is more involved, and the main ingredient is to show that
the projections on each Wiener chaos converge in law to independent Gaussian
random variables. The proof of these convergences is based on a recent general
criterion for the convergence in distribution to a normal law of a sequence of
multiple stochastic integrals established by Nualart and Peccati (2005) and by
Peccati and Tudor (2003), in the multidimensional case. We have extended their
results to a slightly more general setting applicable to the renormalization of self-
intersection local time of fractional Brownian motion and to this end we have
established a general central limit theorem which has its own interest.

In the case of the classical Brownian motion, the convergence in law of the
Wiener chaos projections of the random variables appearing in (6) has been proved
in de Faria, Drumond and Streit (2000) using a martingale approach which cannot
be extended to the cadé # 1/2. The corresponding convergence in law to a
family of independent Brownian motions has been established in Rezgui and Streit
(2002).

The paper is organized as follows. In Section 2 we prove Theorem 1. Section 3
is devoted to a general central limit theorem using chaos expansions. Some
examples are given and will be used to deal with the self-intersection local time
of the fractional Brownian motion. Section 4 deduces the chaos expansion of the
approximated self-intersection local time, and in Section 5 we prove Theorem 2.
The proofs of the main results are based on a sequence of technical lemmas, stated
and proved in Section 6.
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2. Renormalized self-intersection local time, case dH < 3/2. Let BY =
{B,H,t > 0} be ad-dimensional fractional Brownian motion of Hurst parameter
He(01).

Consider the approximatiof. of the self-intersection local time introduced
in (2). From the equality

el&|?
2

pee) = @0 [ exptite. v expl - as

and the definition of;, we obtain
A (T H o el¢|?
7) I =21 /// expli (¢, B — B! )}exp{——}dédsdt.
0 Jo JRrd 2
Therefore,

B2 = @0 ¥ [ [ Elexptie(B! - B explin(B!! - B))

(8)

x exp{— (el | + &|n|?)/2} d& dnds di ds' dt’,
where
9) T ={(s,t,5",t):0<s<t<T,0<s <t' <T}.

Throughout this paper we will make use of the following notation, for any
T=(s,t,5,1):

(10) Moy =lt—sPH, py=1 =51
and
1Y) p@=gls =P 41 =P == P =1 =512

Notice that is the variance oB/"* — B/"1, p is the variance oB/* — B/'"*

andy is the covariance betwees”* — B/'1 and B — B/, whereB " de-
notes a one-dimensional fractional Brownian motion with Hurst paranteter
With this notation, for any, n € R4, we can write

(12) EI(E B — BI') + (n, B/ — BI)?1= Mg + pInl® + 2(€, ).
As a consequence, from (8) and (12) we deduce far all0,
E(1?) = (2,,)—201/ /2,1 o~ (OO 20E )+t D)2 g gy a7
7 JR

(13)
— 2n1)~* / [+ 6)(p+ &) — u?1~42dx.
T
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On the other hand, the expectation of the random varighke given by
T pt
B = [ [ pecy s s
T pt
(14) = (2n)—"/2/ f (e + |t — 52"y ds di
o Jo
T
= (Zﬂ)_d/Z/ (T — s)(e +s2H)=4/2 gs.
0

PROOF OF THEOREM 1. Assertion (i) follows easily from (13) and (14).
From (14), making the change of variables= ze/?f) we obtain, if ¥d <
H <3/(2d),

Tel/(2H)

(T _ Zgl/(ZH))(ZZH + 1)_d/2dZ

1/(2H)—d/2
E(I,) = /0

(zn)d/Z
= 81/(2H)_d/2TCH,d + o(e).
For H =1/d we get

Tlog(1l/e)

E(IS) = 2H(27T)d/2

+ o(¢).
Hence, the convergence irf of the random variables (3) and (5) is equivalent to
the convergence af. — E(I;).

From (13) and (14) we obtain

E(lIy) — E)E(I,)

(A +e)(p+m) .

= @0 [ [(G-+e)0+m - i)
Therefore, a necessary and sufficient condition for the convergendé iof
I. —E(l,) is that

(15) Br = [ 16— 1D = o)) dx < o0,
T
Finally, Lemma 11 allows us to conclude the proof of the theorem.

3. Central limit theorem via chaos expansion. In this section we will
establish a general central limit theorem for nonlinear functionals of a Gaussian
process, based on the Wiener chaos expansion. The proof of this theorem uses
some recent results by Nualart and Peccati (2005) and by Peccati and Tudor (2003).

Consider a separable Hilbert spakie Let {¢x, k > 1} be a complete orthonor-
mal system inH. For everyn > 1, we denote by7®" the nth symmetric tensor
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product of H. For everyp =0, ..., n and for everyf ¢ H®", we define theon-
traction of f of order p to be the element off ®2"—7) defined by

o0

@ f= Y (fea® - ®ei)yer ®(fiei,® - @ei,)yop-

Suppose thak = {X (h), h € H} is anisonormal Gaussian processon H. This
means thak is a centered Gaussian family indexed by the elemenis,afefined
on some probability spaag&, #, P) and such that, for evey, i’ € H,

E(X(W)X ()= (h,h')n

Assume thatf is ac-algebra generated by.
For everyn > 1 we will denote byI, the multiple Wiener integral [Hu and
Kallianpur (1998)].

THEOREM3. Consider a sequence of square integrable and centered random
variables { Fy, k > 1} with Wiener chaos expansions

Fk = Z In(fn,k)-

n=1

Suppose that:

(i) 1M y— oo liMsup,_, oo 02 1 2!l fu k1300 =0;
(i) for everyn > 1, iMoo n!ll fu k1360 = 0.2
(iii) Z;’lo:lonz =02 < 00;

(IV) for a” n Z 21 p = 1’ ceey n— 1! IImk—)OO ||fl’l,k ®p fl’l,k”i]@Z(n—p) = 0

Then F; converges in distribution to the normal law N (0, 02) as k tends to
infinity.

PROOF By Theorem 1 in Nualart and Peccati (2005), conditions (ii) and (iv)
imply that for each fixedn > 1 the sequence of multiple integrals(f, )
converges in distribution to the normal law (0, anz) as k tends to infinity.
Furthermore, by Theorem 1 in Peccati and Tudor (2003), for eaehl, the
vector (I1(f1.k), ---, In(fu.k)) converges in law to the vectoés, ..., &,), where
{¢,,n > 1} are independent centered Gaussian random variables with variances
{02, n > 1}. Now let f be aC? function such thatf| and| f’| are bounded by 1.

For everyN > 1, set

F™ Z Li(fo)-

n=1



954 Y. HU AND D. NUALART

Sete ™) =N £, ands = 32, &,. Then
E(f (F) — E(f (§))]
<[E(f(Fo) —E(f(EM)]
+E(F(FM) = B(FEM))] + [E(F(EN) - E(f©)

=~ 1/2
5( 5 nu|fn,k||§,®n) +E((EY) —E(7E™)

n=N+1
+[E(FEMN) —Ef )]

Then, taking first the limit ag tends to infinity, and then the limit &€ tends to
infinity, and applying conditions (i), (iii) and the convergence in law of the vector
(I1(f1.4), - -+ In(fn.k)), we get the desired result]

REMARK 1. A sufficient condition for (i) and (iii) is that for alk > 1, and
k>1,

2
HWfﬁk”H®1§8n»

where)"°° ; 8, < o0.

REMARK 2. The assumptions of Theorem 3 imply the convergence in law of
the projections on the Wiener chaos to a family of independent Gaussian random
variables.

The following propositions contain examples of applications of the above
central limit theorem which will be useful in proving the renormalization result
for the fractional Brownian motion whehH > 3/2.

Let #¢ be the Hilbert space defined as the closure ofésef step functions
on R, with respect to the scalar product

(Lio.r1 Loust)ye = 22H + 52 — |t — 5?1,

Let Bf = {BH t > 0} be a(2m)-dimensional fractional Brownian motion with
Hurst parametei?, with m > 1. Then, B¥ is an isonormal Gaussian process
associated with the Hilbert spadé = #2". We denote byl, the multiple
stochastic integral which provides an isometry between the symmetric tensor
product(#2")© equipped with the norm/n!|| - || yer and thenth Wiener chaos
of B,

We will make use of the following notation:

Ki(x,y,2) =z +yPPH + 1z — x| — |z 4y —x? — 21,

Ko(x,z) = K1(x, x, 2).
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PrROPOSITION4. Let {BtH,t > 0} bea (2m)-dimensional fractional Brownian
motion with Hurst parameter H € (0, 3/4). For any 0 < s < ¢, we set

2m
(16) Zs, = []B" - B,
Define, for any fixed x > 0,

1 T
Ar(x :—f Zggixds.
7(x) Nl s+

Then as T tends to infinity Ar(x) converges in distribution to a normal
law N (0, G(x, x)), where

o
G(x,x)=21_2'”/ K" (x,y)dy.
0
PrROOFE We have

21
E[AZ(x)] = 2M(x,t —s)dsdt

T
=242 [ K3 (L= y/Tdy
0
and, clearly, this converges t(x, x) asT tends to infinity. We can write

A1 (x) = Iom(fom,T),
where

: ' 121'1[
me,T(iZm,rlv---sVZm): / 1[s,s+x](ri)dsy
@mWT Jo 13

if all components of the multi-indek,, = (i1, ..., i2,) are different and zero
otherwise. Then, by Theorem 1 of Nualart and Peccati (2005), it suffices to show
that for anyp, 1< p <2m —1,

(17) Jim | fon 7 ®p fom 10 = 0.
The contraction of ordep of the kernelfz, r is given by

(f2m,T ®p me T)(iZm—p, ry, ..., er—p,jZm—p, Ui, ..., MZm—p)

W-/ / p(x t—s) l_[ s, s4x1 ) L rxy(uj) ds dt.

j=1
In order to show (17) it suffices to prove that
1 » »
lim — K5 (x,t2 —11)K5 (x, 14 — 13)

T—oo T O<tr<to<tz<ta<T

(18) o .
x K3" P(x,t3—tp)K5" P(x,ta—1t1)dt =0.
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By L'Hdpital’s rule, (18) holds if

li l p — p —
im K5 (x,t2—11)K5(x, T —13)
T—oo T O<ty<to<tz<T

(19) x K2" P (x, 13— 1) K" P (x, T — 1) drrdradr3
=0,

Setrp —t1=a,t3—tp=b, T —t3=c. In order to show (19) it suffices to show
that

1 o
lim = KP(x,a)K% (x,c)K5" P (x,b)
T—oo T Jo<a+btc<T 2 2 2

X Kgm_p(x,a +b+c)dadbdc=0.
To show (20) we will make use of the following inequalities:

(20)

(21) |K2(x, a)| < kpa?=2x2,
if x <4, whereky =232 H(2H — 1),

(22) a+b+c>3abe)t?
and

(23) |K2(x, a)| < 2(ax)™.

We decompose the sét={0<a + b+ ¢ < T} as follows:

where
Gi={(@a,b,c)eG:a>2x,b> 2x,c> 2x},
Go={(a,b,c)eG:a>2x,b>2x,c < 2x},
Gz={(a,b,c)eG:a>2x,b <2x,c > 2x},
Ga={(a,b,c)eG:a <2x,b>2x,c > 2x},
Gs={(a,b,c)eG:a>2x,b < 2x,c < 2x},
Ge={(a,b,c)eG:a <2x,b>2x,c < 2x},
G7={(a,b,c)eG:a <2x,b < 2x,c> 2x},
Gg={(a,b,c)eG:a<2x,b<2x,c < 2x}.

Set, fori =1,...,8,

A?:%/Gi Kg(x,a)Kg(x,c)Kz?m"’(x,b)KZZ”"P(x,a+b+c)dadbdc.

In what follows, we will denote by a generic constant that may depend on
H andx.
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Case 1. Consider first the integral over the regi@f. Then, using (21)
and (22) we obtain, fol’ large enough,

A% < E / a(ZH—Z)Pb(ZH—Z)PC(ZH—Z)(2m—l7)(a iy C)(ZH—Z)(Zm—P) dadbdec
G1
ks rT 2, 0T

- _(/ SA/3CH-2)p da) (/ 4A/3@H-2)@n—p) da)

T T \Jx 2x

< kT4/3QH-2)(2m+p)+2
which converges to zero dstends to infinity, because

32H —2)2m+p)+2<3(2H —2)3+2=8H — 6 <O.

Case2. Using (21), (22) and (23) we obtain

A% < ; qH=2py,2H=2)p H(2m—p) (a+b+ c)(ZH—Z)(Zm—P) dadbdc
G2

< kT@H-Dn+p/D+1
which converges to zero dstends to infinity, because
(4H —dH(m+ p/2) +1<3(2H —2)+1=6H - 5<0.

Case 3. Using (21), (22) and (23) we obtain

3

k
d / a@H=2ppHp (CH-2@n=p) (4 4 1 \@H=2@1=D) 4y ab de
G3

< kT@H-9H@n—p/2+1 _, o
because2 — p/2>2m — (2n—-1)/2=m+1/2>1, and, so
(4H —4H(@2m —p/2)+1<4H —3<O0.

Case4. The integral over the s€él4 is handled as in Case 3.

Case5. Using (21), (22) and (23) we obtain

AS < ; aPH=2ppHp H@m=p) (g 4 | 4 ¢)CH=2@m=P) g4 db dc
Gs
= kT@H=4m _, 0,

Finally, the integrals over the sef, G7 andGg are treated in a similar way.
O
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PrOPOSITIONS. Consider the processes Ar(x) defined in Proposition 4.
If 3/(2d) < H < 3/4,then the random variables

Yr = /000(1+x2H)—"/2—’"AT(x)dx
converge in law to the normal distribution N (O, 02), as T tendsto infinity, where
(24) o%i= fooo /Ooo(l—I—XZH)_d/Z_m(l—l—yZH)_d/Z_mG(x,y)dxdy
and

o0
G(x,y):= 21_2'"/0 Klzm(x, v, z)dz.

PROOE Notice that
21—2m

E[AT(x)Ar ()] = T

T [t
/ / Kfm(x,y,t—s)dsdt
0 JO

T
=2t [C K2y -2 Tz,

and this clearly converges dstends to infinity toG (x, y).

As a consequence, Proposition 4 and Proposition 2 of Peccati and Tudor (2003)
imply that the finite-dimensional distributions of the procdgsr(x),x > 0}
converge to the finite-dimensional distributions of a Gaussian centered process
with covariance functiors (x, y). In order to complete the proof of the lemma we
need to show the following facts:

(i)
(25) /w<1+x2H)*d/2*m SUPE(| A7 (x)]) < 0.
0 T
(i) Forall K >0,
(26) Nim E[(Ar(x) - Ar(y))*]— 0

as|x —y|<dé—0,andx,y <K.
(i) 02 < o0.

ProoOF OF(i). Property (25) follows from

o0
/ (1 + x2y=d12=m Gy )2 g
0
00 2x 1/2
<[ <1+x2”>—d/2—’"(/0 K%’"(m)dy) dx

00 00 1/2
(27) +f0 (1+x2H)—d/2—m(/2x Kzzm(x,y)a’y) dx
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00 2x 1/2
S kva‘/(.) (1+x2H)—d/2—m (/0 (y4Hm +X4Hm)dy> dx
[e%) 00 1/2
+kH,mf (14 x2H)=d/2=m </ y(@H =22 4 dy) dx
0 2
Sk}]m/00(1+x2H)—d/2—mx2mH+l/2dx < o0,
™ Jo

becausdid > 3/2. O

PROOF OF(ii)). We have

SUpE (A7 () ~ A7 ())’]

@]
521*2'”/0 IK3" (x.2) + K3"(y.2) — 2K7" (x. y, 2)| d.

and, by dominated convergence this tends to zera asy| tends to zero in the
compact interval0, K1. O

PrROOF OF(iii). This follows from (27) and the fact that, by Cauchy—Schwarz
inequality, we haves (x, y) < /G(x,x)G(y,y). O

Let us now show that (i)—(iii) imply the convergence in lawlgf to &, where
£ is a random variable with th&/ (0, o2) distribution. Let f be a function such
that| /| and| f’| are bounded by 1. We make the decomposition

IECf (Y1) — E(f(§))]
< [E(7 () — E(F () |+ [ (7)) ~ (6 X))
+[E(f (™)) —E ).
where
K
Y;K) :/0 (1+ x2H)y=d/2=m A (1) dx.
£ has the lawv (0, 0'2), and

K rK
o2 =21—2me fo (L4 x2Hy=d/2zm(q 4 y2Hy=d/27m Gy y) dx dy.

Property (i) implies that lik— oo supy [E(f (Yr)) — E(f(Y}K)))| =0.
Property (iii) implies that limk_ o |E(f(K))) — E(f(€))| = 0, and
property (i) implies that for any fixedk > O, IimT_>oo|E(f(Y}K))) —

E(f €% =0.
This completes the proof of the propositiori]
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PROPOSITIONG6. Assume H = 3/(2d) < 3/4. Consider the processes

2H\—d/2—m

where T > 0, and ZHH has been defined in (16). Then X converges in
distribution, as T tends to infinity, to a normal law N (O, a2), where

o0 o
%= Zl_sz / (xy)_3/2_2’"HK12m(x,y,1)dxdy.
0 0

PrROOF As in the proof of Proposition 4 we can show that, for each fixed

x > 0, the random varlablesw fo s.s+x ds converge to O in.2 asT tends

to infinity. For this reason we cannot apply the same method of proof as in
Proposition 4, and new ideas are required. The basic ingredient of the proof will
be a scaling argument and Theorem 1 of Nualart and Peccati (2005).

Let us see first that the asymptotic behavioXgf asT tends to infinity is the
same a¥7, where

Yr = W/ x~3/%- MH(/ Z H_xds)dx

W[ ( +x2H) 5/2— mE(‘/ ZS g+xds )dx

and using the estimate (27) it is not difficult to see that this converges to zero as
T tends to infinity.

So, it suffices to show thatr converges in distribution &b tends to infinity to
the normal lawV (0, 2). The proof will be done in several steps.

In fact,

E[lXr —Yr|]l <

Sepl. We claim that
(28) lim E(Y?) =02 < oo,
T—o00

whereo? is defined in (24). In fact,

2 [e’e) e’} T t
E(y2 :7/ / —3/2—2"“"/ / S4x.tt+y)dsdidxd
Y7) TiogT 1 i (xy) 5 Jo nis,s +x +y)ds xdy

- IOgT 1 Xy 0 1 X, ¥, Z T axday.

Thus, by L'Ho6pital’s rule

o0 o0
TI@OOE(Y%)=T|iLnOOT21—2m/1 fl (xy)~3/2=2mH g2m(x vy T)dxdy

T—o00

o o0
= lim 2= /l/Tfl/T(xy)—3/2—2mHK12m(x,y,1)dxdy

:O'Z.
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Sep 2. Consider the decomposition
(29) Yr=Yri1+Yro,

where

1 00 3 T/2
Yri1= ———— —/2—2'"’1(/ Z d)a’,
7,1 \/Tlog—Tfl X 0 s,s+x as |ax

1 00 T
tram o [Tevrmn([ g0
T,2 TOngl X /2 s,s+x ds jax

From the scaling and the stationary increments properties of fractional Brownian
motion, it follows that the random variablegr; and Yr > have the same
distribution asY'r 3, where

1 fo'e) T
Yrg=e — —3/2—2’"H</ Zssaxd )d .
T,3 > Ongz X 0 s,s+x as |ax

We are going to compute the second and fourth moment¥9fusing the
decomposition (29). We have

E(Y7) =E(Yf 1) + E(Yf 5) + 2E(Y7.1Y7.2)
= 2R (Y7 3) + 2B(Y1,1Y7.2).
Clearly, limy_, oo E(YZ 3) = 02/2, and this implies that
(30) Nim E(¥r.1¥r.2) =0.
Consider now the fourth moment &f:

(81) E(Y{) =2E(Y; ) +AE(YE Y1 2) +4E(Y71YE,) + BE(YZ Y2 ).

Sep 3. We claim that

lim E(Y2,Y2,)=0%/4,

—00 ’ ’

lim E(Y3,Yr2) =0, lim E(Yr,1Y7 ) =0.
T—o0 ’ T—o00 ’

Let us prove the first identity of (32). The random variabl®s 1Yr 2) have the
same joint distribution a&Zr 1Zr 2), where

1 00 1/2
ZT,]_: / x3/ZZMH</ Zs,s+x dS) dx,
ogT Jyr 0

1 00 1
ZT2: / x_3/2_2mH</ Zss de)dX.
s S+
o097 JiT 1/2
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As a consequence, we have
4
(33) E(YF 1Y ) = (logT)~? / E(HAi)du,
atr, 5\
i=1
whereA; = B, 1, — B, fori =1,2,3,4,D =[1/T, 00)* x [0, 1/2]% x [1/2, 1]?
and du = Hlexi_g/z_z’"H dxdt. Using the notationd;; = E(A;A;) for i,

j=1,...,4,we can write

4
E( ]_[ Ai) = d12d34 + d13d24 + d14d23
i=1

and
4 2m
(34) (E( [ A,-)) = (d12d39)”" + R.
i=1
We have

(logT)~2 /@ (d12d39)?" du = E(Y2 DE(Y2 ),

and this converges 10*/4 asT tends to infinity. On the other hand, the residual
term R in (34) does not contribute to the limit (33). In fact, by Holder’s inequality
we obtain, for any indexe@, j, k) suchthat + j + k=2m,andj > 1 ork > 1,

(logT)~2 /@ (d12d34)' (d13d24)’ (d14d23)" du‘

) om i/(2m)
< (logT)" ( f@(dlzdw du)

Jj/(2m)
< ( [ radz® du) ( [ radza®” du)

Then, this converges to zero Agends to infinity because of (30),+ k > 1 and
(0gT) 2 | (dradz®" d= (09 T) 2 | (dradaa® diu = (E(Yr.1¥r.2)’.

This completes the proof of the first identity of (32). The proof of the other two
identities of (32) follows the same argument.

k/(2m)

Sep 4. By the same arguments as above and Minkowski inequality it follows
that

E(Y2) = (logT) 2 fg (dvodaa+ digdoa + drados)?" dut

< 3" (logT) 2 /8 (duads)?" dp

= 32"(E(Y2))?,



FRACTIONAL SELF-INTERSECTION LOCAL TIME 963

where€ = [1/T, c0)* x [0, 1]*. So, the sequencés andY7 3 are bounded i.?,
and

(35) E((Y7 — Yr.3)%) < 32" (E(Yr — Y13,

which clearly converges to zero &5 tends to infinity. Then, from (35), (31)
and (32) we obtain lim_..,E(Y;}) = 304 Finally, the result follows from
Theorem 1 of Nualart and Peccati (2005]).]

4. Wiener chaos expansion of the self-intersection local time. In this
section we will first compute the Wiener chaos expansion of the approximation
of the self-intersection local timg defined by (2).

Given a multi-index, = (iy, ..., i,), 1 <i; <d, we set

a(in) =E[X;, -+ X, ]
where theX; are independenv¥ (0, 1) random variables. Notice that
(2m1)!--- (2mg)!
(m)!--- (mg)!2"”

if n =2m is even and for each =1, ..., d, the number of components &f,
equal tok, denoted by &, is also even, and(i,) = 0, otherwise.

a(izn) =

LEMMA 7. Wehave

Is = Z ]2m(f2m,e)a

m=0

where f2,, . isthe element of (#7)®2" given by

f2m,e(i2m»”1a ---erm)
(36)

_ (1)~ Pa(izm)

2m
— G //dsdt(s—Ht s|Zy=Az=m T 15,0(rp).

j=1
PrROOFE Stroock’s formula leads to

.....

wherei; € {1,...,d}, andr; € [0, T].
Let us compute this expectation

n
E[Dt po (B! — B)] =E[0"--- 0" p(B — BID1 [ | .1 ().
j=1
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On the other hand, using the Fourier transform
E[8' - 9" po(B' — B))]

l'n
~ 20) Jpa

l'l’l

~ @21)d Jpa

=i"(21) "2 (e + |1 — s|PH)yT/Z2R[ X, - X ],

gL ginE[e! B fB”>] fs|5|2/2d$

i in 1. om 2
£ g exp{ (sl +s)|$|}ds

and the result follows. O

Let us compute thé&2-norm of thenth Wiener chaos of,.

E[(Lom (fom,e)?1 = m)| fom,e 12, 00m

) (2m)! @m)~

mi+---+mg=m

a(izn)?

(37)
Xf (8+)\.)_d/2_m(8+,O)_d/2_mM2mdf

d/2— a/2=m 2
= iz J e+ e

where
(2m)!--- (2mg)!
(m1)?--- (mg")?’

If Hd < 3/2, we can deduce the Wiener chaos expansion of the renormalized
self-intersection local timé:

= Y

mi+---+mg=m

=" Iom(fom).
m=1
where
fom(2m, 11, ..., 72m)
_ @0z o
(Zm)' / / ds dl|l —H H l_[ 1[s,t](rj)-

j=1
5. Proof of Theorem 2. The purpose of this section is to show Theorem 2.

CASE 3/(2d) < H < 3/4. We are going to check that the family of random
variabless?/2=3/4H) (1. _ E(1,)) satisfies the conditions of Theorem 3, for any
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sequence (k) — 0. We have

oo
/23D (1, — (1)) = V2D N Ly (fome)-

m=1
Thus, from (37) we obtain
!SI CIDE[ (T (fam.)?]
d—3/(2H)
oy & —d/2—m  2m
= A .
ol MR u) el
Making the change of variables— ¢%/?%)1 yields

e COE (L2 (fom.e))?]

et/ CH) dj2—m , 2m
= 1+ e dt,
el MR a R R
where7 ¢ = ¢~/ g Using the decompositiofi® N {s < s’} = T U 75 U 75,
where7;* = ¢~Y/@H)7; and the setd; are introduced in (46), we obtaln

e COE[ (L (fom.e))?]
(077]

(Zn)dZZm—l /(‘)<a+b+c< Te—1/(2H)

where

(T — (a+b+ )\, dadbdc,

(38) m—Z[<1+A><1+pl>rd/2 " uln,
i=1

and the functiong,;, p;, u;, have been defined in (47)—(52).
As a consequence,

anT

(39) IEI% e COR[ (I (fom.e))?] = (2n)ig2n1

/ W, dadbdec,
and this implies condition (ii) of Theorem 3. We also have

e CIDE[ (L (fom )2 < / W, dadbdc,

(2r )d22m 1

and, taking into account Remark 1 after Theorem 3, in order to check conditions
(i) and (iii) it suffices to show that

o

2._
U—ZW/ lI»Jd(,ldl’)dC<OO
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From (38) we have
= x )"V dadbd
A=y S s [ G e

wherex; =1+ 1;, pi =1+ p; and

—
@4+ o)

Hence,

2 (2m)y;"
Z(Zﬂ)d/ ( iP z) 4 [(ZW> —1:|dadbdc.

Using Newton’s binomial formula and the definitions (64) and (65) we obtain

2 3 / ~
2 _ 2 : ~\—d/2 5\—d/2
o = (Aipi) [(A-%) —1lldadbdc
(2m)d = Jr3

(40)

3
~ (@) ZfR3 (642 = Gupn)~Y?)dadbdc
i=1""t

2 Sl o~
=— ®;dadbdc,
(h)dé/@ aavac

where the function®); are defined in (65). Finally;2 < co by Lemma 13.
Condition (iv) of Theorem 3 follows from the convergence (43) in Proposition 8.

CAase H =3/(2d). Asinthe proof of the previous case we need to check that
the family of random variabledog(1/¢))~Y/2(1, — E(I,)) satisfies the conditions
of Theorem 3, for any sequeneé) — 0. We have

(log(1/e)Y2(I: — E(Ls)) = (0g(1/e)) "2 Y Ion(fom.e).

m=1

and as before we obtain

E[(I2m (fom,e))?]
log(1/e)
20,

= (27)1227log(1/e)

X/ (T —ta+b+c)e /M), dadbde,
O<a+b+c<Te=1/(2H)
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where ¥,, is defined by (38). From the estimates obtained in the proof of
Lemma 13 it follows that the terrtu + b + ¢)e /) gives no contribution to the
limit and we can write, using L'Hbépital’s rule,

o E[(I2m (fom,e))?]
€10 log(1/e)

. 2T
—lim m W,, da dbdec
£10 (2m)422m1og(1/¢e) Jo<atbte<Te-1@H)
. 2T o,y
=I|m—f W, (a,b,n—a—b)dadbd
x 100 (277,')(122”1 |ng O<a+b<7] m(a 1 a4 ) “ 1
z7<Tx1/(2H)
1/(2H) 72
X Ty, 1/(2H
=lm —-—-—- )\ b, T /CH) _ 4 — b)dadb
xtoo H22m(2m)d fo<a+b<Tx1/<2H> m(a o a—b)da
3/(2H) 74
T %m 1/(2H)
=I|m7f W, (Tx o, B, 1—a— dadB.
x1oo H22m(27'[)d O<a+pB<1 m( (. p 'B)) p

Setey g = (o, B,1—a — B). We have 3(2H) =d, and
xd\llm(Txl/(ZH)ea,ﬁ)

3
=73 Z((T_ZHx_l + (T2 x4 ,Oi))_d/z_m/‘izm (€a,p)
i=1

and whenx tends to infinity this converges to

3
T3 (hipt) ™2y (ea,p)-

Hence,

E[(I2m (fom,e))?]
€10 log(1/¢)

(41)

Tan a/2,,m
=" i dad
H22m(277)d ;_/O<tx+,8<1( ipi)” (eq, ;3) adp.

This proves condition (ii) of Theorem 3.
On the other hand,

(hipi) Y[ (ea,p) dar dp
;mX:lHZZ’"(Zn)d /0<a+5<1 i “f

00 (Zm)'ym d
ip) /2 o] —1|(ea ) dadp.
H(ZJT)d ./0<a+,3<1@ pi) |:<n12::0 (m!)zzm) }(3 p)dadp

3

=2

i=1
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Using Newton’s binomial formula and the definitions (64) and (65) we obtain

1 3
2 = \—d)2 N—d)2
= — )"l i 1- i -1 o d d
H(2m)4 ;/o<a+ﬁ<1( I (CE ) 1(eq,p) decdp
42 [ — / 5i —d/2 _ Ai 0i —d/2 y dad
(42) H(Z”)d ; O<ot+/3<l(( ) (%ip1) )(6 ’ﬁ) o dp
= od O; (eq dodp.
H(Z?T)d igl/()<a+/3<l (e ’ﬂ) odp
Finally, 02 < oo by Lemma 12. This proves condition (iii).
Finally,

o0

> ElUzn(fame))?]

m=N+1

. 1
lim
el0log(1/e) ”

Z Z 221n(27.[)d /O<a+,8<1()\iﬁi) ~4/25m ¢y ) da dB,

m=N+1i=1

and this converges to zero a¢ tends to infinity. So condition (i) holds.
Condition (iv) follows from the convergence (44) in Proposition 8.

PROPOSITION8. Fixm>1and1l<p=<2m—1.
(i) 1fd > 3/(2H), then

(43) lim e8| fanc @) fom el go20n- =0
(i) ifd =3/(2H) and H < 3/4, then

(44) lim 10g(1/e) I f2n.c ®p fom.e sz =0

PrROOF OF(43). The proof will be done in several steps.

Sep 1. Letus first compute, . ®, fan... We have, from (36),
(fom.e p me,s)(iZm—p»jZm—p, ry, ...,2m—p,ui1,..., MZm—p)
(2m)™

((Zm),)zz a(izm—p, Kp)a(Kp, j2m—p)

x f (61 = s e )t — ' P TZ P (s, 1,57, 1)
T

2m—p

X 1_[ 1[s,t](rj)1[s’,t’](uj) dr.
j=1



FRACTIONAL SELF-INTERSECTION LOCAL TIME 969

As a consequence,
| f2me ®p fom,ell2@a0m
4
@)  =a2[ ]G+l
D :
i=1

2m— 2m—
X U o(5, Db 4(s, DT s (5,00 1gy (s, 1) dsdr,

where
2
> (Zaazm_p, kp>a<kp,jzm_p>) ,
i2m—psJom—p N Kp
s = (51, 52, 53, 54), t = (11, 12,13, 14),

D={s,1)eR®0<s; <t; <T}

and
Wi j (s, 1) = pu(si, ti, Sj, 1j).

Set

4
D
i=1
2m— 2m—
X Miz(& t)ﬂ§,4(5, DKy 3 P (s, Dy 4 P(s,0)dsdt.

To show (43) it suffices to show that limo ®. = 0.

Sep 2. We are going to use a representatiordgfin terms of the expectation
of the product of four random variables. Consider a family of independent

one-dimensional fractional Brownian motions with Hurst paraméferB,”J,
i=1234,j=1,...,2m. We can write

D, = 82d—3/HE<1_[ Xé”),
i,J
where the product is over the paiis j) = (1, 3), (1, 4), (2, 3) and(3, 4), and

. T 1 p 2m—p . - .
XEiJ :/ f (e+ 1t —s|2Hy=d2=m T TT BF* — BEO(B]" — BI*) ds dt.
0 Jo
=1 k=1

Sep 3. The variances of the random variabié2-3/ 41 x1/ converge to a
constant timed” ase tends to zero. In fact,
_ (2m)d2m

E[e"™ ¥ (X )?) = = ——e " DR (Uon (fam.0))°),
m
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and we have already proved in (39) that this converges to

ZT/ W, dadbde < co.
"

Sep 4. In order to show that li;y, o ®, = 0, it suffices to show that each
family of random variables?/2=%/4H) xi converges in law to a normal random

variable. In fact, taking into account thE(Xé’jX,’!’j/) =0, for (i, j) # (', j),
and the results proved in Peccati and Tudor (2003), the four-dimensional vector

d/2-3/(4H 1,3 y14 23 34
g?/2=3/(AH) (x13 x14 x23 x3.4y

will converge to a Gaussian random vector with independent components and,
therefore, the expectation of the product of its components will converge to zero.

Notice that the families of random variablgs?/2=3/“H x/ ¢ = 0} are
identically distributed and they have the same distributiofzase > 0}, where

T ot 2m . .
Z zgd/2—3/(4H)/ / (e + |t — s|2H)=d/2m l—[(BtH,l — BHiydsar,
o Jo :
i=1

and {BtH,t > 0} is a (2m)-dimensional fractional Brownian motion with Hurst
parametei . We make the decomposition

Z.=27'—72
where

z§=sl/<4H>f L+ — ]2y~ 7 qsar,

s<Te~YCH) <4

z=evm [ A+ 1t — s[2H)=4/2m 7, , dsar,
s<tATe~ Y/ (2H)

and Z, ; has been defined in (16). Let us show tIZ%ttends to zero inL3(Q).

We have

122]2 < Y41 f L+ |t — s]2Hy=4/2=m) 7, \lads dt

s<Te~YCH) ¢

:gl/<4H>/ L+ |t — s P42 — 52" ds ar
s<Te—1/CH) <4

< sl/<4H>f A+ |t — s|2H)=42 g5 ar
s<Te~YCH) <4
Te~1/@H) o

:81/(4H)/ / (l+x2H)_d/2dXdS
0 Te~1/CH) _g

Te-Ven o
_ 81/(4H)/ 1+ x2H)412 gx dy,
0 y
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which converges to zero becaude > 3/2.
Finally, we have

281:/00(1+X2H)—d/2—m (81/(4H)/
0 0

which converges in law to a normal distribution from Proposition &l

Te—1/H)

Zs s+x ds) dx,

PROOF OF(44). Set
4
@, = og(/e) 2 [ TTee+ 1t —sif) =42
Diq

2m— 2m—
X ] (s, DG 45, DY s T (5,005 | (s, 1) dsdr.

As in the proof of (43), it suffices to show thdt, tends to zero as tends to zero.
We can also write

O, = (Iog(l/a))_2E<H ng),
iJ
where thex’’ have been defined in step 2 of the proof of (43).
[From (41) it follows that the variances of the random variablleg(1/s)) /2 x
X’/ converge to a constant. In fact,

2T d22m
(O)l—(log(l/g))1E[(12m(f2m,8))2]'

m

El(log(1/e))~1(X1/)?] =

Then, as in the proof of part (i), it suffices to show that the family of random

variables(log(l/e))—1/2X§’j converges in law to a normal random variablesas
tends to zero. This family has the same distributiofifase > 0}, where

T pt 2m . .
Y8=(Iog(1/s))_1/2fo /O(e+ it —s[2y=42=m 1B — BH) ds dt,
i=1

and (B!, > 0} is a (2m)-dimensional fractional Brownian motion with Hurst
parametelH . As in the proof of part (i) we make the decomposition

Ye=Y1-Y2
where
v2 = (log(1/e)) M2 [ (Ut 1t = s2Hy 4277, dsar,
s<Te~1/QH) ¢
v} = (log(1/e))~Y/2eH/4H) / A+t —s)2Hy=d12=m 7 dsdr,
s<tATe—1/(2H)
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andZ; ; has been defined in (16). As in the proof of part (i) we obtain

~1/(2H)

Te o]
1¥2]12 < (log(1/g)) = /2e1/(4H) fo f L+ x21)=42 gx dy,
:

which clearly converges to zero. Finally, the family

Te—1/(2H)

Y} = (log(1/e))~/? / (1 x2Hyd/2m <8l/<4H> /
0 0

converges to a normal distribution from Proposition 6]

Zg s+x ds) dx

REMARK 3. The limit variance appearing in (40) can be also expressed as

o2= 2 [ (a2

T 2n)
1 2H 2H
—Z(Iz+y| + |z — x|
—dJ2
_|Z|2H_|Z+y—X|2H)2>

— (@ + a2 @) dxayaz,
We do not know a simple expression for this variance, even in thelgasd /2.

REMARK 4. In the particular casél = 1/2, andd = 3, the limit variance
appearing in (42) is2 = (272)~L. In fact, in this case we obtain
5 1

o =@/O ¥ l[(ab+(a+b)(1—a—19))*3/2

—((@a+b)A—a)) ?+ A -b)"¥2—b"%?|dadb.

Making the change of variables=a/(a + b), y = 1/(a + b), it is not difficult

to check that the first integral equalst 2The remaining terms are equal to
J&b32(1+ b — (1—b)~Y/2) db, and with the change of variabl¢l — b = cosf,

it is clear that this integral vanishes.

6. Technical lemmas. We will denote byk a generic constant which may
be different from one formula to another one. We will decompose the region
defined in (9) as follows:

(46) TN{s<s}=T1UTU T3,



FRACTIONAL SELF-INTERSECTION LOCAL TIME 973

where
T1={@,s,t',s) 0<s<s' <t<t' <T},
To={(,s,t',s) 0<s<s' <t' <t <T},
Ta={(t,s,t',s):0<s<t<s <t' <T}.

We will make use of the following notation:

@) If (¢,s,1,5') € T1,we puta=s"—s,b=t—s" andc =1t —t. On this
region, the functiong, p andu defined in (10) and (11) take the following values:

(47)  A=xr1:=2(a,b,c):=(a+b)*H, p=p1:=(b+c),
(48) w=p1:=pn1(a,b,c):= %[(a + b+ c)2H + b2 2H _ g2H

@iy If (¢,s,¢,s") € To,weputa=s"—s,b=1t—s" andc =1t —t'. On this
region we will have
(49) A=Ay = bl p=p2:=(a+b+c)?,
(50) p=p2:=3lb+0*" + @+ = A —a?M],

(i) If (¢,s,¢',s") e T3, we puta=t—s,b=s"—1tandc =1t —s'. On this
region we will have
(51) A =Az:=a’l, o =p3:=cl,
(52)  p=pz:=3l@+b+* +b* — b+ )* —(a+ )",

Fori =1,2,3 we sets; = A;p; — u?, ©; = Sl._d/z — (Aipi)~?/2. Note thath;,
0i, w; and soon; =1, 2, 3, are functions of;, b andc.

The following lower bounds for the determinant of the covariance matrix of

B/t — BMt and Bt — B/I'1, were obtained by Hu (2001) using the local
nondeterminism property of the fractional Brownian motion [see Berman (1973)].

LEMMA 9. Thereexists a constant k£ such that, for all a, b, ¢ > O:

(i)

(53) 81> k[(a +b)?H P 4+ (b4 )21 g?H).
(i) Fori=23

(54) 8i = kAipi.

The following lemma provides some useful inequalities.
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LEMMA 10. Wehave

(55) k(a+b+c)?2ac < pz < kb®2ac.
For i = 2, 3 we have

(56) O; < kul(nip) 4%

and

(57) ©; <k(rip) Y2

ProoF The inequalities in (55) follow from
nz=3l@+b+c)* +b% —(a+b)*H — (b+c)?H]
1,1
— HQ2H - 1)ac/ / (b + ve +ua)?" 2 du dv.
o Jo

We have, fori =2, 3,

2\ —d/2

U _

®i=:[(1—- i ) -—1]04p» ase.
AiPi

2
The estimate (54), assuming < 1, implies ,\ﬂ—p <1—k and (56) holds.
Moreover, (54) also implies (57).00

The following lemma is the basic ingredient in the proof of Theorem 1.

LEMMA 11. Let E7 be defined by (15). Then E7 < oo if and only if
dH < 3/2.

PROOF

Sepl. SupposeH < 3/2. We claim that
(58) / ®;dadbdc < 0
[0,713

fori =1, 2, 3. From (53) we deduce
S1>k@+b)Pb+c)lall
(59)
> k(abc)*/3,
Then, (59) together with the estimate
rap1=(a+b)>" b +0)?" = (abey*'/?

implies (58) fori = 1.
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To handle the case= 2, we decompose the integral over the regifins na},
{b = nc} and {b < na, b < nc}, for some fixed but arbitrary) > 0. We have,
using (57),

(1]

dadbdc
= ®sdadbdc <k .
b>na 24a €= b>na (a + b+ C)dedH

If dH < 1, then this integral is finite. If & d H, then

dad
/ / S " p-td g
0 (@a+c) na
§kf / q MH[3HL=2dH/3 g4 g0 < 0.
0o Jo

It is also easy to show th& < oo in the case = dH. The case > nc can be
treated in a similar way.

To deal with the case both< na andb < nc, we make use of the estimate (56)
and the following upper bound for»:

o = %[(a +b)°H — " (b + )M — 21
(60)
k

for n small enough. In this way we obtain

@2 Sk(a4H—2+C4H—2)(a +b+c)_2H_de2_2H_dH
< k[a(Z—d/S)Hde/S + C(Z—d/g)Hde/S](a + b + C)_ZH_de_dH,

Hence,

/ ®odadbdc
b<na,b<nc

<k b= (a+ b+~
b<na,b<nc

x [a@ 4 pdH[3 | (@2=d/3HpdH[3) 4q gp g

S k b—dH(a +b + C)_ZH_dHa(z_d/g)Hde/Sd(l dde
[0,713
<k b—2dH/3a—2dH/3c—2dH/3da dbdc,
— Jior
which is finite ifd H < 3/2.
To handle the caseé = 3, we decompose the integral over the regions
{a>mb,c>nzb}, {a < mb,c < n2b}, {a = mb,c < nzb} and {a < mb,
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¢ > nob}. By symmetry it suffices to consider the first three regions. We have,
using (57),

T T da T dc
a>nib,c>n2b mb a n2b €

k/ bZdH 2=

Let us now suppose both< n1b andc < n2b. Using (55) and (56) and that < %
yields

Og < kb*H—4y2-2H—dH 2-2H—dH ~2dH/3,~2dH/3),~2dH/3

<ka

which implies that the integral over this region is finite. Finally, let us consider the
casec < n1b anda > n2b. If Hd > 1, then (57) yields

O3 < k(ac)"Hd
which is integrable. So, we can assume< <3 1 Then

nz=3l@+b+0* —(@+b* — (c+b)*" +p°H]
(61)
< kb2H_lC,
if 2 is small enough. Hence, using (56) and (61) we get
@3 < kb4H_2a_2H_dHC2_2H_dH.

Consequently, i-dH + 2H + 1 < 0,

/ ®sdadbdc
c<nib,a>nob
<k b4H—2a—2H—a’HCZ—2H—dH dcdbda
c<nib,a>nzb
<k a_dH_ZHb_dH+2H+ldbda
a>nzb

T
< k/ G_ZdH+2dCl,
0
which is finite ifd H < 3/2. The case-dH + 2H + 1> 0 is easier.

Sep 2. Assume that = 3/(2d), and let us show thaE; = oo. It suffices to
prove that

d
(62) m / Mz()»p)_d/z_lds dtds'dt’ = oo
T T
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because from the identity (37) this is the second moment of the second chaos of
the renormalized self-intersection local time. In order to check (62) we will show
that

A :=/ (T —a—b—c)ud(h3p3) Y?Ldadbde = oo.
O<a+b+c<T
With the above notation, we have, using (55), 4or 0 small enough,
Azk|  (btc+ ) *ac)Z 421 g4 dbdc = B.
[0.¢]
If d =2, we get
B:k/ ——— dadbdc = 0.
[0,e1® (@ + b+ c)ac
Ford > 2,we have 2 Hd —2H =1/2— 3/d > —1. Hence,
k
B=
3—4H Jjo,e2
and

[(c+a)* 2 — (e +c+a)* T (ac)> 192" gadc,

/ (e + ) 3(ac)y2 Ha~2H g4 4
O<a<c<e
- 24H—3/ y2—Hd—2H 2H-1-Hd 4, ;1.
- O<a<c<e
zk/sazszdda =00
0
because# —1— Hd <-1. O
LEMmA 12, If H=3/(2d) < 3/4,thenfori =1, 2, 3,
1 b
/ / O®;(a,b—a,1—b)dadb < .
0 Jo
PROOF Suppose first = 1. Then, using (53), we obtain

1 pb
f f 57"%(,b—a,1—bydadb
0 JO

1 pb
Skf / [b(1—b) + (1 —a)a]l *?dadb <
0 JO
and

1 rb
/ / o)~ 2a.b —a,1— b)dadb
0 JO

1
< k/ b1 — 1 - b)Y db < 0.
0
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Fori = 2 we can write, using (56),

1 pb
//®g(a,b—a,l—b)dadb
0 JoO
1 pb
< k/ / (b—a) 327201 — g)2H 1 p2H _ (1 — p)2H — 42H2 4o db
0 JO

1 b
< k/ / (b —a) 3?2021 _ q21)2 4a dp.
0 Jo
Then, ifn is small enough,

/ . (b — a)~3/2-2H (,2H _ ,2H)2 4 1)
a<b,b—a<na

<k (b—a)Y? g =2 44 db < 0o
a<b,b—a<na

because? < 3/4, and

f (b — a)~32-2H p2H _ ;2H\2 40
a<b,b—a>na
1 rx/n
< kf / x—3/2—2H+2/\4H dadx
0 Jo

1
:k/ (—Y2-2H+20AH g _ o
0

Finally, fori = 3, we obtain, using (56),

1 pb
/ / Oz(a,b—a,1—->b)dadb
0 JO

1 b
< k/ / a~3/2-2H (1 _ p)=3/2-2H
o Jo

x[14+ (b —a)® —1—a)® — 1?2 dadb < .

In fact, if we fixn1 andn2 small enough, it suffices to check that the above integral
is finite over the regions

Gi={a<b,a=nb—-a),l—b=nb—a)},

Go=la<b,a<n—a),l—>b<nb—a)},

Gz=fa<b,aznb—-a),l-b<nb-a)},

Ga={a<b,a<nmb—a),l—>b=>nb—a)}.
On G1 we have, using (57),

Os(a,b—a,l—b)dadb <k | a Y2201 - p)~Y2-2H 44 4p.
G1 G,
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In order to estimate this integral we make the decomposition
GiCc(GiN{a>ehUu(Gi1N{l—b>ehU(G1N{a<e,1—b<e}).

Onthe seG1N{a > ¢} the integrand is bounded lay1 — b)~1/2-2H and making
the change of variable =1 — b, x = b — a, we obtain a finite integral because
H < %. The same approach is used to handle the integral Gyen {1 — b > ¢}.
Finally,

GiN{a<e,l—b<e}CGiN{b—a>1—2¢},

and, on this set the integrand is bounded.
From (55), we obtain oKi72

1+ b —a)® — 1 —a)? —b?H < k(b —a)?2a(1 - b).

Hence,

Os(a,b—a,l—b)dadb < k/ al/?=2H (1 — pyY2=2H ( _ =4 g4 qp.
G2 G2

On the setGo N {b — a > ¢} this integral is clearly finite, and on the set
GoN{b—a < e} we haveb —a > 1— 2¢, and again the integral is finite provided
e <1/2.

Fix 0 <& < 1— n2. Using (56), on the safi3 N {b — a > ¢} we have

Os(a.b—a.1—b) < kal/22H (1 _ p)l/2-2H 4H -4
which is integrable. On the sétz3 N {b — a < ¢} we have
a=1-(b—-a)—(1-b)>1—e—n2>0.
Then, using the estimate
1+ (b —a)? — A —a)? —p?H < 11— bp?H |+ (b —a)® — (1—a)?H|
<kl(b—a)*"t+ a1 - D),
we obtain, onthe sefzs N {b — a < ¢},
Os(a.b—a.1—b) < ka~¥2"2H (1 — p)V/2-2H[(p _ q)H -2 4 4412
<k(1-bn)YZ2H b —a)™ 2 1 1],

which is again integrable.J

We will make use of the following notation, for= 1, 2, 3:
(63) o=+ 1 pi=pi+1,
(64) §i = hibi — u?,
(65) Oi = ()% — (Gup 2.
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LEMMA 13. Letd >2and 3/(2d) < H <3/4.Thenfori=1,2,3

(66) f ®, dadbdc < co.
3

PROOF  The proof will be done in several steps.

Sepl. Suppose first=1. Then,
1<) =1+ @+b + b+ +1)792
First, ®1 is integrable in the regiofu, b, ¢ > 1} because the estimate (59) yields
01 < 87%% < k(abe)=%H/3
andd H > 3/2. On the other hand, using (53) we obtain
O1 < [k(a +b)* P 4 k(b + ) a® + (a +b)*! + (b + o) + 117972
< k[max@?! 4+ p2H  q2H 4 2H p2H 4 (2Hy 4 1]d/2,

which implies the integrability o1 on the complement of the regida, b, ¢ > 1}.

Sep 2. Suppose that= 2. Then, using (54) we obtain
O < (824 (@+b+ c)2H +p2H 4 1)—d/2
<[k(a+b+ )2 b2 4+ (a+b+c)2H 4+ p2H 4 1)79/2,

On {a, b, ¢ < 1} the function® is clearly integrable. If one of the coordinates is
bigger than 1 and the other two are smaller we use the estimate

Oy < k[maxa, b, ¢)?H 4 1]79/2,
Ifa<l,b>1andc>1,orifa>1,b>1andc <1 we use the estimate
©7 < k[max(ab, be)? +1174/2,
If a >1,b>1andc > 1 we use the estimate
©2 < kl(a+b+ ) b?H 1742 < k(abe) 113,
So it only remains to check the integrability ® in the region
G={(a,b,c):b<1l,a,c>1}.
Using inequality (56), on the regio@ we have
O2 < kub(hapo)~4/?

<kl(A+0)* + @@+ — 2H _ q2H2(q 4 ¢y~ Hd-2H
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Consequently,

/ @zda dbdc
G
o o0
< k/ / [(a+ D% —a® P+ ) H2H gadc
1 J1
o o0
< k/ / a2+ o) M2 ga dc
1 J1

o
< k/ a?1-Hd=14, - 5o
1
becausel > 2.

Sep 3. Suppose that = 3. We claim that (66) holds foi = 3. On {a >
n1b, ¢ > n2b} we have using (54)

Bs < (82 4+ a2 + 2H 4 1)~d/2
< k(a?H 4+ 1)"4/2(2H 4 1y=d/2,

and as a consequence, we obtain

f ®3dadbdc
a>n1b,c=nzb
fk/ db/ / a el gode <k | —— < o0,
1 n2b Jn1b

if dH > 3/2.
On{a < n1b, c < n2b}, using the estimates (56) and (55), we obtain
O3 < kb4 (ac)?(@® + 1)~4/71(2H 4 1)—d/21,

If dH > 3/2 andH < 3/4, then

f ©zdadbdc
a<nib,c<nab

(&)
<k @ + 1)~ 1 )~ ae)? dade / b* =4 db
[0,00)? a/mve/nz

< k/ (aZH + l)_d/z_l(CZH + 1)_01/2_1(ac)2c4H_3 dadc < 0.
a<c
Finally, let us consider the case< n2b anda > n1b. We have, using the
estimates (61) and (56),
@3 < k(b4H_2+ (a +b)4H—2)CZ(a2H + 1)—d/2—1(CZH + 1)—d/2—l’
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if n1 is small enough. If 2 < 1 we use(a + b)*—2 < p* -2 and if 2H > 1
we use

(a4 by =2 < (L )t 22,
In this way we obtain
O < k(b™ =2 4 g*H=2)2(q2H 4 1)=d/2-1(2H 4 1)=d/2-1

By decomposing the integral over the regiofis< ¢ < n2b < %a}, {c<l<

nob < %a}, {c<mb <1< %a} and{c < b < %a < 1} we easily show that
the integral is finite. O
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