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ON THE STOCHASTIC CALCULUS METHOD
FOR SPINS SYSTEMS

BY SAMY TINDEL

Université Henri Poincaré(Nancy)

In this note we show how to generalize the stochastic calculus method
introduced by Comets and Neveu [Comm. Math. Phys.166 (1995) 549–564]
for two models of spin glasses, namely, the SK model with external field
and the perceptron model. This method allows to derive quite easily some
fluctuation results for the free energy in those two cases.

1. Introduction. For N ≥ 1, let �N = {−1;1}N , and denote byσ = (σ1,

. . . , σN) a typical element of�N . In this paper we will first consider the usual
Sherrington–Kirkpatrick (SK) model with external field based on this space of
configurations, that is, a random measure on�N induced by the following
Hamiltonian:

−HN(σ) = β

N1/2

∑
i<j

gi,j σiσj + h
∑
i≤N

σi.(1)

In the previous equation,β is a strictly positive parameter that stands for the inverse
of the temperature of the system,{gi,j ;1 ≤ i < j} is a family of i.i.d. standard
Gaussian random variables, andh is a strictly positive coefficient representing
the external field, under which the spins tend to take the value+1. The measure
under consideration on�N is then the measureGN whose density with respect
to the counting measure is given byZ−1

N e−HN(σ), whereZN is the normalization
constant given by

ZN = ∑
σ∈�N

e−HN(σ).

Forn ≥ 1 and a functionf :�n
N → R, we will setρ(f ) for the average off under

the measureG⊗n
N , that is,

ρ(f ) = Z−n
N

∑
σ1,...,σ n∈�N

f (σ 1, . . . , σ n)exp

(
−

n∑
l=1

HN(σ l)

)
.

At high temperature (i.e., whenβ is small enough), it has been shown (see,
e.g., [8]) that this classical SK model could be understood in its essential features
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if one could study the asymptotic behavior of the random variableZN and of the
quantity (called overlap betweenσ 1 andσ 2)

R1,2 = 1

N

∑
i≤N

σ 1
i σ 2

i ,(2)

whereσ 1 andσ 2 are taken as two independent configurations underGN . Then,
after the introduction and formalization of the cavity and smart path methods,
many limit theorems have been obtained forZN andR1,2: we refer to [9] for the
self averaging property forR1,2 and the limit of 1

N
log(ZN), to [5] (resp. [13]) for

a central limit theorem for the fluctuations ofZN (resp.R1,2), and to [10, 14] for
a (quenched) large deviation principle for the overlapR1,2.

On the other hand, it has been shown in [3] (and used extensively, e.g., in [2])
that in the case of the SK model without external field, that is, whenh = 0 in (1),
one could use some simple stochastic calculus tools in order to simplify the long
calculations involved in the asymptotic results mentioned above. This is achieved
by replacing the Gaussian patht1/2g, t ∈ [0,1], by a Brownian motionBt , and
applying then Itô’s formula, that gives immediately the differential along this path.
However, in case of the SK model with external field, the Gaussian paths are of
the form

t1/2g + r(1− t)1/2X, t ∈ [0,1],(3)

whereg andX are two independent standard Gaussian random variables, andr is
a positive coefficient. The stochastic calculus analogous of this path would then be

Bt + rβ1−t , t ∈ [0,1],
whereB andβ are now two independent Brownian motions. Dealing with these
two Brownian motions running in opposite directions has been seen as an obstacle
to the generalization of the Comets–Neveu method to the case whereh �= 0. In this
paper our aim is to show how to bypass this difficulty by just invoking the fact
that {β1−t ; t ∈ [0,1]} can also be seen as the solution to a stochastic differential
equation on which we can perform an integration by parts. Then, we will show that
the CLT for ZN can be obtained by applying Itô’s formula to the fluctuations of
this last quantity. This gives an alternative (and maybe easier) way to [5] to prove
this result. Notice, however, that we do not try to use here the nice path introduced
in [5], and, hence, the temperature region where our results hold is smaller than
in this last reference. The reason why we do not do it is twofold: first, we wish to
insist here on the simplicity of the tools we use rather than on the optimality of the
result, and on the other hand, one of our aims is to generalize our method to other
(and more complex) spin systems.

We will illustrate this second point by considering an analogous fluctuation
result for the perceptron model. This spin glass system, motivated by some
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neural computing considerations, is still based on the configuration space�N =
{−1;1}N , and is induced by the random Hamiltonian

−HN,M(σ) = ∑
k≤M

u

(
1

N1/2

∑
i≤N

gi,kσi

)
,

whereM = αN for a (small enough) proportional coefficientα, u is a bounded
function and{gi,k; i, k ≥ 1} is a family of independent standard Gaussian random
variables. We refer to [6] for the computational motivation of this model, and to
[13], Chapter 3, and [11] for the basic asymptotic results for the Gibbs measure
induced byHN,M . Since the limit theorems obtained for the perceptron model are
based again on the analysis of the overlap quantityR1,2 defined by (2), and on the
use of some elaborated versions of the path (3), our stochastic calculus method still
applies here, and, indeed, it will allow us to get quite easily a central limit theorem
for the normalizing constant

ZN,M = ∑
σ∈�N

e−HN,M(σ).

Our paper is divided as follows: in the next section we will treat the
Sherrington–Kirkpatrick case, for which we define the stochastic path in detail at
Section 2.1, and then get the fluctuation result forZN at Section 2.2. Section 3 is
devoted to the perceptron case: at Section 3.1 we introduce the model and state our
central limit theorem. Then, at Section 3.2, we apply the stochastic path method to
prove this last result.

Notice that, throughout thee paper,κ will designate a positive constant and
RN , R̂N , Rm,N , and so on, some small remainders. The exact value of those
quantities are generally irrelevant, and can change from line to line.

2. The Sherrington–Kirkpatrick case. In this section we will try to explain
the stochastic calculus method and apply it to recover the fluctuations’ results
proved in [5] in a simple way.

2.1. Definition of the path. This section is devoted to the definition and
some basic properties of the interpolating path we will consider throughout the
paper: let{Bi,j ;1 ≤ i < j} and {Wi; i ≥ 1} be two collections of independent
Brownian motions, and{ηi; i ≥ 1} a family of independent standard Gaussian
random variables. All those objects will be defined on a complete stochastic basis
(�,F , (Ft )t∈[0,1],P ), and we will assume that all theBi,j ,Wi areFt -adapted,
and that all the random variablesηi areF0-measurable. Fori ≥ 1, let Xi be the
unique solution (see, e.g., [7]) to the stochastic differential equation

Xi(t) = ηi −
∫ t

0

Xi(s)

1− s
ds + Wi(t), t ∈ [0,1].(4)



564 S. TINDEL

It is easily checked that, settinĝXi(t) = Xi(1 − t), the process{X̂i(t); t ∈ [0,1]}
is a Brownian motion with respect to its natural filtration. Hence,Xi can be seen
as a reversed time Brownian motion. In the sequel, ifY is a square integrable
continuous semi-martingale,〈Y 〉 will stand for the quadratic variation process
of Y . We will first label the following lemma for further use.

LEMMA 2.1. Let k ≥ 1, X = (X1, . . . ,Xk), whereXi is the solution to(4),
andϕ :Rk → R be aC2 function having at most exponential growth together with
its first two derivatives. Set alsoη = (η1, . . . , ηk). Then, for any t ∈ [0,1],

E[ϕ(X(t))] = E[ϕ(η)] − 1
2

∫ t

0
E[
ϕ(X(s))]ds.

PROOF. According to Itô’s formula, we have

ϕ(X(t)) = ϕ(η) −
k∑

i=1

∫ t

0
∂xi

ϕ(X(s))
Xi(s)

1− s
ds

(5)

+
k∑

i=1

∫ t

0
∂xi

ϕ(X(s)) dWi(s) + 1

2

∫ t

0

ϕ(X(s)) ds.

Recall now that for a Gaussian vectorY = (Y1, . . . , Yk) and aC1 functionψ onR
k

having at most exponential growth, we have, fori ≤ k,

E[ψ(Y )Yi] =
k∑

j=1

E[YiYj ]E[
∂xj

ψ(Y )
]
.(6)

In particular, sinceXi(s) is aN (0,1 − s) random variable independent from the
otherXj ’s, we have, fors ∈ [0,1],

E
[
∂xi

ϕ(X(s))
Xi(s)

1− s

]
= E

[
∂2
x2
i

ϕ(X(s))
]
.

Taking expectations in (5) and applying this last identity, we get the desired result.
�

Going back to our interpolating Hamiltonian, define, fort ∈ [0,1],

−HN,t (σ ) = β

N1/2

∑
i<j

Bi,j (t)σiσj + βq1/2
∑
i≤N

Xi(t)σi + h
∑
i≤N

σi,(7)

whereq is the usualL2-limit of the overlap, that is, the solution to the implicit
equation

q = E[tanh2(βq1/2Y + h)],
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whereY stands for a standard Gaussian random variable. Let us write then

ZN(t) = ∑
σ∈�N

exp
(−HN,t (σ )

)
,

and for anyf :�n
N → R, set

ρt(f ) = (
ZN(t)

)−n
∑

σ1,...,σ n∈�N

f (σ 1, . . . , σ n)exp

(
−

n∑
l=1

HN,t (σ
l)

)
.

The following basic relation will be essential in order to get the fluctuation result
onZN :

PROPOSITION2.2. Assumeβ satisfies the following assumption:

(H) β is smaller than the constantβ0 such that

1621/2β0e
16β2

0 = 1.

Then, for any t ∈ [0,1], we have

E
[
ρt

(
(R1,2 − q)2)] ≤ L

N
.

PROOF. In order to show this proposition, we will use a stochastic version of
the cavity method: fixt ∈ [0,1], and forv ∈ [0, t], set

−HN,t,v(σ ) = −HN−1,t (σ )

+ β

N1/2

∑
i≤N−1

Bi,N(v)σiσj + (
βq1/2XN(v) + h

)
σN.

We will call ZN,t (v) [resp. ρt,v(·)] the associated normalizing constant (resp.
average with respect to the Gibbs measure). Let alsof be a real-valued function
defined on�n

N for N,n ≥ 1. Thenρt,v(f ) can be seen as a deterministicC2

function of {Bi,N ; i ≤ N − 1} andXN . Applying Itô’s formula and Lemma 2.1
to this function, we get, for anyv ∈ [0, t],

∂v

(
E[ρt,v(f )]) = β2

∑
1≤l<l′≤n

E
[
ρt,v

(
f σ l

Nσ l′
N(Rl,l′ − q)

)]

− β2n

n∑
l=1

E
[
ρt,v

(
f σ l

Nσn+1
N (Rl,n+1 − q)

)]

+ β2n(n + 1)

2
E

[
ρt,v

(
f σn+1

N σn+2
N (Rn+1,n+2 − q)

)]
.

Notice also that:

1. Forv = t , the symmetry among sites property holds true.
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2. Forv = 0, if f − :�n
N → R depends only on theN − 1 first coordinates, andI

is a subset of{1, . . . , n}, then

E

[
ρt,0

(
f − ∏

l∈I

σ l
N

)]
= E

[(
tanh(βq1/2Y + h)

)|I |]E[ρt,0(f
−)].

Hence, the proof of the announced result can proceed as in [13], Section 2.4.
�

2.2. Central limit theorem for the free energy.For t ∈ [0,1], set pN(t) =
1
N

log(ZN(t)). This quantity is usually called the free energy of the spin system.
In this section we will get the announced central limit theorem forpN(t), with a
strategy that can be briefly described as follows:

(i) We will compute the evolution of exp(−HN,t (σ )).
(ii) We will get the equation followed by the renormalized fluctuations

of ZN(t), namely,

YN(t) = N1/2
(
pN(t) − log(2) − β2t (1− q)2

4
(8)

− E
[
log

(
cosh(βq1/2z + h)

)])
.

(iii) We will calculate E[exp(ιuYN(t))] through the application of Itô’s for-
mula, for u ∈ R and ι ≡ (−1)1/2, and show that this quantity tends toe−u2η2/2

for a positive constantη2.

Let us turn now to the first point of this program:

LEMMA 2.3. For any t ∈ [0,1] andσ ∈ �N , we have

e−HN,t (σ ) = exp

( ∑
i≤N

σi(βq1/2ηi + h)

)

+ β

N1/2

∑
i<j

σiσj

∫ t

0
e−HN,s(σ ) dBi,j (s)

+ βq1/2
∑
i≤N

σi

∫ t

0
e−HN,s(σ ) dWi(s)

− βq1/2
∑
i≤N

σi

∫ t

0
e−HN,s(σ ) Xi(s)

1− s
ds

+ Nβ2

4

(
N − 1

N
+ 2q

)∫ t

0
e−HN,s(σ ) ds.
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PROOF. The exponential being aC2 function, thanks to relation (7) and Itô’s
formula, we get

e−HN,t (σ ) = e−HN,0(σ ) −
∫ t

0
e−HN,s(σ ) dHN,s(σ )

+ 1
2

∫ t

0
e−HN,s(σ ) d〈HN,·(σ )〉s .

In order to get the announced result, it is enough to compute the quantity
〈HN,·(σ )〉t . But, invoking the fact that all finite variation processes have a null
quadratic variation, and using the independence of all theBi,j ,Wi , we have

〈HN,·(σ )〉t = β2

N

∑
i<j

(σiσj )
2 + β2q

∑
i≤N

(σi)
2 = Nβ2

2

(
N − 1

N
+ 2q

)
.

�

We can now get the differential ofYN(t), whereYN is defined by (8). Define
first, for x ∈ R, the function� by

�(x) = log
(
cosh(βq1/2x + h)

)
.

Then we have the following:

PROPOSITION2.4. The quantityYN(t) defined by(8) satisfies, for t ∈ [0,1],
YN(t) = UN + ∑

m≤2

Mm,N(t) − (
V1,N (t) − V2,N (t)

) − V3,N (t),

with

UN = N1/2

(
1

N

∑
i≤N

�(ηi) − E[�(Y)]
)
,

M1,N (t) = β

N

∑
i<j

∫ t

0
ρs(σiσj ) dBi,j (s),

M2,N (t) = βq1/2

N1/2

∑
i≤N

∫ t

0
ρs(σi) dWi(s),

V1,N (t) = βq1/2

N1/2

∑
i≤N

∫ t

0
ρs(σi)

Xi(s)

1− s
ds,

V2,N (t) = β2q
∑
i≤N

∫ t

0

(
1− ρs(σ

1
i σ 2

i )
)
ds,

V3,N (t) = β2N1/2

4

∫ t

0
ρs

(
(R1,2 − q)2)ds.
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REMARK 2.5. As we will see in the proof of Proposition 2.4,V2,N is obtained
as the term makingV1,N (t) − V2,N (t) a zero mean random variable.

PROOF OFPROPOSITION2.4. Recall thatZN(t) = ∑
σ∈�N

exp(−HN,t (σ ))

is almost surely a strictly positive random variable. Hence, Itô’s formula can be
applied to obtain

log
(
ZN(t)

) = log
(
ZN(0)

) + AN(t),(9)

with

AN(t) =
∫ t

0

(
ZN(s)

)−1
dZN(s) − 1

2

∫ t

0

(
ZN(s)

)−2
d〈ZN 〉s .

It is easily checked that

log
(
ZN(0)

) = N log(2) + ∑
i≤N

log
(
cosh(βq1/2ηi + h)

)
.

Now, Lemma 2.3 yields thatZN(t) is a continuous semi-martingale, whose
martingale part is

M̂N(t) = β

N1/2

∑
i<j

∑
σ∈�N

σi

∫ t

0
e−HN,s(σ ) dBi,j (s)

+ βq1/2
∑
i≤N

∑
σ∈�N

σi

∫ t

0
e−HN,s(σ ) dWi(s).

Hence, ∫ t

0

(
ZN(s)

)−2
d〈ZN 〉s

=
∫ t

0

(
ZN(s)

)−2
d〈M̂N 〉s

= β2

N

∑
i<j

∫ t

0
ρs(σ

1
i σ 1

j σ 2
i σ 2

j ) ds + β2q
∑
i≤N

∫ t

0
ρs(σ

1
i σ 2

i ) ds.

Observing that

∑
i<j

ρs(σ
1
i σ 1

j σ 2
i σ 2

j ) = N2

2

(
ρs(R

2
1,2) − 1

N

)
,

(10) ∑
i≤N

ρs(σ
1
i σ 2

i ) = Nρs(R1,2)

yields the following identity:∫ t

0

(
ZN(s)

)−2
d〈ZN 〉s = β2N

2

∫ t

0

(
ρs(R

2
1,2) + 2qρs(R1,2) − 1

N

)
ds.
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The same kind of considerations can be used to obtain an expression for
(ZN(s))−1 dZN(s). Then, plugging those relations into (9), using Lemma 2.3 and
a little algebra, we get

AN(t) = β

N1/2

∑
i<j

∫ t

0
ρs(σiσj ) dBi,j (s)

+ βq1/2
∑
i≤N

∫ t

0
ρs(σi) dWi(s)

− βq1/2
∑
i≤N

∫ t

0
ρs(σi)

Xi(s)

1− s
ds

− β2N

4

∫ t

0

[(
ρs(R

2
1,2) − 1

) + 2q
(
ρs(R1,2) − 1

)]
ds.

Let us center now on the third term of this sum: according to (6), we have, for any
s ∈ [0,1], with obvious notation,

E
[
ρs(σi)

Xi(s)

1− s

]
= E

[
∂Xi(s)

(
ρs(σi)

)]
.

But

ρs(σi) =
∑

σ1∈�N
σ 1

i exp(−ĤN,s(σ
1) + βq1/2 ∑

i≤N Xi(s)σ
1
i )∑

σ2∈�N
exp(−ĤN,s(σ 2) + βq1/2 ∑

i≤N Xi(s)σ
2
i )

,

where

−ĤN,s(σ ) = β

N1/2

∑
i<j

Bi,j (s)σiσj + h
∑
i≤N

σi,

and it is easily seen from that expression that

∂Xi(s)

(
ρs(σi)

) = βq1/2ρs(1− σ 1
i σ 2

i ).(11)

Hence,

log(ZN(t)) = N log(2) + ∑
i≤N

�(ηi) + Nβ2(1− q)2t

4

+ N1/2[M1,N (t) + M2,N (t) − (
V1,N (t) − V2,N (t)

) + V3,N (t)
]
.

Now, we get the desired result by substracting

log(2) + Nβ2(1− q)2t

4
+ E[�(Y)],

and renormalizing this expression.�

We are now ready to state the main result of this section:
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THEOREM 2.6. Let YN(t) be defined by(8) for t ∈ [0,1]. Then YN(1)

converges in distribution to aN (0, τ2) variable, with

τ2 = ν2 − β2q2

2
whereν2 = Var

(
log

(
cosh(βq1/2Y + h)

))
.

PROOF. Let u ∈ R. Once we know the differential ofXN , given by Proposi-
tion 2.4, we can apply Itô’s formula to the (complex-valued) functionx �→ eιux to
obtain, fort ∈ [0,1],

eιuYN(t) = D1(N) +
6∑

m=2

Dm,N(t),

with

D1(N) = eιuUN ,

D2,N (t) = ιuβ

N

∑
i<j

∫ t

0
eιuYN(s)ρs(σiσj ) dBi,j (s)

+ ιuβq1/2

N1/2

∑
i≤N

∫ t

0
eιuYN(s)ρs(σi) dWi(s),

D3,N (t) = − ιuβq1/2

N1/2

∑
i≤N

∫ t

0
eιuYN(s)ρs(σi)

Xi(s)

1− s
ds

and

D4,N (t) = ιuβ2q

N1/2

∑
i≤N

∫ t

0
eιuYN(s)[1− ρs(σ

1
i σ 2

i )]ds,

D5,N (t) = − ιuβ2N1/2

4

∫ t

0
eιuYN(s)ρs

(
(R1,2 − q)2)ds,

D6,N (t) = −u2β2

2N2

∑
i<j

∫ t

0
eιuYN(s)ρs(σ

1
i σ 1

j σ 2
i σ 2

j ) ds,

D7,N (t) = −u2β2q

2

∫ t

0
eιuYN(s)ρs(R1,2) ds.

Denote alsoE[eιuYN(t)] by ψN,u(t). We will now estimate the previous terms
separately (in the sequel,κ will stand for a positive constant that can change
from line to line): first, from the classical central limit theorem for i.i.d. random
variables, we have

D1(N) = e−ν2u2/2 + R1(N), |R1(N)| ≤ κ

N1/2 .(12)
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The termD2,N (t) being of zero mean, we will turn now to the estimation of
E[D3,N (t)]: just as in the proof of Proposition 2.4, an integration by parts yields

E[D3,N (t)] = − ιuβq1/2

N1/2

∑
i≤N

∫ t

0
E

[
∂Xi(s)

(
eιuYN(s)ρs(σi)

)]
ds

= u2βq1/2

N1/2

∑
i≤N

∫ t

0
E

[(
∂Xi(s)YN(s)

)
eιuYN(s)ρs(σi)

]
ds − E[D4,N (t)].

Observe now that, following the lines of the proof of (11), we have

∂Xi(s)YN(s) = ∂Xi(s)ZN(s)

N1/2ZN(s)
= βq1/2

N1/2 ρs(σi),

and, hence,

E[D3,N (t) + D4,N (t)] = u2β2q

∫ t

0
E

[
eιuYN(s)ρs(R1,2)

]
ds.

It is now easily seen, thanks to Proposition 2.2, that

E[D3,N (t) + D4,N (t)] = (uβq)2
∫ t

0
ψN,u(s) ds + R3,t (N),(13)

with

|R3,t (N)| ≤ κ

N1/2 ,

uniformly in t ∈ [0,1]. A direct application of Proposition 2.2 also gives that, for
any t ∈ [0,1],

E[D5,N (t)] ≤ κ

N1/2 .(14)

Invoking now (10), we have

E[D6,N (t)] = u2β2

4

∫ t

0
eιuYN(s)

(
ρs(R

2
1,2) − 1

N

)
ds,

and by Proposition 2.2 again, we get

E[D6,N (t)] = −(uβq)2

4

∫ t

0
ψN,u(s) ds + R6,t (N),

(15)
|R6,t (N)| ≤ κ

N1/2 ,

and the same type of arguments give

E[D7,N (t)] = −(uβq)2

2

∫ t

0
ψN,u(s) ds + R7,t (N),

(16)
|R7,t (N)| ≤ κ

N1/2 .
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Putting together (12)–(16), we have, finally,

ψN,u(t) = e−ν2u2/2 + (uβq)2

4

∫ t

0
ψN,u(s) ds + R̂N,u(t),

with

|R̂N,u(t)| ≤ κ

N1/2 ,

which ends the proof by a Gronwall type argument.�

3. The perceptron case. The aim of this section is to show that our method
can be applied in various contexts. We will illustrate this point by showing a
CLT for the free energy of another canonical model of spin glasses, namely, the
perceptron model.

3.1. Statement of the results.The perceptron model is still based on the state
space�N = {−1,1}N , for N ≥ 1, and can be described as follows: consider
a positive integerM = αN such thatM = αN for a given α > 0; u will be
a continuous function defined onR satisfying |u| ≤ D for a strictly positive
constantD (some additional assumption will be made onu further on), and
{gi,k; i ≥ 1, k ≥ 1} is a family of independent standard Gaussian random variables.
The random measure we will consider on�N will be of the form

(ZN,M)−1 exp
(−HN,M(σ)

)
µN(dσ),

whereµN is the uniform measure on�N , and for anym ≥ 1,

−HN,m(σ) = ∑
k≤m

u(Sk),

where, forl ≥ 1 and a replicaσ l , we have

Sl
k = Sl

k(σ
l) = 1

N1/2

∑
i≤N

gi,kσ
l
i .(17)

The normalization constant associated to this model isZN,M , with ZN,m defined,
for m ≥ 1, by

ZN,m = ∑
σ∈�N

exp
(−HN,m(σ)

)
,

and for anyM ≥ 1, f :�n
N → R, m ≤ M , the average off with respect to the

measure defined byHN,m will be

ρm(f ) = Z−n
N,m

∑
σ1,...,σ n∈�N

f (σ 1, . . . , σ n)exp

(
−

n∑
l=1

HN,m(σ l)

)
.
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The analysis of the perceptron model relies, as in the SK case, on the limiting
behavior of the overlapR1,2, and we recall the following result, taken from [13],
Chapter 3: form ≤ M andαm = m

N
, consider the system of equations

q = E[tanh2(r1/2z)], r = αmE
[
�2(q1/2z, (1− q)1/2)],(18)

where z, ξ are two independent standard normal random variables, and� is
defined by

�(x, y) = E[ξ exp(u(x + ξy))]
yE[exp(u(x + ξy))] .

Then we have the following:

PROPOSITION3.1. Assumeu andα satisfy:

(H1) ‖u‖ ≤ D and, for L > 0 large enough, Lα exp(LD) ≤ 1.
(H2) There exists a positive constantL∗ and a small enough constantc3 such that,

for any l ≤ 6, |u(l)| ≤ L∗eL∗Dec3N .

Then, for anym ≤ M ,

1. The system(18)has a unique solution(qm, rm) ∈ [0,1]2.
2. The followingL2 convergence forR1,2 holds true:

E
[
ρm

(
(R1,2 − qm)2)] ≤ κ

N
.

3. SetpN,m = 1
N

E[log(ZN,m)] and

�(m) = log(2) + E
[
log

(
cosh(r1/2

m Y)
)] − 1

2rm(1− qm)

+ αmE
[
log

(
Ê

[
exp

(
u
(
q1/2
m η + (1− qm)1/2η̂

))])]
,

whereY,η, η̂ are independentN (0,1) random variables, andÊ designates the
expectation with respect tôη. Then

|pN,m − �(m)| ≤ κ

N
.

In the sequel of the section, we will use the following auxiliary random
variables, forl ≥ 1 and 1≤ m ≤ M :

θ l
m = q1/2

m η + (1− qm)1/2η̂l,

whereη and{η̂l; l ≥ 1} are independent standard Gaussian random variables. We
will denote byÊ the expectation with respect to the random variablesη̂l , and also
set θm = θ1

m when only one replica is considered. Associated to those random
variablesθm will be the quantityξm, defined by

ξm = log
(
Ê

[
exp

(
u(θm)

)])
.(19)
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It is then easily checked that

Var(ξm) = Q

(
m

N

)
, sup

m≤M

E[ξ4
m] < ∞,(20)

whereQ : [0, α] → R+ is aC1 function.
Our aim, in this part of the paper, is to prove the following theorem by means

of the stochastic calculus method:

THEOREM 3.2. Under assumptions(H1) and (H2), asN tends to infinity,

N1/2
[

log(ZN,M)

N
− �(M)

]
(L)→ Y,

whereY is a Gaussian random variable with variance

τ2 = 1

α

∫ α

0
Q(x)dx,

with Q defined at(20).

3.2. Proof of the CLT. Let us begin the proof of our result by the following
elementary property, that we label for further use:

LEMMA 3.3. Let 1≤ m ≤ M , and set


m−1,m� = �(m) − �(m − 1).

Then


m−1,m� − E[ξm]
N

= Rm,N,

with Rm,N ≤ κ
N2 for a positive constantκ , and whereξm is defined by(19).

PROOF. The lector is referred to [13], Theorem 3.4.2, for a complete proof of
this fact. Let us just mention that this mysterious relation relies on the fact that,
since(qm, rm) is the solution to (18), then�(m) is a function ofα = m

N
, say�̂(α),

and it can be shown by elementary computations that

∂α�̂(α) = E
[
log

(
Ê

[
eu(θ)])]. �

We will now write the quantity1
N

log(ZN,M) − �(M) in a convenient way in
order to compute its Fourier transform: it is easily checked that, form ≤ M ,

1

N
log(ZN,M) − �(M) = 1

N
log(ZN,M−1) − �(M − 1)

+ (
log

(
ρM−1

(
eu(SM))) − 
M−1,M�

)
,
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and iterating this decomposition, we get

1

N
log(ZN,M) − �(M) = ∑

m≤M

Ym,(21)

where

Ym = log
(
ρm−1

(
eu(Sm))) − 
m−1,m�.

Our proof of the CLT will be based on getting some information on the
characteristic function of eachYm separately. This will be achieved by changing
the random variableSl

m along the stochastic path

Sl
m(t) = 1

N1/2

∑
i≤N

Bi,m(t)σ l
i + q1/2

m Xm(t) + (1− qm)1/2X̂l
m(t),

defined for t ∈ [0,1], where Xm, X̂l
m are reversed time Brownian motions,

solutions to

Xm(t) = ηm −
∫ t

0

Xm(s)

1− s
ds + Wm(t),

X̂l
m = η̂l

m −
∫ t

0

X̂l
m(s)

1− s
ds + Ŵ l

m(t),

for t ∈ [0,1], with some independent standard Brownian motions

{Bi,m, i,m ≥ 1}, {Wm,m ≥ 1}, {Ŵ l
m,m, l ≥ 1}.

We will also denote byEm the expectation conditioned on all the randomness in
thegi,j ,Bi,j ,Xj , . . . , for j ≤ m, and we still callÊ the expectation with respect
to the random variables of the form̂η, X̂, Ŵ . Next, we set

Ym(t) = 1

N
log

(
Ê

[
ρm−1

(
eu(Sm(t)))]) − 
m−1,m�.(22)

Eventually, definēξm = ξm − E[ξm]. Notice that all those quantities are related by

Sl
m = Sl

m(1), θ l
m = Sl

m(0), ξm = log
(
Ê

[
ρm−1

(
eu(Sm(0)))]).

With all those notations in mind, we can now gather some information about
the Fourier transform ofYm.

PROPOSITION3.4. For anym ≤ M andv ∈ R, we have

E
[
eιvN1/2 ∑

k≤m Yk
] = E

[
eιvN1/2ξ̄m

]
E

[
eιvN1/2 ∑

k≤m−1 Yk
] + Rm,N,

with |Rm,N | ≤ κ
N3/2 .
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PROOF. Notice first that

E
[
eιvN1/2 ∑

k≤m Yk
] = E

[
eιvN1/2 ∑

k≤m−1 Yk Em−1
[
eιvN1/2Ym

]]
.(23)

We will try now to get an expansion ofeιvN1/2Ym using Itô’s formula.

STEP 1. With Ym(t) defined by (22), recall that we haveYm = Ym(1) and

Em−1
[
eιvN1/2Ym(0)] = Em−1

[
eιvN1/2(ξm−
m−1,m�)].

Hence, on account of Lemma 3.3, we get
∣∣Em−1

[
eιvN1/2ξ̄m

] − Em−1
[
eιvN1/2Ym(0)]∣∣

≤ ∣∣Em−1
[
eιvN1/2ξ̄m

(
1− exp

(
ιvN1/2(
m−1,m� − E[ξm])))]∣∣ ≤ κ

N3/2 .

STEP 2. The evolution in time ofYm(t) can be described as follows: first,
setting

U1 = u′eu, U2 = (
(u′)2 + u′′)eu,

we get, by a simple application of Itô’s formula,

eu(Sm(t)) = eu(θ) + 1

N1/2

∑
i≤N

σi

∫ t

0
U1

(
Sm(s)

)
dBi,m(s)

+ q1/2
m

∫ t

0
U1

(
Sm(s)

)[
dWm(s) − Xm(s)

1− s
ds

]

+ (1− qm)1/2
∫ t

0
U1

(
Sm(s)

)[
dŴm(s) − X̂m(s)

1− s
ds

]

+
∫ t

0
U2

(
Sm(s)

)
ds,

which gives immediately

ρm−1
(
eu(Sm(t))) = eu(θ) + 1

N1/2

∑
i≤N

∫ t

0
ρm−1

(
σiU1

(
Sm(s)

))
dBi,m(s)

+ q1/2
m

∫ t

0
ρm−1

(
U1

(
Sm(s)

))[
dWm(s) − Xm(s)

1− s
ds

]

+ (1− qm)1/2
∫ t

0
ρm−1

(
U1

(
Sm(s)

))[
dŴm(s) − X̂m(s)

1− s
ds

]

+
∫ t

0
ρm−1

(
U2

(
Sm(s)

))
ds.
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Let us now compute the expectation with respect to the randomness inX̂m: by

integration by parts with respect tôXm(s)
1−s

, we get

Ê
[
ρm−1

(
eu(Sm(t)))] = Ê

[
eu(θ)] + 1

N1/2

∑
i≤N

∫ t

0
Ê

[
ρm−1

(
σiU1

(
Sm(s)

))]
dBi,m(s)

+ q1/2
m

∫ t

0
Ê

[
ρm−1

(
U1

(
Sm(s)

))][
dWm(s) − Xm(s)

1− s
ds

]

+ qm

∫ t

0
Ê

[
ρm−1

(
U2

(
Sm(s)

))]
ds.

Now, like in the SK case, we will apply the functionf (x) = eιvN1/2 log(x) to the
quantity

Zm−1(t) ≡ Ê
[
ρm−1

(
eu(Sm(t)))],

and, according to Itô’s formula, we get

eιvN1/2Ym(t) = eιvN1/2(ξm−
m−1,m�) + ∑
j≤3

Aj(t) + ∑
j≤2

Bj(t),

with

A1(t) = ιv

N

∑
i≤N

∫ t

0
eιvN1/2Ym(s) Ê[ρm−1(σiU1(Sm(s)))]

Zm−1(s)
dBi,m(s),

A2(t) = ιvq
1/2
m

N1/2

∫ t

0
eιvN1/2Ym(s) Ê[ρm−1(U1(Sm(s)))]

Zm−1(s)

[
dWm(s) − Xm(s)

1− s
ds

]
,

A3(t) = ιvqm

N1/2

∫ t

0
eιvN1/2Ym(s) Ê[ρm−1(U2(Sm(s)))]

Zm−1(s)
ds,

and where the quantitiesB1(t) andB2(t) are given by

B1(t) = ιv

2N1/2

∫ t

0
eιvN1/2Ym(s) Ê[ρm−1((R1,2 + q)U1(S

1
m(s))U1(S

2
m(s)))]

(Zm−1(s))2 ds

and

B2(t) = ιv2

2N

∫ t

0
eιvN1/2Ym(s) Ê[ρm−1((R1,2 − q)U1(S

1
m(s))U1(S

2
m(s)))]

(Zm−1(s))2 ds.

Taking now the conditional expectationEm−1, and integrating by parts with respect
to Xm(s)

1−s
[notice that one has to differentiate,eιvN1/2Ym(s), U1(Sm(s)) andZm−1(s)],

the above expression simplifies into

Em−1
[
eιvN1/2Ym(t)] = I1 − I2(t) − I3(t),(24)
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with

I1(t) = eιvN1/2(ξm−
m−1,m�),

the quantitiesI2(t) andI3(t) being defined by

I2(t) = ιvqm

N1/2

∫ t

0
Em−1

[
eιvN1/2Ym(s) ρm−1((R1,2 − q)U1(S

1
m(s))U1(S

2
m(s)))

(Zm−1(s))2

]
ds

and

I3(t) = ιv2

2N

∫ t

0
Em−1

[
eιvN1/2Ym(s) ρm−1((R1,2 − q)U1(S

1
m(s))U1(S

2
m(s)))

(Zm−1(s))2

]
ds.

STEP 3. Let us go back to expression (23), and note that, for anyt ∈ [0,1],
invoking relation (24), we have

E
[
eιvN1/2(

∑
k≤m−1 Yk+Ym(t))] = E

[
eιvN1/2 ∑

k≤m−1 Yk
(
I1 − I2(t) − I3(t)

)]
.(25)

Let us analyze now the three terms we have obtained: we have already shown
(see Step 1) that ∣∣I1 − E

[
eιvN1/2ξ̄m

]∣∣ ≤ κ

N3/2 ,(26)

which easily yields∣∣E[
eιvN1/2 ∑

k≤m−1 YkI1
] − E

[
eιvN1/2ξ̄m

]
E

[
eιvN1/2 ∑

k≤m−1 Yk
]∣∣ ≤ κ

N3/2 .

On the other hand,

∣∣E[
eιvN1/2 ∑

k≤m−1 YkI3(t)
]∣∣ = v2

2N

∣∣∣∣
∫ t

0
E

[
eιvN1/2(

∑
k≤m−1 Yk+Ym(s))Km(s)

]
ds

∣∣∣∣,(27)

with

Km(s) = ρm−1((R1,2 − q)U1(S
1
m(s))U1(S

2
m(s)))

(Zm−1(s))2 ,

and the right-hand side of (27) is bounded by

v2

2N

∫ t

0
E1/2[(R1,2 − q)2]E1/2

[(
Zm−1(s)

)−4 ∏
j≤4

U1
(
Sj

m(s)
)]

ds.

Observe that the last of those terms seems to be potentially huge, since the
derivatives ofu are allowed to grow at exponential speed withN . However, under
assumptions (H1) and (H2), it is shown in [13], Lemma 3.3.4, by some integration
by parts arguments, that this kind of term is uniformly bounded inN . Hence,
invoking theL2 estimate forR1,2 given at Proposition 3.1, for anyt ∈ [0,1],∣∣E[

eιvN1/2 ∑
k≤m−1 YkI3(t)

]∣∣ ≤ κ

N3/2 .(28)
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We still have to handle the term

E
[
eιvN1/2 ∑

k≤m−1 YkI2(t)
]
.

This is achieved by a long and tedious variation of Theorem 3.5.2 and Proposi-
tion 3.5.1 in [13]. Since no new idea is required, we will only sketch the proof of
that step: first, one has to show that

E
[
eιvN1/2 ∑

k≤m−1 YkI2(t)
]

(29)
= ιvqmγmt

N1/2 E
[
eιvN1/2 ∑

k≤m−1 Ykρm−1(R1,2 − q)
] + Rm,N,

with

γm = E
[
eιvN1/2ξ̄m

U1(θ
1)U1(θ

2)

(Ê[eu(θ)])2

]
, |Rm,N | ≤ κ

N3/2 .

This is obtained by a variation of the proof of [13], Theorem 3.5.2. The main
differences with this last proof are that:

1. One has to use the symmetry among sites to expressρm−1(R1,2 − q) as a
function of the last spin only. Then it can be realized that the equivalent
contribution of the terms II, III and IV in [13], Theorem 3.5.2, are of orderN−1

when the functionf considered there is a function of the last spin.
2. We also have to keep track, in the computation of the derivatives, of the terms

eιvN1/2Ym(s), which increases the size of the computations. However, in the end,
those additional terms are all of orderN−1. Notice that all the calculations can
be done again using Itô’s formula.

Then, it should also be checked that∣∣E[
eιvN1/2 ∑

k≤m−1 Ykρm−1(R1,2 − q)
]∣∣ ≤ κ

N
.(30)

To this purpose, the proof of Proposition 3.5.1 in [13] has to be followed, keeping
track again of the terms due toeιvN1/2 ∑

k≤m−1 Yk that are still of orderN−1.
Now, (29) and (30) easily yield

E
[
eιvN1/2 ∑

k≤m−1 YkI2(t)
] ≤ κ

N3/2 ,(31)

and plugging (26), (28) and (31) into (25), we get, for anyt ∈ [0,1],
∣∣E[

eιvN1/2(
∑

k≤m−1 Yk+Ym(t))] − E
[
eιvN1/2ξ̄m

]
E

[
eιvN1/2 ∑

k≤m−1 Yk
]∣∣ ≤ κ

N3/2 ,

which implies the claim of our proposition.�

Let us go back now to the main aim of this section:
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PROOF OFTHEOREM 3.2. Letv be an arbitrary real number. We have seen
[relation (21)] that

1

N
log(ZN,M) − �(M) = ∑

m≤M

Ym.

Now, Proposition 3.4 gives

E
[
eιvN1/2 ∑

k≤M Yk
] = E

[
eιvN1/2ξ̄M

]
E

[
eιvN1/2 ∑

k≤M−1 Yk
] + RM,N,

and, iterating this decomposition, we get

E
[
eιvN1/2 ∑

m≤M Yk
] = E

[
eιvN1/2 ∑

m≤M ξ̄m
] + ∑

m≤M

Rm,N,

with |Rm,N | ≤ κ
N3/2 for anym ≤ M . Thus,

∣∣E[
eιvN1/2 ∑

m≤M Yk
] − E

[
eιvN1/2 ∑

m≤M ξ̄m
]∣∣ ≤ κ

N1/2 ,

for a positive constantκ . Now, the random variables{ξ̄m;m ≤ M} are centered and
independent, and we have seen that

Var(ξ̄m) = Var(ξm) = Q

(
m

N

)
,

whereQ : [0, α] → R+ is aC1 function. Hence, by Riemann sums approximation,∣∣∣∣∣ 1

N

∑
m≤M

Var(ξ̄m) − 1

α

∫ α

0
Q(x)dx

∣∣∣∣∣ ≤ κ‖Q′‖[0,α]
N

.

Taking into account inequality (20), the end of the proof easily follows now by
some classical CLT arguments for independent random variables (see, e.g., the
Lindeberg–Feller theorem in [4]).�
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