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LEVY PROCESSES. CAPACITY AND HAUSDORFF DIMENSION

BY DAVAR KHOSHNEVISAN AND YIMIN XIAO

University of Utah and Michigan Sate University

We use the recently-developed multiparameter theory of additive Lévy
processes to establish novel connections between an arbitrary Lévy process
X in R?, and a new class of energy forms and their corresponding capacities.
We then apply these connections to solve two long-standing problems in the
folklore of the theory of Lévy processes.

First, we compute the Hausdorff dimension of the images) of a
nonrandom linear Borel s&f C Ry, whereX is an arbitrary Lévy process
in RY. Our work completes the various earlier efforts of Tayl&rdc.
Cambridge Phil. Soc. 49 (1953) 31-39], McKeanjuke Math. J. 22 (1955)
229-234], Blumenthal and Getootll[nois J. Math. 4 (1960) 370-375,
J. Math. Mech. 10 (1961) 493-516], Millar Z. Wahrsch. verw. Gebiete 17
(21971) 53-73], Pruitt]. Math. Mech. 19 (1969) 371-378], Pruitt and Taylor
[Z. Wahrsch. Verw. Gebiete 12 (1969) 267—289], Hawke&[ Wahrsch. verw.
Gebiete 19 (1971) 90-102). London Math. Soc. (2) 17 (1978) 567-576,
Probab. Theory Related Fields 112 (1998) 1-11], Hendricks4nn. Math. Stat.
43 (1972) 690-694Ann. Probab. 1 (1973) 849-853], Kahand{ibl. Math.
Orsay (83-02) (1983) 74—105Recent Progress in Fourier Analysis (1985b)
65-121], Becker-Kern, Meerschaert and Scheffiérjatsh. Math. 14 (2003)
91-101] and Khoshnevisan, Xiao and ZhoAgt. Probab. 31 (2003a) 1097—
1141], where dink (G) is computed under various conditions 61 X or
both.

We next solve the following problem [Kahane (1988)bl. Math. Orsay
(83-02) 74—105]:When X is an isotropic stable process, what is a necessary
and sufficient analytic condition on any two digjoint Borel sets F, G C Ry
such that with positive probability, X (F) N X (G) is nonempty? Prior to this
article, this was understood only in the case tRais a Brownian motion
[Khoshnevisan (1999Jrans. Amer. Math. Soc. 351 2607-2622]. Here, we
present a solution to Kahane's problem for an arbitrary Lévy prodgss
provided the distribution ofX () is mutually absolutely continuous with
respect to the Lebesgue measureéRdrfor all ¢ > 0.

As a third application of these methods, we compute the Hausdorff
dimension and capacity of the preimage 1(F) of a nonrandom Borel set
F c R? under very mild conditions on the proce&s This completes the
work of Hawkes Probab. Theory Related Fields 112 (1998) 1-11] that covers
the special case whepéis a subordinator.
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1. Introduction. It has been long known that a typical Lévy process=
{X(®)}>0in R? maps a Borel saf C R, to a random fractak (G). For example,
Blumenthal and Getoor (1960) have demonstrated that khisranc-stable Lévy
process irR9, then for all Borel set& C Ry,

(1.2) dimX(G) =d AadimG a.s,

where dim denotes Hausdorff dimension. In plain wordsy-atable process maps

a set of Hausdorff dimensighto a set of Hausdorff dimensiahA «S. For earlier

works in this area, see Taylor (1953) and McKean (1955), and for background on

Hausdorff dimension and its properties, see Falconer (1990) and Mattila (1995).
Blumenthal and Getoor (1961) extended (1.1) to a broad class of Lévy

processes. For this purpose, they introduced the upper ifidaxd lower indices

B’, B of a general Lévy proces¥ and, in addition, the lower index of a

subordinator. Blumenthal and Getoor [(1961), Theorems 8.1 and 8.5] established

the following upper and lower bounds for dX(G) in terms of the upper indeg

and lower indiceg’ andg” of X: For everyG C R, almost surely,

dimX(G) < gdimG if B<1,
(1.2) B dimG, if B/ <d,
1A B"7dimG, if />d=1
They showed, in addition, that wheéhis a subordinator, then

(1.3) ocdimG <dimX(G) < gdimG a.s.

dimX(G) > :

The restrictiong < 1 of (1.2) was removed subsequently by Millar [(1971),
Theorem 5.1]. Blumenthal and Getoor [(1961), page 512] conjectured that, given
a Borel setG C [0, 1], there exists a constantX, G) such that

(1.4) dimX(G)=A(X,G)  as.

Moreover, they asked a question that we rephrase as foll@gen a Lévy
process X, is it always the case that dimX(G) = dimX ([0, 1]) - dimG for

all nonrandom Bordl sets G € R? Surprisingly, the answer to this question

is “no” [Hendricks (1972) and Hawkes and Pruitt (1974)]. To paraphrase from
Hawkes and Pruitt [(1974), page 285], in general, #iod7) depends on other
characteristics of the sék than its Hausdorff dimension. Except in the case where
X is a subordinator [Hawkes (1978), Theorem 3], this question had remained
unanswered.

One of our original aims was to identify precisely what these characteristics
are. As it turns out, the complete answer is quite unusual; see Theorem 2.2. For an
instructive example, also Theorem 7.1.

In the slightly more restrictive case thitis asymmetric «-stable Lévy process,
Kahane [(1985b), see Theorem 8] proved that for any BorelisetR

(1.5) #,(G)=0 = FH,, (X(G)=0 as.
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Here, #g denotes thes-dimensional Hausdorff measure. If, in addition, we
assume thaty < d, then Kahane’s theorem states further that

(1.6) C,(G)>0 = Cu (X(G)) >0 a.s,

whereCg denotes thg-dimensional Bessel-Riesz capacity which we recall at the
end of this introduction.

As regards a converse to (1.6), Hawkes (1998) has recently proven ket &
stablesubordinator of index« € (0, 1), then for any Borel se& C R4 and for all
y €(0,1),

(1.7) C,(G)>0 = G, (X(G)>0 as.

The arguments devised by Hawkes (1998) use specific properties of stable
subordinators, and do not apply to other stable processes. On the other hand,
Kahane’s proof of (1.5) depends crucially on the self-similarity of strictly stable
processes. Thus, these methods do not apply to more general Lévy processes.

Our initial interest in such problems came from the surprising fact that the
existing literature does not seem to have a definitive answer for the following
guestion:

QuEsTION1.1. Can one find a nontrivial characterization of wiggriX (G))
is positive for ad-dimensional Brownian motioX ?

The main purpose of this paper is to close the gaps in (1.5) and (1.6) and their
counterparts for the preimagesXf While doing so, we also answer Question 1.1
in the affirmative. [The answer is the most natural orig.. (X (G)) > 0 if and only
if €, /2(G) > 07, cf. Theorem 7.1.]

Our methods rely on a great deal of the recently-developed potential theory
for additive Lévy processes; see Khoshnevisan and Xiao (2002, 2003) and
Khoshnevisan, Xiao and Zhong (2003a). While the present methods are quite
technical, they have the advantage of being adaptable to very general settings.
Therefore, instead of working with special processes such as stable processes,
we state our results for broad classes of Lévy processes. Moreover, the present
methods allow us to solve the following long-standing problem: “Given a Lévy
processX in RY, and two disjoint setsF, G C Ry, when is X(F) N X(G)
nonempty?” Kahane (1983) studied this problem for a symmetric stable Lévy
processX in R? and proved that

L.8) Cije(FxG)>0 = PXF)NX(G)#3}>0
1.
=  Hy(F xG)>0.

Kahane [(1983), page 90] conjectured titgt, (F x G) > 0 is necessary and
sufficient for RX (F) N X(G) # @} > 0. Until now, this problem had been solved
only whenX is a Brownian motion [Khoshnevisan (1999), Theorem 8.2].
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For a Lévy processX in R?, we investigate the Hausdorff dimension and
capacity of the preimag& —1(R), where R c R¢ is a Borel set. WherX is
isotropic «-stable, Hawkes (1971) has proven thak it d, then for every Borel
setR c RY,

(1.9) dimx-1(r)= “FHAMR—d o
(07

and ifa < d, then

dimR — d
(110)  supld > 0:PdimX~Y(R) = 6} > 0 = L IME

More recently, Hawkes (1998) has studied the capacity of(R) further in the
case thalX is a symmetriax-stable Lévy process iR. We are able to extend his
result to a large class of Lévy processes; see Theorem 3.1 and Corollary 3.2 below.
We conclude this introduction by introducing some notation that will be used
throughout.
We write # (F) for the collection of all Borel-regular probability measures on
a given Borel spacé'.
Given a Borel measurable functigh: R — [0, oo], we define the f-energy”
[of someu € £ (R?%)] and “f-capacity” (of some measuralie c R?) as follows:

Er(p) = f/ fx—y)pldx)udy),
(1.11)

-1
Gf(G) = I:MEiEEG) Ef(,u)] .

We refer to such a functionf as agauge function. Occasionally, we writé& ¢ (u)
for a bounded measurabje: R? — C, as well.

Given a numbei > 0, we reserve€g and &g for €y and € ¢, respectively,
where the gauge functioni is f(r) := || ~. Cp and Eg are, respectively, the
(B-dimensional) Bessel-Riesapacity andenergy to which some references were
made earlier. More information about the Bessel-Riesz capacity and its connection
to fractals can be found in Mattila (1995), Kahane (1985a) and Khoshnevisan
(2002). For a lively discussion of the various connections between random fractals,
capacity and fractal dimensions, see Taylor (1986).

An important aspect of our proofs involves artificially expanding the parameter

space fromR, to R_l:”’ for an arbitrary positive integes. For this, we introduce
some notation that will be used throughout: AnyR1*7 is written ast := (10,7 ),
wheret := (t1,...,tp,) € RP. This allows us to extend any € #(Ry) to a

probability measurg on R_lﬁ”’ as follows:

(1.12) p(dt) := ju(dig)e™ =i-1 df.

Finally, the Lebesgue measure Bf is denoted by.;, and for any integet and
all x, y € R¥, we writex < y in place of the statement thatis less than or equal
to y, coordinatewise; that is; < y; forall i <k.
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2. Theimage of a Borel set. The first main result of this paper is the most
general theorem on the Bessel-Riesz capacity of the imé&@e) of a Lévy
processX in R?. This, in turn, provides us with a method for computing &G )
for a nonrandom Borel sé€f c R... Our computation involves terms that are solely
in terms of the Lévy exponenlt of X and the seG. Hence, Corollary 2.6 verifies
the conjecture (1.4) of Blumenthal and Getoor (1961).

Before stating our formula for dik (G), we introduce some notation.

Given any¢ € R¢, we define the functions : R — C as follows:

(2.1) )(gp (x) := xe(x) :== e~ XIW(SgNNE) VxeR.

We will write the more tedious(g” in favor of x: only when there are more than
one Lévy exponent in the problem at hand and there may be ambiguity as to which
Lévy exponent is in question.

Below are some of the elementary properties of this functian

LEMMA 2.1. For any & € RY, SUR.cr I xe(x)| < 1. Moreover, given any
nePRy), Ey(n) >0 for al & e R In particular, €, (1) € [0,1] is real-
valued.

PROOF We note that for any, r > 0, and for all¢ € R?,
(2.2) E[e/s X O=XED] = y, (1 —5).

This shows thatye is pointwise bounded in modulus by one. Moreover, by the
Fubini—Tonelli theorem, given any € £ (R.), we can integrate the preceding
display[u(dt)u(ds)] to deduce that

) 2
(2.3) e =E] | [ X0 uian) |

which completes our proof.[]

We are finally ready to present the first main contribution of this paper. The
following theorem closes the gaps in (1.6) and (1.7) for a general Lévy process.

THEOREM2.2. Suppose X := {X (¢)},>0 isa Lévy processin R?, and denote
its Lévy exponent by W. Then for any Borel set G ¢ R, and for all 8 € (0, d),

Cs(X(G)=0 as.
(2.4)

= VYueP(G): /R Exe W €17~ d§ = +o0.

REMARK 2.3. For a closely-related, though different, result, see
Khoshnevisan, Xiao and Zhong [(2003a), Theorem 2.1].
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The proof of Theorem 2.2 is long, as it requires a good deal of the
multiparameter potential theory of additive Lévy process; thus, this proof is
deferred to Section 5. In the meantime, the remainder of this section is concerned
with describing some of the consequences of Theorem 2.2.

First of all, note that wheX is symmetric,xe is a positive real function. Thus,
we can apply the theorem of Fubini and Tonelli to deduce the following in the
symmetric case:

@) [ exlel’ds= [ [ [ e Opep dg luidxniy).
In other words, we have the following consequence of Theorem 2.2:

COROLLARY 2.4. If X := {X(¢)},>0 iS a symmetric Lévy processin R with
Lévy exponent W, then for any Borel set G c Ry, and all 8 € (0, d),

(2.6) Cs(X(G)=0 as << C; ,(G)=0,

where

(2.7) fy () ::/ e FYE g7 de VxeR,y €(0,d).
Rd

REMARK 2.5. We believe that Corollary 2.4 is true quite generally, but have
not been successful in proving this. To see the significance of this conjecture,
let us assume further thal, has the property that as| tends to zerof, (x) =
O(fy(2x)). Then, thanks to Corollary 2.4 and a general Frostman theorem [Taylor
(1961), Theorem 1], we deduce that for any Borel éetc R, with finite
fdjlﬂ-Hausdorff measureCg(X (G)) = 0 almost surely. In general, we do not
know of such conditions in the nonsymmetric case.

Now let us consider the Hausdorff dimension of the imagé&) of any Borel
setG underX. By the theorem of Frostman [Khoshnevisan (2002), Theorem 2.2.1,
Appendix C, and Mattila (1995), Theorem 8.9], given any BorelBet R?,

(2.8) dim F :=sup(B € (0,d) : C4(F) > O}.
Thus, Theorem 2.2 allows us to also compute #i(d'). Namely, we have the
following:

COROLLARY 2.6. Suppose X := {X(t)},;>0 is a Lévy process in R?, and
denote its Lévy exponent by W. Then for any Borel set G c Ry,

dimX (G)

@9) = O.d): inf [ & Py
—sup{pead): int [ e e’ s <400} as
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In the symmetric case, thisis equivalent to the following:
(2.10) dimX(G) =sugB € (0,d):Cy, ,(G) > 0} as.,
where f, isdefinedin (2.7).

Corollary 2.6 computes ditki(G) in terms of the Lévy exponen¥ of the
processX. In particular, it verifies the conjecture of Blumenthal and Getoor
[(1961), page 512]. However, our formulas are not so easy to use for a @iven
because they involve an infinite number of computations [one for each measure
u € P(G)]. Next, we mention some simple-to-use bounds that are easily derived
from Corollary 2.6.

COROLLARY 2.7. If X := {X(t)};>0 iSa symmetric Lévy processin R?, then
for any Borel set G C R,, we almost surely have 1(G) < dimX(G) < J(G),
where

I1(G):=supB €(0,d): Ilrrrlisoup log(L/r) < dlmG} and
(2.11) 10g £y 5 (1)
L T a—p(r .
J(G) = mf{ﬂ € (0,d): |Irrn¢I(I)’lf 7Iog(1/r) > dlmG}.

In the above, inf @ :=d and supe :=0,and f, isasin (2.7).

We also mention the following zero—one law. Among other things, it tells us
that the a.s.-condition of Theorem 2.2 is sharp.

PROPOSITION2.8 (Zero—one law). For any 8 € (0, d), and for all Borel sets
G C R+1

(2.12) P(Cs(X(G)>0}=0 or 1

This proposition is a handy consequence of our proof of Theorem 2.2, and
its proof is explicitly spelled out in Remark 5.5 below. In the case fids a
subordinator, the reader can find this in Hawkes [(1998), page 9]. We note that
Hawkes’ proof works for any pure-jump Lévy process.

3. The preimage of a Borel set. Let X := {X(1)};>0 be a strictlyx-stable
Lévy process irR¢, and letp; (x) be the density function oX (r). Taylor (1967)
proved that

(3.1) [:={x eR%: p;(x) > 0 for somer > 0}

is an open convex cone R? with the origin as its vertex. To further study the
structure ofI", Taylor (1967) classified strictly stable Lévy processes into two
types: X is of type A if p1(0) > O; otherwise it is oftype B. He proved that
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when X is of type A, thenp;(x) > 0 for all r > 0 andx € RY. On the other
hand, in the case thaX is a type B process, Taylor (1967) conjectured that
I' ={x e R: p,(x) > Oforallt > O}; this was later proved by Port and Vitale
(1988). By combining the said results, we can conclude that all strictly stable Lévy
processes withk > 1 are of type A.

Now one can extend Hawkes'’ results (1.9) and (1.10) to all strictly stable Lévy
processX of indexa in RY. It follows from Theorem 1 of Kanda (1976) [see also
Bertoin (1996), page 61, and Sato (1999), Theorem 42.30] and the arguments of
Hawkes (1971) that i > d, then for every Borel sek c R?,

3.2) dimx-L(ry< ¢ FTAMR=-d
o

On the other hand, i < d, then for every Borel sek C T,

i _ oa+dmR —d
(3.3) IdimX~Y(R) | poop) = —

where negative dimension for a set implies that the set is empty.

Hawkes (1998) has made further progress by proving that wherévsra
symmetrica-stable process iR, then for all g € (0, 1) that satisfyx + 8 > 1,
and for every BoreR C R,

(3.4) Cwatp-n/e(XHR)=0 as. < CzR)=0.

It is an immediate consequence of the Frostman theorem [Khoshnevisan (2002),
Theorem 2.2.1, Appendix C] that (3.4) generalizes (3.3). Equation (3.2) also
follows from (3.4), Frostman’s theorem and recurrence.

In order to go far beyond symmetric stable processes, we can make use of the
potential theory of multiparameter Lévy processes. We indicate this connection by
proving the following nontrivial generalization of (3.4). For simplicity, we only
consider the Lévy processes with= R?,

THEOREM 3.1. Let X := {X(¢)},>0 denote a Lévy process in R? with Lévy
exponent W. If X has transition densities { p;};-0 such that for almost all (z, y) €
R, x R, p:(y) is strictly positive, then for every Borel set R ¢ R?, and all
y € (0, 1),

e, (xYRr)=0 as
(3.5)

— fm(sane( )d§=+oo VieP®R).
Rd

1+ w7 ()

Theorem 3.1 and Frostman’s theorem (2.8) together prove the following:
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COROLLARY 3.2. Let X := {X(t)};>0 denote a Lévy processin R? with Lévy
exponent W. If X has strictly positive transition densities, then for every Borel set
R CRY,

IdimX~1(R) || Lo (p)

_ .o (2 1 ) }
_sup{y € (0, l).,uelﬂqtzR) ./I;Zd (&) Re(71+ \Pl_y@) d§ < 4o00y.

Before commencing with our proof of Theorem 3.1, we develop a simple
technical result.

SupposeX = {X(t)};>0 is a Lévy process irR?, and suppose that it has
transition densities with respect to the Lebesgue measurdn other words,
we are assuming that there exist (measurable) functipsis-o such that, for all
measurablef :RY — Ry and allt > 0, E £ (X ()] = Jra f) pi(y) dy.

Next, we consider a1 — y)-stable subordinatowr := {o(¢)};>0 that is
independent of the proce&s [Of course,y is necessarily irf0, 1).] Let v; denote
the density function o0& (¢). It is well known that, for every > 0, v;(s) > 0 for
all s > 0.

(3.6)

LEMMA 3.3. If X := {X(¢)},>0 isa Lévy processin R with Lévy exponent
¥ and transition densities {p;};-0, then the subordinated process X o o is
a Lévy process with Lévy exponent W1~7 and transition densities (z,y)
I5° ps()v:(s) ds. Moreover, if ps(y) > 0 for almost all (s,y) € Ry x R?, then
for every ¢t > 0, the density of X (o (¢)) is positive almost everywhere.

PROOF Much of this is well known [Sato (1999), Theorem 30.1], and we
content ourselves by deriving the transition densitieX ofo. For any measurable

f:RY— Ry, and for allt > 0, E[f(X(c ()] = Jra f()Elpo)(¥)1dy. This
verifies the formula for the transition densities)b o. The final statement of the
lemma follows from the well-known fact thaf(s) > O foralls > 0. O

PROOF OF THEOREM 3.1. As in Lemma 3.3, we let denote a(1 — y)-
stable subordinator that starts at the origin, and is independexit @hen, it is
well known [Hawkes (1971), Lemma 2] that, for any Borel 8et R,

(3.7) P(BNo(Ry)#2}>0 = C,(B)>0.

By conditioning onX, we obtain the following:

(3.8) PIX YR No(R)#2}>0 = P{€, (X L(R))>0}>0.
Moreover, it is clear that

(3.9) PX IR No(Ry)#2}>0 <= PRNXoo(Ry)#T}>0.
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Thus, by Lemma 4.1 below,
(3.10) PX YR No(Ry)#2}>0 <= Eri(Xoo(Ry)ESR)]>0.

BecauseX o o is a Lévy process ifR¢ with exponent¥1~7 (&) (Lemma 3.3),

the remainder of the proof follows from Khoshnevisan, Xiao and Zhong [(2003a),
Theorem 1.5] that we restate below as Theorem 4.6; see also Bertoin [(1996),
page 60]. [

4. Background on additive Lévy processes. In this section we rephrase, as
well as refine, some of the potential theory of additive Lévy processes that was
established in Khoshnevisan and Xiao (2002, 2003) and Khoshnevisan, Xiao and
Zhong (2003a). Our emphasis is on how these results are used in order to compute
the Hausdorff dimension of various random sets of interest.

A p-parameter,R?-valued, additive Lévwy process X = {f((?)};eRi is a
multiparameter stochastic process that is defined by

p
(4.1) X@)=Y X;tj) Vi=(,....1p) R
j=1

Here, X1,..., X, denote independent Lévy processesRf. Following the
notation in Khoshnevisan and Xiao (2002, 2003), we may denote the random
field X by

(4.2) X=X18--®X,.

These additive random fields naturally arise in the analysis of multiparameter
processes such as Lévy's sheets and in the studies of intersections of Lévy
processes [Khoshnevisan and Xiao (2002)]. [At first sight, the term “additive
Lévy” may be redundant. Indeed, historically, the term “additive process” refers
to a process with independent increments. Thus, in this sense every Lévy process
is additive. However, we feel strongly that our usage of the term “additive process”
is more mathematically sound, as can be seen by considering the additivefigroup
created by direct-summing cadlag functiofis ..., f,:Ry — R? to obtain a
function f:RY — R defined by f(f) := (1 ® -+ @ fp)(7) = fi(t1) + -~ +
fp(tp). Therefore, ifXq,..., X,41 are independent Lévy processes, ther>
X1(t1) @ X2(8) ® --- ® X14(e) is a Lévy process on the infinite-dimensional
additive group®.] _

For eachr € RY, the characteristic function & () is given by

(4.3) E[ei6XD] = ¢ Zjali¥® — o9 ygeRY,

where W (£) := W1(£) ® --- ® W, (£), in tensor notation. We will calié (¢) the
characteristic exponent of the additive Lévy procesk.
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Additive Lévy processes have a theory that extends much of the existing theory

of Levy processes. For instance, corresponding to any additive Levy prﬁ’cess
there is gpotential measure U that we define as follows: For all measurable sets
F CRY,

(4.4) U(F) := E[/1 ¢ Xi=1% 1F(f((§))d§]

RY
If U is absolutely continuous with respect to the Lebesgue meaguits density
is called the ipotential density of X. There is also a notion of transition densities.
However, for technical reasons, we sometimes assume more; see Khoshnevisan
and Xiao (2002, 2003). Namely, we say that the procéissabsol utely continuous

if for each7 e RY\ARY,, e —¥ ¢ p1(R4). In this case, for alf € R? P\ORY, X (1)
has a bounded and continuous density funcpon e), which is descrlbed by the
following formula:

(4.5) p(t;x):= (271)_d/d e_"g'x_;'@(g)dg VxeRY
R

We remark that wherX is absolutely continuousy/ is absolutely continuous

P L
and the 1-potential density ingﬁ p(s; o)e_zj=1sj ds. See Hawkes [(1979),
Lemma 2.1] for a necessary and sufficient condition for the existence of a
1-potential density.

WhenX is absolutely continuous, the following functidnis well defined, and
is called thegauge function for X:

(4.6) ®F):=p(sl,....Isp;00  VFeRP.

It is clear that®(0) = +oo and, whenXy, ..., X, are symmetrics > ®(5) is
nonincreasing in eachy;|. It is also not too hard to see thét, () is a natural
capacity in the sense of Choquet [Dellacherie and Meyer (1978)].

In order to apply our previous results [Khoshnevisan and Xiao (2002, 2003) and
Khoshnevisan, Xiao and Zhong (2003a)], we first extend a one-parameter theorem
of Kahane (1972, 1983) to additive Lévy processe®fn In the following, we
writte A6 B:={x —y:x € A,y € B}. (Note that when eithed or B is the empty
seta,thenA© B=3.)

LEMMA 4.1. Let X be a p-parameter additive Levy process in R4, We
assume that, for every ¢ € (0, co)?, the distribution of X(t) is mutually absolutely
continuous with respect to 4. Then for all Borel sets G ¢ (0, o0)? and F ¢ R?,
the following are equivalent:

1. with positive probability, G N ):(—1(F) +
2. with positive probability, F N X (G) # &;
3. with positive probability, A;(F © X(G)) > 0.
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PrROOF ltisclearthat 1= 2. To prove 2= 3, we note that part 2 is equivalent
to the following:

(4.7) 35>0 suchthat PFNX(GN (S, 00)P)#a)>0.

Hence, without loss of generality, we can assumedhat (8, oo)? for somes > 0.
By our assumption, we may chooge (0, co)? such that:

() a<rforallieG.
(i) The distribution ofX (a) is equivalent to.,.

Next, define the additive Lévy proceXs := {X; ()iere bY
(4.8) X;(0):=X({@+a)—X@  VieR..
Then, we point out that

(4.9) FNX(G) =2 <<= X ¢FoX;G—a.

Since X(d@) is independent of the random Borel sBtS X;(G — @) and the
distribution of X (@) is equivalent ta.;, we have

X@¢FoX:(G—a) as.

(4.10) .
— M(FEX;(G—-a)=0 a.s.

Note that)?a(G —d)=X(G)o {)?(Zz)}, so that the translation invariance of the
Lebesgue measure, (4.9) and (4.10) imply that

(411) FNXG) =2 as. < »FoX(G)=0 as.

This proves 2= 3, whence the lemma.[]

The following theorem connects the positiveness of the Lebesgue measure of
the rangeX (G) and the hitting probability of the level s&~1(a) to a class of
natural capacities. It is a consequence of the results in Khoshnevisan and Xiao
[(2002), Theorem 5.1, and (2003)] and Lemma 4.1.

THEOREM 4.2. Suppose Xi,...,X, are p independent symmetric Lévy
processes on RY and let X denote X1®--- ® X, which we assume is absolutely
continuous with an a.e.-positive density function at every time 7 € RY. Let ® be
the gauge function of X. Then for every Borel set G C (0, 00)?, the following are
equivalent:

1. €o(G) > 0. .
2. Wth positive probability, 1, (X (G)) > 0.
3. Any a € R? can bein the random set X (G) with positive probability.
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REMARK 4.3. Theorem 4.2 asserts that, for every Borelset (0, o0)”,
(4.12) Co(G)>0 <= X 1{0hNG#o  with positive probability

In fact, (4.12) holds even without the assumption that the density function of
X(7) is positive almost everywhere; see Corollary 2.13 of Khoshnevisan and
Xiao (2002). In Section 6 we apply this minor variation of Theorem 4.2 to derive
Theorem 6.5.

We recall thatX1 @ - - - @ X, is additive o-stableif X4, ..., X, are independent
isotropica-stable processes. The following is a consequence of Lemma 4.1 and
Khoshnevisan, Xiao and Zhong [(2003a), Theorem 7.2], which improves the
earlier results of Hirsch (1995), Hirsch and Song (1995a, b) and Khoshnevisan
(2002).

THEOREM4.4. Supposef( =X1®---® X, isan additive «-stable process
in R?. Then, dimX (R”) = ap A d, a.s. Moreover, for all Borel sets F c R4, the
following are equwalent

1. Cyop(F)>0.
2. With positive probablllty ra(F @ X(R )) > 0.
3. Fisnot polar for X; that is, with positive probability, F N X(R \{O}) + 0.

REMARK 4.5. Note that the second part of Theorem 4.4 is of interest only
in the case thaditp <d. Whenap > d, X hits every point inR? almost surely.
ThereforeX(R )= Rd a.s. In this case, there is a rich theory of local times and
level sets [Khoshnewsan Xiao and Zhong (2003b)].

PROOF OF THEOREM 4.4. The first statement regarding the dimension
of X(R ) follows from Khoshnevisan, Xiao and Zhong [(2003a), Theorem 1.6],
whereas 1< 2 for all compact setsF is precisely Theorem 7.2 of
Khoshnevisan, Xiao and Zhong (2003a). In the following we first prove 3
and then use | it to remove the compactness restrictionsn2l

For everyr e RY \{0} the distribution ofX(t) has a strictly positive and
continuous density. We write”, \{O} (0, oo)PU(aR \{0}) Lemma 4.1 implies

that, for every Borel seF C Rd,
P{’4{F & X((0,00)")} > 0} > 0
(4.13) .
< P{FNX((0,00)?)# @} > 0.

For the boundaryRY \{0} we apply Lemma 4.1 to additive stable processes that
have fewer tham parameters to obtain

(4.14) P{A{F @& X(OR")}>01>0 <« P{FNX@R,\{0})+#a)>0.
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Therefore, we have proven< 3 for all Borel setsF C R<4. From the above, we
derive that, for every compact setC RY, 1< 3. ButCy_q,(-) andC(-) are both
Choquet capacities, where

(4.15) C(F) =P{F N X(R?\{0}) # &}.

Thus, the compactness restriction Brcan be removed by Choquet’s capacibility
theorem [Dellacherie and Meyer (1978)], whence the validity ef 2 in general.
O

We conclude this section by recalling the main results of Khoshnevisan, Xiao
and Zhong (2003a). The first is from Khoshnevisan, Xiao and Zhong [(2003a),
Theorem 1.5], which can be applied to compute the Hausdorff dimension of the
range of an arbitrary Lévy process; for earlier progress on this problem, see Pruitt
(1969).

THEOREM 4.6 [Khoshnevisan, Xiao and Zhong (2003a), Theorem 1.5].
Consider a p-parameter additive Lévy process X := {X(;)}?eRﬁ in RY with Lévy

exponent V. Suppose that there exists a constant ¢ > 0 such that, for all £ € R?,
p p
(4.16) Re[[{1+ ;&) = c[]Ref1+w; (&)}
j=1 j=1

Then, given a Borel set F c R?, E[Ad()?(Rﬁ) @ F)] > 0if and only if there exists
u € P (F) such that

p
(4.17) |, 1@ [T RelL+w;6)) 2 ds < +oc.

j=1

As a corollary to this, Khoshnevisan, Xiao and Zhong [(2003a), Theorem 1.6]
obtained the following refinement of the results of Pruitt (1969):

COROLLARY 4.7. If X isa Lévy process in R? with Lévy exponent W, then
as.,
(4.18)

1>ds

— 0,d): R
supl € 0.0 (£eRY 1E121 %1+w@)|mWﬂ

< +oo}.
The next requisite result is from Khoshnevisan, Xiao and Zhong [(2003a),
Theorem 2.1 and Lemma 2.4], which characterizPs;EX(G))] > 0 completely
in terms of its Lévy exponen¥ andG. Notice that it is more general than<t 2
in Theorem 4.2.
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THEOREM 4.8. Suppose X := {}?(?)};GR_{ is a p-parameter additive Lévy
process in R¢ with Lévy exponent W. Then, given a Borel set G c R,
E[A;(X(G))] > 0if and only if there exists 1 € 2 (G) such that

Rd 8®j’:1x;" (W)dg < +oo,

where

(419) & » v (M):/[) /p 3_25:1|Sj_tj|wj(sgr(sj_lj)§)/,b(d§)M(d;).
®j_1Xs Ry JRY

5. Proof of Theorem 2.2. Next, for any fixeda € (0, 2], we introducep
independent isotropie-stable Lévy processesy, ..., X, in RY, each of which
is normalized as follows:

(5.1) E[eX10] =7ulEI"  veeR?, u>0,1=1,...,p.

We assume thaky,..., X, are independent of the Lévy proceXsand then
consider theadditive Lévy process {A(t)}teRHp; this is the (1 + p)-parameter
+

random field that is prescribed by the following:
(5.2) A®) = X (10) + X1(t) + -+ X (1) VteRy™.

For this random field and any € »(R,.), we consider the random measurg O
onR? defined by

(5.3) Ou(f) = o fAM®)p(dt),

1+p
+

wherep is defined by (1.12). This is well defined for all nonnegative measurable
f:RY - R, forinstance.

LEMMA 5.1. For all probability measures .« on R, and & € R?,
277 (A4 |IEINTP €y, () < E[10, (&)%)
< 2P EIDTTP Ex, ().

(5.4)

PrRooOF By Khoshnevisan, Xiao and Zhong [(2003a), Lemma 2.4], for all
£eRY,

E[10,.(5)1%]
(5.5) _ / / o T 151" ,~Is0—10] ¥ (SIMs0—1008) 1y (1) ().

1+p +p
R xRy
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On the other hand, it is easy to see that
(5.6) /f ¢~ Zima It =S 6D g7 g — (1 4 £1|9) P
R” xR”
Therefore,
(5.7) E[IO, ()71 = (L4 IE1*) 7€ ().
To finish the proof, we note merely that
(5.8) SAHENY) < @+ED® < 2*A+ 1)
(For the upper bound, consider the caggb < 1 and|&|| > 1 separately.) [

We obtain the following upon integrating the preceding lema&:
LEMMA 5.2. Foral ue P(Ry),
5.9 27D R <E[I0, 15214 ] < 270 QPRY,
where for any 8 > 0,

Q}(d¢) 4 e
= (2 —
az =@ AT En?

REMARK 5.3. Sinceyg is bounded by 1 (Lemma 2.1), for any probability
measure: onR 4, &,. (1) < 1. Thus, for all € (0, d),

(5.10)

(5.11) LR <00 /Rd Exe WENF dE < +o0.

Next, we develop a variant of Lemma 5.2. In order to describe it, it is convenient
to put all subsequent Lévy processes on the canonical probability space defined by
all cadlag paths fronR . into R¢; see Khoshnevisan, Xiao and Zhong [(2003a),
pages 1107 and 1108] for the details of this more-or-less standard construction.
Then, we can define the measurg Rr eachx € R?, as the measure that starts
the processA at A(0) = x. Formally speaking, we have.P=Po (A(0) + x)~ 1.
Sincei, denotes the Lebesgue measure on the Borel subs&$, afe can then
define

(5.12) Py, (W):= fRd P.(W)dx and E,[Y] :=/YdPM,

for all measurable subset®# of the path space and all positive random
variablesY. An important fact about additive Lévy processes is that they satisfy
the Markov property with respect to tlefinite measure p,. See Khoshnevisan
and Xiao [(2002), Proposition 5.8] or Khoshnevisan, Xiao and Zhong [(2003a),
Proposition 3.2] for details.

We are ready to present thg Panalogue of Lemma 5.2.
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LEMMA 5.4. For all f:R?Y - R, in £LY(R%) N £2R%), and for all
P(R),
(5.13) 2771 Fll e qery < ErallOW (NP1 < 271 G2 g

where the measure Qf; is defined in (5.10).

__PrROOF In the notation of the present note, if we further assume that
f e £LY(R?), then Lemma 3.5 of Khoshnevisan, Xiao and Zhong (2003a) and
symmetry together show that

(5.14) Ei [0 (N1 = @1)71 fR I ®PENOL )P dé.

The lemma—under the extra assumption tia¢ £1(RY)—follows from this,
used in conjunction with (5.7) and (5.8). To drop the integrability conditiorf on
note a mollification argument reveals that all that is needgddst2(R?); but by
the Plancherel theorem, this is equivalenfte £2(R%). O

We are ready to dispense with the first part of the proof of Theorem 2.2.

PROOF OFTHEOREMZ2.2 (Firsthalf). Choose € (0, 2] and anintegep > 1
such that

(5.15) ap=d — B.

Then we introduce an independepiparameter additiver-stable processf( =
{(X()},ere bY
(5.16) X(1):=X1(1) +---+ X,(t,)  VieRL.
This also defines &l + p)-parameter additive Lévy procegs:= {A(t)}teR}jp
defined by (5.2).

Now suppose there existsiae £ (G) such that/ga &y, (WIIE1P~¢ dE < +oc.

Then, Lemma 5.2 and Plancherel’'s theorem, used in conjunction, tell us that there
exists a (measurable) procggsg (x)} g« such that:

L BllulGoge] = @) ElIO. %2 q4)] < 27* Qi (RY) < +00; see also Re-

mark 5.3.
2. With probability one, for all bounded measurable functiohsR? — R,

Ou(f) = Jra f(x)€,(x)dx.
Apply part 2 with f (x) := 1A(G><R¢)(X)f and apply the Cauchy—Schwarz inequal-
ity to deduce that almost surely,

1=0u(laGxr:) /Rd\/mﬁ (x) dx

(5.17)
< \/xd A(G x RO p2Ray-
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By the Cauchy—Schwarz inequality and part 1,

1
5.18 E[ri(A(G x RE))] > > - .
(548 [1a(A(G +)]‘E[||e,i||§cz(Rd)]‘ZPOfQ,,f%Rd>

Sinceu € £ (G) can be chosen arbitrarily as long a§'@¢) < +oo, and because
of Remark 5.3 and (5.15), we have demonstrated that

(5.19) MeingG) /Rd e (WIENP~1de < +00 = E[ra(A(G x RY))] > 0.

According to Theorem 4.4, and thanks to (5.15), for any BoreFsetR¢?,
(5.20) E[L(F®X(R)] >0 «— €g(F)>0.

Since X is independent ok, we can apply this, conditionally, with := X (G),
and then integratg/P], to deduce that

(5.21) E[1(A(G xRL))]>0 <<= E[Cs(X(G))]>0.
This and (5.19) together imply that

. B—d
(5.22) uelﬂQ]ZG) /;{d Exe WIEN dé¢ <+oo = E[Cs(X(G))]>0.

This proves fully half of Theorem 2.2.0J

PrROOF OF THEOREM 2.2 (Second half). We now prove the more difficult
second half of Theorem 2.2; that is,

(6.23) E[C;X(G]>0 = inf | & WIENP~ d& < +o0.
In so doing, we can assume without loss of generality that thé& dstcompact.
Indeed, consider both sides, in (5.23), eb" as set functions inG. Both of
the said functions are Choquet capacities. Hence, Choquet's theorem reduces our
analysis to the study of compact s€éis

Henceforth{¢. }.~0 denotes the Gaussian approximation to the identity,

2
. 0 (x) = (2mes) Y “exp _x_|| VxeR?y e>0.
(5.24) (x) 1= (2me?)~/2 ”22
e

As we did earlier, we choogee (0, 2] and an integep > 1 such thatep =d — .
We bring inp independeng-stable Lévy processegy, ..., X, and construct the
corresponding additive Lévy proceds= X & X defined by (5.2).

Let us start with setting some preliminary groundwork. To begin with, we define
a (1+ p)-parameter filtratiory := {S(t)}tepr by definingg(t) to be the sigma-

algebra defined byA(r)}; ;. Without loss of generality, we can assume that each
F(t) has been completed with respect to all measuggs R R?). We remark that
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§ is, indeed, a filtration in the partial ordet. By this we mean that whenever
s<t, theng(s) C F(t); a fact that can be readily checked.

Next we define, for anyu € £(G), the (1 + p)-parameter process
(M, (t)}teRﬁp as follows:

(5.25) Mpuge() = B3, [Ou(¢0) 5] VteRY™,

where Q,(¢;) is defined by (5.3). It should be recognized thgte, is a(1+ p)-
parameter martingale in the partial orderand in the infinite-measure space
(2,3, P,,). By a martingale here, we mean that whenessert, then R ,-almost
surely,

(5.26) Eri[Mu9:(D[S(9] = Mppe(S).
By specializing Lemma 4.1 of Khoshnevisan, Xiao and Zhong (2003a) to the
present setting, we obtain the following:

En[Mup-(h)]=1  VteRX?,

(5.27)  sup Ey,[(Muge ()] = 20)™ /R e ®)PENO,. ()71 dk

1+p
teRy

P ||~ 2 .
E 2 ||¢8||£2(QZP)3

see Lemma 5.1 for the last line.

Next, we work toward a bound in the reverse direction. For this, we note that

4+p
foranyse Ry'",

(5.28) Mup:(9 = Ey, [ | e (A(t))u(dt)}&(s)} = [ Pspa@)nan,
t>s t>-s

where

(5.29) Pig(x):=E[g(x + At)] VteRI'’ xeR?

and the last equality in (5.28) follows from the Markov property of the additive
Lévy processA under R,. See Khoshnevisan and Xiao [(2002), Proposition 5.8]
or Khoshnevisan, Xiao and Zhong [(2003a), Proposition 3.2].

Now suppose that; C (0, oo) is compact, and Eg(X(G))] > 0. By (5.21),
this is equivalent to assuming

(5.30) E[*4(A(G x RY))] > 0.
By (5.28), B ,-almost surely,

M (S) Z/ Pi_spe (A(9)) p(dt) - 1 as)|| <8}
(5.31) s

- /t>sE[%(A(S) + At = 9)|A(9)u(dt) - La)<s)
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where {A/(t)}teRHp is an independent copy o{A(t)}t€R1+,,. In particular,
+ +
P, ,-almost surely,

(5.32) Mup:(s) z/ inf — E[ge(z+A'(t—9)]r@t) - 1jae)<s)-
t>szeRd: ||z]|<8
On the other hand, one can directly check that
/t inf  E[gs(z+ A'(t—9)]u(dt)
-

szeR9:|z]<é

o0 o) o.¢] P . -
:/ / / inf  Pr_spe(z)e” == u(dio) di.
N} 51 N

p 2€R?:|z]|<8

(5.33)

According to Lemma 3.1 of Khoshnevisan, Xiao and Zhong (2003a),
Pi—sp:(0)

(5.34) — 20 / de_(tO—SO)‘I"(f)—Zle(fj—Sj)”f||a—(1/2)€2||$||2 dE.
R

Because the left-hand side is strictly positive, so is the right-hand side. In addition,

oY) 00 P ) N
/ / f Pr_sp:(0) e~ Zi=1" i (d1g) di
Ko) 51 Sp

:(Zn)‘d/oo/ e—(1/2)82||§||2—(to—sO)‘~l/(£§)
(5.35) s JRE

p (X) «
« Hf e~ O=DIEI=Y gy dE 11 (dto)
j=1"%

— @r)te Tiaas / * / V2RI P ve) 45
so JRI A+ 1E1%)”?

We plug this into (5.32) and deduce the following from Fatou’s lemmga:amost
surely, for allse Q1*7,

_yP .
Mu9:(9) = a5 (27) " (1+ o(D))e” Zi=1"

00 d
y / / o~/ P~ Gto-soywie) 48 — udio),
so JRE A+ g%

whereo(1) is a term that goes to 0, uniformly ihand . (but nots), asé — 0.
(This follows merely from the Lipschitz continuity of;.)

For any$ > 0, defineG? to be the closed-enlargement of5, and note that
G’ is compact inR,. Choose some poinh ¢ R, and let7%! denote any
measurablgéQ, N G®) U A-valued function orf2 such tha®! A if and only if
there exists somee [0, []” such that| A(T?%*,7)|| < 8. This can always be done

(5.36)



LEVY PROCESSES AND CAPACITY 861

since theX ;’'s have cadlag paths, and sinBg0, §) := {x € RY: ||lx|| < 8} has an
open interior. It may help to think, informally, th@?-! is any measurably selected
pointin G? such that, for somée [0, [17, ||A(T%!,7)| < 8, as long as such a point
exists. If such a point does not exist, then the valugdf is set toA. [Warning:
This is very close to, butot the same as, the construction of Khoshnevisan, Xiao
and Zhong (2003a).] Thus, (5.36) implies thaj flmost surely,

2r)~4(1+0(1))

SUP Mu@e(S) = Lipsisny

1+p epl
5.37 "
(5:37) 0 o= (/DE2ENP—(to—T> )W (E)
X d dro).
Jrs b L+ 19 o)

Finally, we choose: € P(G?) judiciously. Fix/ > 0, and define

P T% o, T3 £ A A <k}

5.38 SOE
(5.38) u>* (o) P (T # A, ||AO)|| <k}

Then, thanks to (5.30), for all sufficiently largeu’* € 2 (G?%); see Khoshnevisan,
Xiao and Zhong [(2003a), (4.3)] and its subsequent display. Furthermore,
P,,-almost surely,

21)~*(1+0(1))
SUP M s5k9e(S) = Lipsizen jao=) o
1+p e

R}
© o= (W/DE2|ENP(10—T> )W (E) 5k
I e o e L)
We can square both sides of this inequality, and then take expectations to deduce

that
2
Ekd|:< sup Mﬂa.k(pg(S)> :|

1+p
seRy

> P, (T £ A, A <k} x (27) 2 (14 o(1))e™ 2!

(5.39)

(5.40) <Bu| ([, [, s w‘vkwro))z(r*’l #8140 <]

=P (T # A JAQ)|| <k} x (21)" % (1+ o(D))e 2"

/O@(foo/ e~ /22§ P~ =) ¥ (&) 5k 2
x dg ) ) ).
o \Jy Jrd A+ IEN9)P

From the Cauchy—Schwarz inequality, after making an appeal to the fact that in
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the integrand: > y, we can deduce the following:

2
EM[( sup Mﬂa,k%(s)) ]

I+p
seRY

> P (T % AL A <k} x 2m) % (1+ o(1))e 2!

y </-OO/OO/ e_(l/z)ezug||2_|x_y|\p(sgr(x—y)§)
o Jy Jrd

2
X [(L+ [E1%)P ] de u“(dx)u‘”‘(dy)) .

This time, o(1) is a term that goes to 0, uniformly over &l> 1, as§ — 0.
We intend to show that, in the preceding display, we can replace, at little cost,
f;’o by /5. In order to do this, we need some preliminary setup. Most significantly,

we need a new partial order on the enlarged parameter Ep}ét’c?e
For anys, t € RY7, we write
(5.42) St &< so=>1 butforallj=1,...,p, s; <t;.

(5.41)

This is an entirely different partial order from, and gives rise to a ne{d + p)-
parameter filtratiorfR := {ER(t)}teRHp, wherefi(t) is defined to be the sigma-
+

algebra generated byA(r)}r <. Without loss of generality, we can assume that
eachM(t) is complete with respect to every, Rx € RY). As we did forF, we
remark thatr is a filtration in the new partial ordex and, under ther-finite
measure P,, X satisfies the Markov property with respect® (The Fraktur
lettersg andfR are chosen to remind the reader of “forward” and “reverse,” since
they refer to the time-order of the procesy

Consider the(1 + p)-parameter process, t.s ¢, := {Nuk,swg(t)}teRfrp that is

defined by the following:

(5.43) N ks 9 (1) := By [0 (9) R,
Clearly, this is a martingale in the partial ordgr

By using a similar argument as that which led to (5.41), we arrive at the
following (here, it is essential to work with the infinite measuye istead of P):

2
EM[< sup Nua,kQDS(S)) ]

1+p
seRY

> P AT £ AL A <k} x 2m) 2 (1+ 0(1))e 2!

y ( / > / Y / o~ (/2022 |x—y| W (sgix—y)é)
0 0 JRA

2
x [+ [E1%)P ] de M"(dx)w’k(dy)) .

(5.44)
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[En route, this shows that the terms inside-)2 are nonnegative real t0o.] Thus,
we add (5.41) and (5.44), and us@?+ b2) > (a + b)?>—valid for all reala, b—to
obtain the following:

2 2
EA"[( sup Mﬂé,k@g(5)> ]+EM[< sup Nﬂa,upg(s)) ]

1+p 1+p
seRY seRy

> P T # A, | A < k) x ( n o(1>)e—2pl

1
2(2m)%

y (/OO/OO/ e_(l/z)é\z“é”2_|x_y|\lf(sgr(x—y)5)
o Jo Jrd

2
« [(L+ €171 de ;L‘S’k(dx)u‘s’k(dy)) .

(5.45)

Now the integrand is absolutely integraljlét x du*® x du*%]. Thus, by the
Fubini—Tonelli theorem, we can interchange the order of the integrals, and obtain
the following:

0o oo p o= (1/2E% 5P —lx—y|W(sgnx—)§) 5k 5k
dg > (dx)p>
hoh ke A+ €7 S

o~ L7222
— R 8,k d
fR,,, At oy e

(5.46)

—ap (94 —(1/2)€?|€1I” =P —ap (9 \d =12
2@ [ e Q%) 2 2 @ Wil ey
In the above, the first inequality follows from (5.8) and (5.10), and the second
inequality follows from O< @.(§) < 1.
In other words, after recalling (5.10), we arrive at the following:

Exd[( sup Mﬂs.k%(s))z} +EM[( sup Nﬂg’k(pg(s))z]

1+p 1+p
seRy seRy

ﬂ ||@||4 w
e2rl21+2ap oCZ(QHg,]()

(5.47)
> P AT # AL |A0)]| < k) x

We recall thato(1) is a term that tends to zero, &s» 0, uniformly in all of the
variables except.

It turns out that, under the infinite measurg, Pooth filtrationsg and ‘R are
commuting in the sense of Khoshnevisan [(2002), page 233]; see Khoshnevisan,
Xiao and Zhong [(2003a), proof of Lemma 4.2, page 1111] for a discussion of
a much more general property. Thus, by the Cairoli inequality [Khoshnevisan
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(2002), Theorem 2.3.2, Chapter 7],

2
x| sUp Myne9) | <471 sup EL1m2. )

1+p 1+p
seRy seRy

(5.48) = 47*1 sup Ey[(0,0k(¢0)?]

1+p
seRy

p+lopa—~2
= 4 2 ||¢8||£2(ng,k)
[cf. (5.25) and (5.27); the fact that Pis not a probability measure does not cause
any difficulties here]. Moreover, the preceding remains valid if we repges
by N,«s everywhere. Thus, solving the preceding two displays leads us to the
following:
(5.49) P AT # A JAO)] <k} < ' 2P2HPH2 (L4 0(D) G2 50 g -
Ms,k
Now we letk — oo and appeal to Fatou's lemma to see that there must exist
wd e P(G®) such that
(5.50) Py 7% # A) <X 22D (Lt 0(D) G 5 -
ud
In order to deduce the above, note that all of the probability measgufey ;-1
live on the same compact s6t. Therefore, we can extract a subsequence that
converges weakly ta® € 2 (G?). To finish, note that@; (£)|2 = exp(—e2|£]1?)
is a bounded continuous function ®fand it is in L1(R?). Hence, by the Fubini—
Tonelli theorem, we have

—~2
||</’e ” “CZ(Qa[;,k)

I

5 5@~ IS W (SONs—1)§)

_ e lEl dg]u‘s’k(ds)u‘s’k(dt),
// [/Rd L+ (1EID*>P

and the kernel in the brackets is a bounded continuous functign of. So we
obtain the asserted bound in (5.50).

Next, we lets | 0in (5.50), and appeal to Fatou’s lemma and compactness once
more in order to obtain the following: There exisise & (G) such that

V7RV i W AT} =2

(5.52) P, (0€ AG X [0.117) < cprall@l 5 -
where ¢, o 1= 2P 221+eP)+2p \We can now lete | 0, and appeal to the
monotone convergence theorem, to see that

E[14(A(G x [0,1]7))] < P;,{0€ A(G x [0,1]7)}

(5.51)

(5.53)

_ Cpla

=2
=Cpla 8'[)“0 ||§De||£2(QZp) = W-
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In accordance with Remark 5.3, for this choice jofe £(G), we have the
following:

(554) E[(AGx[0.1)] >0 = [ &, (el " dt <+oo.

At this stage, we can apply Theorem 4.4 [see also (5.20)], conditionally, with
F := X (G) to deduce that (5.30) holds if and onlydf,_., (F) > 0 with positive
probability. Hence, we have proven (5.23), and this completes our proof.

REMARK 5.5. Our proof of Theorem 2.2 is a self-contained argument for
deriving the following:

(5.55) E[C4(X(G)]>0 <= inf / Exe WIIENP d& < +o0.
neP(G) JRA
We can then use Proposition 2.8 to conclude that the preceding is also equivalent
to the condition thak (G) almost surely has positive-dimensional Bessel-Riesz
capacity.
In this remark, we describe a proof that (5.55) implies Proposition 2.8. To do
so, we need only to prove that

(6.86)  inf /Rd ExeWIENPdE <00 = Cp(X(G)>0 as.
That is, we assume that there exigtg £ (G) such that/gs €, (w)II€1P74 d& <
+o00, and prove that, with probability on€4(X (G)) > 0.

For such a probability measupe € #(G), we define the occupation mea-
sure A, of X by A,(A) := [14(X(s))u(ds), for all Borel setsA C R?.
Informally, this isexactly the same as (14), wherep = 0; see (5.3). Note that
A, € P(X(G)) a.s. and thanks to Plancherel’s theorem in the form of (7.22) be-
low, there exists a constarff ; such tha€g (A ) = ¢ 4 Jra 1AL (&) 12)E11P~4 dg.

On the other hand, by (5.7) (with:= 0), E[|7\;(S)|2] = &y, (). Thus,

(5.57) Bl (A1 =i [, ExGIEN" ds.

which is finite. Thus£g(A,,) is finite almost surely, whence (5.56).

6. Kahane's problem for self-intersections. We now return to Kahane’s
problems, mentioned in the Introduction, regarding wiXeiF) N X (G) # @ for
disjoint setsF" and G in R,.. The following is the most general answer that we
have been able to find.

THEOREMG6.1. If X isaLévy processin R? with Lévy exponent W, then given
any two digjoint Borel sets F, G C Ry, E[L;(X(F) © X(G))] > 0if and only if
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there exists © € P (F x G) such that

/Rd 8x;®x75 (n)d§
(6.1)

= /Rd // xe(s1—11) x—g(s2 — ) u(ds)pu(dr) d§ < +oo.

If, in addition, the distribution of X (¢) is equivalent to A, for all > 0, then the
above condition (6.1)is also equivalent to P{X (F) N X (G) # @} > 0.

In the symmetric case is real and positive. So by the Fubini—Tonelli theorem,
we have the following:

COROLLARY 6.2 (Kahane's problem). Let X be a symmetric Lévy process
in R with Lévy exponent W. If the distribution of X (¢) is equivalent to A4 for all
t>0,thenP{X (F)N X(G)# @} >0ifandonly if Cr(F x G) > 0, wherefor all
x € R?,

(6.2) = [ g @retdei= [ e nihedve gg,

EXAMPLE 6.3. If X is a symmetrica-stable Lévy process iR?, then
Y(E)>0 andc|E]|* < W(€) < C||&||* for some constants & ¢ < C, and
we readily obtain the following consequence which solves the problem, due to
Kahane, mentioned in the Introduction:

(6.3) PIX(F)NX(G)#2)>0 <= Cu/u(F x G)>0.

This was previously known only when= 2; that is, wherX is a Brownian motion
[Khoshnevisan (1999), Theorem 8.2].

Now we begin proving our way toward Theorem 6.1. The first step is a
simplification that is well known, as well as interesting on its own. Namely, in
order to prove Theorem 6.1, it suffices to prove the following:

THEOREM6.4. Suppose X1 and X are independent Lévy processin R with
Lévy exponents W1 and W2. Then, given any two Borel sets F; and F», bothin R,
E[Lq(X1(F1) © X2(F2))] > 0if and only if there exists u € $ (F1 x F>) such that

(6.4) /Rd ng\yl@xiez (n)dté < +o0.

If, in addition, the distribution of X166 X»(7) isequivalent to A, for all 7 € (0, 00)2,
then the above condition is also equivalent to the condition that P{X1(F1) N
X2(F2) # 2} > 0.
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PROOF  Consider the two-parameter additive Lévy procﬁ’s& X1 6 X,.
The Lévy exponent of the proceXS|s the functlonlll(s) = (V1(&), Ua(—£)); of
course, Wy (—¢§) is the complex conjugate oF,(£). The necessary and sufficient
condition for the positivity of Er; (X 1(F1) © X2(F>2))] follows from Theorem 4.8.
To finish, we can apply Lemma 4.1 with the choics= {0} andG := F1 x F>.

O

We are finally ready to prove Theorem 6.1.

PROOF OF THEOREM 6.1. It suffices to prove this theorem fét and G
compact subsets ¢, .

We can simplify the problem further by assuming, without loss of generality,
that there exist &< @ < b < ¢ < d such thatF C [a, b] andG C [c, d]. Choose
any nonrandom number € (b, ¢), and note that the translation invariancexgf
implies thatA; (X (F) © X(G)) > 0 if and only if .4 (X1(F) © X2(G © 1)) > 0,
whereX1(t) ;= X(t) (0<t <t)andXy(¢) ;=X + 1) — X () (r = 0). Clearly,

X, and X, are independent Lévy processes both when expoweis verified
automatically. Thus, by Theorem 6.4,

E[r(X(F)© X(G))] >0

(6.5) :
— Me?(pIGer)/l;d Exc@n-¢ (W) d§ < +oo.
By the explicit form of the latter energies [cf. (6.1)], the above condition is
equivalent to the existence ofe » (F x G) such that/. Exeoy_e (v) dé isfinite.
This proves the first half of the theorem.

Now suppose, in addition, that the distribution0fz) is equivalent tox, for
all 7 > 0. Consider the two-parameter additive Lévy proc€ss: X1 & X2, where
X1 and X are the same processes we used earller in this proof, and note that
the distribution ofX(t) is equivalent tav, for all 7 := (1, 12) € (0, 00)2. Hence,
Lemma 4.1 implies that

PIX1(F)NX2(Go1)#2}>0

(6.6) 8 d
T er (FXG)/ xe®x—¢ (W) d§ < +00.
Equivalently,
P(X1(F)N X2(G 6 1) #2|X(r)} >0  with positive probability
6.7)

- inf
HEP(FXG) /Rd 8X€®ng (n)dé < 400,

where X(t) denotes the sigma-algebra generated{¥yu); u € [0, t]}. Now,
X2 is independent of(r) and X1. So we can apply Lemma 4.1 [with := 1,
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F replaced withZ & X1(F), and X replaced withX>] to deduce that for any
a.s.-finiteX(r)-measurable random variahile

PZ® X1(F)NX20GO1)#9|X(1)} >0 with positive probability

(6.8) » 8 d
= ”“E?I?FXG) R XE®x=¢ (n)d§ < +o0.
ChooseZ := —X (r) and unscramble the above to conclude the proif.

Kahane (1983) has also studied the existence of self-intersections of a
symmetric stable Lévy process = {X ()} whent is restricted to the disjoint
compact subsetg;, Eo, ..., E; of Ry (k > 2). The proof of Theorem 6.1 can be
modified to give a necessary and sufficient condition fof &1) N -- - N X (Ey) #

@} > 0. For simplicity, we content ourselves by deriving the following result
from Theorem 4.2 under the extra assumption ta symmetric and absolutely
continuous. We point out that whén= 2, the conditions of Theorem 6.5 and
Corollary 6.2 are not always comparable.

THEOREM 6.5. Let X be a symmetric Lévy process in R? with Lévy
exponent W. Suppose that, for every fixed ¢ > 0, e=¥©) e £L1(R?). Then, for all
digoint compact sets E1, ..., Ex CR4, P(X(Ep) N---N X (Ey) # 2} > 0if and
onlyif Cs(Ey x E2 x --- x Ey) > 0.Here,

f@ =@ |

R

k
e eXp(— ; x| W (Ej—1— @)) d&
(6.9) I=

Vx e Rk,
We have written & e RY*—D as¢ := £ ® --- ® -1, where £; € R?. In addition,
§0:=& :=0.

PrROOF By the proof of Theorem 6.1, it suffices to considemdependent
symmetric Lévy processeXy, ..., X; in R? with exponentw. We define a

multiparameter process := {)_é(t)}teR’jr’ with values inR*—D4 by

(6.10) X(1) = (X2(t2) — X1(t1), ..., X () — Xp—1(t-1)).

Then X can be expressed as an additive Lévy procesBfrDe with Lévy
exponent(Wy, ..., W), where foreveryj =1, ..., k, ¥; is defined by

(6.11) W) =W(Ei1—E)  VE=(1,..., &) eREVL

It is easy to verify that, under our assumptioﬁsis a symmetric and absolutely
continuous additive Lévy process whose gauge function is given by (6.9). Because
P{N%_1 X;(E;) # @} > 0 if and only if AX~(0) N (E1 x -+ x Ep) # @} > 0,
Theorem 6.5 follows from Theorem 4.2 and Remark 4.3. Related information can
be found in Khoshnevisan and Xiao [(2002), pages 93 and 94].
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7. Examples of capacity and dimension computations.

7.1. Isotropic processes. image. Throughout this section we consider an
isotropic Lévy procesX := {X(r)};>0 with an exponent¥ that is regularly
varying at infinity with indexx € (0, 2]. Thus, we may write

(7.1) w(E) = €I IE)  VE e RN\{O).

Here,« : (0,00) — R4 is a function that is slowly varying at infinity. We now
derive the following application of Theorem 2.2 for a broad class of such
processes.

THEOREM 7.1. Suppose « : (0, o0) — R is continuous and slowly varying
at infinity. Then, for any nonrandom Borel set G c Ry, and all 8 € (0, d),

(7.2) Cp(X(G)=0 as <<= C,(G)=0,
where
(7.3) g (x) == x| 7P e (x| 1P

Here, ¥ isthe de Bruijin conjugateof «.

REMARK 7.2. It is known that* is a slowly varying function [Bingham,
Goldie and Teugels (1987), Theorem 1.5.13]. In many cases, the furéta@m be
estimated and/or computed with great accuracy; see Bingham, Goldie and Teugels
[(1987), Section 5.2 and Appendix 5].

REMARK 7.3. If, in Theorem 7.1, we further assume that the functi¢s)
is regularly varying at infinity, then we can choageas follows:

-8

(7.4) s =t el )]
|x]

The proof of this will be given in Remark 7.6 below.

BecauseC, is determined by the behavior g¢f at the origin, Theorem 7.1
follows from Corollary 2.4 at once if we could prove that

(7.5) 0 < liminf 24=2%) _ jim sup 22 ™
|x]—0 gK(x) |x|—0 gK(x)

< 400
Recall (2.7), integrate by parts, and change variables to see that
o o —1l/a
(7.6) 1P famp ey =g [ e RO L,
0

wherev, := 14_1(59~1). Our next lemma will be used to describe the asymptotic
behavior of f;_g(x) for x near zero. We adopt the following notation: Given two
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nonnegative functions andg, andxg € [0, co], we write i(x) =< g(x) (x — xo)
to mean that there exists a neighborh@daf xo such that uniformly for € N,
the ratio of(x) to g(x) is bounded away from zero and infinity. @f = +oo,
neighborhood holds in the sense of the one-point compactificatid,ofif no
range ofx is specified, then the inequality holds for al)

LEMMA 7.4. Under the conditions of Theorem7.1,for any 8 > 0O,
o o
(7.7) f R (n — 00),
0
where ¢, isany solutionto ek (ne,) = 1.

PROOF Let us begin by proving the existence @f,},>1. It follows from
(7.1) that, for every fixed integer > 1, lim,_,ox%k(nx) = 0 [since ¥ (0) = 0]
and lim,_, o x¥k (nx) = oo (sincex is slowly varying at infinity). The assumed
continuity ofx in (0, co) does the rest.

Next we note that, for any integer> 1,

(7.8) (ney)%k(ney) =n”.

This implies that lim_, oo ne, = +00.
Now we estimate the integral in (7.7). It is easier to make a change of variables
(s :=r/e,) and deduce the following:

(79) /oo e,ra;((nr)rﬂfldr _ 85 /00 efgg;c(nens)sasﬂflds — S,IETW
0 0

Our goal is to show that, < 1 (n — o0). Note that if« (x) < 1 (x — o0), then
gy xlandsdly, <1 (n— 00).

In the general case, it is not a surprise that this is done by analyzing the integral
over different regions; this is what we do next. We will need to make use of the
representation theorem and the uniform convergence theorem for slowly varying
functions; see Bingham, Goldie and Teugels (1987).

Thanks to (7.8), we have

o0 o o —
/ e ek (neys)s sﬁ 1dS
1

o0
exp(—e,‘;‘lc(nsn)s“ M) sPLlds
1 k(neyp)

J
= /;Oo ew(—ﬂM)sﬂlds

Kk (ney)

(7.10)

o0
S[ eXp(—sa_a)sﬂ_lds < 00,
1
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where 0< § < « is a constant, and we have used the representation theorem for
in order to derive that

Kk (ne,s) -
k(ney) —

(7.11) for all n large enough.

On the other hand, sinaeis nonnegative, we have
1
5

Finally, it follows from (7.8) and the uniform convergence theoremcfdinat

2 2
/ e Enknens)s® (f=1 go / exp(—s“ L’wns)>sﬁ_lds
1 1

K (ney)

1 1
(7.12) / e ek nens)s" B g < / sPlds =
0 0

(7.13) ,
—>/ exp(—s®)sPLds asn — oo.
1

Combining (7.10), (7.12) and (7.13), we see tlfigt< 1 (n — o0), as asserted.
O

LEMMA 7.5. Under the conditions of Theorem 7.1, (7.5)holds.

PROOF Let f(x) := x%k(x) (x > 0). Becausef is regularly varying at
infinity, it has an asymptotic inverse functigh™ which is monotone increasing
and regularly varying with index/kv; see Bingham, Goldie and Teugels [(1987),
page 28]. Furthermore, it follows from Proposition 1.5.15 of Bingham, Goldie and
Teugels (1987) that < can be expressed as

(7.14) o)~y il asy — oo,

wherex* is thede Bruijin conjugate of «.

Now we apply Lemma 7.4 with := |x|~%/%, and recall (7.6), to deduce that
|x|P/ fa_g(x) < ef (x| = 0). For all n > 1, sincee%x (ne,) = 1, we have
f(ne,) = n“. Recall thatne, — co asn — 0o, SO our remarks ory < prove
that e, ~ n=1f < (%) ~ «*(n) (n — 00). Whence we havex|#/* f;_g(x) =
k*(lx|~Y) 18 (|x| — 0). This completes the proof of Lemma 7.5

REMARK 7.6. In order to prove Remark 7.3, we will use the following
connection betweer and its de Brujin conjugate®:

(7.15) K (x) ~ [k ()CK#()C))]_l (x = 00);

see Bingham, Goldie and Teugels [(1987), Theorem 1.5.13]. Now we assume,
in addition, thatx(e’) = t7£(t) for t > 0, wherey is a constant and(-) is
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slowly varying at infinity. Then we can write(x) = (Inx)¥£(Inx) for all x > 1.
Consequently,

Inic#(x) T e(nx +Ink#(x))
Inx £(Inx)
Sincex* is slowly varying at infinity, we have la*(x) = o(Inx) asx — oc. This,

and the representation theorem f@r), together imply that(Inx + Inx*(x)) ~
£(Inx) asx — o0o. Hence, it follows from (7.15) that

(7.16) K (xic*(x)) = ke (x) |:l—|—

(7.17) k*(x) =< (x = 00).

K(x)
Using again the assumption thate’) is regularly varying at infinity, we deduce
that Theorem 7.1 holds for the functigp defined by (7.4).

7.2. Dimension bounds: image. For our next example, we consider the case
where X is an isotropic Lévy process iR? and satisfies the following for two
fixed constants, n € (0, 2]:

(7.18) IEI1PTD < w(E) < €7D (5] - o0).
A change of variables reveals that, for ghg (0, d),

log fa— log f—
(7.19) B iming °9/d=80) _ i g9 a1 _ B

n ri1 log(1/r) r0  log(d/r) P
Solve for the criticalg to see that (G) > §dimG andJ(G) < ndimG. Thus, in
this case,

(7.20) sdimG <dimX(G) <ndimG a.s.

A

Note that the above includes the isotropiestable processes, as well as Lévy
processes with exponents that are regularly varying at infinity. Examples of the
later processes can be found in Marcus (2001). More generally, a large class of
Lévy processes satisfying (7.18) can be constructed by using the subordination
method. LetY := {Y()};=0 be an isotropicu-stable Lévy process iR¢ and

let  := {t(¢)};>0 be a subordinator with lower and upper indicesand g,
respectively. Then the subordinated proc&ss= {X(7)};,>0 defined byX () :=

Y (t(t)) is a Lévy process satisfying (7.18), with= o« andn = Ba. For other
results along these lines see Blumenthal and Getoor (1961) and Millar (1971).

7.3. Isotropic processes: preimage. SupposeX is isotropic, satisfies the
absolute continuity condition of Corollary 3.2, and the regular variation condition
(7.18) holds. Then, for any € (0, 1),

(7.21) [lg"7 D@ <Re

1 5(y—D+o(l)
<Re( g1 1€l (Il — 0o).
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Now recall that, for any3 € (0, d), the inverse Fourier transform & > x>
x| ~# is a constant multiple of — ||£]|#~¢. Thus, by Plancherel’'s theorem, for
anyv € P(RY),

(7.22) s =cap [, PO €N ds:

see Mattila [(1995), Lemma 12.12] and Kahane [(1985a), page 134]. Thus, thanks
to the Frostman theorem (2.8), we have the following calculation in the present
setting:

n+dmR—d

. _ §+dimR —d
(7.23) f < | dimX l(R)”LOO(P) <—

8

Whens =5 :=«, (3.2) and (3.3) are ready consequences of this.

In fact, one can do more at little extra cost. Instead of isotropy, let us assume
that ¥ satisfies thesector condition: As ||&|| — oo, ImM¥ (&) = O(Re¥ (§)).
A few tedious, but routine, lines of calculations (see below) show that given any
y € (0, 1), W17 also satisfies the sector condition, and so there exists a constant
¢ > 0 such that, for alk € R?,

C 1 1
(7.24) W5R‘3(1+\111—7’($)>S 11+ w@r

If, in addition, there exists,n € [0,2] such that|£|°T°D < Rew(¢) <
£ (& — o00), then (7.23) holds. Another simple consequence of this
example is that (3.4) continues to hold for all striatlystable processes. We leave
the details to the interested reader, and conclude this subsection by verifying the
claim that whenevew satisfies the sector condition, then so d@édor anya € R
with |a| < 1.

Write W(z) := |W(z)|e!?@, wheref(z) e [-r, 7]. By the sector condition
on VY, there existg > 0 such that, for al||&|| large enoughlimW¥ (&§)] < cReW (§).

But

Imw©)] _

7.25 iN@@&))| =
(7.25) ISINOEN = =g & = T2

:=sin(n) <1,

wheren := sin"1(c/+/1+ ¢2). This means that for any fixede R with |a| < 1,
cogaf(&)) = cogan) > 0 as soon a§s| is large enough. Therefore, there exists
& :=co09an) > 0 such that for any € R with |a| < 1, and all||&] large,

(7.26) Rew“(§) = |¥ ()| codab (§)) = e|W(§) | = e[ W ()] = [Im(W*(©))].

This proves that the sector condition holds fioft.
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7.4. Processes with stable components. A (Lévy) process X with stable
componentsis ad-dimensional process with independent componénts..., X,
such thatX; is an «;-stable Lévy process ilR%, whered = ﬁ.’:ld‘,-. By
relabelling the components, we can and will assume throughout thatr2>
ar>--->ap>0.

Pruitt and Taylor (1969) have studied the rangeXgfand proved that, with
probability one,

o1, if a1 <dy,

7.27 dmX(Ry) = .
( ) MXR+) 14+ a2(1— 0{1_1), if 01 >di1=1.

Becker-Kern, Meerschaert and Scheffler (2003) have recently extended (7.27) to a
class of operator-stable Lévy processeR{nwhich allow dependence among the
componentsXy, ..., X,. Their argument involves making a number of technical
probability estimates, and makes heavy use of the results of Pruitt (1969). As a
result, they impose some restrictions on the transition densiti&s of

In the following, we give a different analytic proof of the result (7.27). Since
we do not need probability estimates, our argument works for more general Lévy
processes than those of Pruitt and Taylor (1969). In particular, we expect that
our method will work for the cases that have remained unsolved by Becker-Kern,
Meerschaert and Scheffler (2003).

PROPOSITION7.7. Let X be a Lévy process in R?, with d > 2, whose Lévy
exponent ¥ satisfies the following:

(7.28) Re( L ) = 1 ‘ as|&|| — oc.
1+W¥(E) 2= 18j1%
Then almost surely,
. a1, ifag <di,
7.29 dmX(Ry) =
( ) mX(R+) !1—1—0{2(1—0111), if a1 > dq.

REMARK 7.8. Condition (7.28) is satisfied by a large class of Lévy processes,
including the Lévy processes with stable components considered by Pruitt and
Taylor (1969), as well as more general operator-stable Lévy processes. Moreover,
one can replace the power functiggs|®/ by regularly varying functions and the
conclusion still holds. In particular, (7.29) still holdsXfis a Lévy process ifR?
whose components involve independent asymmetric Cauchy processes.

PROOF OFPROPOSITION7.7. For anyy > 0, it follows from (7.28) that the
integral in (4.18) is comparable to

. 1 d&
i [ e
(EeRd g1z 1430511817 lIE]]

(7.30)
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Notice that/,, = oo for all y > «,. Hence, we always have dif(R;) < «, almost
surely (Corollary 4.7).

Now we derive the corresponding lower bound in the casedhat d;. It is
sufficient to work with the two-dimensional Lévy proce¥s= (X1, X2). Hence,
without loss of generality, we will assume that 2.

Clearly, if di =d = 2, then it follows from (7.30) that/, < oo for all
O0<y <ag. Thus, Corollary 4.7 implies di¥(Ry) > «, almost surely, as
desired. So we only need to consider the case whenl andw; < 1. Write

. 1 poo oo prl 1 dé1dé
AR —
1+86°+6° & "+4&
o0 o0 1 dé>
Y e
1 1 1+Sf1 +£_-32 &-f V+g‘-22 Y

— 7D @
=07+ L7

ForanyO<y <a1 <1, I,Sl) is finite, and

1<2></°° dgy ./OOL
= a P P
14 1 1+$11 1 51 V+%-2 Y

/OO 1 d& /OO dé;

< — T - - <

=/ 1+€:11 é%_y 0 1+$§—}’

Consequently/,, < oo for all y < «;. It follows from Corollary 4.7 that, when

a, <di, dimX(R;) > «, almost surely. This proves the first part of (7.29).
Next we prove the second part of (7.29). Since> di = 1, we havew, <

1+a,(1—a; ) < 1. Foranyy > 1+a,(1—a; 1), in order to prove thak, = oo,

we will make use of the following inequality: > 1+ y anda > 0, then for all

constants:, b > 2 that satisfyp*/*a =1 > K7,

(7.31)

(7.32)

S dx
/1 b+x® (a?+x2)d-1)/2

] I
a1 b+a%x® (1+x2)Wd-r)/2

(7.33)

K bl/(x -1
o 4 d=1-y) / e 1 dx
- a1 b+a*x® (14 x2)d=v)/2
> Kob La=W@=1-v)
whereK1 and K> are positive and finite constants.

We rewrite the integral in (7.30) in all coordinates and relabet, .. ., o), for
each coordinate in an obvious way (now denotedsas. ., o) to derive

(7.34) L= [ da | ; o
1 1 1481+ 4,4 lENTY
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If d > 2, then we iteratively integrate the integral in (7.34f; x d&;_1 x
- x dé&3], and use (7.33)] — 2 times. (Note that, for the obvious choices of
a andb, the conditionh/?¢—1 > Kl_1 holds for some constai; > 0 because of
the assumptionr; > a2 > -+ - > ay.) As a result, we deduce that there is a constant
K3 > 0 such that
dé&

KA l®
(7.35) I, > K3/ dglf Y K3I®.

Clearly, this inequality also holds fat= 2. A change of variables then yields

1(3):/00 d&; /00 1 o dx
v 1 %_l—i-az y El—l ffl_az 1 x% 1+ x2v
/ d& /00 1 ‘ dx
2 1+a2 Y )1 %_otl—az +xa2 xZ—V
/ dé1 oy =) (L (1=y) /ety) / dy
=3 1+“z v 1+y°‘2 y2 v

dé,
Z K4/; o +(1=y)oy oy
§1

Recall thaty > 1+ a,(1 — 1. Equivalently, we haver, + (1 — y)a, /o, < 1.
Combining (7.34)—(7.36) together yields = oo; this proves that dinX (R;) <
1+a,(1+a1), as. (Corollary 4.7).

Finally, we prove the lower bound for dim(R+.) in the case that, > d; = 1.
Again, it suffices to assume thdt= 2; otherwise, consider the projection &f
into R?. Forany 1< y < 1+a,(1—a; 1), we have 2- y +a, > 1; hence, (7.31)
implies that there exist positive and finite constakitsand Ks such that

(7.37) I, <Ks+Kel®.

(7.36)

As we did for (7.36), we can prove that

13 _ /Oo dé1 / / dx
v 1+°‘2 V[ e E51702 4y 14 x2v
RO . S b P g
' - Ita,—y 1ta,—y oy —o, o 1+ 2—y
Log Log Lg% *

_ o dgg 00 d&; 00 1 dx
—_/;_ Ito, —y +/1 o +(1=y)ay /o, 0 1+x* ' x%r’
51 Sl

Observe that all three integrals in (7.38) are finite becauseyl< 1+ «,(1 —
al—l) <a, and 2— y + a, > 1. It follows from (7.37) that/,, < oo for all y <
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1+a,(1—a;1). Hence, Corollary 4.7 implies that dif(R}) > 1+a,(1—ab),
a.s. This finishes the proof of Proposition 7.7]
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