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ERGODICITY OF STOCHASTIC DIFFERENTIAL EQUATIONS
DRIVEN BY FRACTIONAL BROWNIAN MOTION!

By MARTIN HAIRER
University of Warwick

We study the ergodic properties of finite-dimensional systems of SDEs
driven by nondegenerate additive fractional Brownian motion with arbitrary
Hurst paramete# € (0,1). A general framework is constructed to make
precise the notions of “invariant measure” and “stationary state” for such a
system. We then prove under rather weak dissipativity conditions that such an
SDE possesses a unique stationary solution and that the convergence rate of
an arbitrary solution toward the stationary one is (at least) algebraic. A lower
bound on the exponent is also given.
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1. Introduction and main result. In this paper, we investigate the long-time
behavior of stochastic differential equations driven by fractional Brownian motion.
Fractional Brownian motion (or FBM for short) is a centered Gaussian process
satisfyingBy (0) =0 and

(1.1) EIBu(t) — Bu(s)2=1t —s*?,  1,5>0,

where H, the Hurst parameter, is a real number in the rafge (0, 1). When

H= % one recovers of course the usual Brownian motion, so this is a natural one-
parameter family of generalizations of the “standard” Brownian motion. It follows
from (1.1) that FBM is also self-similar, but with the scaling law

t+ By(at) ~t+ a' By (1),

where =" denotes equivalence in law. Also, the sample pathBpfarex-Hdlder
continuous for everyr < H. The main difference between FBM and the usual
Brownian motion is that it is neither Markovian nor a semimartingale, so most
standard tools from stochastic calculus cannot be applied to its analysis.

Our main motivation is to tackle the problem of ergodicity in non-Markovian
systems. Such systems arise naturally in several situations. In physics, stochastic
forces are used to describe the interaction between a (small) system and its (large)
environment. There is no a priori reason to assume that the forces applied by
the environment to the system are independent over disjoint time intervals. In
statistical mechanics, for example, a non-Markovian noise term appears when one
attempts to derive the Langevin equation from first principles [12, 23]. Self-similar
stochastic processes like FBM appear naturally in hydrodynamics [17]. It appears
that FBM is also useful to model long-time correlations in stock markets [7, 22].

Little seems to be known about the long-time behavior of non-Markovian
systems. In the case of the non-Markovian Langevin equation (whiaiotis
covered by the results in this paper due to the presence of a delay term), the
stationary solution is explicitly known to be distributed according to the usual
equilibrium Gibbs measure. The relaxation toward equilibrium is a very hard
problem that was solved in [12, 13]. Itis, however, still open in the nonequilibrium
case, where the invariant state cannot be guessed a priori. One well-studied general
framework for the study of systems driven by noise with extrinsic memory like the
ones considered in this paper is given by the theory of random dynamical systems
(see the monograph [1] and the reference list therein). In that framework, the
existence of random attractors, and thereforeetigtence of invariant measures,
seems to be well understood. On the other hand, the problem afeness (in an
appropriate sense; see the comment following Theorem 1.3 below) of the invariant
measure on the random attractor seems to be much harder, unless one can show
that the system possesses a unique stochastic fixed point. The latter situation was
studied in [19] for infinite-dimensional evolution equations driven by FBM.

The reasons for choosing FBM as driving process for (SDE) below are twofold.
First, in particular wherf > % FBM presents genuine long-time correlations that
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persist even under rescaling. The second reason is that there exist simple, explicit
formulae that relate FBM to “standard” Brownian motion, which simplifies our
analysis. We will limit ourselves to the case where the memory of the system
comes entirely from the driving noise process, so we do not consider stochastic
delay equations.

We will only consider equations driven by nondegenerate additive noise, that is,
we consider equations of the form

(SDE) dx; = f(x,)dt + o dBpy (1), x0 € R",

wherex;, e R", f:R" — R", By is ann-dimensional FBM with Hurst parameter
H ando is a constant and invertible x n matrix. Of course, (SDE) should be
interpreted as an integral equation.

In order to ensure the existence of globally bounded solutions and in order to
have some control on the speed at which trajectories separate, we make throughout
the paper the following assumptions on the components of (SDE):

(A1) Sability. There exist constan@i(Al) > 0 such that

(f(x) = F(). x —y) <min{cP — PP |x — y)2, P

for everyx, y e R".
(A2) Growth and regularity. There exist constantS, N > 0 such thatf and its
derivative satisfy

If @) < C@+lxIDY, IDf ) < CA+ [xY,

for everyx € R".
(A3) Nondegeneracy. Then x n matrix o is invertible.

lx — 1%},

REMARK 1.1. We can assume thir || < 1 without any loss of generality.
This assumption will be made throughout the paper in order to simplify some
expressions.

One typical example that we have in mind is given pg) = x — x3, x € R,

or any polynomial of odd degree with negative leading coefficient. Notice fhat
satisfies (A1) and (A2), but that it is not globally Lipschitz continuous.

When the Hurst parametéf of the FBM driving (SDE) is bigger thaé, more
regularity for f is required, and we will then sometimes assume that the following
stronger condition holds instead of (A2):

(A2") Srong regularity.  The derivative off is globally bounded.

Our main result is that (SDE) possessamayue stationary solution. Further-
more, we obtain an explicit bound showing that every (adapted) solution to (SDE)
converges toward this stationary solution, and that this convergence is at least al-
gebraic. We make no claim concerning the optimality of this bound for the class
of systems under consideration. Our results are slightly different for small and for
large values off, so we state them separately.
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THEOREM 1.2 (Small Hurst parameter).Let H € (O, %) and let f and o
satisfy (A1l)—-(A3). Then, for every initial condition, the solution to (SDE)
converges toward a unique stationary solution in the total variation norm.
Furthermore, for every y < max, g a(l — 2a), the difference between the
solution and the stationary solution is bounded by C, ¢~ for large.

THEOREM 1.3 (Large Hurst parameter)Let H € (%,l) and let f and
o satisfy (A1)-(A3) and (A2'). Then, for every initial condition, the solution
to (SDE) converges toward a unique stationary solution in the total variation
norm. Furthermore, for every y < %, the difference between the solution and the
stationary solution is bounded by C,, =7 for large .

REMARK 1.4. The “uniqueness” part of these statements should be under-
stood as uniqueness in law in the class of stationary solutions adapted to the nat-
ural filtration induced by the two-sided FBM that drives the equation. There could
in theory be other stationary solutions, but they would require knowledge of the
future to determine the present, so they are usually discarded as unphysical.

Even in the context of Markov processes, similar situations do occur. One can
well have unigueness of the invariant measure, but nonuniqueness of the stationary
state, although other stationary states would have to foresee the future. In this
sense, the notion of uniqueness appearing in the above statements is similar to the
notion of uniqueness of the invariant measure for Markov processes. (See, e.g.,
[1, 4, 5] for discussions on invariant measures that are not necessarily measurable
with respect to the past.)

REMARK 1.5. The casdél = % is not covered by these two theorems, but it is
well known that the convergence toward the stationary state is exponential in this
case (see, e.g., [21]). In both cases, the word “total variation” refers to the total
variation distance between measures on the space of paths; see also Theorem 6.1
below for a rigorous formulation of the results above.

1.1. Idea of proof and structure of the paper. Our first task is to make
precise the notions of “initial condition,” “invariant measure,” “uniqueness” and
“convergence” appearing in the formulation of Theorems 1.2 and 1.3. This will be
achieved in Section 2, where we construct a general framework for the study of
systems driven by non-Markovian noise. Section 3 shows how (SDE) fits into that
framework.

The main tool used in the proof of Theorems 1.2 and 1.3 is a coupling
construction similar in spirit to the ones presented in [11, 20]. More precisely, we
first show by some compactness argument that there exists at least one invariant
measureu, for (SDE). Then, given an initial condition distributed according to
some arbitrary measuye, we construct a “coupling processt;, y;) onR"” x R”
with the following properties:
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1. The process; is a solution to (SDE) with initial conditiop..
2. The process; is a solution to (SDE) with initial conditiop.
3. The random time,, = min{¢|x; = y; Vs > ¢t} is almost surely finite.

The challenge is to introduce correlations betwegmnd y, in precisely such a

way thatz, is finite. If this is possible, the uniqueness of the invariant measure
follows immediately. Bounds on the moments @f furthermore translate into
bounds on the rate of convergence toward this invariant measure. In Section 4, we
expose the general mechanism by which we construct this coupling. Section 5 is
then devoted to the precise formulation of the coupling process and to the study
of its properties, which will be used in Section 6 to prove Theorems 1.2 and 1.3.
We conclude this paper with a few remarks on possible extensions of our results to
situations that are not covered here.

2. General theory of stochastic dynamical systems. In this section, we
first construct an abstract framework that can be used to model a large class of
physically relevant models where the driving noise is stationary. Our framework is
very closely related to the framework of random dynamical systems with, however,
one fundamental difference. In the theory of random dynamical systems (RDS),
the abstract spac® used to model the noise part typically encodesftiere of
the noise process. In our framework of “stochastic dynamical systems” (SDS) the
noise spacaV typically encodes thpast of the noise process. As a consequence,
the evolution oW will be stochastic, as opposed to the deterministic evolution
on 2 one encounters in the theory of RDS. This distinction may seem futile at first
sight, and one could argue that the difference between RDS and SDS is nonexistent
by adding the past of the noise proces$tand its future tow.

The additional structure we require is that the evolutionWWnpossesses a
unique invariant measure. Although this requirement may sound very strong, it is
actually not, and most natural examples satisfy it, as loriy @ chosen in such a
way that it does not contain information about the future of the noise. In very loose
terms, this requirement of having a unique invariant measure states that the noise
process driving our system is stationary and that the Markov process modeling its
evolution captures all its essential features in such a way that it could not be used
to describe a noise process different from the one at hand. In particular, this means
that there is a continuous inflow of “new randomness” into the system, which is a
crucial feature when trying to apply probabilistic methods to the study of ergodic
properties of the system. This is in opposition to the RDS formalism, where the
noise is “frozen,” as soon as an elementis chosen.

From the mathematical point of view, we will consider that the physical process
we are interested in lives on a “state spa&eind that its driving noise belongs to a
“noise spaceW. In both cases, we only consider Polish (i.e., complete, separable,
and metrizable) spaces. One should think of the state space as a relatively small
space which contains all the information accessible to a physical observer of the



708 M. HAIRER

process. The noise space should be thought of as a much bigger abstract space
containing all the information needed to construct a mathematical model of the
driving noise up to a certain time. The information contained in the noise space is
not accessible to the physical observer.

Before we state our definition of an SDS, we will recall several notation and
definitions, mainly for the sake of mathematical rigor. The reader can safely skip
the next section and come back to it for reference concerning the notation and the
mathematically precise definitions of the concepts that are used.

2.1. Preliminary definitions and notation.  First of all, recall he definition of a
transition semigroup:

DErFINITION 2.1. Let(&, &) be a Polish space endowed with its Barefield.
A transition semigroup P; on € is a family of mapsP;: € x & — [0, 1] indexed
by ¢ € [0, 0o) such that

(i) foreveryx e &, the mapA — P;(x, A) is a probability measure ohand,
foreveryA € &, the mapx — P, (x, A) is &£-measurable,
(i) one has the identity

%Hu¢n=ﬁwm»m%@ﬂw,

for everys,t > 0, everyx € € and everyA € &,
(i) Po(x,-) =3, foreveryx € £.

We will freely use the notation®;v)(x) = [e ¥ (y)P:(x,dy), (Pi)(A) =
Je Pi(x, A)n(dx), wherey is a measurable function ofi and i is a measure
oné.

Since we will always work with topological spaces, we will require our
transition semigroups to have good topological properties. Recall that a sequence
{nn} of measures on a topological spateés said to converge toward a limiting
measureu in the weak topology if

/meuma/wmmw> Y €@y,
& &

whereC(€) denotes the space of bounded continuous functions #dnio R.
In the sequel, we will use the notatior1(€) to denote the space of probability
measures on a Polish spateendowed with the topology of weak convergence.

DEFINITION 2.2. Atransition semigroup P; on a Polish spacé is Feller if it
mapsC, (&) into Cp(E).

REMARK 2.3. This definition is equivalent to the requirement that>
P:(x,-) is continuous fromé to .#1(€). As a consequence, Feller semigroups
preserve the weak topology in the sense that,if> w in .#1(€), then®P; u,, —
P in #1(E) for every givery.
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Now that we have defined the “good” objects for the “noisy” part of our
construction, we turn to the trajectories on the state space. We are looking for a
space which has good topological properties but which is large enough to contain
most interesting examples. One such space is the space of cadlag paths (continu a
droite, limite & gauche—continuous on the right, limits on the left), which can be
turned into a Polish space when equipped with a suitable topology.

DEFINITION 2.4. Given a Polish spactand a positive numbeF, the space
D0, T1], &) is the set of functions : [0, T] — & that are right-continuous and
whose left-limits exist at every point. A sequengé},cn converges to a limitf
if and only if there exists a sequengg,} of continuous and increasing functions
An [0, T1— [0, T satisfying,,(0) =0, 1,,(T) = T, and such that

An (1) — An(s) _

(2.1) lim sup |log 0
>0 0<g<t<T t—s

and

(2.2) m sup d(fu(?), f(xa(1))) =0,

li
n—>00 04T

whered is any totally bounded metric afwhich generates its topology.

The spacéD (R4, &) is the space of all functions frolR to € such that their
restrictions to[0, T'] are inD([0, T], &) for all T > 0. A sequence converges in
D(R4, &) if there exists a sequende,} of continuous and increasing functions
An iRy — Ry satisfying,, (0) = 0 and such that (2.1) and (2.2) hold.

It can be shown (see, e.g., [9] for a proof) that the spded®, T'], &) and
D(Ry, &) are Polish when equipped with the above topology (usually called the
Skorohod topology). Notice that the spabg[0, 7], £) has a natural embedding
into D(R4, &) by setting f(t) = f(T) for t > T and that this embedding is
continuous. However, the restriction operator franR ., £) to D([0, T, &) is
not continuous, since the topology N[0, T, £) imposes thatf,,(T) — f(T),
which is not imposed by the topology R, &).

In many interesting situations, it is enough to work with continuous sample
paths, which live in much simpler spaces:

DEFINITION 2.5. Given a Polish spadeand a positive number, the space
C([0, T, &) is the set of continuous functions: [0, T] — &€ equipped with the
supremum norm.

The space2(R4, €) is the space of all functions frof_ to £ such that their
restrictions to[0, 7] are inC([0, T'], ) for all T > 0. A sequence converges in
C(R4, &) if all its restrictions converge.

Itis a standard result that the spa€gg0, 7], &) andC(R., &) are Polish if€ is
Polish. We can now turn to the definition of the systems we are interested in.
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2.2. Definition of an SDS.  Let us recall the following standard notation. Given
a product spac& x W, we denote bylly and [Ty the maps that select the
first (resp. second) component of an element. Also, given two measurable spaces
€ and F, a measurable map :£ — F and a measurg on &, we define the
measuref* . on F in the natural way by *u = o 1.

We first define the class of noise processes we will be interested in:

DEFINITION 2.6. A quadrupléW, {P;};>0, P, {6:}:>0) is called astationary
noise process if it satisfies the following:

() Wis a Polish space,
(i) P is a Feller transition semigroup o, which accept#,, as its unique
invariant measure,
(i) The family {6,};~0 is a semiflow of measurable maps Bhsatisfying the
propertyd;*P, (x, -) = &, for everyx e W.

This leads to the following definition of SDS, which is intentionally kept as
close as possible to the definition of RDS in [1], Definition 1.1.1:

DEFINITION 2.7. A stochastic dynamical system on the Polish spac& over
the stationary noise proce€®’, {P;};>0, Pw. {6:};>0) iS @ mapping

PRy xXxW— X, (, x,w) = @ (x, w),
with the following properties:

(SDS1)Regularity of paths. For everyT > 0, x € X and w € W, the map
®r(x,w): [0, T]— X defined by

O (x, w)(?) = ¢ (x, 07— w)

belongs tdD ([0, T'], X).

(SDS2)Continuous dependence. The maps(x, w) — ®7(x, w) are continuous
from X x Wto D([0, T, X) for everyT > 0.

(SDS3)Cocycle property. The family of mappings, satisfies

po(x, w) =x,
(2.3)

Pst1(x, w) = @5 (1 (x, Osw), w),
forall s, >0, allx € X and allw e W.

REMARK 2.8. The above definition is very close to the definition of
Markovian random dynamical system introduced in [4]. Beyond the technical
differences, the main difference is a shift in the viewpoint: a Markovian RDS is
built on top of an RDS, so one can analyze it from both a semigroup point of view
and an RDS point of view. In the case of an SDS as defined above, there is no
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underlying RDS (although one can always construct one), so the semigroup point
of view is the only one we consider.

REMARK 2.9. The cocycle property (2.3) looks different from the cocycle
property for random dynamical systems. Actually, in our case a backward
cocycle for 6;, which is reasonable since, as a “left inverse” %, 6; actually
pushes time backward. Notice also that, unlike in the definition of RDS, we require
some continuity property with respect to the noise to hold. This continuity property
sounds quite restrictive, but it is actually mainly a matter of choosing a topology
on'W, which is in a sense “compatible” with the topology &n

Similarly, we define a continuous (where “continuous” should be thought of as
continuous with respect to time) SDS by

DEFINITION 2.10. An SDS is said to beontinuous if D([0, T'], X) can be
replaced bye([0, 71, X) in the above definition.

REMARK 2.11. One can check that the embeddi®gi, 71, X) — D([0,
T1,X) and C(Ry,X) — D(R,, X) are continuous, so a continuous SDS also
satisfies Definition 2.7 of an SDS.

Given an SDS as in Definition 2.7 and an initial conditigne X, we now turn
to the construction of a stochastic process with initial conditigrconstructed
in a natural way fromp. First, givenz > 0 and(x, w) € X x W, we construct a
probability measur&, (x, w; -) onX x W by

(24) Q(x,w; A x B) =/ 5<p,(x,w/)(A)j)t(wa dw,)»
B

where §, denotes the delta measure locatedxatThe following result is
elementary:

LEMMA 2.12. Let ¢ be an DS on X over (W, {P;};>0, Pw, {6:};>0) and
define the family of measures Q; (x, w; -) by (2.4). Then Q, is a Feller transition
semigroup on X x W. Furthermore, it has the property that if ITj,u = P,, for a
measure 11 on X x W, then T13,Q, 1 = Py,.

PrROOF The fact thatIl},9;u = P,, follows from the invariance o,
under ;. We now check thaf); is a Feller transition semigroup. Conditions
() and (iii) follow immediately from the properties ofp. The continuity
of Q,(x, w; -) with respect ta(x, w) is a straightforward consequence of the facts
that P, is Feller and tha(x, w) — ¢,(x, w) is continuous [the latter statement
follows from (SDS2) and the definition of the topology D0, ¢], X)].
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It thus remains only to check that the Chapman—Kolmogorov equation holds.
We have from the cocycle property:

Qs (x,w; A X B)

= /B 8¢ rs (x,w) (A) Py (w, dw’)
:/B_/T;CS‘D‘Y(y’w/)(A)S‘n"t(xﬂxw')(dy)?s-q—z(w,dw/)

= ) w (A8, (x 0w ([dV)Ps(w,” dw )P (w, dw”).
/W/B/x 0s (v, w") (A8, (x,6,w) (dY) Ps (w,” dw’) Py (w, dw™)

The claim then follows from the property P, (w,” dw’) = 8, (dw’) by exchang-
ing the order of integration.

REMARK 2.13. Actually, (2.4) defines the evolution of the one-point process
generated by. Then-points process would evolve according to

n
Q,(")(xl, e X, W A1 X - X Ay X B) = /B l_[5(p[(xi’w/)(A,-)fP,(w,dw').
i=1
One can check as above that this defines a Feller transition semigro{ip>ofy.

This lemma suggests the following definition:

DEFINITION 2.14. Letp be an SDS as above. Then a probability meagure
onX x W is called ageneralized initial condition for ¢ if I}, = P,,. We denote
by .#, the space of generalized initial conditions endowed with the topology of
weak convergence. Elements.of,, that are of the formu =6, x P,, for some
x € X will be calledinitial conditions.

Given a generalized initial condition, it is natural to construct a stochastic
process(x;, w;) on X x W by drawing its initial condition according ta and
then evolving it according to the transition semigrayp The marginal; of this
process onX will be called theprocess generated by ¢ for . We will denote by
2u the law of this process [i.e2u is a measure o (R4, X) in the general case
and a measure o@(R, X) in the continuous case]. More rigorously, we define
for everyT > 0 the measure?ru onD([0, T'], X) by

Dru=d7Pu,

where®r is defined as in (SDS1). By the embedding0, 7], X) — D(R4, X),
this actually gives a family of measures ®{R_., X). It follows from the cocycle
property that the restriction tB ([0, T'], X) of 27/ with T’ > T is equal to27 .
The definition of the topology o® (R, X) does therefore imply that the sequence
27 converges weakly to a uniqgue measurelaiiR ., X) that we denote by ..

A similar argument, combined with (SDS2), yields
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LEMMA 2.15. Let ¢ be an SDS Then, the operator 2 as defined above is
continuous from .Z, to .#1(D(Ry, X)). O

This in turn motivates the following equivalence relation:

DEFINITION 2.16. Two generalized initial conditions andv of an SDSg
are equivalent if the processes generated hyandv are equal in law. In short,
u~vs 2u=2v.

The physical interpretation of this notion of equivalence is that the noise space
contains some redundant information that is not required to construct the future of
the system. Note that this does not necessarily mean that the noise space could be
reduced in order to have a more “optimal” description of the system. For example,
if the process:; generated by any generalized initial condition is Markov, then all
the information contained itV is redundant in the above sense (ieandv are
equivalent if[15.u = IT3v). This does of course not mean thatcan be entirely
thrown away in the above description (otherwise, since thegniagleterministic,
the evolution would become deterministic).

The main reason for introducing the notion of SDS is to have a framework in
which one can study ergodic properties of physical systems with memory. It should
be noted that it is designed to describe systems where the memeityiisic,
as opposed to systems withtrinsic memory like stochastic delay equations. We
present in the next section a few elementary ergodic results in the framework
of SDS.

2.3. Ergodic properties. In the theory of Markov processes, the main tool for
investigating ergodic properties is th&variant measure. In the setup of SDS, we
say that a measure on X x W is invariant for the SDS if it is invariant for
the Markov transition semigroup, generated by. We say that a measugeon
X x W is stationary for ¢ if one has

Qe ~ 1 Vt>0,

that is, if the process o generated by is stationary. Following our philosophy

of considering only what happens on the state spaage should be interested in
stationary measures, disregarding completely whether they are actually invariant
or not. In doing so, we could be afraid of losing many convenient results from
the well-developed theory of Markov processes. Fortunately, the following lemma
shows that the set of invariant measures and the set of stationary measures are
actually the same, when quotiented by the equivalence relation of Definition 2.16.

PROPOSITION2.17. Let ¢ bean SDSand let 1« be a stationary measure for
@. Then, there exists a measure ., ~ 1 which isinvariant for ¢.
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ProOOE Define the ergodic averages

1 T
(2.5) Rru= —/ Q;udt.
T Jo

Since u is stationary, we havdl}Rru = I5u for every T. Furthermore,
Iy, R = Py, for every T; therefore the sequence of measuRgs. is tight on
X xW. Let u, be any of its accumulation points i1 (X x W). SinceQ, is Feller,
Iy IS invariant forQ; and, by Lemma 2.15, one hag ~ . O

From a mathematical point of view, it may in some cases be interesting to
know whether the invariant measuyrg constructed in Proposition 2.17 is uniquely
determined by.. From an intuitive point of view, this uniqueness property should
hold if the information contained in the trajectories on the state spassufficient
to reconstruct the evolution of the noise. This intuition is made rigorous by the
following proposition.

PROPOSITION 2.18. Let ¢ be an SDS define #7 as the o-field on W
generated by the map &7 (x,):W — D([0,T],X) and set #7 = N ex #5 -
Assume that #7 C #7 for T < T’ and that # = \/ 7~ #7 isequal to the Borel
o-fieldon W. Then, for 1 and o two invariant measures, one has theimplication

M1~ U2 = (1= U2.

PROOF Assumeui ~ u2 are two invariant measures for Since#r C #7
if T < T’, their equality follows if one can show that, for evefy> 0,

(2.6) E(uilZ @ #71) = E(u2| Z @ #7),

where. 2" denotes the Boret-field onX.

Since u1 ~ w2, one has in particulafTy g = IT3u2, so let us call this
measurev. SinceW is Polish, we then have the disintegratior> 1}, yielding
formally w; (dx, dw) = u; (dw)v(dx), whereu; are probability measures of.

(See [10], page 196, for a proof.) FiK > 0 and define the familwf’T of
probability measures oW by

pr = [ Pt dw).
With this definition, one has
7 i =/DC(CI>T(X,')*M?C’T)U(CIX)-
Leteg:D([0, T], X) — X be the evaluation map at 0; then

E(2rpuileo=x) = (Or(x, ) T,
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for v-almost every € X. Since2ru1 = 272, one therefore has
(2.7) E(uy " 174) =Eus " 1#7),

for v-almost every € X. On the other hand, the invarianceafimplies that, for
everyA € 2" and everyB € #7, one has the equality

Wi(A x B) = /x /B salor @ )T (dw)v(dx).

Sincegr (x, -) is # -measurable an# € #7, this is equal to

[ [ xator w)Ea T 177 @wyviax).
XJB

Thus (2.7) implies (2.6) and the proof of Proposition 2.18 is compléie.

The existence of an invariant measure is usually established by finding a
Lyapunov function. In this setting, Lyapunov functions are given by the following
definition.

DEFINITION 2.19. Letp be an SDS and lef : X — [0, oo) be a continuous
function. Then F is a Lyapunov function for ¢ if it satisfies the following
conditions:

(L1) The setF~1([0, C]) is compact for every e [0, 00).
(L2) There exist constants andy > 0 such that

(2.8) /x L FO@udx, dw) <C + e /x F(x) (T 1) (dx),

for everyr > 0 and every generalized initial conditipnsuch that the right-
hand side is finite.

It is important to notice that one doaest require F to be a Lyapunov function
for the transition semigrouf;, since (2.8) is only required to hold for measures
w satisfyingITy,u = P,,. One nevertheless has the following result:

LEMMA 2.20. Let ¢ bean DS If there exists a Lyapunov function F for ¢,
then there exists also an invariant measure ., for ¢, which satisfies

(2.9) /xxw F(x)us(dx,dw) <C.

PROOF Letx € X be an arbitrary initial condition, sgt = §, x P,, and define
the ergodic averageRr e as in (2.5). Combining (L1) and (L2) with the fact that
I}, Rru = Py, one immediately gets the tightness of the sequefiteu}. By
the standard Krylov—Bogoloubov argument, any limiting point{@f .} is an
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invariant measure fap. The estimate (2.9) follows from (2.8), combined with the
fact thatF is continuous. [

This concludes our presentation of the abstract framework in which we analyze
the ergodic properties of (SDE).

3. Construction of the SDS. In this section, we construct a continuous
stochastic dynamical system which yields the solutions to (SDE) in an appropriate
sense.

First of all, let us discuss what we mean by “solution” to (SDE).

DEFINITION 3.1. Let{x/};>0 be a stochastic process with continuous sample
paths. We say that, is asolution to (SDE) if the stochastic proced&(r) defined

by
t

(3.1) N(t) = x, — x0— / Fxs) ds
0

is equal in law too By (1), whereo is as in (SDE) andy (¢) is ann-dimensional
FBM with Hurst parametet! .

We will set up our SDS in such a way that, for every generalized initial
condition i, the canonical process associated to the measiueis a solution
to (SDE). This will be the content of Proposition 3.11 below. In order to achieve
this, our main task is to set up a noise process in a way which complies with
Definition 2.6.

3.1. Representation of the FBM. In this section, we give a representation
of the FBM By (¢) with Hurst parameteld € (0, 1) which is suitable for our
analysis. Recall that, by definitioB (¢) is a centered Gaussian process satisfying
By (0)=0and

(3.2) E|By(t) — By (s)2 = |t — 5.

Naturally, atwo-sided FBM by requiring that (3.2) holds for all, 7 € R. Notice
that, unlike for the normal Brownian motion, the two-sided FBMas obtained

by gluing two independent copies of the one-sided FBM togetherdi. We have

the following useful representation of the two-sided FBM, which is also (up to the
normalization constant) the representation used in the original paper [17].

LEMMA 3.2. Letw(?),t € R, beatwo-sided Wiener processandlet H € (0,1).
Define for some constant «y the process

0
(3.3) By (1) =aH/ (= Y2(qw (r + 1) — dw ().

—0o0
Then there exists a choice of oy such that By (7) is a two-sided FBM with Hurst
parameter H.
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NoTATION 3.3. Given the representation (3.3) of the FBM with Hurst
parameterH, we call w the “Wiener process associated Bg;.” We also refer
to {w(z):t < 0} as the “past” ofw and to{w(z) : ¢ > 0} as the “future” ofw. We
similarly refer to the “past” and the “future” @y . Notice the notion of future for
By is different from the notion of future fow in terms ofo-algebras, since the
future of By depends on the past of.

REMARK 3.4. The expression (3.3) looks strange at first sight, but one should
actually think of By () as being given byBy (1) = B (1) — B (0), where

(3.4) By(t) =ay /_t (t —)T=Y2 qu(s).

This expression is strongly reminiscent of the usual representation of the

stationary Ornstein—Uhlenbeck process, but with an algebraic kernel instead of
an exponential one. Of course, (3.4) does not make any sensesingg’ /2 is

not square integrable. Nevertheless, (3.4) has the advantage of explicitly showing
the stationarity of the increments for the two-sided FBM.

3.2. Noise spaces. In this section, we introduce the family of spaces that
will be used to model our noise. Denote BY°(R_) the set ofC> function
w:(—o00,0] - R satisfying w(0) = 0 and having compact support. Given a
parametetr{ € (0, 1), we define for every e C3°(R-) the norm

|lw(t) — w(s)]
35 = su )
(35) lwlln = SUD T mZA 1] + [sDi2

We then define the Banach spadg to be the closure o3°(R_) under the norm
Il - |z. The following lemma is important in view of the framework exposed in
Section 2:

LEMMA 3.5. The spaces Hy are separable.

PrRooOF It suffices to find a nornfj - ||, which is stronger thafi - || z and such
that the closure of3°(R-) under|| - ||, is separable. One example of such a norm
is given by||w|, =sup_q[tw(r)]. O

Notice that it is crucial to defing(y as the closure ofg° under| - || 5. If we
defined it simply as the space of all functions with finjte || z-norm, it would
not be separable. (Think of the space of bounded continuous functions, versus the
space of continuous functions vanishing at infinity.)

In view of the representation (3.3), we define the linear operdtgr on
functionsw € C3° by

0
(3.6) (D prw) (1) :aH/_ (=) T =Y2(3ip(s + 1) — 1 (5)) .

whereay is as in Lemma 3.2. We have the following result:
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LEMMA 3.6. Let H € (0,1) and let Hy be as above. Then the operator Dy,
formally defined by (3.6), is continuous from H g into H1_g. Furthermore, the
operator Dy has a bounded inverse, given by the formula

Dyt =yuDi-n.

for some constant yy satisfying yg = y1-p.

REMARK 3.7. The operatoDy is actually (up to a multiplicative constant)
a fractional integral of ordeH — % which is renormalized in such a way that one
gets rid of the divergence atoo. It is therefore not surprising that the inverse
of Dy isD1_py.

PROOF OFLEMMA 3.6. ForH = % Dy is the identity and there is nothing

to prove. We therefore assume in the sequel fhat %

We first show thatD g is continuous fromHy into H1_p. One can easily
check thatD 7 mapsCg° into the set o2 functions which converge to a constant
at —oo. This set can be seen to belongia_ y by a simple cutoff argument, so it
suffices to show thatDyw|1-x < Cllwllg for w € C5°. Assume without loss of
generality that > s and defing: = r — 5. We then have

(Drw)(t) — (Drw)(s)

=ay [ ((r — HY2 (s — ) HY2) qu(r)

t
+ap / t =T Y2quw ().
Splitting the integral and integrating by parts yields
(Drw)(t) — (Dpw)(s)

=—apy(H — %) /;ih(s — r)H_s/Z(w(r) —w(s))dr

+apg(H — %) _/t-iZh(t — r)H73/2(w(r) —w(t))dr

+ap(H-13) /S ((t = r)I=32 — (s = 1) H=32) (w(r) — w(s)) dr

—00
+ay T2 (w(t) — w(s))
=T1+ T+ T3+ Ta.

We estimate each of these terms separatelyZl-omve have

h
ITa < C(L+|s| + |z|>1/2f pH=3/2+0=H)/2 g < CpHI2(1 4 5| + 1)Y2.
0
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The termT» is bounded by 7 #/2(1+ |s| +|¢|)Y/2 in a similar way. Concernings,
we bound it by

o0
T3] < c/ (r1=32 — (b + I3 (w(s —r) —w(s))dr
h
o
§Ch/ P52, A= H/12(1 4 |s| + |r) Y2 dr
h

oo
< ChH2(1+ |s|)1/2+Chf rH1272(n 4 )2 dr
h

< ChHA + |s| + h)Y? < ChH2(1 + |s| + 1) Y2

The term7y is easily bounded by n#/2(1 + |s| + |¢)Y/2, using the fact that
w € Hpy. This shows thaD g is bounded froniHy to Hi_g.

It remains to show thab y o D1_ g is a multiple of the identity. For this, notice
thatif w € C3°, then one has in the notation of [25], pages 94 and 95, the following
identities:

(Drw)(t) = —anT (H + 2)(A7 2wy 0) — 1 ?w)(0)), H>1,

Drw)(t) = —apT(H + (DY Pwy@) — (DY* Tw)©0), H<3
Furthermore, (3.6) shows th@yw = 0 if w is a constant. The claim then follows
immediately from the fact that ib € C3° anda € (0, 1), one hasD{ I§w = w and
1$ DG w = w (see [25], Theorem 2.4).0]

Since we want to use the operatdrg; andD1_g to switch between Wiener
processes and FBMs, it is crucial to show that the sample paths of the two-sided
Wiener process belong to evelyy with probability 1. Actually, what we show is
that the Wiener measure can be constructed as a Borel meastig.on

LEMMA 3.8. Thereexistsa unique Gaussian measure W on H g whichissuch
that the canonical process associated to it is a time-reversed Brownian motion.

PROOF We start by showing that thé{y-norm of the Wiener paths
has bounded moments of all orders. It follows from a generalization of the
Kolmogorov criterion ([24], Theorem 2.1) that

(3.7) E( sup M>p <0

s.ref0.2) |s — 1| A=H/2

for all p > 0. Since the increments @ are independent, this implies that, for
everye > 0, there exists a random varialflg such that
lw(s) —w()]

3.8 su < Cq,
9 Mgl s — (=20 4[] +|she
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with probability 1, and that all the moments 61 are bounded. We can therefore
safely assume in the sequel that- s| > 1. It follows immediately from (3.8) and
the triangle inequality that there exists a const@rtch that

(3.9) lw(s) —w(®)| < CCalt — s+ [t] + IsD",

whenever|t — s| > 1. Furthermore, it follows from the time-inversion property
of the Brownian motion, combined with (3.7), that| does not grow much faster
than|¢|Y/2 for large values of. In particular, for every’ > 0, there exists a random
variableC» such that

(3.10) lw(®)| < C2(1+ Y2 VieR,

and that all the moments @f; are bounded. Combining (3.9) and (3.10), we get
(for some other constaut)

lw(s) —w(?)]

< CC:(Ll—H)/Z

« C§1+H)/2|t _Sl(l—H)/z(lJr Is| + |l|)(H+l)/4+£(1—H)/2+8/(1+H)/2'
The claim follows by choosing, for example= ¢’ = (1— H)/A4.
This is not quite enough, since we want the sample paths to belong to the closure
of Cg° under the nornj - || 7. Define the function
14t 2
(s,0) > (s, 1) = %
— S

By looking at the above proof, we see that we actually proved the stronger
statement that for everdl € (0, 1), one can find & > 0 such that

1wl — sup LD 10E) —wO)
w = < X
Hy = SUP @21 1 (1] + 1512

with probability 1. Let us calli{y , the Banach space of functions with finite
I - Il 7, -norm. We will show that one has the continuous inclusions:

(3.11) Hy., < Hy < C(R_,R).

Let us callw the usual time-reversed Wiener measur€dR_, R) equipped with
theo-field % generated by the evaluation functions. Sii€g , is a measurable
subset of€(R_, R) andW(Hy,, ) = 1, we can restriciv to a measure ofi{,
equipped with the restrictios? of Z. It remains to show tha# is equal to the
Borelo-field Z on H . This follows from the fact that the evaluation functions are
P-measurable (since they are actually continuous) and that a countable number of
function evaluations suffices to determine fhe| z-norm of a function. The proof

of Lemma 3.8 is thus complete if we show (3.11).
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Notice first that the functiolr (s, ¢) becomes large whgn— s| is small or when
either|z| or |s| is large; more precisely, we have

(3.12) T(s, 1) > max(|s|, ||, |t —s|71).

Therefore, functionsw € Hy ,, are actually more regular and have better growth
properties than what is needed to have finjte ||gz-norm. Given w with
lwlla,, <oo and anyes > 0, we will construct a functionv € C§° such that
lw—wl| g < e. Take twoC*> functionsg; andg2 with the following shape:

-1 @1(t) -2 -1 pad)

Furthermore, we choose them such that
‘dwz(t) <2

fR_ p1(s)ds =1, | =

For two positive constants< 1 andR > 1 to be chosen later, we define
. 1(s/7)
() = g2(t/R) [ w(t+* /

,
that is, we smoothen ouv at length scales smaller thanand we cut it off

at distances bigger thaR. A straightforward estimate shows that there exists a
constantC such that

ds,

lwlla,y < Cllwlla,y,

independently of < 1/4 andR > 1. Foré > 0 to be chosen later, we then divide
the quadrank = {(z, s)|t, s < 0} into three regions:

@ Ki={, 9)|lt|+|s| >R} NK,
K

Ko ={(@, 9)[lt —s| <8} N K \ K1,
K3= K\ (K1UK>).

We then boundw — w| g by
C —u t) —w(t
lw—i|g< sup lwll &,y u lw(s) (:)Pff)zl + |w(?) w(1)2|
s.nekuky L8 (s neks |t — S| 2+t + |shY

<CE + R )| wlu, +28HY/2 sup |w() — @)
O<t<R
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By choosings small enough andk large enough, the first term can be made
arbitrarily small. One can then choosesmall enough to make the second term
arbitrarily small as well. This shows that (3.11) holds and therefore the proof of
Lemma 3.8 is complete.[]

3.3. Definition of the SDS The results shown so far in this section are
sufficient to construct the required SDS. We start by considering the pathwise
solutions to (SDE). Given a tim& > 0, an initial conditionx € R" and a noise
b € Co([0, T, R™), we look for a function®7 (x, b) € C([0, T], R") satisfying

(3.13) Or(x,b)(t) =0b(t) +x + /Ot f(®r(x,b)(s))ds.

We have the following standard result:

LEMMA 3.9. Let f:R" — R" satisfy assumptions (A1) and (A2). Then, there
exists a unique map ®7:R" x C([0, T],R") — C([0, T'], R") satisfying (3.13).
Furthermore, ®¢ islocally Lipschitz continuous.

PROOF The local (i.e., smalll') existence and uniqueness of continuous
solutions to (3.13) follow from a standard contraction argument. In order to show
the global existence and the local Lipschitz propertyxfiy and T, and define
y(t) = x 4+ ob(t). Definez(t) as the solution to the differential equation

(3.14) z() = f(z@) +y(®), z(0)=0.

Writing down the differential equation satisfied byz(r)||? and using
(Al) and (A2), one sees that (3.14) possesses a (unique) solution up t@ time
One can then sebr (x, b)(¢) = z(¢) + y(¢) and check that it satisfies (3.13). The
local Lipschitz property ofb7 then immediately follows from the local Lipschitz
property of f. [

We now define the stationary noise process. For this, we defidéy — Hy
by
Brw)(s) =w(s —t) —w(—t).
In order to construct the transition semigrofiip we define firstHy like Hy,
butNWith arguments iR instead ofR_, and we writew for the Wiener measure
onXHy, as constructed in Lemma 3.8 above. Define the fundgioy x Hy —
Hy by
_ w( +s)—w(t), fors > —1,
(315)  (Pw.h))(s) = { '
w( +s) —w(@), fors < —r1,

and setP;(w,-) = P,(w,)*W. This construction can be visualized by the
following picture:
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w
o A =

One then has the following.

LEMMA 3.10. Thequadruple (g, {P:}>0, W, {6;};>0) iSa stationary noise
process.

PROOF We already know from Lemma 3.5 th&fy is Polish. Furthermore,
one hast, o P;(w,-) = w, so it remains to show thak, is a Feller transition
semigroup withw as its unique invariant measure. It is straightforward to check
that it is a transition semigroup and the Feller property follows from the continuity
of P,(w,w) with respect tow. By the definition (3.15) and the time-reversal
invariance of the Wiener process, every invariant measurgigr-o must have its
finite-dimensional distributions coincide with thosewsf Since the Boreb -field
on Hy is generated by the evaluation functions, this shows \Was the only
invariant measure. ]

We now construct an SDS over copies of the above noise process. With a
slight abuse of notation, we denote that noise proces3\hyP;};>0, W, {6;};>0).
We define the (continuous) shift opera®y : C((—oo, 0], R") — Co([0, T1, R™)
by (Rrb)(t) =b(t — T) — b(—T) and set

¢: Ry xR'"xW— R",
(3.16)
(t, x,w) = O;(x, RyDygw)(t).

From the above results, the following is straightforward:

ProPOSITION3.11. The function ¢ of (3.16)defines a continuous SDS over
the noise process (W, {P;};>0, W, {6;};>0). Furthermore, for every generalized
initial condition w, the process generated by ¢ from w is a solution to (SDE)in
the sense of Definition 3.1.

PROOF The regularity properties @f have already been shown in Lemma 3.9.
The cocycle property is an immediate consequence of the composition property
for solutions of ODEs. The fact that the processes generateddng solutions to
(SDE) is a direct consequence of (3.13), combined with Lemma 3.2, the definition
of Dy and the fact thatv is the Wiener measure.[]
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To conclude this section, we show that, thanks to the dissipativity condition
imposed on the drift terny’, the SDS defined above admits any power of the
Euclidean norm oiR" as a Lyapunov function:

PrROPOSITION3.12. Let ¢ be the continuous SDS defined above and assume
that (A1) and (A2) hold. Then, for every p > 2,themap x — ||x||” isa Lyapunov
function for .

PROOF Fix p > 2 and letu be an arbitrary generalized initial condition
satisfying

/I;lz ”x”p(n*”:u“)(dx) < O0.
Let ¢ be the continuous SDS associated by Proposition 3.11 to the equation
(3.17) dy(t)=—ydt +odBy(t).

Notice that bothy and¢ are defined over the same stationary noise process.

We definex; as the process generated byfrom n and y; as the process
generated by from §g x W (in other wordsyp = 0). Since both SDS are defined
over the same stationary noise processand y, are defined over the same
probability space. The processis obviously Gaussian, and a direct (but lengthy)
calculation shows that its variance is given by

EllyI>=2H tr(co*)e”" /Ot s?A=Lcosht — s) ds.
In particular, one has for at|
(3.18) E|ly|I° <2H tr(co™) /(;OOSZHleS ds =T (2H + Dtr(co*) = Cwo.
Now definez; = x; — y;. The process; is seen to satisfy the random differential

equation given by

dz
d—tt:f(Zt‘Fyt)‘f'yt, Z0 = X0.

Furthermore, one has the following equation ffey||?:
d|jz |2

dt

Using (A2) and (A3) and the Cauchy-Schwarz inequality, we can estimate the
right-hand side of this expression by:

=2z, [zt + ) + 221, yi)-

d 2
llz |l < 2C§A1)
dt

Al ~
<=2z + CA+ 1y 1DY,

- 2C£A1) ”ZIHZ + 2(ze, yr + f (1))
(3.19)
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for some constart'. Therefore,
2 _ _ochV 2 =1 —actV— 2N
lz )l <e %2 '|xoll“+C ¢ 2 (A4 ||y BN ds.

It follows immediately from (3.18) and the fact that is Gaussian with bounded
covariance (3.18) that there exists a const@nsuch that

p —pCcP p
Ellz:|” = Cpe "2 "Ellxoll” + Cp,

for all timest > 0. Therefore (2.8) holds and the proof of Proposition 3.12 is
complete. O

4. Coupling construction. We do now have the necessary formalism to study
the long-time behavior of the SDGwe constructed from (SDE). The main tool
that will allow us to do that is the notion of self-coupling for stochastic dynamical
systems.

4.1. Sdf-coupling of SDS. The main goal of this paper is to show that the
asymptotic behavior of the solutions of (SDE) does not depend on its initial
condition. This will then imply that the dynamics converges to a stationary state
(in a suitable sense). We therefore look for a suitable way of comparing solutions
to (SDE). In general, two solutions starting from different initial pointsRf
and driven with the same realization of the no$g have no reason of getting
close to each other as time goes by. Condition (Al) indeed only ensures that they
will tend to approach each other as long as they are sufficiently far apart. This is
reasonable, since by comparing only solutions driven by the same realization of
the noise process, one completely forgets about the randomness of the system and
the “blurring” this randomness induces.

It is therefore important to compare probability measures (e.g., on path-space)
induced by the solutions rather than the solution themselves. More precisely, given
an SDSy and two generalized initial conditionsandv, we want to compare the
measures?29, u and 29,v ast goes to infinity. The distance we will work with
is the total variation distance, henceforth denoted|by|tv. We will actually
use the following useful representation of the total variation distanceQlst a
measurable space and RtandP, be two probability measures @&. We denote
by C(P1, P2) the set of all probability measures ¢hx © which are such that
their marginals on the two components are equdt@nd P2, respectively. Let
furthermoreA C Q x @ denote the diagonal, that is, the set of elements of the
form (w, w). We then have

(4.1) IPL—P2lltv=2— sup 2P(A).
PeC(P1,P2)

Elements ofC (P1, P2) will be referred to azouplings betweenP; andP2. This
leads naturally to the following definition:
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DEFINITION 4.1. Lety be an SDS with state spade and let.#, be the
associated space of generalized initial conditionsself-coupling for ¢ is a
measurable maqu, v) — 2(u, v) from .#, x .#, into D(R4, X) x DR, X),
with the property that for every paiu, v), 2(u, v) is a coupling for2u and 2v.

Define the shift magx; : D(R4+, X) - D(R4, X) by
(Zx)($s) =x( + ).

It follows immediately from the cocycle property and the stationarity of the noise
process tha2Q, u = X 2. Therefore, the measub&* 2(u, v) is a coupling for
29, and 29;v [which is in general different from the coupling (Q; i, Q;v)].
Our aim in the remainder of this paper is to construct a self-cougiiig, v) for
the SDS associated to (SDE) which has the property that

tleoo(E, 2(pn,v)(A)=1,
whereA denotes as before the diagonal of the spR¢R ., X) x D(Ry, X). We
will then use the inequality

(4.2) 1291 — 29vlltv < 2 - 2(£F (1, v))(A)

to deduce the uniqueness of the stationary state for (SDE).

In the remainder of the paper, the general way of constructing such a self-
coupling will be the following. First, we fix a Polish spagethat contains some
auxiliary information on the dynamics of the coupled process we want to keep
track of. We also define a “future” noise spask. to be equal tdH”,, whereH g
is as in (3.15). There is a natural continuous time-shift operatd e x W
defined forr > 0 by

(4.3) (s, w,w) > (s —1, P(w, ), S;W), (S;w)(r) =w(r +1) —w(t),
where P, was defined in (3.15). We then construct a (measurable) map

4.4) %:XZXWZXA—)RXJ/A(AXWEF),
4.4
(x, y, wy, wy,a) = (T(x, y, wye, wy,a), Wa(x, y, wy, wy, a)),

with the properties that, for alk, y, w,, wy, a),

(C1) the timeT (x, y, wy, wy, a) is positive and greater than 1,
(C2) the marginals oWz (x, y, wy, wy, a) onto the two copies oIV, are both
equal to the Wiener measwe

We call the ma¥ the “coupling map,” since it yields a natural way of constructing
a self-coupling for the SD%. The remainder of this section explains how to
achieve this.

Given the magy’, we can construct a Markov process on the augmented space
Z =X2x W2 x Ry x A x W2 in the following way. As long as the component
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T € Ry is positive, we just time-shift the elementsW¥ x W2 x R according

to (4.3) and we evolve ift? by solving (SDE). As soon asbecomes 0, we redraw
the future of the noise up to tin¥(x, y, a) according to the distributiow,, which
may at the same time modify the information storedlin

To shorten notation, we denote elements®fby

X: (-xay9 w)C7 wy,f,a, a}X7‘lI)y)'

With this notation, the transition functio®, for the process we just described is
defined by:

(a) Fort <7, we defined, (X; -) by

01 (X3 ) = 8y, (x, Py i) X 10, Py i) X SPy (i)
X Spt(wy’ﬁ)y) X 87t X 8q X 85,4, X 5S,u~)y-
(b) Fort = 7, we defined, (X; -) by
Qr(X3) = Byt s X Bgu v, Prtuy. ) X By i)
(4.5) X 8Py (wy,y) X 8T (x,y, Py, i), Pr (wy, By),a)
X Wa(x, y, Pr(wy, Wy), Pr(wy, wy), a).
(c) Fort > 7, we defineQ, by imposing that the Chapman-Kolmogorov

equations hold. Since we assumed that, y, w,, wy, a) is always greater than 1,
this procedure is well defined.

We now construct an initial condition for this process, given two generalized
initial conditionsw, andu2 for ¢. We do this in such a way that, in the beginning,
the noise component of our process lives on the diagonal of the 3pade other
words, the two copies of the two-sided FBM driving our coupled system have
the same past. This is possible since the marginals;aind ;.2 on ‘W coincide.
Concerning the components of the initial conditiorRin x A x W2 , we just draw
them according to the ma&g, with some distinguished elemetg € A.

We call 2p(u1, 2) the measure or” constructed by this procedure. Consider
a cylindrical subset of2” of the form

X=X1xXox Wi xWoxF,

where F is a measurable subset &, x A x W2. We make use of the
disintegrationw — p}”, yielding formally ; (dx, dw) = .}’ (dx)W(dw), and we
defineZp(u1, u2) by

2o(1, n2)(X)

(46) =/ / / (ST(xl,xz,w,w,ao) X Wa(x1, x2, w, w, aO))(F)
WinWo J X1 JXo

x py (dx2)uy (dx)W(dw).
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With this definition, we finally construct the self-coupling(it1, u2) of ¢
corresponding to the functio® as the marginal ort(R., X) x C(Ry,X) of
the process generated by the initial conditigfy (i1, u2) evolving under the
semigroup given by,. Condition (C2) ensures that this is indeed a coupling for
211 andQuz.

The following section gives an overview of the way the coupling funcéois
constructed.

4.2. Construction of the coupling function. Let us consider that the initial
conditionsu1 and o are fixed once and for all and denote hyand y, the two
X-valued processes obtained by considering the marginaX of, 1.2) on its two
X components. Define the random (but not stopping) timedy

Too = INf{t > O|x; = y, for all s > 1}.

Our aim is to find a spacél and a functions satisfying (C1) and (C2) such

that the processes andy; eventually meet and stay together for all times, that

is, such that lim_ . P(t < T) = 1. If the noise process driving the system
was Markov, the “stay together” part of this statement would not be a problem,
since it would suffice to start driving, andy; with identical realizations of the
noise as soon as they meet. Since the FBM is not Markov, it is possible to make
the future realizations of two copies coincide with probability 1 only if the past
realizations also coincide. If the past realizations do not coincide for some time,
we interpret this as introducing a “cost” into the system, which we need to master.
(This notion of cost will be made precise in Definition 5.3 below.) Fortunately, the
memory of past events becomes smaller and smaller as time goes by, which can be
interpreted as a natural tendency of the cost to decrease. This way of interpreting
our system leads to the following algorithm that should be implemented by the
coupling functions’:

Try to make x; and y; meet

o@%%
S
)

Try to keep x; and y; together

<R
,
/(/lb

Wait until the cost is low

(4.7)

success
ainjiey

The precise meaning of the statements appearing in this diagram will be made
clear in the sequel, but the general idea of the construction should be clear by now.
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One step in (4.7) corresponds to the time between two jumps af-ttmmponent

of the coupled process. Our aim is to construct the coupling funé&tiam such a

way that, with probability 1, there is a time after which step 2 always succeeds.
This time is then precisely the random timg we want to estimate.

It is clear from what has just been exposed that we will actually never need to
consider the continuous-time process on the sgéacgiven by the self-coupling
described in the previous section, but it is sufficient to describe what happens at the
beginning of each step in (4.7). We will therefore only consider the discrete-time
dynamic obtained by sampling the continuous-time system just before each step.
The discrete-time dynamic will take place on the spaiee (X? x W2 x A) x Ry
and we will denote its elements by

Z, 1), Z=(x,y, Wy, wy,a), teR;.

Since the time steps of the discrete dynamic are not equally spaced, the time
is required to keep track of how much time really elapsed. The dynamic of the
discrete proces&Z,, 7,) on Z is determined by the functio®: R x Z x (A x

W2) — Z given by

CD(I’ (Z,7), (wy, ﬁ)yw a)) = ((pt(x» Pr(wy, ﬁ)x))7 ‘Pt(y, Pt(wya ﬁ)y))a

Pt(w)(a UN)X)’ Pl‘(wya ﬂ}y),fl, T +t)

(The notation are the same as in the definitioﬁ)pabove.) With this definition at
hand, the transition function for the proc€ss,, t,,) is given by

(4.8) P(Z,7)=D(T(2),(Z,71),-) " WaZ),

whereT andW- are defined in (4.4). Given two generalized initial conditions
w1 and uo for the original SDS, the initial conditionZg, 7p) is constructed by
choosingrg = 0 and by drawingZg according to the measure

10(X) = 849 (A) f / W2 (dxa)ud (dx)W(dw),
WinWs J X1 J X»

whereX is a cylindrical set of the fornX = X; x X2 x Wy x W x A. It follows
from the definitions (4.5) and (4.6) that if we defimg as thenth jump of the
process onZ” constructed above arid, as (the component if? x W? x A of)

its left-hand limit atz,,, the process we obtain is equal in law to the Markov chain
that we just constructed.

Before carrying further on with the construction @f, we make a few
preliminary computations to see how changes in the past of the FBM affect its
future. The formulae and estimates obtained in Section 4.3 are crucial for the
construction of#” and for the obtainment of the bounds that lead to Theorems
1.2 and 1.3. In particular, Proposition 4.4 is the main estimate that leads to the
coherence of the coupling construction and to the bounds on the convergence rate
toward the stationary state.
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4.3. Influence of the past on the future. Let w, € Hy and setB, = Dywy.
Consider furthermore two functiong, andgp satisfying

t t
4.9 t|—>'/0 gw(s)ds e Hy, tf—)/o gp(s)ds e Hi_p,
and defineB, andw, by B, (0) = w,(0) =0 and
(4.10) dBy =dBy + gpdt, dwy =dwy + gy dt.

As an immediate consequence of the definitionlg§, the following relations
betweeng,, andgp will ensure thatBy, = Dy w,.

LEMMA 4.2. Let B,, By, wy, wy, gg and g,, be asin (4.9), (4.10)and
assumethat By = Dyw, and By, = Dyw,. Then, g,, and gp satisfy the following
relation:

d t
(4.11a) gu®) =an /_ (t — )2 H gy (s) ds,

d t
(4.11b) 850 =ynor-n g, f (t — )T Y20, (5) ds.
—00

If gw () =0for ¢ > g, one has

fo
(4.11c) g8 =(H - Nymor—n | =7 "32g,(s)ds,
—0Q

for ¢t > to. Smilarly, if gg(t) = 0for ¢ > 19, one has

fo

(4.11d) gw(®)=(3- H)om/ (t —s) H"Y2gp(s5) ds,

—0o0

for ¢ > to. If g, isdifferentiable for r > 79 and g,,(¢) = 0 for ¢ < #9, one has

YHA1—H &w(t0) 2, (8)

t
4.11e D=—"—"—"—"9>"7" - / T N12-H
( ) gB( ) (t _ to)l/z_H + YHX1-H - (t _ S)1/2—H

ds,
for r > 1. Smilarly, if g isdifferentiable for ¢ > 19 and gz () = 0 for ¢ < t9, one
has

apgg(to) 4 f’ g (s) ds
1

(4.11f) guw(t) = —10)H-12 =) H-12%%

0

for t > 1.

PrROOFE The claims (4.11a) and (4.11b) follow immediately from (4.10), using
the linearity of Dy and the inversion formula. The other claims are simply
obtained by differentiating under the integral; see [25] for a justificatian.
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We will be led in the sequel to consider the following situation, where
11, tp andgq are assumed to be given:

1 () 1g2(t — t2)
; \
4.12 ’ e
@2 [wo]
r T "
t=0 t=1 t =15

In this figure, g, and gp are related by (4.11a) and (4.11b) as before. The
boldfaced regions indicate that we consider the corresponding patgs @i

gp to be given. The dashed regions indicate that those pardg @nd gp are
computed from the boldfaced regions by using the relations (4.11a) and (4.11b).
The picture is coherent since (4.11a) and (4.11b) in both cases only use information
about the past to compute the present. One should think of the inf€rval as
representing the time spent on steps 1 and 2 of the algorithm (4.7). The interval
[t1, 2] corresponds to the waiting time, that is, step 3. Let us first give an explicit
formula for gz in terms ofg;:

LEMMA 4.3. Consider the situation of Proposition 4.4.Then, g» is given by

1 tl/ZfH(tz _ S)Hfl/Z

(4.13) e =c [ s

with a constant C depending only on H.

PROOF We extendz1(¢) to the whole real line by setting it equal to 0 outside
of [0, 1]. Using Lemma 4.2, we see that, for some constaand forz > 5,

ot =1 =C [ (=5 1255 ds
= C/OZZ(t — s)_H_l/Z% /Os(s — r)H_l/zgl(r) drds
=CU—QYH4QA%Q—0H4Q&Uﬁh
—C(H+3) /Otz(t — s)_H_3/2/OS(s — Y261 (r)dr ds

=C /011 K(t,r)gi(r)dr,
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where the integration stopsatbecause is equal to O for larger values of The
kernelK is given by

K(t,r)=(t — 1) H7Y2(1y — ) A=1/2

2
—(H+ %)/ (t —s) H=32(s —r)H 12 g5

B (l _ tz)_H_l/Z(tz _ r)H—l—l/Z < f—r B )

t—r fo—r

_ =)V )2

9’

t—r

and the claim follows. [

We give now estimates ogy in terms of g;. To this end, giverw > 0, we
introduce the following norm on functions: R, — R™:

||g||§,=/0 L+ 0% g(0)|2dt.

The following proposition is essential to the coherence of our coupling construc-
tion:

PROPOSITION 4.4. Let 1p > 211 > 0, let g1:[0,71] — R" be a square
integrable function, and define g2: Ry — Ry by

1 tl/ZfH(tz _ S)Hfl/Z
g2 = lg1(s)] ds.

t+1t—s

Then, for every a satisfying
O<a< min{%; H},

there exists a constant « > 0 depending only on @ and H such that the estimate

a—1/2
lIg1lle

2
(4.14) lg2lle <« »

holds.

REMARK 4.5. The important features of this proposition are that the constant
x does not depend on or r, and that the exponent in (4.14) is negative.
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PROOF OFPROPOSITION4.4. We define = r»/t1 to shorten notation. Using
(4.13) and Cauchy-Schwarz, we then have

0 (r1y — s)2H—1;1-2H
nil<c / 1+s)~2 d
g2l = ”gl”a\/ (1+45) Ctr—s2 °°
= Clgallan =2 | [ 2e L2070
o (t (C+rn—ns2"

(H—a;1/2—H  H-1/2
<C ,
= Cllssle = —1m
where we made use of the assumptions that2l andr > 2. Therefore| g>||, iS
bounded by

B B oo (1 t)zatl_ZH
H—o H-1/2 / 1+
< t —dt
lg2lle = xllg1llara™ "r \/ TENTESITAY

< «llgallar®” 1/2/fool2atl > dt,
(t+1)?

for some constant, where the last inequality was obtained through the change
of variablest — (r — 1)t1¢ and used the fact that> 2. The convergence of the
integral is obtained under the conditian< H which is verified by assumption, so
the proof of Proposition 4.4 is completel]

We will construct our coupling functiofé’ in such a way that there always
exist functionsg,, and gp satisfying (4.9) and (4.10), where, andw, denote
the noise components of our coupling process, Bpdand B, are obtained by
applying the operatdD z to them. We have now all the necessary ingredients for
the construction o¥’.

5. Definition of the coupling function. Our coupling construction depends
on a parameter < min{%, H} which we fix once and for all. This parameter will
then be tuned in Section 6.

First of all, we define the auxiliary space

(5.1) A=1{0,1,2,3} x Nx NxRy.
Elements ofA will be denoted by
(5.2) a=(S,N,N,T3).

The componens denotes which step of (4.7) is going to be performed next (the
value 0 will be used only for the initial valug). The counterN is incremented
every time step 2 is performed and is reset to 0 every time another step is
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performed. The counte¥ is incremented every time step 1 or step 2 fails. If steps
1 or 2 fail, the timeT3 contains the duration of the upcoming step 3. We take

ap=(0,1,1,0)

as initial condition for our coupling construction.

Remember that the coupling functicfi is a function fromX? x W2 x A,
representing the state of the system at the end of a stepRistoZ1(A x Wi),
representing the duration and the realization of the noise for the next step. We now
define¥ for the four possible values df.

5.1. Initial stage (S =0). Notice first that (A1) implies that

(5.3) (fO) = f(x),y —x) < C‘(lAl) _ CéAl)

Iy —xII,
Iy — x|

where we seCﬁfAl) = \/ CiAl)(CéAl) + C:(,,Al)).

In the beginning, we just wait until the two copies of our process are within
distance 1+ (CflAl) /CgAl)) of each other. Ifx;, and y; satisfy (SDE) with the
same realization of the noise proceBg, and p; = y, — x;, we have for| o ||

the differential inequality

dlledl _ Q) = FCa), i) _ CAD _ ~(AD
= = 2

dt ”Pz ” 4 ”pt ”a
and therefore by Gronwall’s lemma
(AL)
_cAn,.  C _(AD)
lorl = llyo = xolle™ 2 o gy (= e ).
2

It is enough to wait for a time = (log||yo — x0||)/C§A1) to ensure thaflp; || <

1+ (CflAl)/CéAl)), so we define the coupling functi¢fi in this case by

W2(Z, ag) = A™W x &,

(5.4) T(Z, ao) = max{w, 1},

(A1)
o)

where the map\ : W, — Wi is defined byA (w) = (w, w) and the element’ is
given by

a =(1,0,0,0).

In other terms, we wait until the two copies of the process are close to each other,
and then we proceed to step 1.
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5.2. Waiting stage (S = 3). In this stage, both copies evolve with the same
realization of the underlying Wiener process. Using notation (5.2) and (4.4), we
therefore define the coupling functi@fiin this case by

(5.5) T(Z,a) =Ts, W2(Z,a) = A*W x 8,
where the map\ is defined as above and the elemeghis given by
a'=(,N,N,0).

Notice that this definition is in accordance with (4.7); that is, the countérs
and N remain unchanged, the dynamic evolves for a tifgewith two identical
realizations of the Wiener process (note that the realizations of the FBM driving
the two copies of the system are in general different, sincpdls of the Wiener
processes may differ), and then proceeds to step 1.

5.3. Hitting stage (S = 1). In this section, we construct and then analyze the
map % corresponding to the step 1, which is the most important step for our
construction. We start with a few preliminary computations. Defing; as the
space of almost everywhere differentiable functignsuch that the quantity

Lid
el = [ | %20 ar+ g,

is finite.

LEMMA 5.1. Let gp:[0,1] — R" bein Wy 1 and define g,, by (4.11a)with
H € (%, 1). (The function gp is extended to R by setting it equal to O outside
of [0,1] and g, is considered as a function from R to R".) Then, for every
o € (0, H), there exists a constant C such that

lgwlle = CllgnllL1

PROOF  We first bound the2-norm ofg,, on the interval0, 2]. Using (4.11f),
we can bound g, (1)|| by

t
lgw(®| < ClgpO)le>~H 4 C /O lgp @) — )2 ds.

Sincer/2-H s square integrable at the origin, it remains to bound the tdims
andI, given by

2 t t
— _ ANY/2-H _ N1/2—H -
= fo (/0 (t — Y2 H | 35(5) | ds /0 (i —r) ||gB<r>||dr)dr,

2 t
L= g )] /0 (2=t /0 (t — )Y2H | g5(s5) ds dr.
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We only show how to bound, asl> can be bounded in a similar fashion. Writing
r Vs =maxr, s}, one has

1 p1 2
’1=/ f/ (t = Y21 (¢ = Y21 dr g ()13 () | dr ds.
0 JO Jrvs

Since

2 22—2H

/2 (t — )YV H (g — pyY2-H g </ (t—@vs) ' ar <
rVs — Jrvs —2-2H’

Iy is bounded byC||gpllf ;.
It remains to bound the large-time tail gf,. Forz > 2, one has, again by
Lemma4.2,

(5.6) llgw®Ill <@ =D~ sup llgg()l < Ct — D" ?|igpll11.

5€[0,1]
It follows from the definition that thd - ||,-norm of this function is bounded if
a < H. The proof of Lemma 5.1 is complete]

In the caseH < % one has a similar result, but the regularity f can be
weakened.

LEMMA 5.2. Let gp:[0,1] — R" be a continuous function and define g,,
asin Lemma 5.1, but with # € (0, 3). Then, for every a € (0, H), there exists a
constant C such that

lgwlle < C sup [[gp(®)ll.
t€[0,1]

PROOF SinceH < % one can move the derivative under the integral of the

first equation in Lemma 4.2 to get

t
lgw®] < C / (t =) "2 gp(s)llds < C sup lliga(®)]l.
0 t€[0,1]
This shows that the restriction gf, to [0, 2] is square integrable. The large-time
tail can be bounded by (5.6) as beforél

We already hinted several times toward the notion of a “cost function” that
measures the difficulty of coupling the two copies of the process. This notion is
now made precise. Denote /= (xo, yo, wy, w,) an element oft? x W? and
assume that there exists a square integrable fungtiolR _ — R”" such that

0
5.7 Wy (1) = wy(t) +/ guw(s)ds VvVt <0.
t
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In regard of (4.13), we introduce f@ > 0 the operatofRy given by

0 tl/Z_H(T _ S)H_1/2

Rrg)t)=C . PR lg(s)ll ds,

whereC is the constant appearing in (4.13). The cost is then defined as follows.
DEFINITION 5.3.  The cost functiofi, : L2(R_) — [0, oo] is defined by
0
(5.8) Ka(g) = SUpIRrglla + Cx [ (=)1=g(s)lds,
T>0 —00
where, for convenience, we defidg = |2H — 1)yga1_g|. GivenZ as above,
X4 (Z) is defined asK,(gy) if there exists a square integrable functigp

satisfying (5.7) and aso otherwise.

REMARK 5.4. The cost functiofk, defined above has the important property
that

(5.9) Ku(6:8) <Ky(g) forallr >0,
where the shifted functio# g is given by
g(s+1), if s <—1,
) =
(6r)(s) {O, otherwise.

Furthermore, it is a norm, and thus satisfies the triangle inequality.

REMARK 5.5. By (4.13), the first term in (5.8) measures by how much the
two realizations of the Wiener process have to differ in order to obtain identical
increments for the associated FBMs. By (4.11c), the second term in (5.8) measures
by how much the two realizations of the FBM differ if one lets the system evolve
with two identical realizations of the Wiener process.

We now turn to the construction of the proc&ss y,) during step 1. We will
set up our coupling construction in such a way that, whenever step 1 is to be
performed, the initial conditio is admissible in the following sense:

DEFINITION 5.6. Letoa satisfy O< o < min{%;H}. We say thatZ =
(x0, Yo, wx, wy) is admissible if one has

1+ C(Al)
(5.10) lxo — yoll <1+ Ti)’
C;

[the constantﬁfl.(Al) are as in (Al) and in (5.3)], and its cost satisfieg(Z) < 1.



738 M. HAIRER

Denote now by the space of continuous functioas [0, 1] — R" which are
the restriction tq0, 1] of an element ofH{y. Our aim is construct two measures
PL andPZ on Q x Q satisfying the following conditions:

(B1) The marginals OP% + P% onto the two component? of the product space
are both equal to the Wiener measwe

(B2) Let #, C Q x @ denote the set of pair@v,, w,) such that there exists a
functiong,, : [0, 1] — R”" satisfying

t 1
By (1) = Wy (1) + /0 gu(s)ds. /O lguw(®)12ds < k.

Then, there exists a value osuch that, for every admissible initial condition
Zo, we havePy (%) + P2 (%) = 1.

(B3) Let (x4, y;) be the process constructed by solving (SDE) with respective
initial conditionsxg andyg, and with respective noise procesgeéw,, wy)
and P, (wy, iy). Then, one hasy = y1 for PL-almost every noiséi,, wy).
Furthermore, there exists a constént 0 such thaP%(Q x Q) > & for every
admissible initial conditior¥.

REMARK 5.7. Both measureRl andPZ can easily be extended to measures
on Wi in such a way that (B1) holds. Since the dynamic constructed from
the coupling functiors” will not depend on this extension, we just choose one
arbitrarily and denote again B3% andP2 the corresponding measuresit .

Given Py andPZ, we construct the coupling functic# in the following way,
using notation (5.2) and (4.4):

(5.11) T(Z,a)=1,  Wa(Z,a) =P} x 84 +P% x 84,
where the two elements anda; are defined as

(5.12a) a1=(2,0,N,0),

(5.12b) az = (3,0, N + 1, 1, N¥172),

for some constant, to be determined later in this section. Notice that this

definition reflects the algorithm (4.7) and the explanation following (5.2). The
reason behind the particular choice of the waiting time in (5.12b) will become
clear in Remark 5.11.

The way the construction dP and P2 works is very close to the binding
construction in [11]. The main difference is that the construction presented in [11]
does not allow to satisfy (B2) above. We will therefore introduce a symmetrized
version of the binding construction that allows to gain a better control gyer
If w1 anduo are two positive measures with densities and D, with respect to
some common measute we define the measuge, A 2 by

(n1 A p2)(dw) = min{D1(w), D2(w)}u(dw).
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The key ingredient for the construction § and P% is the following lemma, the
proof of which will be given later in this section.

LEMMA 5.8. Let Z = (xo, yo, wx, wy) be an admissible initial condition and
let H, o and f satisfy the hypotheses of either Theorem 1.2 or Theorem 1.3. Then,
there exists a measurable map W7 : Q2 — Q with measurable inverse, having the
following properties.

(B1") There exists a constant § > 0 such that W A W% W has mass bigger than 2§
for every admissible initial condition Z.

(B2') There exists a constant « such that {(wy, wy)|wy, = Wz (Wy)} C B, for
every admissible initial condition Z.

(B3) Let (x;, y;) be the process constructed by solving (SDE) with respective
initial conditions xg and yg, and with noise processes P;(w,,w,) and
Pi(wy, ¥z(wy)). Then, one has x1 = y1 for every w, € Q and every
admissibleinitial condition Z.

Furthermore, the maps ¥ and \Dgl are measurable with respect to Z.

Given such abz, we first define the map#, andWw_, from Q to 2 x Q by

Wy (i) = (i, Wz (iy), W (idy) = (951 (y), dy).

(See also Figure 1.) We also define the “switch m&p2 x Q@ — Q x Q by
S(wy, J)y)=(wy, Wy). _

With these definitions at hand, we construct two meas@égsand PL on
Q x Q by

(5.13) P, =3(WIWA WA W), P, =P, +5*P}.

In Figure 1, P} lives on the boldfaced curve anB} is its symmetrized
version which lives on both the boldfaced and the dashed curve. Denote by

Wy € 0

-~ ~ /L
wy = Wy(y), /.~
oo

’u}y ------------------ e -{"’j;‘(‘):: \IIT(,II}‘E) = \Ij—a(wy)

[, = V(i)

1= Wy € £

Fic. 1. Construction of Py.
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IT; : 2 x Q — Q the projectors onto thith component and bA: Q2 — Q x Q
the lift onto the diagonah (w) = (w, w). Then, we define the measU?% by

(5.14) P2 = S*PL + A*(W — IT}P).

By (5.13), W > T3P}, so P} and PZ are both positive and their sum is a
probability measure. Furthermore, one has by definition

PL + P2 =P, + A*(W — IT}P).

Sincell; A* is the identity, this immediately implies

;PL + P2 = w.
The symmetrys*PL = P} then implies that the second marginal is also equal
tow, that is, (B1) is satisfied. Furthermore, the 8@, , w,)|w, = ¥z (w,)} has
Pz-measure bigger thahby (B1'), so (B3) is satisfied as well. Finally, (B2) is an
immediate consequence of (B2t remains to construct the functioh;.

PROOF OFLEMMA 5.8. As previously, we writ& as

(5.15) Z = (xo0, yo, Wy, Wy).

In order to construc® z, we proceed as in [11], Section 5, except that we want the
solutionsx, andy, to become equal after time 1. Lét. € Q be given and define

(5.16) By (t) = (D Pr(wy, W) (t — 1),

whereW denotes the corresponding part of the initial conditinin (5.15). We
write the solutions to (SDE) as

(5.17a) dx, = f(x))dt +o dBy (1),
(5.17b) dy; = f(y)dt + o dBy(t) + o 85(t)dt,

whereg g (¢) is a function to be determined. Notice thais completely determined
by w, and by the initial conditiorZ. We introduce the process = y; — x;, SO
we get

d
(5.18) P F G+ o) — fO) +0E ).

dt
,01 )
|| || ’

We now definez g (¢) by
for two constantsc; and ko to be specified. This yields for the norm pf the
estimate

(5.19) F5(0) = —o—l(fclpt 2

d|lp:11?

Al
o <2(CY — k) 1pi 1 = 22l o012,
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We choose&; = CéAl) and so

(5.20) ||pt||§{(6xzt—\/—||po||)2, for 1 < /Tpoll/ (6k2),

0, forz =/l poll/ (6k2).

We can then choose sufficiently large, so thafp; || =0 forz > 1/2. Since the
initial condition was admissible by assumption, the constardan be chosen as
a function of the constan'Gi(Al) only. Notice also that the preceding construction
yields g as a function oZ andw, only.

We then constructv, = Wz (w,) in such a way that (5.17) is satisfied with
the functiongp we just constructed. Defing,, by (5.7) and constructp by
applying (4.11b). Then, we extengk to (—oo, 1] by simply putting it equal
to gg on (—o0, 0]. Applying the inverse formula (4.11a), we obtain a functign
on (—oo, 1], which is equal tg,, on (—oo, 0] and which is such that

t
(W2 (1)) (£) = Wy (1) + /O Zu(s)ds

has precisely the required property.

It remains to check that the family of mags; constructed this way has the
properties stated in Lemma 5.8. The invers&sgfis constructed in the following
way. Choosen, € Q and consider the solution to the equation

dy; = f(y;)dt + o dBy (1),

where By is defined as in (5.16) with replaced byy. Oncey; is obtained, one
can construct the procegs as before, but this time by solving
dp

d—; =fe) = fr—pr) — (Klp; + K2

Pt >
Vipdl)
This allows to defingp as in (5.19). The element, = \Dgl(zby) is then obtained
by the same procedure as before.

Before turning to the proof of properties (B4(B3), we give some estimate on
the functiong,, that we just constructed.

LEMMA 5.9. Assumethat the conditions of Lemma5.8hold. Then, there exists
a constant K such that the function g,,(Z, w,) constructed above satisfies

1
[ 120z, 006)1Pds < K.
for every admissible initial condition Z and for every w, € W_..

PROOF We writeg, (z) fort > 0 as

_ 0 tl/Z—H(_S)H—l/Z d rt o
gw(z>=C/ gw<s)ds+aH—f (t — Y2 H g5 (s) ds
—00 r—s dt Jo

=Y +z20),
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where g,, is defined by (5.7),gp is given by (5.19) and the constant is
the constant appearing in (4.13). Th&norm of g 5] D is bounded by 1 by the
assumption thaZ is admissible. To bound the norm 952), we treat the cases
H < }andH > § separately.

The case H < % For this case, we simply combine Lemma 5.2 with the
definition (5.19) and the estimate (5.20).
Thecase H > % For this case, we apply Lemma 5.1, so we bound|thg 1-
norm ofgp. By (5.19), one has

(5.21) L+ oI~ Y3,

‘o] <cf

for some positive constaut. Using (5.18), the assumption about the boundedness
of the derivative off and the definition (5.19), we get

H < Clorl +Tp).

Combining this with (5.21) and (5.20), the required bound @g||1,1 follows. [

Property (B1) now follows from Lemma 5.9 and Girsanov’s theorem in the
following way. Denote byZ, the density of¥7W with respect tow, that is,
(WIW)(dw,) = Z7 (W, )W(dw,). Itis given by Girsanov’s formula

@z(ﬂfx)=eXp(f (8w (Z, W) (@), dix (1)) — / 8w (Z, wy)l (t)dt)

One can check (see, e.g., [20]) that A W7 W]ty is bounded from below by

WA WEW 7y > (4 [ @z<w>2w<dw>).

Property (B1) thus follows immediately from Lemma 5.9, using the fact that

1 1
o [z i D =2 [ 15,2 B2 _
/Q exp( 2 /o (Fu(Z. B)) (1), diDy (1)) — 2 /0 130(Z, o)l (r)dt)W(dw)—

Property (B2) is also an immediate consequence of Lemma 5.9, and properiy (B3
follows by construction from (5.20). The proof of Lemma 5.8 is complefé.

Before concluding this section we show that, if step 1 fails;an be chosen
in such a way that the waiting timeN% (=2 in (5.12b) is long enough so that
(5.10) holds again after step 3 and so that the cost function does not increase by
more than ¥(2N?). By the triangle inequality, the second claim follows if we
show that

(5.22) Ko (6:8w(Z, Wy)) <
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whenever: is large enough [the shifé; is as in (5.9)]. Combining (4.14),
Lemma 5.9 and the definition 6¢,, we get, for some constaqt,
Ko (0:80(Z,Wy)) < Cto Y2 ctH732 forr>2.

There thus exists a constaptsuch that the bound (5.22) is satisfied if the waiting
time is longer tharr, N4/1=2%) |t remains to show that (5.10) holds after the
waiting time is over. If step 1 failed, the realizatios andw, are drawn either
in the set

A1 = {(iby, y) € Q%|iD, = y)
or in the set
A= {(hy, Wy) € 2|, = Wz (iby))

(see Figure 1). In order to describe the dynamics also during the waiting time (i.e.,
step 3), we extend those setsws_ by

A; = [ (W, Wy) € WA | (10,17, Wylj0.17) € A
andw, (1) — w,(t) = const forr > 1}.

Given an admissible initial conditionZ = (xo, yo, wyx, w,) and a pair
(Wy, wy) € Wi, we consider the solutions andy, to (SDE) given by

dxt = f(x;)dt +O'deH(t),

dy; = f(y)dt +adB1yq(t),

whereB%, (and similarly forB;,) is constructed as usual by concatenatingand
w, and applying the operat@y. The key observation is the following lemma.

(5.23)

LEMMA 5.10. Let Z be an admissible initial condition as above, let
(Wx, wy) € A1 U Ap, and let x; and y, be given by (5.23)for ¢+ > 0. Then, there
exists a constant ¢, > 0 such that

1+

lxs — yell <14+ —F5—
~(AD)
2

holds again for 7 > .

PrRooOF Fix an admissible initial conditior¥ and consider the case when
(Wx, wy) € Ap first. Letg,, :R_ — R" be asin (5.7) and defing, : Ry — R" by

~ ~ t~
(1) = () + [ Gus)ds.

Introducingp, = y; — x;, we see that it satisfies the equation

d
(5.24) d—pt = fOn) — f(x) +0G.
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where the functior§; is given by

0
(5.25) G, = c1/ (t — S)H73/2gw(s) ds + Czj_t /Ot(t — s)Hfl/Zgw(s) ds,

—00
with some constants; andc, depending only oriH. It follows from (5.24), (5.3)
and Gronwall's lemma that the Euclidean nofm || satisfies the inequality

(A1
5.26) ol <e= ool + f =D 45, 1) ds

Consider first the time intervdD, 1] and define

N 0
S —c1 /_ (t —s)H- 3/2gw(S)dS—Cz— f (t —)HY25, () ds:

that is, we simply reversed the sign @f. This corresponds to the case where
(wy, wy) are interchanged, and thus satisly, = Wz (w,) instead ofw, =
Wz (wy). We thus deduce from (5.19) and (5.20) that

(5.27) 1S5l < o™l (kall ool + x2v/Toll).
for s € [0, 1]. This yields for| G| the estimate

0
IGs 1l < llo ™2 (ke ll poll + 2/ Tl poll ) + 2¢1 / (t —)1732)1 g, (5) | ds
(5.28) . -
< llo 7 (kall poll + k2T poll) + 1,

where we used the fact th4tis admissible for the second step. Notice that (5.28)
only holds fors € [0, 1], so we consider now the case- 1. In this case, we can
write G; as

0 H-3/2 1 H-3/2
9,=c1/_ (t —s) —/gw<s)ds+c1/0<r—s> 3123, (s) ds.

The first term is bounded by 1 as before. In order to bound the second term, we
use Lemma 5.9, so we get

5.29 <1 t —1)2H-2 _42H-2)

(5.29) 151 < +\/2H_2(( ) )

This function has a singularity at= 1, but this singularity is always integrable.
For ¢t > 2, say, it behaves like"’—3/2, Putting the estimates (5.28) and (5.29)
into (5.26), we see that there exists a constardepending only orH and on
the parameters in assumption (Al) such thattfer2, one has the estimate

(Al)
(AL 1+C _

Il < e ool + =gy + €72

2

The claim follows at once. O
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REMARK 5.11. To summarize, we have shown the following in this section:

1. There exists a positive constargsuch that if the stat& of the coupled system
is admissible, step 1 has a probability larger thda succeed.
2. If step 1 fails and the waiting time for step 3 is chosen larger thafl/ (t=2)
then the state of the coupled system is again admissible after the end of step 3,

provided the coskK, (Z) at the beginning of step 1 was smaller than %%

3. The increase in the cost given between the beginning of step 1 and the end of
step 3 is smaller thag}%.

In the following section, we will define step 2 and so conclude the construction
and the analysis of the coupling functi@h

5.4. Coupling stage (S = 2). In this section, we construct and analyze the
coupling maps corresponding to step 2. Following (4.7), we construct itin such a
way that, with positive probability, the two copies of the process (SDE) are driven
with the same noise. In other terms,4f= (xo, yo, wx, w,) denotes the state of
our coupled system at the beginning of step 2, we construct a md—'a;gsmwi
such that if(w,, w,) is drawn according t®z, then one has

(5.30) (Dr(wy UWy))(@) = (Da(wy Uy)) (), t>0,
with positive probability. Here,! denotes the concatenation operator given by
(wuﬁ))(t)z{w(t)’ fort <0,
w(t), forz > 0.

In the notation (5.2), step 2 will have a duratio 2nd N will be incremented
by 1 every time step 2 succeeds.

The construction ofPz will be similar in spirit to the construction of the
previous section. We therefore introduce as before the fungtiogiven by

t
(5.31) iy (1) = Wy (1) + /0 3. (s) ds.

Our main concern is of course to get good bounds on this fun@jonThis is
achieved by the following lemma, which is crucial in the process of showing that
step 2 will eventually succeed infinitely often.

LEMMA 5.12. Let Zp be an admissible initial condition and denote by T
the measure on X% x W? obtained by evolving Zq_according to the successful
realization of step 1. Then, there exists a constant K > 0 depending only on H,
«a and the parameters appearing in (Al), such that for T-almost every Z =
(x,y, wy, wy), and for every pair (w,, w,) satisfying (5.30),we have the bounds
dgy

dt
Furthermore, one has x = y, T-almost surely.

<K.
a+1

(5.32) 12wl < K,




746 M. HAIRER

PROOE It is clear from Lemma 5.8 that = y. Let now Z be an element
drawn according t@ and denote by, : R_ — R”" the function formally defined

by

(5.33) dwy (1) =dwy (t) + gu(t) dt.
We also denote by, : R_ — R" the function such that
(5.34) dBy(t) =dBx(t) + gp(t) dt,

whereB, = Dyw, andBy, = Dyw,. (Note thatg,, andg, are almost surely well
defined, so we discard elemer#Zsfor which they cannot be defined.) Singe

corresponds almost surely to a successful realization of stgpi&,equal on the
interval[—1, O] (up to translation in time) to the functigfp constructed in (5.19).
By (5.20), there exists therefore a constagtsuch that

C,, forse[-1,-1),
5.35 <] 2
(5.35) s ()1 < {0, fors e [_3.0]

Combining the linearity ofDy with (4.13), one can see that ifw,, w,)
satisfy (5.30), then the functiof, is given by the formula

O R o (e
gu (1) —le guw(s)ds

o0 t—s

(5.36)
—-1/2 1/2
+c2/1 (t —5)"H " Y2g, (5 ds,

for some constants; andC, depending only orf{ . Notice that the second integral
only goes up to A2 because of (5.35).

Since the initial conditiorZg is admissible by assumption, tlje ||,-norm of
the first term is bounded by 1. THe |,-norm of the second term is also bounded
by a constant, using (5.35) and the assumpticn H .

Deriving (5.36) with respect to we see that there exists a const&nsuch that

Hdgw(t) H (/ L4+ y¥2-H g 4 1)H-1/2
r+1 t—

lgw(s)Ilds
(5.37)

- 2 —H-1/2
4 / / ||gb<s)||ds)

and the bound on the derivative follows as previousiyi
The definition of our coupling function will be based on the following lemma:
LEMMA 5.13. Let N bethe normal distribution on R, choosea € R, b > |a],

and define M = max{4b, 2log(8/b)}. Then, there exists a measure N2 , on R?
satisfying the following properties:
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1. Both marginals of Na27 , areequal to N.
2. If|b] <1,0nehas

N2, ({Ge, Mly =x +a}) > 1—b.

Furthermore, the above quantity is always positive.
3. Onehas

N2 ({0, Wy — x| < M) =1,

ProoOF Consider the following figure:

Li:y==x,

I
I
I
I
I
I
| =
_M . M
2 .0 2 Ls:y=xz+a.
[ . < 0
| v > |
4 1
7/
I
I

Denote byN, the normal distribution on the sét = {(x, y)|y = 0} and byN,, the
normal distribution on the sdt, = {(x, y)|x = 0}. We also define the maps .
(resp.m;,y) from L, (resp.L,) to L;, obtained by only modifying the (resp.x)
coordinate. Notice that these maps are invertible and denote their inverseg by
(resp.m;,y). We also denote by |y (resp.Ny|y) the restriction ofN, (resp.N,)
to the squarg¢—2, 212,

With these notation, we define the measiigon L3 as

Nz =73, (Nxlm) A 73, (Nylm).
The measura\Z , is then defined as
NG b =Na+ 73, (Nelar) = 75, N3) + 75, (N2 = Niln)-

A straightforward calculation, using the symmetries of the problem, shows
that property 1 is indeed satisfied. Property 3 follows immediately from the
construction, so it remains to check that property 2 holds, that is, that

N3(L3)>1-b
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for |b| < 1, andN3(L3) > 0 otherwise. It follows from the definition of the total
variation distancd - | Tv that

Na(L3) =1— 3 (Nxln) — 74 Nelao) l7v,

wheret,(x) = x — a. SinceM > 4b > 4a, it is clear from the figure and from
the fact that the density of the normal distribution is everywhere positive, that
Ns(L3) > 0 for everya € R. It therefore suffices to consider the cdge< 1.

Since [ e=*/2dx < b/8, one had{Ny |y — Nx[rv < b/4, which implies

b 1
NS(LS) >1—-— _”Nx - T;Nx”TV-
4 2
A straightforward computation shows that, faf < 1,

INy — TNy lltv < Ve —1<+/2a,

and the claim follows. [
We will use the following corollary:

COROLLARY 5.14. Letw be the Wiener measure 0, let g € L2(R,)
with | g|l < b, let M = max{4b, 210g(8/b)}, and define the mag, : W, — W,
by

(Wew) (1) = w(t) +/0 g(s)ds.

Then, there exists a measuvré’b on Wi such that the following properties hold:

1. Both marginals ow;b are equal to the Wiener measie
2. If b <1, one has the bound

(5.38) W2 5 ({(Dy, )iy = W, (iDy)}) = 1 b.

Furthermore, at fixedb > 0, the above quantity is always positive and a
decreasing function dfg||.
3. The set

t
{(wx, D)3 By (1) = iy (1) +K/O g(s)ds. iclllgll < M}

has fullw? ,-measure.

PROOF Thisis animmediate consequence ofttRexpansion of white noise,
usingg as one of the basis functions and applying Lemma 5.13 on that component.
O
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Given this result (and using the same notation as above), we turn to the
construction of the coupling functio” for step 2. Given an initial condition
Z = (x0, yo, wy, wy), remember thag,, is defined by (5.7). We furthermore define
the functiong,, : R+ — R" by
H(_S)H—l/z

0 s1/2-
(5.39) gw() = C/ guw(s)ds,
—00 r—s

with C the constant appearing in (4.13). By (4.13), is the only function
that ensures that (5.30) holdsuif, andw, are related by (5.31). [Notice that,
although (5.36) seems to differ substantially from (5.39), they do actually define
the same function.] Give&Z as above and € A, denote byg, 7 the restriction

of g, to the interval0, 2] (prolonged by 0 outside). It follows from Lemma 5.12
that there exists a constakitsuch that if the coupled process was in an admissible
state at the beginning of step 1, then the a priori estimate

ZN
(5.40) lgazl2= /0 Iga.2()I12ds < C272N =2,

holds for some constari. We thus defin = maxby, Iga,zII} and denote by
w# , the restriction ofv _ , to the “good” set (5.38) and by , its restriction
to the complementary set.

We choose furthermore an arbitrary expongmatisfying the condition

(5.41) B>

1-2a°

With these notation at hand, we define the coupling function for step 2:
T(Z,a)=2",  Wa(Z,a)=W% , x 8s + W5 , X 8,

where

(542) o' =@2,N+1,N,0, a"=(3,0,N +1,72/NN¥A720),

for some constan, to be determined in the remainder of this section. The waiting
time in (5.42) has been chosen in such a way that the following holds.

LEMMA 5.15. Let (Zo, ag) € X2 x W2 x A with Zy admissible and denote
by T the measure on X? x W2 obtained by evolving it according to the successful
realization of step 1, followed by N successful realizations of step 2, one failed
realization of step 2 and one waiting period 3. There exists a constant 7, such that
T-almost every Z = (x, y, wy, wy) satisfies

(AD)
1+Cy 1
lx —yll<1+ W, fKa(Z)ffKa(ZO)‘f’W,

where N denotes the value of the corresponding component of ao.
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PrROOE We first show the bound on the cost function. Givérdistributed
according tadJ as in the statement, we defigg by (5.33) as usual. The bounds
we get on the functiog,, are schematically depicted in the following figure, where
the time intervalr,, 13] corresponds to the failed realization of step 2:

istep 1 step 2 . step2 :  step3

9T

(5.43) g(t — t1)

it ‘o E{2 its 10

Notice that, except for the contribution coming from times smaller thawe
are exactly in the situation of (4.12). Since the cost of a function is decreasing
under time shifts, the contribution td, (Z) coming from(—oo, 1] is bounded
by X« (Zo). Denote byg the function defined by

) = {gw(t+t1), fort € [0, 13 — 1],
s = 0, otherwise.

Using the definition of the cost function together with Proposition 4.4 and the
Cauchy—Schwarz inequality, we obtain for some const@ntandC, the bound
a—1/2

lgllas

Ko(Z) < Ka(Z0) + C1V 113772 — 11272 g + Cz‘

where| - || denotes th&2-norm. Since step 1 has length 1 and ¥ occurrence
of step 2 has length’2"1, we have

g — 11| =21 |13 = 7, 2PV NY A2,

In particular, one haps| > |t3 — 11| if 7, is larger than 1. Since

—1/2
t:

2H-2 2H-2 H-3/2 1/2 3

\/|t3| — |l <|z3] / 13 — 11 /2 < ‘m‘

this yields (for a different constaut;) the bound

a—1/2 ca—1/25_yN

13
Iglle = Ke(Z0) + Cr—7——lgla;

13—1n

Ko(Z) < Ka(Zo) + cl‘

where we definegt = (8 — l)(% — ). Notice that (5.41) guarantees that- «.

We now bound the|| - ||o-norm of g. We know from Lemma 5.12 that
the contribution coming from the time intervals, 7] is bounded by some
constantk. Furthermore, by (5.40), we have for the contribution coming from
the interval[7z, #3] a bound of the type

13 5 )
f; 13()I2ds < C(N + D2,

2
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for some positive constadt. This yields forg the bound
lglla < C(N +1)2*V,

for some other constaut. Sincey > «, there exists a consta@tsuch that
fa—l/Z

By choosingt, sufficiently large, this proves the claim concerning the increase of
the total cost.
It remains to show that, at the end of step 3, the two realizations of (SDE) did
not drift too far “apart. Defing;, by (5.34) as usual and notice that, by construction,
=y, for t = f,. Writing as beforep, y; — x;, one has for > 7, the estimate
(Al)

PV (1—s)
(5.44) lloell < (Al) + llgn(s)lds.

We first estimate the contrlbutlon coming from the time intefyalrz]. Denote by

g:[f2, 3] — R" the valueg,, would have taken, had the last occurrence of step 2
succeeded and not failed [this corresponds to the dashed curve in (5.43)]. Defining
g2 = guw — &, Wwe have by (4.11e) that, on the interva [72, 73],

§(12) /’ (dg/ds)(s)
(t —ip)t/2-H i (t—s)t/2-H
By Corollary 5.14 and the construction of the coupling functigis proportional
to g, and, by (5.40), we also have féra bound of the typdig|| < C(N + 1) (the
norm is theL2-norm over the time intervali,, r3]). Furthermore, (5.37) yields

|| || < C(N + 1)27V. Recall that every differentiable function defined on an
mterval of lengthL satlsfles

£ < IIfII H H\/—

(The norms are.?-norms.) Using th|s to bound the first term in (5.45) and the
Cauchy-Schwarz inequality for the second term, we get a conStaath thatg,
is bounded by

(5.45) gr(t) =C1 ds.

lgp (I < C(N + 1) (1+ 27N — i) H=Y2),

From this and (5.44), we get another constdrguch that|p;|| < C(N + 1) at the
time r = r3. We finally turn to the intervalzs, 0]. It follows from (4.11c) that, for
some constant, we have

lgp (Il < 3+ Clt — 13|17 gl

where the tern% is the contribution from the times smaller thanSince we know

by (5.40) and Corollary 5.14 that thé-norm of g is bounded byC (N + 1) for

some constant’, we obtain the required estimate by choosipgufficiently large.
O
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REMARK 5.16. To summarize this section, we have shown the following,
assuming that the coupled system was in an admissible state before performing
step 1 and that step 1 succeeded:

1. There exist constan®® < (0, 1) and K > 0 such that thevth consecutive
occurrence of step 2 succeeds with probability larger than $hax— K 2~}
This occurrence has length 21,

2. If the Nth occurrence of step 2 fails and the waiting time for step 3 is chosen
longer thanz,2fN N4/(1-22)  then the state of the coupled system is again
admissible after the end of step 3, provided that the &Q$¥) at the beginning
of step 1 was smaller than—lz—]%fz.

3. The increase in the cost given between the beginning of step 1 and the end of
step 3 is smaller thag}%.

Now that the construction of the coupling functiéh is completed, we can
finally turn to the proof of the results announced in the Introduction.

6. Proof of themain result. Let us first reformulate Theorems 1.2 and 1.3 in
a more precise way, using the notation developed in this paper.

THEOREM6.1. Let H € (0,1)\ {3}, let f and o satisfy (A1)—(A3)if H < 3
and (Al), (A2), (A3)if H > % and let y < maxy-g (1 — 2«). Then, the DS
defined in Proposition 3.11has a unique invariant measure ... Furthermore, there
exist positive constants C and § such that, for every generalized initial condition 1,
one has

(6.1) 1291t — 2uslltv < 2({||xoll > €¥}) + Ct77 .

PrRoOF The existence of u, follows from Proposition 3.12 and
Lemma 2.20. Furthermore, the assumptions of Proposition 2.18 hold by the in-
vertibility of o, so the uniqueness of, will follow from (6.1).

Denote byy the SDS constructed in Proposition 3.11, and consider the self-
coupling 2(u, us) for ¢ constructed in Section 5. We denote by, y;) the
canonical process associated%gu, u.) and we define a random tintg, by

Too = INf{t > Olxy =y, Vs > 1}.
It then follows immediately from (4.2) that
2% u — 2psllty < 2P(Too > 1).

Remember that? (i, 1) was constructed as the marginal of the law of a Markov
process with continuous time, living on an augmented phase spacgince we
are only interested in bounds on the random titae and since we know that
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xs = yg as long as the coupled system is in the state 2, it suffices to consider the
Markov chain(Z,, t,,) constructed in (4.8). It is clear that, is then dominated
by the random time, defined as

Too = INf{1,|S;, =2V m > n},

wheres,, is the component df,, indicating the type of the corresponding step. Our
interest therefore only goes to the dynamicpfand S,,. We define the sequence
of timesrz(n) by

(6.2) 1(0)=1, tn+21) =inf{m > t(n)|S,, = 1},
and the sequence of durations;, by
ATy =Ti(n41) — Tr(n)s

with the conventiomt, = +oco if ¢ (n) is infinite [i.e., if the set in (6.2) is empty].
Notice that we set(0) = 1 and not 0 because we will treat step 0 of the coupled
process separately. The duration, therefore measures the time needed by the
coupled system starting in step 1 to come back again to step 1. We define the
sequencé, by

=0 g _{—oo, if At, =-+o00,
0= Gl £, + A1y, otherwise.
By construction, one has
(63) Too = Tl+supén,
n>0

so we study the tail distribution of thiet,,.

For the moment, we leave the valueappearing throughout the paper free; we
will tune it at the end of the proof. Notice also that, by Remarks 5.11 and 5.16, the
cost increases by less th%% every time the counteV is increased by 1. Since
the initial condition has no cost [by the choice (4.6) of its distribution], this implies
that, with probability 1, the system is in an admissible state every time step 1 is
performed.

Let us first consider the probability okz, being infinite. By Remark 5.11,
the probability for step 1 to succeed is always greater thaAfter step 1,
the Nth occurrence of step 2 has length2, and a probability greater than
maxs’, 1 — K2~*N} of succeeding. Therefore, one has

N
P(At, = 2") > 8 [ maxs’, 1— K27}
k=0

This product always converges, so there exists a congtantO such that

P(At, = 00) > py,
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for every n > 0. Since our estimates are uniform over all admissible initial
conditions and the coupling is chosen in such a way that the system is always
in an admissible state at the beginning of step 1, we actually just proved that the
conditional probability ofP(Az, = co) on any event involvings,, and Az, for
m < n is bounded from below by.,.

For A, to be finite, there has to be a failure of step 2 at some point [see (4.7)].
Recall that if step 2 succeeds exachytimes, the corresponding value farr,
will be equal to 2 + 7,28V (1 4+ n)%1=2% for N > 0 and tor, (1 + n)* -2 for
N = 0. This follows from (5.12b) and (5.42), noticing thatin those formulae
counts the number of times step 1 occurred and is therefore equalMte also
know that the probability of thé&/th occurrence of step 2 to fail is bounded from
above byk 2=V Therefore, a very crude estimate yields a consfastich that

P((1+n) %32 Az, > 2N andAt, #00) <K Y 27,
k>N
This immediately yields for some other constant
(6.4) P((14n)~¥1=20 Az, > T andAt, # 00) < CT /5,
As a consequence, the procésss stochastically dominated by the Markov chain
¢, defined by

—00 with probability p.,

=0 fi1= { &+ (n+ DYA-20,  with probability 1— p.,

where thep, are positive i.i.d. random variables with tail distributici" —/#,
that is,
cr—*/B  ifcr—*/f <1,
Ppn=T) = .
1, otherwise.

With these notation and using the representation (6.3)is bounded by

(6.5) P(too >1) <P(11>1/2) + P< Z*(n + 1A S z/2>,
n=0

wheren, is a random variable independent of theand such that
(6.6) P(n. = k) = p«(1— po)*.

In order to bound the second term in (6.5), it thus suffices to estimate terms of the
form Y¢_,(n + ¥ 1=20p, for fixed values ofk. Using the Cauchy—Schwarz
inequality, one obtains the existence of positive consta@rasd N such that

k
P( S+ Y20 p, > z/2> <Clk+1Nt=/B,
n=0



ERGODICITY OF SDE DRIVEN BY FRACTIONAL BM 755

Combining this with (6.6) and (6.5) yields, for some other constgnt
P(too > 1) < P(11 > 1/2) + Ct~*/B.
By the definition of step 0 (5.4), we get for:

(A1) (A1)
P(z1>1/2) < u({llxoll > €2 /2/2}) + pu({llyoll > €2 1/?/2}).
Since, by Proposition 3.12, the invariant measugehas bounded moments, the
second term decays exponentially fast. Siace min{%, H}andB > (1—2a)~1
are arbitrary, one can realize= /8 for y as in the statement.
This concludes the proof of Theorem 6.1.]

We conclude this paper by discussing several possible extensions of our result.
The first two extensions are straightforward and can be obtained by simply
rereading the paper carefully and (in the second case) combining its results with
the ones obtained in the references. The two other extensions are less obvious and
merit further investigation.

6.1. Noise with multiple scalings. One can consider the case where the
equation is driven by several independent FBMs with different values of the Hurst
parameter:

m
dx; = f(x)dt + ) 01 dB}; (1),
i=1

It can be seen that in this case, the invertibilitycofshould be replaced by the
condition that the linear operator
0=01P02® - Po,:R"" > R"

has rank:. The condition on the convergence exponernhen becomes

y < mm{VL ey Vm},

wherey; = max, < g, (1 — 20).

6.2. Infinite-dimensional case. In the case where the phase space for (SDE)
is infinite-dimensional, the question of global existence of solutions is technically
more involved and was tackled in [18]. Another technical difficulty arises from
the fact that one might want to take fer an operator which is not boundedly
invertible, so (A3) would fail on a formal level. One expects to be able to overcome
this difficulty at least in the case where the equation is semilinear and parabolic,
that is, of the type

dx =Axdt + F(x)dt+ QdBg(t),
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with the domain ofF “larger” (in a sense to be gquantified) than the domain of
A and By a cylindrical FBM on some Hilbert spacK on which the solution
is defined, provided the eigenvalues #fand of Q satisfy some compatibility
condition asin [2, 6, 8].

On the other hand, it is possible in many cases to split the phase space into
a finite number of “unstable modes” and an infinite number of “stable modes”
that are slaved to the unstable ones. In this situation, it is sufficient to construct
step 1 in such a way that the unstable modes meet, since the stable ones will then
automatically converge toward each other. A slight drawback of this method is
that the convergence toward the stationary state no longer takes place in the total
variation distance. We refer to [11, 14, 20] for implementations of this idea in the
Markovian case.

6.3. Multiplicative noise. In this case, the problem of existence of global
solutions can already be hard. Inthe cése- 1/2, the FBM is sufficiently regular,
S0 one obtains pathwise existence of solutions by rewriting (SDE) in integral form
and interpreting the stochastic integral pathwise as a Riemann—Stieltjes integral.
In the caseH e (3, 3), it has been shown [3, 15, 16] that pathwise solutions
can also be obtained by realising the FBM as a geometric rough path. More
refined probabilistic estimates are required in the analysis of step 1 of our coupling
construction. The equivalent of (5.18) then indeed contains a multiplicative noise

term, so the deterministic estimate (5.20) fails.

6.4. Arbitrary Gaussian noise. Formally, white noise is a centered Gaussian
procesg with correlation function

E&E(s)E(1) = Cy(t —5) =8(t — 5).

The derivative of the FBM with Hurst parametéf is formally also a centered

Gaussian process, but its correlation function is proportional to
Cu(t—s)=|t —s/?"2,

which should actually be interpreted as the second derivatiye-ofs|2 in the

sense of distributions.

A natural question is whether the results of the present paper also apply
to differential equations driven by Gaussian noise with an arbitrary correlation
functionC (¢t — 5). There is no conceptual obstruction to the use of the method of
proof presented in this paper in that situation, but new estimates are required. It
relies on the fact that the driving process is a FBM only to be able to explicitly
perform the computations of Section 5.
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