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REGENERATIVE COMPOSITION STRUCTURES!

BY ALEXANDER GNEDIN AND JM PITMAN

Utrecht University and University of California, Berkeley

A new class of random composition structures (the ordered analog of
Kingman’s partition structures) is defined by a regenerative description
of component sizes. Each regenerative composition structure is represented
by a process of random sampling of points from an exponential distribution
on the positive halfline, and separating the points into clusters by an
independent regenerative random set. Examples are composition structures
derived from residual allocation models, including one associated with the
Ewens sampling formula, and composition structures derived from the zero
set of a Brownian motion or Bessel process. We provide characterization
results and formulas relating the distribution of the regenerative composition
to the Lévy parameters of a subordinator whose range is the corresponding
regenerative set. In particular, the only reversible regenerative composition
structures are those associated with the interval partitid@,df] generated
by excursions of a standard Bessel bridge of dimensien2 for some
a €0, 1].

1. Introduction. A composition of a positive integem is a sequence of
positive integers. = (n, ...,nx) with sumy_;n; = n. Eachn; may be called
a part of the composition. We will use the notation= »n to say thati is a
composition ofn. A random composition of n is a random variable®, with
values in the set of all”21 compositions ofr. A composition structure (G,)
is a Markovian sequence of random compositiong,ofor n =1, 2, ..., whose
cotransition probabilities are determined by the following propertganfipling
consistency [10, 13]: if n identical balls are distributed into an ordered series of
boxes according t@C,), then G,_1 is obtained by discarding one of the balls
picked uniformly at random, and then deleting an empty box in case one is created.
We study composition structures with the following further property:

DEFINITION 1.1. A composition structur€C,) is regenerative if for all
n > m > 1, given that the first part @, is m, the remaining composition af— m
is distributed likeC,,_,,.
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According to our main result (Theorem 5.2), each regenerative composition
structure can be represented by a process of random sampling of points from
the exponential distribution of0, oco[, and separating the sample points into
clusters by points of an independent regenerative random closed sRbeét
[0, oo[. We recall in Theorem 5.1 the fundamental result of Maisonneuve [28] that
every suchR can be represented as the closed rangesobardinator (S;), that
is, an increasing process with stationary independent increments. Each possible
distribution of a regenerative composition structure is thereby described in terms
of the drift coefficient d and Lévy measune of an associated subordinator.
Alternatively, we can transfornR into R := 1 — exp(—R) C [0, 1] and replace
the exponential sample by a sample from the uniform distributioiOoa]. In
this form the construction is an instance of tirdered paintbox representation of
composition structures, developed in [10, 13, 31].

Keeping track of only the sizes of parts, and not their order, every composition
structure induces gartition structure, that is, a sequence of sampling consistent
partitions of integers, as studied by Kingman [26, 27]. Passing from compositions
to partitions is equivalent to passing from the ordered paint@éx= [0, 1] \ R
to Kingman's paintbox defined by the decreasing sequence of lengths of interval
components ofR¢. A partition structure is thereby associated with a typically
infinite collection of composition structures, each corresponding to a different way
of ordering interval components of given lengths. We show that if one of these
composition structures is regenerative, it is unique in distribution (Corollary 7.3).
In Section 7.1 we also discuss necessary and sufficient conditions for the existence
of such a regenerative rearrangement. See also [39].

Known examples of regenerative composition structures include the composi-
tions associated with the ordered Ewens sampling formula [10], and those derived
from the zero set of a recurrent Bessel process in [31]. The partition structures
corresponding to these examples are instances of the two parameter family of par
tition structures studied in [30, 33]. We show in Section 8 that each member of
this family, with positive values of parameters, corresponds to a unique regenera-
tive composition structure. Also (Theorem 10.1), the only reversible regenerative
composition structures are the members of this family associated with the interval
partition of[0, 1] generated by excursions of a standard Bessel bridge of dimension
2 — 2« for somex € [0, 1]. See also Section 4 and [15, 16], for further examples
of regenerative composition structures.

Our definition of regenerative composition stuctures is reminiscent of King-
man’s characterization of the one-parameter Ewens partition structure by
invariance with respect to deletion of a random part, selected in a size-biased
fashion. This property is callespecies noninterference or neutrality in the set-
ting of population genetics. We refer to [3, 11, 33] for background on partition
structures, exchangeability and related matters. As shown by James [23], another
closely related concept, developed in the setting of Bayesian nonparametric sta-
tistics, is Doksum’s [9] notion of a random discrete probability distribution that is
neutral to the right.
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From an algebraic viewpoint, our representation of regenerative composition
structures is equivalent to solving a nonlinear recurrence (Proposition 3.3). The
nonlinearity of the recursion reflects the fact that the family of probability
laws of regenerative compositions is not closed under mixtures. So unlike the
problems of characterizing all partition or composition structures, the problem
of characterizing all regenerative composition structures is not just a problem of
identifying the extreme points of a convex set. Still, we show in Section 5 that
it can be reduced to such a problem (equivalent to a version of the Hausdorff
moment problem) by a suitable nonlinear transformation. The Lévy @hta)
of the associated subordinator are thereby encoded in a finite meaq@;epn

2. Compositions and partitions. This section recalls briefly some back-
ground material on composition structures and their associated partition structures.
See [10, 13, 30, 31, 33] for a fuller account. For a composition stru¢@yeand
a compositiorh = (n1, ..., ng) of n, define thecomposition probability function p
by

1) p) :=P(Cp =2).

For each fixedn, this function defines a probability distribution on the set of
compositionsh. = n, and these distributions are subject to the following linear
relation describing the sampling consistency. ket (n1,...,n;) En andu =

n + 1, we say thap extends A and writep \( A if u is obtained fromk by either
increasing a part; by one or by inserting a part 1 in the sequeac&he sampling
consistency amounts to the recursion

2 p) =" kO, wpw),  pl=1,
HNA

where the coefficient (i, 1) equals(n; +1)/(n+1) if uis obtained by increasing
a partn;, and equalgj + 1)/(n + 1) if u is obtained by inserting a 1 into a row
of consecutive ones 1, ..., 1 of lengthj > 0.

Regard@, as a way to partition a row of identical balls into an ordered
series of nonempty boxes, and independentl¥pf let the balls be labelled by
a uniform random permutation of the gef := {1, ..., n}. This defines a random
exchangeable ordered partition C; of the set[n] whose distribution is defined
as follows. For eaclparticular ordered partition offn] into k classes of sizes
ni,...,n, sayc*,

" _1
© pei=c=(, " ) P,

since the multinomial coefficient is the number of such ordered partitiofis] of
and these are equally likely. The sampling consistency property of a composition
structure(CG,) means thatC,) can be constructecbnsistently, in the sense that
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C;_, is the restriction ofC; obtained by deleting element Then ¢, is the
ordered record of sizes of classes@jf, and the entire sequence;’) defines
an exchangeable ordered partition of thel$eif all positive integers.

Ignoring the order of classes yields a randexchangeable partition IT of the
setN. The restrictionlT,, of IT to [n] is obtained by ignoring the order of classes
of G. So for eactparticular partitionz of [r] into k classes whose sizes in some
order areny, ..., ng,
ni,..

-1
(4) P(I, =m) = ( n nk) Zp(na(l),...,ng(k)),

’ o
where the sum is over th&! permutations of[k], corresponding to thek!
different ordered partitions* of [n] derived from the given patrtitiorr of [n].
This symmetric function ofn1, ..., ng) is theexchangeable partition probability
function (EPPF) of [30, 33]. Note by construction that the partitiom afefined by
the decreasing rearrangement of sizes of classHs, pbr of C;', is identical to the
decreasing rearrangement of the part€,pfSuch a sequence of random partitions
of n, subject to a consistency constraint, is callgmhgition structure.

3. Regenerative composition structures. Let (G,) be a composition struc-
ture with composition probability functiop. Let F,, denote the size of the first
part of @,, and denote the distribution @, by

(5) qn:m):=P(F,=m)= Y  Lni=m)p(n,...,m), 1<m<n,
(n1,...,ng)

where the sum is over all compositiofs, ..., n;) of n, andi(.--) denotes the

indicator function which equals 1 if - and O else. We cad} the decrement matrix

of the composition structuree,,).

PrOPOSITION3.1. A composition structure (G,) is regenerative in the sense
of Definition 1.1iff for eachn =1, 2, ..., the digtribution of ¢, is determined by
the product formula

k
(6) pa,....n)=[TqWjin))

j=1
for each composition (n1, ...,n;) of n,where Nj :==n; +---+nrandg(n:m) is
the decrement matrix defined by (5). Thus, the law of a regenerative composition
structure is uniquely determined by its decrement matrix.

PROOF This is easily shown by induction on the number of parts of a
composition. [

Note that ifg(2:1) = 1, theng(n:m) = 1(m = 1), meaning that eacl, is
a pure singleton composition, with(1,1,...,1) = 1. Whereas ifg(2:2) =1,
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theng(n:m) = 1(m = n), meaning that eacy, is a trivial one-part composition
with p(n) = 1. These facts are easy to check using (2) ang 0, and they
are intuitively obviousy(2:1) =1 [resp.¢(2:1) = 0] means that two randomly
sampled balls never come from the same box (resp. from different boxes). It can be
shown thaty(4:2) > 0 implies O< g(n:m) <1l forall1<m <n andn > 1 and
therefore, O< p(A) <1fori =n > 1.Inthe cas@(4:2) and 0< ¢(2:2) <1 we
haveg(n:1) 4+ q(n:n) =1 for all n, hencep (1) > 0 only for compositions of the
formi=morri=(11,...,1 k) withk>1.

The product formula (6) identifieg, with the sequence of decrements of
a transient Markov chairQ, := 0,(0), 0,(1), ... with values in{0,...,n}.
This chain has decreasing paths starting from the sfyt€d) = n, with the
terminal state 0 and time-homogeneous triangular transition matfix n — m),
1<m <n < 00). In this interpretation the parts of a compositien ..., n; are
the magnitudes of jumps of the chain, whili, ..., Ny) is the path ofQ,, prior
to absorbtion. For example, @fs = (3, 2, 1, 2), the path ofQg is

(08(0), Qg(1),...)=(8,5,3,2,0,0,...).

Consider now the joint law of two compositions derived from a regenerative
compositionC, by a random splitting, say, = (C,, C;), where G~ is a
composition ofm(C,;7) € {1,...,n}, and C, is the remaining composition of
n —m(C;), regarded as a trivial sequence with no elements: (&) = n.
Suppose that the number of parts @f is a randomized stopping time of the
chainQ,, meaning [35] that for each4 k < n, givenG,, with at least parts, the
conditional probability tha®,= has exactlyt parts depends only on the fidssparts
of ¢,. Equivalently, for eachh = (n1, ...,n,) E=n and each.< = (ny, ..., ny) for
some 1<k </,

(7) P(Cy =A%IC=2) = fu(A)

for some functionf,, of compositions ofn for 1 < m < n. The strong Markov
property ofQ, then implies the following:

(i) the compositiong®,~ andC,” are conditionally independent givenC,;),
and

(i) for each 1<m < n, givenm(C,") = m, the remaining compositio@,” of
n — m is distributed likeG,,_,,.

Conversely, we record the following proposition which applies, in particular, to
the splitting scheme defined by (7) with) (n1, ..., ny) = ni/n. In terms of balls
in boxes, such a split is made just to the right of the box containing a ball picked
uniformly at random.

PROPOSITION3.2. Suppose a composition structure (G,) admits a random
splitting &, = (C,, €,;) for each n, such that (7) holds with f,(m) > 0 for all
1<m <n,and(ii) holds. Then (G,) isregenerative.
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PROOE Let p denote the composition probability function @f,,), as in (1).
By definition, (C,) is regenerative iff for all < m < n and all compositiong.~
of n —m,

8) p(m, A7) =qn:m)p(L”)

for some matrixg (n : m), which is then the decrement matrix @, ). Whereas (i)
holds iff for all 1 <m < n and all compositiona < of m andA> of n — m,

) Y O PAT, A7) =4mim)p(h7)

A<Em

for some matrixg(n:m), in which caseq(n:m) = P(m(C,;") = m). Assum-
ing that (9) holds, (8) is obvious fom = 1 with g(n:1) = g(n:1)/f,(1).
Proceeding by induction om:, suppose that (9) holds for all £ m < n,
and that (8) has been established wittl instead ofm for all 1 < m’ <
m < n. Apart from the termf,(m)p(m,1”), all terms of the sum in (9) in-
volve compositions.=, all of whose parts are smaller tham. So the induc-
tive hypothesis allows us to write these terms @sr<)h,(A<)p(L~), where
h, (A=) is a product of entries of the decrement matgixNow rearrange (9)
to isolate the termf,(m)p(m,A~) on the left-hand side, and observe that
p(A~) is a common factor on the right-hand side, to complete the induction.
O

Our aim now is to describe as explicitly as possible all matricedich define
a composition structure by means of (6). We start with an algebraic description:

PrROPOSITION3.3. A nonnegative matrix ¢ is the decrement matrix of some
regenerative composition structureiff ¢g(1:1) = 1 and

m+1
: = — 1: 1
q(n:m) n+lﬂn+ m + 1)

10
(10) n+l—m

1
1 q(n+1:m)+mq(n+l:1)q(n:m)

for1<m <n.

ProOE We will show first that the condition (10) is sufficient, that is,
(20) and (6) imply (2). Indeed, assuming (10) and (6),

1 1
gmn:n)y=qgn+1lin+1)+ mq(n+l:n)+ mq(n+l:l)q(n:n)
implies readily

1 1
— 1D+ —— )+ ——p@d
pn)=pn+ )+n+1p(n, )+n+1p( 1),
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which means (2) for all one-part compositions. Now suppose (2) holds for all
compositions with less thahparts, and lek = n be a composition witlt parts.
Write A in the form i = (m, )'), where)X’ =n — m. We have by the induction
hypothesis and (6),

> k(o w)p(u)

HNA
1 m+1 —m+1 ;o ,
= P A)+Tp<m+1 “*ﬁ /Z/x(x L1 p(m, 1)
WNA
1 /
= mq(n +1:Dgn:m)p))
+ %q(ml m+1)pi) + qu(nﬂzm)pm,
which by (10) and (6) is equal t@(n:m)p()') = p(A) and the induction step is
completed.

Conversely, assuming (2) and (6), the recursion (10) follows by a similar
argument withk =2. 0O

4. First examples.

ExamMPLE 1 (Geometric sampling [7, 24]). Imagine infinitely many players
labeled 12, ..., who flip repeatedly the same coin with fixed probabilitg 10, 1]
for tails. In the first round, each of the players tosses the coin and those who flip
tails drop out. In the second round each of the remaining players must toss again
and those who flip tails drop out, and so on. If we restrict consideration to players
labeled 1...,n, a compositionC, arises by arranging the players into groups
as they drop out. These compositions are sampling consistent by exchangeability
among the players and they form a regenerative composition structure because
“all rounds are the same.” Equivalently, we could attribute to each playesm
individual value&;, the number of rounds the player remains in the game, and
tie the players into blocks by equality of their individual values. Eheare
independent with same geometric distribution. The probability that pfayers,
exactlym tie for the minimum value mig, ..., &,) is equal to

ny.m n—m
q(n:m)z(m)x d-x , m=1...,n,
1-(1—x)"

which is the binomial distribution conditioned on a positive value. Note that the
one-part or the pure singleton compositions appear ferl orx | 0, respectively.

It is the memoryless property which makes the geometric distribution work,
and sampling from any othdixed distribution on integers would not produce a
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regenerative composition. Still, it is possible to preserve the regenerative feature
by randomizing the distribution in a very special way.

ExXAMPLE 2 (Stick-breaking compositions [10, 15, 16, 22, 23, 39]). &t)
be independent copies of some random varidbleith 0 < X < 1. Think of X,
as the probability of tails for théth coin. Modify the algorithm in the previous
example by requiring that at rourideach of the remaining players must toss the
kth coin. It is easily seen that the resulting composition structure is regenerative.
Fixing a group ofn players and conditioning on the number of players that drop
out at the first coin-tossing trial, we obtain the recurrence

g(n:m)= (”;) E(X"(1—X)"") +EQ— X)"q(n:m),

resulting in the decrement matrix
(IEX™(1—X)"")
El-1-Xx)")
which says thay(n:-) is a mixture of binomial distributions conditioned on a
positive value.
For example, ifX is uniform on[0, 1], theng(n:m) = n~1 thatis, a discrete

uniform distribution for eacle. More generally, ifX has a beta distribution with
parametersl, 6), 6 > 0, the decrement matrix becomes

m=1...,n,

(11) q(nim)=

. _(n [0]n—m m!
42 atnim = (m) [0+’
where
(13) [0],:=000+1)---O+n-1)

is a rising factorial. The corresponding partition structure is well known to be that
defined by the Ewens sampling formula [11]. The individual values of the players
are now only conditionally i.i.d., with conditional distribution

P =ilX1, X2,...)=(1—- X1 ---1-X;_DX;.

Additional randomization allows the same composition structure to be defined
in another way. Mark the players by independent unifdnl] random vari-
ables(u;), also independent afX;). Consider a random partition ¢0, 1] into
intervals by points

k
(14) Yi=1-]]@- X, k=1,2,....

i=1
The number of intervals is finite iP(X = 1) > 0 or infinite otherwise. Group
together those players whose individual marks fall in the sareponent
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1Y:_1, Y[, and maintain the order of groups from the left to the right. This
sequential algorithm of random interval division is often referred tostack-
breaking or as aresidual allocation model. Note that in the stick-breaking case
the patrtition of{0, 1] has a first (leftmost) interval, a second interval, and so on.

ExAmMPLE 3 (Brownian bridge [31]). Consider the partition (f, 1] by the
set of zeros of a Brownian bridge. This set is perfect, that is, a compact set
with no isolated points. Given a uniform sampgle;), group together all sample
points which fall into the same excursion interval. This defines a composition
structure which is regenerative, by a self-similarity property of the set of zeros.
The decrement matrix is described later by (39)dee 6 = 1/2. Unlike the stick-
breaking case, there is no leftmost interval.

EXAMPLE 4 (Brownian motion, meander case [31]). Same as Example 3, but
we take the set of zeros of a Brownian motion[6nl]. The collection of intervals
is not simply ordered, but there is a definite last (i.e., rightmost) interval, known as
themeander interval, whose right endpoint is 1. The decrement matrix is described
by (39) fora =1/2,6 = 0.

ExAmMPLE 5 (Myriads of singletons). Fix & 0 and a distribution ofX on
10, 1]. Modify the stick-breaking partition of Example 2 by assuming two types
of independent residual allocations. At each odd step the stick is broken with
residual measure beth d—l), and at each even step the stick is broken according
to X. That is, consider independent random varialifas X1, Zo, X, ... with

Z: L betal,d-1) andX; £ X, and define

k
Yari=1—1-Zi) [[A-ZHA- X)),

j=1
k—1

Yoo =1—(1—-Xp)(A—Zyp) 1_[(1— Zj)1-X;).
j=1

Consider a random closed sgtwhich includes endpoint¥y := 0 and 1 and the
union of intervalg Yo, Yo¢ 111, k=0, 1, .... If P(X = 1) = 0, the interval partition
has infinitely many components.

Draw an independent sample of uniform poifis) and define a composition
by requiring that the sample points which hit componelits,, Y2r+1] of R
become singletons, while all those which fall in a particular §&g.+1, Yor+2[
are grouped together. Far large, a typical composition of will start with a
myriad of singleton parts 11, ..., 1 whose number is of the order of followed
by one part whose size is of the ordemgffollowed by a myriad, and so on.
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Form > 1, conditioning on the number of sample points out @fhich fall into
1Y1, Yo[ leads to a recursion

g(n:m)= <:1>E((1_ 2)"X"1-X)""")+E(1Q-2)"1-X)")g(n:m),

which impliesq as in (11), but with additional termad in the denominator.
The total asymptotic frequency of myriads, sgyis equal to the Lebesgue
measure ofR and satisfies a distributional equation

(15) FLZi+ -z - XD f',
wheref’, Z1, X; are independent angl 4 f. Analysis of this equation shows that
the moments off are given by a simple formula which we record later in (32).

5. General representation.

Background on subordinators and regenerative sets. Let d> 0 andv be a
measure o0, oco] satisfying

(16) fo * min(L, 2yv(dz) < oo.

Here, and henceforth, the integral is over the closed intgfvab]. There is no
mass at 0, but we allow the case whemives a positive mass to= co. We
also require that either d ar be nonzero. Consider a Poisson point process on
[0, oo[ x [0, o] with intensity measure Lebesgue. Denoting a generic point of
the processr;, A ), define the process

(17) Si=di+ > Aj, t>0.

‘L'jft

The processs;) is asubordinator, that is, a Lévy process with increasing cadlag
paths, withSg =0 andS; 1 co. For p > 0, let ®(p) be the Laplace exponent of
the subordinator defined far> 0 by

E[exp(—pS)] = exp—1®(p)].

Let v(dz) be the Lévy measure associated with the subordinator, arddeb
be the image of via the transformationr = 1 — ¢~%. According to the Lévy—
Khintchine formula,

(18) D(p) = /0 (1—e")v(dz) + pd
1
(19) :/O (1= (1—x)")5(dx) + pd

1
(20) _ / p(1—x)*~15[x, 1] dx + pd.
0
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Let
R ={S,,t>0°

be theclosed range of the subordinator. For a random closed suleif [0, oc],
let

(21) G(R,t):=supRN[0,t] and D(R,t):=IinfRN]t, o]

with the usual conventions sg@p= 0 and infg = co. Following [5] and [28],

call R regenerative if for eachr € [0, oo[, conditionally on{D(R, t) < oo}, the
random se{R — D(R, 1)) N[0, oo] is distributed likeR and is independent of
[0, D(R, )] N R. The following representation of regenerative sets is fundamen-
tal:

THEOREM 5.1 ([28]). The closed range R of a subordinator (S;) is a
regenerative random subset of [0, oo]. Moreover, every regenerative random
subset R of [0, 00] has the same distribution as the closed range of some
subordinator (S;, ¢ > 0), whose Laplace exponent @ is uniquely determined up
to constant multiples.

Standard exponential sampling. Let (¢;) be a sequence of independent
standard exponential variables, independent of the subordid&tpr and let
&, ..., &nn DE the firstn sample pointg1, ..., s, arranged in increasing order.
Define a partition of the s€i, .. ., n} into blocks of consecutive integers by letting
Jj andj + 1 belong to different blocks iff the closed interyal,, , ;41,1 contains
some point ofR, for j < n. Note, in particular, thafj} is a singleton block if
ejn € R. Define a compositioe,, of n by the sequence of counts of block-sizes of
this random partition ofl, ..., n} into blocks of consecutive integers, from the left
to the right. It is obvious by construction th@,,) is a composition structure, call
it the composition structure derived from the subordinator by standard exponential
sampling.

Introduce the binomial moments

(22) @(mim)= (”;) /000(1 — e Y™ Ty (d7) + ndl(m = 1)

n
m

23) _ < )/lema—x)"—ma(dx) 4 ndim =1),

for v(dx) the image o (dz) viax = 1—e~%, as in (18) and (19). Note by (16) that
the integrals are finite for £ m < n, and that these quantities are linearly related
to the Laplace exponewdt by the elementary identities

(24) CI)(n):ZCD(n:m), n=12...,

m=1

(25) <I>(n:m):(Z)Z(—l)jH(’?)CD(n—m—i—j), l<m<n,
j=0
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where® (0) = 0.

THEOREMb5.2. (i) The composition structure derived from a subordinator by
standard exponential sampling is regenerative, with decrement matrix

_ _<I>(n:m)
(26) qgn:m)= YO

(il) Every regenerative composition structure can be so derived from some
subordinator.

(iii) The Lévy data (d, v) of the subordinator is determined uniquely up to a
positive factor by the regenerative composition structure.

To prepare for the proof, we start by recalling some known facts about the
passage of a subordinator across an independent exponential level.

LEMMA 5.3 ([31]). Let £ be an exponential random variable with rate p,
independent of R, which is the closed range of a subordinator (S;) with Laplace
exponent ®@. Let G, := G(R,¢), D, := D(R,¢) and A, := D, — G,, so that
almost surely A. is the length of the interval component of [0, co] \ R which
coverse, with A, =0if e € R. Therandomvariables G, and A, areindependent,
with Laplace transforms
@ (p) O(s + p) — P(s)

Sotp) TSR = ®(p)

(27) Eexp(—sG,) =

Note that the second formula in (27) is equivalent to

(28) P(A, € dg) = =€ IvED+ pddo(dz)
@(p)

wheredg is a unit mass at 0.

PrROOF OFTHEOREM 5.2(i). The regenerative property of the composition
structure derived from a subordinator follows easily from the memoryless property
of exponential distribution and the regenerative propertyrofit time D4, :=
D(R, e1,). To derive (26), observe that, is exponential with rate: and, by
the construction,

q(n:m)=P(Dy, € [emn, 8m+1,n])

(with the conventior, 1., = 00). Let G1, := G(R, €1,) and A1, := D1, — G 1.
By Lemma 5.3 A1, has distribution (28) fop = n. Moreover, givem\ 1, = z with
z > 0, the random variable;, — G1, is distributed like exponential variabign)
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with raten conditioned ons(n) < z. So the probability thaty, hits the closed
rangeR of the subordinator (causing a singleton) is

nd
d(n)

and given the complementary event thgt missesR, with ¢, — G1, =x >0
andAj, = z > x, the conditional probability thaD1,, € [eun, em+1.2] €QUAlS

( n— 1> (1 _ e—(z—x))m—le—(z—x)(n—m).

(29) P(Dy, =€e1,) =P(A1, =0) =

m—1

So the probability thatq, finds a gap inR, and exactlyn of the n exponential
variablesey, ..., g, fall in that gap, is

1 o R n—1 —(z—x)\m—1 —(z—x)(n—m)
W/O v(dz)A ne dx(m_1>(1—e )" e

_ 1 n o —(n—m)zoq _ ,—zym
_CD(n)(m)/o ¢ dme @

by application of the formulg me"*(1 — e )ym=1gyx = (1 —e~%)™, which
has an immediate interpretation in terms of the order statisties ioidependent
exponential variables. Now (26) follows becauge : m) is given by the above
formula form > 1 and has the additional termal/ ® (n) from (29) form =1. O

To prepare for the proof of the rest of Theorem 5.2, we record a sequence of
four preliminary results. The first is elementary.

LEMMA 5.4. Forl<m<n,let ®dm:m) and ®(n) bereal variables related
by (25), with ®(0) = 0. Then the identity (24) holds. Moreover, (25),for 1 <m <
n <n’, impliestherecursion

m+1
dPn:m)=—dm+1:m+1
(30) n+1
n—m+1 ,
—®d(n+1:m), l<m<n<n'.
+1

Conversely, (30)and (24),for 1 <n <n’, imply (25).

A sequenced, such thatb (n : m) defined by (25) is nonnegative for alndm,
is known as acompletely alternating sequence [4], and there is the following
integral representation of such sequences:

PrRoOPOSITIONS.5 ([4], Proposition 6.12 fok = 1, page 134). A sequence
(®(n),n > 0), with ®(0) =0 and ®(n) > 0 for n > 0, is such that all entries
®(n:m) defined by (25) are nonnegative if and only if there is the integral
representation (19) for some measure v on ]0, 1] and d > 0. Moreover, v and d
are uniquely determined by &.
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LEMMA 5.6. Suppose that a sequence of numbers (®(n),n > 0) with
®(0) = 0 satisfies ®(n) > 0 for some n < n’, and is such that each entry
®(n:m),1<m <n<n’,of thematrix (25) is nonnegative. Then ®(n) > 0 for all
1 <n <n/,and the entries of the matrix (26) with 1 < m < n < n’ are nonnegative
and satisfy (10) for this range of indices. Moreover, if the entries ® (n: m) of the
matrix (25) are nonnegative for arbitrary n, then (26) is the decrement matrix of
some regenerative composition structure.

PrROOF We apply Lemma 5.4. Dividing (30) b$ (n + 1) and substituting it
in the to-be-checked (10), we transform it by elementary algebra to

dn+1:D)=mn+1(dn+1) — o),
which is true as a special case of (25)]

LEMMA 5.7. The decrement matrix of a regenerative composition structure
can be represented in the form (26), by a matrix (®(n:m),1 <m <n < co) with
nonnegative entries satisfying (30) and (24). The matrix ® is determined by ¢
uniquely up to a positive factor.

PrROOF The statement is only nontrivial when<Op(n) < 1 forn > 2. So
let us consider a decrement matrix with entries §(n:m) < 1 forn > 1. Fixn’
and set by definitiom (n’ :m) :=q(n’:m) form =1, ..., n’. Consider the unique
solution (®(n:m),1 <m <n < n’) to (30) with the valueg (n’':m) at leveln’'.
Becausey(n':m) > 0, it is easily seen thab(n:m) > 0for 1<m <n <n’ and,
therefore®(n) :==®n:1)+---+®(m:n) > 0forn <n’ [and®(n’) = 1]. By the
first assertion of Lemma 5.6 and the remark before, the elendettsm)/® (n)
satisfy the recursion (10) for < n’, and forn = n’, they coincide withy (n": m).
Thus, by the uniqueness of solutions to (10)foet n’ with given values at level’,
we conclude thag (n: m) coincides with®(n:m)/® ) forall L <m < n< n'.

Keepmgn fixed, suppose there is another representatien m) = d(n:m)/
®(n), n <n', then <I>(n im) = CI>(n )g(n’ :m), thus, arguing as above and using
linearity, we get®(n: m) = ®(n)®(n:m) for 1 <m < n < n'. Thus, the
representation for given’ is unique up to a multiple, and it becomes unique
subject to a normalization constraint.

Assuming the normalizatio® (1: 1) = 1, the finite matrice$®(m :n), 1 <m <
n < n’) constructed for each’ are consistent ag’ varies, by the uniqueness
for each particulam’, thus, they constitute an infinite matrix and the desired
representation follows. O

PROOF OF THEOREM 5.2(ii) AND (iii). These results follow immediately
from Lemma 5.7 and Proposition 5.5

For an alternative proof of (ii), see [17]. Also, (iii) can be deduced from
Theorem 5.1 and a general fact about composition structures ([13], Corollary 12).
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Class frequencies. If the regenerative composition structui@,) is derived
from a subordinator by standard exponential sampling, the associated composi-
tion ¢* of the infinite sefN is simply constructed by assigningnd to different
classes iff the closed interval with endpoiatsande ; intersectsR. The ordering
of classes is maintained according to the order otthessociated with the classes.
The random set of positive integefsvhoses; falls in a particular interval com-
ponent ofR¢ := [0, co] \ R forms apositive class, while eacli whoseg; hits R
forms a singleton class. By the law of large numbers, the probability assigned to an
interval component afR¢ by the standard exponential distribution is thegjuency
of the corresponding class 6f, that is, the almost sure limit as— oo of the pro-
portion of elements ofr] which belong to the class. For instance]df b[ C R¢
is the interval component which covers, then for larges, the class of®); con-
taining element 1 will have approximatetye— — ¢~”) elements, so there will be
some part of®, of this size. We note the following corollary of Theorem 5.2:

COROLLARY 5.8. Let f denote the random frequency of the union of all
singleton classes in the exchangeable random partition of N associated with a
regenerative composition structure with decrement matrix (26). Then

(31) f= dfooo exp(—S,) dt,

where (S;) is the associated subordinator with Laplace exponent ® and d is
the drift coefficient of (S;), and the distribution of f on [0, 1] is determined by the
moments

n!d"

32 E(f)=———,
(32) ) [Tz @)

n=12....

PrROOF The derivation from(S,) by standard exponential sampling gives
o
f =/ e *1(S; = z for somer > 0) dz
0

and (31) follows by the change of variabfe= S;. This change of variable
follows by noting that the functiom — S; is almost everywhere differentiable
with derivative d. Formula (32) can now be read from the work of Carmona, Petit
and Yor ([8], Proposition 3.3), or derived from (15)J

Extensive discussion of the exponential functiorigt exp(—S;)dt is found
in [6, 23]. See [19] for further applications to regenerative compaosition structures.

6. Multiplicatively regenerative sets. By mapping [0, co] onto [0, 1] via
7> 1—e7%, we transform a subordinat@s,) into a multiplicative subordinator
S, :=1—exp(—S,): for ¢’ > t, the ratio(1— S,) /(1 — ;) has the same distribution
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as 1— S,_, and is independent afs,,, 0 < u < r). This construction appears also
in [9, 16, 23]. The counterpart of (17) is

S,=1—e l_[(l—zj),

T <t

whereA ; = 1—exp(—A ;) and the product is over the atorfis, A ;) of a Poisson
point process in the stri0, oo x [0, 1], with intensity measure Lebesgue,
where? is the image of the measurevia z — 1 — ¢~*. Note that the mapping
preserves order, so thef;) increases from O to 1.

Let R :=1— exp(—R) be the closed range of the multiplicative subordinator
(speaking of closed subsets @, 1], we shall always mean that the points
0 and 1 are contained in the set). The transformatier 1 — ¢~ takes an
exponential samplé ;) into a uniform sampléx ;). The regenerative composition
structure(G,) derived from the subordinatais;) by exponential sampling can
now be described as follows®, is induced by separating the first uniform
variablesu; by the points ofR. Note that the frequencies of positive classes
derived from(C,) now coincide with the lengths of open interval components
of R¢=[0,1]\ R, and remaining frequency of singletogisas in Corollary 5.8,
is the Lebesgue measure &t

For a closed subset of [0, 1] andz € [0, 1[ such thatR N ]z, 1[# &, we can
define another closed set

— D(R,
(33) R(z) = H—TER;:

which is the part ofR strictly to the right of D(R, z), scaled back t¢0, 1].

ye RN[D(R,z), 1]},

DEFINITION 6.1. A random closed sek C [0, 1] is calledmultiplicatively
regenerative if, for eachz € [0, 1[, conditionally on{D(R, z) < 1} the random
setR(z), defined as in (33), is independent[6f D(R, z)] N R, and has the same
distribution asR.

The following proposition is easily checked:

PROPOSITION 6.2. For random closed sets R < [0,1] and R C [0, o0]
related by R = 1 — exp(—R), the random set R is regenerative iff R is
multiplicatively regenerative.

As a variation of Corollary 6.5, a condition for multiplicative regeneration of a
random closed subs& of [0, 1] can also be given in terms of a single independent
uniform variable.

We associate each compositien, . . ., ny) of n with the finite closed set whose
points are partial sums of the partsiof, ..., n; divided byn; for example, the
composition(4, 2, 3, 1) of 10 is associated with the sg, 0.4, 0.6, 0.9, 1}. Thus,

a composition structuré?®,,) is associated with a sequence of random 6RLS.
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LEMMA 6.3 ([13]). Let (CG,) be a composition structure and let (R,)
be the associated sequence of random sets. Then R, converges almost surely (in
the Hausdor ff metric) to some random closed subset R, and (C,) isdistributed as
if by using R to separate the pointsin a random sample of uniform [0, 1] variables
independent of R.

From Theorem 5.2, Proposition 6.2 and Lemma 6.3 we deduce the following:

COROLLARY 6.4. The composition structure (G,) is regenerative iff R is
multiplicatively regenerative.

As indicated in [17], it is also possible to prove Corollary 6.4 directly, and then
retrace the above argument to obtain an alternate proof of Theorem 5.2.

A sufficient condition for regeneration. We note that in the usual definition of
a regenerative random subgef [0, oc], as in Section 5, the independence of the
two random setsR; := (R — D(R, 1)) N[0, oo] and[0, D(R, )] N R, for all ¢,
can be replaced by the apparently weaker condition of independence of the random
setR; and the random variable (R, ) for all t. This is due to the following result:

COROLLARY 6.5. Let R be a random closed subset of [0, o], let ¢ be
an exponential random variable with rate 1 independent of R, and let R, :=

(R — D(R,¢)) N[O, oo]. If R, 2 R and R is independent of D(R, ¢), then
R isregenerative.

PROOF Let(C,) be the composition structure derived froRnby the standard
exponential sampling with variablgs;). Then splitC, = (G, C; ), whereC," is
the sequence of nonzero numbers pffor 1 < j < n, falling in complementary
intervals of R up to and including the count in the interval containing This
splitting of ¢, is the example preceding Proposition 3.2, hence, by the assumption
on R and the memoryless property of the exponential distribution, it satisfies
the assumption of Proposition 3.2. The conclusion now follows by application of
Proposition 3.2, Theorem 5.2, Corollary 6.4 and Proposition 6.2.

7. Parametrization of decrement matrices. The representation(n:m) =
®(n:m)/d(n) provides one parametrization of the regenerative composition
structures in terms of a sequen@ke(n), n > 1). To be probabilistically meaning-
ful, this must be the sequence of evaluations of some Laplace exponent at positive
integer values. But we may also regard the expressiong(form) as a collection
of rational functions in variable® (n), n > 1. This section presents some alter-
native parametrizations of regenerative composition structures, and discusses their
probabilistic and algebraic relations to each other.
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7.1. Sructural moments.  One meaningful collection of parameters is the
sequence of diagonal entries

p(n)=q(n:n),

which starts withp(1) = 1. We call these diagonal entries of the decrement matrix
the structural moments of composition structure, as they coincide with moments
of thestructural distribution X:

1
p(n) = /0 18 (dx),

where ¥ is the distribution of the length of the interval component &f
containing a given uniform sample point, say. This random length is the
frequency of the class a@f* containing element 1, that is, a size-biased pick from
the collection of frequencies [33]. Note from (29) and (19), or from Corollary 5.8,
that the expectation of the total frequency of singletgns LebesguéeR) is the
measure assigned iy to O:

E(f) = 2({0) =d/d (1) = d/(d + /ole)(dx)).

Fromp(n) = ®(n:n)/®(n), by expanding the numerator by (25), we obtain a
relation

n—1
(34) S)(p(n) + (—1)") = 3 (~1)7 (’;) ().
j=1
which may be seen as a recursion fbfn),n = 1,2,.... Assuming the initial

value® (1) = 1, the recursion has a unique solution, which is necessarily positive
by Lemma 5.7. Thus, the recursion (34) allowgo be recovered fronp(n),
n=12,..., by first recursively computingb(n),n = 1,2, ..., then®® :m)

from (25) and, finally, using (26). Thus, we have proved the next proposition.

PROPOSITION7.1. A regenerative composition structure is uniquely deter-
mined by the structural moments p(n) =g(n:n)forn=1,2,.... Eachg(n:m),
for 1 <m <n, is expressible as a rational function in the variables p(1) = 1,

p2,...,pMn).
To illustrate the result, the first few entries are

q2:H)=1-p(2),

1-3p(2)+2pQ)
31 = 9
q@3:1 -0

2p(2) —3p) + p(2p)
32 = )
q@3:2) 10




REGENERATIVE COMPOSITION STRUCTURES 463

1-5p(2) +8p(3) —4p(2)p(3) —3p(4) + 3p(2) p(4)
1-2p(2)+2p(3) — p(2p3) ’
3p(2) —9p(3) +6p(2)p(3) + 6p(4) — 9p(2) p(4) +3p(3) p(4)
1-2p2)+2p3) — p(2)p(3) ’

4(4:3) = 3p(3) —3p2)p(3) —4p(4)

1-2p(2)+2p(3) — p(2p(3)

8p(2)p(4) —5pB) pA + p(2p)p(4)

1-2p@)+2p3) ~ pApB)

The complexity of such formulas increases rapidly with
In general, structural moments do not determine a composition structure

uniquely, because they do not even determine the associated partition structure.
See [33] for further discussion. Since uniqueness does hold in the special case
of regenerative composition structures, it is natural to seek a characterization of

structural moments in this case. There is the following immediate consequence
of Proposition 7.1 and Lemma 5.6:

q4:1) =

q(4:2) =

COROLLARY 7.2. A sequence p(n),n = 1,2,..., with p(1) = 1 and
0< p(n) <1for n>1,isa seguence of structural moments of some regenera-
tive composition structure if and only if the following conditions are fulfilled:

() the sequence ®(n),n = 1,2,..., defined by the recursion (34) with
®(1) =1,ispositive, and
(i) each ®(n:m),1<m <n < oo defined by (25), is nonnegative.

If thisisthe case,
JE x5 (dx)
JHd— @ —x)"b(dx) +nd’

pn) = n>1,

for some d > 0 and some measure v on ]0, 1] with finite first moment.

REMARK. We know thatp(n),n=1,2,..., is a moment sequence from the
general facts about partition structures, or from the interpretatign(of as the
probability that: balls fall in the same box. From an analytical perspective, it does
not seem obvious that the nonlinear tranform givenpgy) = ®(n:n)/®(n),
n=12, ..., indeed, yields a completely monotonic sequence for arbitrary
Laplace exponent.

Because the structural moments are determined by the (unordered) partition
structure, Proposition 7.1 and Kingman'’s representation of partition structures [26]
imply the following:
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COROLLARY 7.3. Each distribution of an infinite exchangeable partition
of N (which can be identified with a partition structure) corresponds to, at most,
one regenerative composition structure. Equivalently, for each distribution of a
decreasing sequence (Y;) with Y; > 0 and }_Y; < 1, there exists, at most, one
distribution for a multiplicatively regenerative set & [0, 1] such that the ranked
lengths of interval components of R¢ are distributed like (¥).

A constructive method to verify if a given exchangeable partitionNofs
induced by a regenerative composition structure amounts to computfrgm
the structural moments, and then checking that the given EPPF coincides with the
EPPF computed by (6) and (4).

The general problem of characterizing structural distributions of partition
structures was posed by Pitman and Yor [36]. The characterization of structural
distributions of regenerative composition structures provided by Corollary 7.2
leaves open the following question: given the collection of structural moments
of a regenerative composition, or given its Laplace expoderdescribe in some
way how the classes of the associated unordered partition should be arranged to
produce the composition? We answer some restricted forms of this question in the
next section, but do not see how to answer it in any generality.

7.2. Sngleton probabilities. Instead of the events* balls fall in same box,”
consider the event:‘balls fall inn different boxes.” Let(n) be the probability of
this event, that is,

en):=pL1....)=qgn:H)gn—-1:1)---q(2:1).

By the definition and from the representation (26), we derive

e(n) . L B d(n—-1)
e(n—l)_q(nll)_n(l @ (n) >’
which can be read as
(1) _el)
%) o) Q(l w5)

This shows that any one of the sequence@:),n > 0), (¢g(n:1),n > 0) or
(®(m)/®(1), n > 0) uniquely determines each of the other two sequences.

As is seen from (25) and (35), in the variablgé::1),n = 1,2,..., the
elements of decrement matrix become polynomials

(36) Q(nim)=<Z>§(—l)m_j+l<?)ﬁ<l—q<2_7_il)>,

k=0
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to be compared with the rational functions of structural moments considered in
Section 7.1. For example,

q(4:2)=29(3:1) — 3q(4,1) — 3¢(3:Dq(4:1).

The definition ofe(n) makes sense for a general partition structure. Thus,
to check if a given partition structure is induced by a regenerative composition
structure, we can use the above formulas to translate » > 0, into ¢ and then
compare the EPPF resulting from (6), (4) with the given EPPF. In particular,
if a regenerative rearrangement is possible, the sequenges,n > 0) and
(e(n), n > 0) must be computable from each other, as appears by eliminating the
variables® from p(n) = ®(n:n)/®(n) and (35).

8. Thetwo-parameter family.

8.1. General setup. Consider the(w, 0)-partition structure determined by
following formula of [30, 33] for the distribution ofT,,, an exchangeable partition
of [n]: for each particular partitiorr of [n] into k classes of sizesy, ..., ng,

I | by )
(37) P(I, =7) = T lHl[l oln;—1,

where the notation (13) is used for rising factorials. This formula defines a partition
structure for O< @ < 1 and6d > 0, and also for soméx, 6) with eithera < 0 or
6 < 0. We wish to establish if this partition structure can be associated with some
regenerative composition structure.

Following the method in Section 7, we first comput@) as a special case
of (37):

n—1

e(”)Zp(l,l,...,l):l_[

j=0

0+ aj
O+’

which leads by application of (35) to

®(n) a0 +1,-1
1) [2+60—al1

This yields, by virtue of (30) or (25), the formula
d(n:m) _ ( n ) [1—aln-1 [0+ 1],-1

(38)

((n —m)a + m#).

q)(l) [2+9 —a]n_l [9+n_m]m
Therefore,
(39)  q(nim)= q’;”:’") _ <"> 1=y 1 (0= m)a+mb)
(n) [0 +n—m]y n
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Sincegq in (39) is nonnegative exactly whena < 1 andd > 0, we conclude that
g is the decrement matrix of a regenerative composition structure for precisely this
range of parameters.

Observe that the resulting formula

_ DN [1—ali—1
(40) p(n)=qn:.n)= T

yields the moments of beth— «, « + ), which is the structural distribution for
all members of the two-parameter family of partition structures.
Adopting the normalizatio® (1) = B(1 — «, 1 + 0), where

B(a,b) :=T(@)I®)/T(a+b),
the Laplace exponent extending (38) becomes

(41) O(s)=sB(l—a,s+6).
The corresponding measure is determined by the formula
(42) Plx, 1] =x"%1—x)?, O<x <1

It remains to check that the partition structure induced by this regenerative
composition structure is given by (37). This is done in the following theorem:

THEOREM8.1. ForO0<a < land6 > 0,thedistribution of the exchangeable
random partition IT,, of [n] derived from the regenerative composition structure
with Laplace exponent (41)isthat of an («, ) partition defined by (37). For other
values of («, 0), besidesthelimiting case (1, 8) for & > 0 which generatesthe pure
singleton partition, there is no regenerative composition structure which generates
an («, 6)-partition structure.

PROOFE By the above discussion we can restrict consideration to the case
O0<a <1 andd > 0. By application of formulas (4), (6) and (39), the EPPF
derived from the regenerative composition structure with Laplace exponent (41)
is a sum ofk! terms of the form

1k (N; —nj)o +n;0
1—al, _
o1, El[ g P N,

where the sequenges, . .., ng) and its tail sumsV; = le':,' n; must be replaced

by permutations of the sequence and correspondingly transformed tail sums. To
match up with (37), it just has to be checked that the corrresponding su of
terms derived from

’

ﬁ (Nl‘ — n,-)a +ni9

L1 Ni((k = Do +6)

equals 1. But this is easily verified together with the probabilistic interpretation
given in the following corollary. O

(43)
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COROLLARY 8.2. Inthe setting of the previous theorem, given that the blocks
of IT,, areof sizesny, ..., ny when put in some arbitrary order, and given that the
firsti — 1 of these bIocks arethefirst i — 1 blocks of the ordered partition C;', the
conditional probability that this coincidence continues for one more step is the ith
factor in (43).

Put another way, given block sizes, . .., n; and that the first — 1 blocks have
been picked to leave blocks of sizeg, for i < j <k, the next block is the block
of index j with probability proportional taN; —nj)a +n ;6.

Several particular instances of the above results are known, as indicated in the
following discussion of special cases.

8.2. Case (0,60) for 6 > 0. In this case the measutein (42) is a probability
measure, the beth, 0) distribution. So the above theorem and its corollary reduce
to the well-known fact that the ordered Ewens formula associated witlilhéia
stick-breaking puts its parts in a size-biased random order [10].

8.3. Case («,0) for O< a < 1. Inthis case
D(dx) = ax " Ldx + 51(dx)
is a measure with a beta density @0, 1[ and a unit atom at 1. The product
formula (6) reduces to
k

p(n1,...,np) =nga*~ ]_[

[1- O5n,71

which is identical to the formula in [31], equatlon 28. By comparision of these
two formulas, the random composition in this case is identical in distribution to
that generated byr, N [0, 1], where R, is the range of a stable subordinator
of index «. In particular, &R, can be realized as the zero set of a Bessel process
of dimension 2— 2«. Fora = 1/2, this is the zero set of a standard Brownian
motion.

The decrement matriy in this case has the special property that there is a
probability distributionf on the positive integers such that

n—1
(44) gn:m)y= fm)ifm<n and q(n:n):l—Zf(m).
m=1
Specifically,
(45) Fomy = A=t
m!

and, henceg(n:n) =[1—al,—1/(m — 1)!. The work of Young [40] shows that the
only nondegenerate regenerative compaosition structures with a decrement matrix
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of the form (44), for some probability distributiofi on the positive integers, are
those withf of the form (45), obtained by uniform sampling froRy, N [0, 1] for
some O< o < 1.

The multiplicative regeneration property ok, N [0,1] is an immediate
consequence of the standard regeneration and self-similarity properties a$
a subset of 0, oo]. It implies thatR, N [0, 1] has the same distribution as the
closure of{1 — exp(—S;), t > 0}, where(S;) is a subordinator with no drift and
Lévy measure

v(dz) =a(l—e ) e dz + 500 (d?)

on [0, co], which is the image ob via x — —log(1 — x), sov has an atom of
mass 1 abto.

As a check, letr :=inf{¢: S, = oo}, which is the exponential time with rate 1
when the subordinator jumps teo. Then, by application of the transformation
and the Lévy—Khintchine formula, if we l€t := supR, N[0, 1[, then we find for
s > 0,

1 Bl—a+s,a)
E(1— G)’ =E(exp(—sS;-)) = =
=6 =Eep=sS)) = 505 = Ba—wa)
This confirms the well-known fact that the distribution of1G is betd1l — «, o).
It may also be observed, using properties of the local time prodess > 0)
associated withR,, as discussed in [29], that the exponential timean be
represented as

1
T =ca/ A1-0H"%dL,,
0

for some constant, depending on the normalization of the local time process.
The fact that this local time integral has an exponential distribution was derived by
an analytic argument in [21], Corollary 3.4.

As discussed in [31], the length of the last interval compongmtl[ of
the complement tar, N [0, 1] is a size-biased pick from the collection of the
interval lengths, and conditionally o, the remaining interval components are
in symmetric order; moreover, these properties are inherited by the compositions
of n for everyn. Corollary 8.2 in this case is new. It makes precise another sense in
which, given the partition o generated byr,, N [0, 1[, the smaller blocks tend
to come first in the composition af

8.4. Case (a,«) for 0 < @ < 1. Passing to the variable= — log(1 — x), we
see from (42) that the associated regenerative subgét af] has zero drift and
Lévy measure

vdz) =al—e )" e dz,  z€]0,00.
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It can be read from [37] that such a regenerative set is generated as the zero set
of the squared Ornstein—Uhlenbeck procesg of dimension 2— 2« driven by
the stochastic differential equatiehX; = 2/X; dB; + (2 — 20 — X;) dt, where
(B;) is a standard Brownian motion, and that the image of this regenerative set
viax =1 — e~ % is the zero set of a Bessel bridge of dimension 2x. In case
a = 1/2, this is a Brownian bridge, as in Example 3. In the notation introduced in
the discussion of the previous case, this corresponds to conditigRyng [0, 1]
on the event E R,. This can be rigorously understood by first conditioning on
G € [1— ¢, 1] and then taking a weak limit as| 0. The decrement matrix in this
case has the special property that
(46) gy = L@ —m

r(n)
where f is given by (45) and (n) = [«],,/n! is the probability that a random walk
on positive integers with step distributighvisits n. Equivalently, the composition
probability function is

k .
47) . .om = =21
r(n)
or, more explicitly,
n! £ 11—al,
(48) p(nl,_._’ 1_[ o] [1—aly-1

It follows from a result of Kerov [25] that the decrement matrix of a nondegenerate
regenerative composition structure can be expressed in the form (46) for some
functionsf andr iff it is of the form (48) for somex €10, 1[ . The same conclusion

is also a consequence of Theorem 10.1 in the next section. The conclusion of
Corollary 8.2 in this case is that, given the partitionof, the block sizes appear

in G, in a uniform random order. This can be seen directly from the symmetry of
formula (47) as a function dfu1, ..., ng).

8.5. Case («,0) for O<a < 1,0 > 0. Itis known [32, 36, 38] that alf, 9)
partition of N can be constructed as follows. First constru@®,&) partition ofN,
then shatter each class of this partition according to an indepe@déntpartition.
This operation restricts naturally fa] for eachn, and can be interpreted in terms
of a fragmentation operation on the frequencies of classes. This result can be lifted
to the level of regenerative composition structures as follows.

THEOREM8.3. ForO<a <landf >0,letYg=0andlet0O <Y < Yo <---
be defined by the independent stick-breaking scheme (14) for X with betg1, 6)
distribution, let R, (i) for i =1, 2, ... be a sequence of independent copies of the
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range R, of a stable subordinator, and define a random closed subset ﬁ(a,g) of
[0, 1] by

R = (LU J(Yi—1, ;1N [Yic1+ Ra(D)]).
i=1

Then ﬁ(a,g) is a multiplicatively regenerative random subset of [0, 1], which
can be represented as ﬁ(a,g) =1 — exp(—R(«.6)), Where Ry 4) is the range
of a subordinator with Laplace exponent (41), and the composition structure
obtained by uniform random sampling from ﬁ(aﬁ) is regenerative with decrement
matrix (39).

PrRoOOF Itis easily checked, using the muliplicative regeneration of the stick-
breaking scheme, and the self-similarity &,, that R ) is multiplicatively
regenerative. The description of the Laplace exponent then follows from Propo-
sition 7.1, since the structural distribution is easily identifiedl

The particular case = 6 of Theorem 8.3 is largely contained in the work of
Aldous and Pitman [2]. In particular, fax = 6 = 1/2, this construction of the
zero set of a Brownian bridge plays a key role in the asymptotic theory of random
mappings developed in [1] and [2].

9. The Green matrix. For a given composition probability function (1), the
Green matrix is defined by the formula

g, )= Y pk), 1<j=<n<oo,
AE=n, jE{N;}

where the summation is over all compositions- (n1, ..., nx) = n, which have

integer j among tail sumsV; =n —ny — --- — nj_1 (Where we setig = 0).
Recalling the interpretation of a regenerative composition structure as a consistent
family of Markov chainsQ,,,n =1, 2, ..., as in Section 3g(n, j) is the chance

that Q,,, with transition matrix; and initial state:, ever visits statg. In particular,
gn,n)=1.
EXAMPLE 6. For the two-parameter family we have, foxlj <n:

(i) for (0, 0),

n, ] = >
g(n, j) [EY

as is well known;
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(ii) for («,0),

[“]n—j

(n— j)t’

which by (44) and (45) is the probability that a particular random walk with

negative increments started at lewedver visits statg;
(iii) for (o, o),

g(n, j)=

(Dle;
(@+n—j)---(@+n—-1"

which is the probability of the same event for the random walk of the previous case
conditioned to hit 0.

gn, j)=

LEMMA 9.1. The Green matrix of a regenerative composition structure isthe
unique solution of the recursion

. Jtl—q(+1:]) . n+l—j ,
(49) gn, j)=" 7 g+l i+ + =" oem+1,j)
n+1 n+1

with boundary condition g(n, n) = 1.

PROOF The path of the chai,, defining a composition ot, is obtained
via random deletion of a state from2, ..., n + 1, then restricting a path @, 1
to the undeleted states and re-labeling the states by ranking them from.1 to
The event Q,, visits j” occurs when eithe,, 1 visits j and one of the states
J+1,...,n+ lis deleted (in which case stateetains the label) 00,1 visits
j + 1 and one of the states 1., j + 1 is deleted (if statg + 1 is not deleted,
it changes the label tg). The first event has probability(n + 1, j)(n +1— j)/
(n+1) and the second(n + 1, j +1)(j +1)/(n + 1). The events are not disjoint
and their intersection is the even®;, ;1 visits bothj 4+ 1 andj, and statg + 1 is
deleted” which has probability(n + 1, j + 1)g(j +1:1)/(n+ 1). The uniqueness
claim is obvious from the recursion]

The next result gives an explicit formula for the Green matrix in terms of the
representation (26) via Laplace exponent.

THEOREM9.2. The Green matrix of a regenerative composition structureis

n—j o _1)a
50 )= ”.) (” 7y _=DT
(50) gy =2G) (! (" e
PROOFE In view of

o o) )
CI(J+1.1)—(]+1)(1 o)
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the first factor in the right-hand side of (49) equalst D)@ (j)/((n+ 1) P (j +1)).
Substituting this and (50) into (49), and canceling the common fé’}%)cbr(j), the
to-be-checked recursion follows from the identity

AL (Y = AT s (G4 1) — AMTs()),

where A is the forward difference operatdys (i) :=s(i + 1) — s(i) ands is the
sequence(i)=1/®@) fori > 1. O

We give one application of the formula. Lét, be thelast part of C,. In
the event{L, = j}, the chainQ, visits statej and then has the last positive
decrement;. The distribution of the last part follows from this observation
and (50):

n—j . —1)4
(51) p(Ln=J>=g<n,j>q<j:J>=‘I’(f‘J’(’;)Z(n 1>¥

s\ e Jo(+a)
In particular, normalizing byb (1) = 1 for simplicity,
" n—1)\ (=DF
(52) P(Ln_l)_n[l—k;(k_l) cb(k)].

10. Symmetry. Each composition structuc@,) has a dua(C,), whereG, is
the sequence of parts 6f, in reverse order. IfC,) is derived by uniform sampling
from a random closed sek C [0, 1], thenG, is derived similarly from 1 R.
If (G,) is regenerative, and so '(én), then (G,) and(én) must be identical in

distribution, by Corollary 7.3. Equivalently® < 1 — &, in which case we call

the composition structureeversible. Two degenerate examples are provided by
R = {0}U{1} andR = [0, 1]. The existence of regenerative composition structures
which are nondegenerate and reversible is quite surprising and counter-intuitive,
because the ideas of stick-breaking and multiplicative regeneration suggest that
typical interval sizes should decay in some sense from the left to the right.
However, it is evident from (47) that for every © « < 1, the regenerative
composition structure associated with an «) partition is reversible. Indeed,
this composition structure symmetric, meaning that the compaosition probability
function is a symmetric function a1, .. ., ny) with respect to all permutations

of the arguments, for each The equivalent condition ofR is that the interval
components of the complement & form an exchangeable interval partition

of [0, 1], as defined in [3]. We note in passing that a large family of symmetric
composition structures was derived from the jumps of a subordinator in [34]. See
also [14].

THEOREM 10.1. Let (C,) be the regenerative composition structure derived
by uniform sampling from a random closed set R C [0, 1]. Let F,, be the size of
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the first part of ¢,, and let L, be the size of the last part of ¢,. The following
conditions are equivalent:
() P(F,=1)=P(L, =1) for al n;

(i) F, <L, forall n;

(i) (¢,) isreversible;

(iv) (Cp) issymmetric;

(V) (@) istheregenerative composition structure with EPPF (48), associated
with an (a, ) partition, asin Section 8.4for some « € [0, 1].

Before the proof of this result, we read from Theorem 5.2 and the discussion of
Section 8.4 the following restatement of the equivalence of conditions (iii) and (v):

COROLLARY 10.2. For arandom closed subset R of [0, 1], the following two
conditions are equivalent:

(i) R ismultiplicatively regenerativeand & < 1 — R.

(i) R isdistributed like the zero set of a standard Bessel bridge of dimension
2 — 2, for some o € [0, 1].

PrRoOF OFTHEOREM10.1. According to (26), for any regenerative composi-
tion structure,

d(n)—d(n—1
3) P(F,=1)=q(n:1) = (n)d>(n);’;11 :

and (53) and (52) are obviously equalsif=1 or n = 2. We know that the
(o, @) regenerative composition structure is symmetric, hence, reversible. So for
®y(n) :=[1+4+ al,—1/(n — D!, the identityP(F, = 1) =P(L, = 1), together with

(53) and (52), yields

no _ (=" sy | (—D¥
(54) —n_1+a—n—n—¢a(n)—n];(k_]_)—q)a(k).

Suppose now that a regenerative composition structure is sucitRat= 1) =
P(L,=1) foralln=1,2,..., and let us prove by induction that its Laplace
exponentd normalized byd (1) = 1 is such that

(55) D (s) = Py (s)

foralls =1,2,..., wherea € [0, 1] is defined by (55) fos = 2, that is,®(2) =
1+ «. According to (53) and (52), we have, for al=2, 3, ..., that

_ _ _1\n n—1 _1\k
(56) ) - -1 _ (-1 Z(n_l)( 1)

®(n)/n "Tom "&\k-1)on)

k=2
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so if we make the inductive hypothesis that (55) holds fos alln — 1, then we
read from (54) and (56) that

d(n)—dn—-1) _ no +n(—1)”[ 1 _ 1 ]’
d(n)/n n—1+a«a dy(n)  P(n)
which yields the expression

O(n) = (Pa(n — 1) — (D" /(1—a/(n — 1—a) = (—1)" /e (n)).

But we know this formula holds fo® (n) = ®,(n), so this must be the unique
solution of the recursion, and the inductive step is established. Finally, the
sequenced (1), ®(2),... determinesd(s) for all s > 0, by consideration of
the second formulain (19), and the fact that a finite measuf8,dn is determined

by its moments. [

11. Transition probabilities. Transition probabilities describing the succes-
sion of random composition&®,) or ordered partitiongC;) asn grows follow
at once from the product formula (6) for the compaosition probability function. For
ordered partitions ofn], these transition probabilities can be read immediately
from (3), as indicated in [23], Section 5.4.

Assuming thatC; = (Ag, ..., Ax), an ordered partitior®; , of [n + 1] is
obtained either by inserting singleton blogk+ 1} into the sequencdy, ..., A
or by adjoining the element + 1 to one of the blocks. It is easy to compute that
n + 1is inserted beford 1 with probability

gn+1:1
n+1
or adjoined toA1 with probability
n1+1lgn+1:n1+1)
n+1 gqniny
Inductively, with probability

ﬁ(l_ gNi +1:1)  ni+1q(Ni+1in +1)>
i1 Ni+1 Ni+1  g(Niin;) ’
n + 1 is neither inserted immediately before nor adjoined to one of the blocks
Ay, ..., Aj, and conditionally on this event [and giveAy, ..., Ay)], this element
is inserted as a singleton immediately followiAg with probability

q(Njy1+1:1)

Njjyi+1

or adjoined toA ;1 (for j < k) with probability
njt1+1qNjp1+1inj11+1)
Niyi+1  gqWNjjainjp)
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Here, then; are the sizes of tha; and theN; are as in (6).

A transition law for integer compositions follows from the above. It is exactly
the same as for the analogous ordered set partitions, with the exception of the case
when a composition of is changed by appending a 1 to a series of unit parts like
1,1,...,1, in which case the transition probability is obtained by summation of
individual probabilities of all possible singleton insertions into the series.

12. Interval partitions. The above probabilities of the two kinds of transition
(insertion and joining) are equal to the expected sizes of intervals of a partition of
[0, 1] induced by a uniform sample efpoints and®. From this viewpoint, a better
prediction of the “future” compositions arising when more points are added to the
sample is obtained by conditioning on the actual sizes of intervals.

At first we shall describe a somewhat simpler distribution of the interval sizes
for the [0, co]-partition, which can be seen as discretization of a subordinator in
the spirit of [31], Sections 3 and 4. For eacha random sefR and exponential
order statisticsey,, ..., &, induce a partition off0, oo] associated with finite
compositionC,. The partition is comprised of two kinds of parts: those containing
some sample points or not. The parts of the first kind are either open interval
components ofR¢ which contain at least one of the,’s, or one-point partge ;, }
corresponding te;, € R and appearing with positive probability only for=d0.

The parts of the second kind are the connected components (intervals or separate
points) of the set resulting from removing parts of the first kind. The parts of
different kinds interlace and i€, has K,, classes, there arekl + 1 pieces

of the partition, say/1,, 114, ..., Jk,—1.n, Ik,.n. Jk,+10, Which can be open or
semiopen intervals or one-point sets. k&, H1,, ..., Gk,—1.n. Hx,.n» GK,+1.n

be the sizes of the parts, with slight abuse of language we will call them “intervals,”
with understanding that some of them can degenerate into a point.

THEOREM 12.1. The distribution of the random sequence G1,, Hiy, ...,
Gk,-1.n. Hk, n, Gk,+1.n Of interval sizes has the following properties:
(i) given the composition G, all interval sizes are conditionally independent,
(i) G1, isindependent of C,, and also independent of other interval sizes, and
has Laplace transform
d(n)
d(n+s)’
(i) the unconditional distribution of Hy,, is given by

(57) Eexp(—sG1,) =

_ pNZ
(58) P(Hy, €dz) = %V(dz) + %50(&),
and given G, the analogous conditional distribution of Hy, is
()a— e~ Me= M2y (dz) + ndL(m = 1)80(dz)
d(n:m)
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where m isthefirst part of G,

(iv) conditionally on the event that the first j — 1 parts of G, sumup to m, the
truncated sequence G j,,, Hjp, ..., Hk, n, G k,+1,» ISindependent of the variables
G1r, Hin, ..., Gj—10, Hj—1,, and of thefirst j — 1 parts of composition C,, and
has the same distribution as the interlacing sequence

Gl,n—m» Hl,n—ma ey HK,,_m—j,n—ma GKn_m—j+l,n—m

of interval sizes associated with the composition G, _,, of integer n — m.

ProOFE The independence claims involved in (i) and (iv) follow from the
memoryless property of the exponential distribution and the strong Markov
property of R applied at the right endpoints of intervalg or J;. Formulas
(57) and (58) follow from Lemma 5.3 and the second formula in (iii) follows by
routine conditioning. [J

Mapping [0, co] to [0, 1] by z +— 1 — e~ sends the partition of0, co] to a
partition of the unit interval, say1,, 1, ..., I, Jk,+1, which is the partition
induced by a uniform sample and a multiplicatively regenerative&efThe
probability law of the partition of 0, 1] follows from Theorem 12.1. Thus, by
virtue of the identityE(1 — G1,)* = Eexp(—sG1,), the Laplace transform (57)
becomes a Mellin transform. Similarly, the ratﬁyﬂ/(l — G1,) is independent
of G1, and has distribution

Hy, 1-A—x)" . nd
P — dx|=———"9d —— o(dx).
(8 st) =g 0+ gy 20
The distribution of the rest intervals follows recursively, by scaling with factor
(1— G — Hi) ™. 5 5

The sizes of thesek, + 1 intervals, sayG j, and H;, , determine the law of
the extended composition when adding new sample points. For example,

&)  dn+1:]
Pn+1) @+DOMn+1)
which by (26) is equal tgg(n + 1:1)/(n + 1) in accord with Section 11. The
sizes also have a transparent frequency interpretation in terms of the infinite
composition®. For exampleGy, is the total frequency of the classes®5f strictly

preceding the first class representedjfy and Hi, is the frequency of the first
class represented @®'.

EG, =1-E(1—Gg,) =1

Tripartite decomposition of [0, 1]. Forn = 1, the partition consists of three
intervals Ji1, 111, Jo1 of sizesG := G11, H := Hi1, D := G21. The variableH
is the frequency of the class of element 1 and its distribution is the structural
distribution. Similarly,G is the total frequency of classes strictly preceding the
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class of 1 inC*, andD is the total frequency of classes strictly following the class
of 1.

Moments ofG, H and D have clear interpretation in terms of finite composi-
tions. Thus,

<I>(1)
T om)
is the probability that element 1 is in the first block®f or, what is the same, that
a size-biased pick of a part fro@), yields the first part. Similarly,
qg(n:l . d(n:l)
n nd®n)
is the probability thaf1} is the first block ofC;:.
Furthermore, the random variablg can be written as a product of two
independent variables4 G andH /(1 — G), hence,
E( H )" 1 EH"1  ®(n:n)
1-G TEL-G)1T o)
which is the conditional probability that the compositiGj is trivial given 1 is in

the first block.
For joint moments we have the formula

EG! H/~1pk

© (e o)

[the second sum may be further converted to varialdé$), ®(2), ...] which
follows from (59), (61) andEH" = p(n) = ®(n:n)/d(n) by the binomial
expansion of

o , . H \/ H \*
"H DF=(1-1-6))Y1- f+k<—) (1——> :
¢ 1-A-0)a-6"(1=5 1-G
The joint moments have the following interpretation. Let;, A2, A3) be an
ordered partition ofn], n =i + j + k, such that A, and the blocks are of sizes
i, j andk, respectively, with > 0, j > 1 andk > 0. Then (62) is the probability
that Az is a block of G and (A1, A2, A3) is coarser tha®;. It follows that
n—1 irrji—1nk
(,17F, )eaiao
is the probability that a size-biased pick of a part®f is j, and this part
is preceded by a composition efand followed by a composition of (with
the obvious meaning whenor k is zero). Fork = 0, this probability is equal
to (j/m)P(L, = j), where L, is the last part ofc,, computing this yields an
alternative proof for (51) and the formula for the Green matrix (50).

(59) E(l-G)" = Z q(n

(60) ED" ! =

(61)
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NOTE ADDED IN PROOE See also [19] and the following two articles [18, 20]
for further deveplopments.
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