The Annals of Probability

2005, Vol. 33, No. 1, 114-136

DOI 10.1214/009117904000000757

© Institute of Mathematical Statistics, 2005

LINEARIZATION COEFFICIENTS FOR ORTHOGONAL
POLYNOMIALS USING STOCHASTIC PROCESSES!

By MICHAEL ANSHELEVICH
University of California, Riverside

Given a basis for a polynomial ring, the coefficients in the expansion
of a product of some of its elements in terms of this basis are called
linearization coefficients. These coefficients have combinatorial significance
for many classical families of orthogonal polynomials. Starting with a
stochastic process and using the stochastic measures machinery introduced by
Rota and Wallstrom, we calculate and give an interpretation of linearization
coefficients for a number of polynomial families. The processes involved may
have independent, freely independenyendependent increments. The use
of noncommutative stochastic processes extends the range of applications
significantly, allowing us to treat Hermite, Charlier, Chebyshev, free Charlier
and Rogers and continuous kigHermite polynomials.

We also show that thg-Poisson process is a Markov process.

1. Introduction. Let{P,}be afamily of polynomials orthogonal with respect
to a measurg on the real line. One standard combinatorial question is to calculate
the moments of the measure,, = (x"), where we denote by-) the integral
(expectation) with respect {@. For many classical families of polynomials these
moments are positive integers or, more generally, polynomials in parameters with
positive integer coefficients. These coefficients beg a combinatorial interpretation,
and there exists a large body of work to this effect.

A more general question one can ask is to calculate the linearization coefficients.
Thatis, for(nq, no, ..., ny), we are interested in the expectatiq®s, Py, ... Py, ).

The name stems from the fact that these are the coefficients in the expansion of
products of this type in the basi{®,}, that is, expansions as sums of orthogonal
polynomials. Again, many of these coefficients are positive integers, and so they
“count something.”

A combinatorial approach to this problem is to construct explicit bijections
between structures counted by the linearization coefficients and structures of
known cardinality; see, for example, [10]. In this paper we take a different route,
and consider a probabilistic interpretation of certain coefficients. The connection
to combinatorics is provided by the fact that the moments of a measure are
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LINEARIZATION COEFFICIENTS 115

sums, over all set partitions, of products of cumulants of that measure. We will
see that certain linearization coefficients can by described in a similar way. The
machinery we use is that of stochastic measures, first introduced by Rota and
Wallstrom in [12]. In a number of previous papers we extended this machinery
from the usual to the noncommutative stochastic processes. This extends the
number of polynomial families that we can handle, and so we not only obtain a
nice interpretation of known results, but some new results as well. In particular,
we show that the linearization coefficients for the continuous ¢oigermite
polynomials ([11], 3.18) are based on the number of the inhomogeneous set
partitions, with an extra statistic counting the number of “restricted crossings” of
such partitions.

To be more specific, for each family of polynomials in this paper and the related
family of measures of orthogonality, we introduce a, possibly noncommutative,
stochastic procesgX (r)}. Then for this process, we introduce a further family
{y« ()} of other stochastic processes, which we call full stochastic measures.
These objects are orthogonal, and have clean linearization formulas. On the rare
occasions when these objects are polynomials in the original pro€etisese
formulas translate into the linearization formulas for polynomials.

Another property, which always holds for the full stochastic measures and
which in these cases is shared by the orthogonal polynomials, is the martingale
property. The Markov property for theBrownian motion was shown in [6] using
the Gaussian properties of the process. Using the above fact for the stochastic
measures, we show that thePoisson process is also a Markov process.

The paper is organized as follows. In Section 2 we describe general combi-
natorial properties of combinatorial stochastic measures. Section 3 is based on
the results of [12] about processes with independent increments, and gives the
linearization coefficients for the Hermite and Charlier polynomials. Section 4 is
based on the results of [1, 3] about processes with freely independent increments,
and gives the linearization coefficients for the Chebyshev polynomials of the 2nd
kind and the free Charlier polynomials. Section 5 is based on the results of [2]
aboutg-Lévy processes, and gives the linearization coefficients for the continuous
and continuous big-Hermite polynomials. It also requires some new results about
the g-Poisson process. The proofs of these results are contained in the Appendix,
which also contains the proof of the Markov property for ghPoisson process.

2. Combinatorial stochastic measures. Let (+4, E[-]) be a noncommutative
probability space. That is4 is a finite von Neumann algebra, anfi]gs a faithful
normal tracial state on it. The commutative case is included in this setting when
A = L®(A, P) for A a measure space, a probability measure, and[E the
expectation with respect 8. Let { X (¢)} be an operator-valued stochastic process
whose increments are stationary with respect to the staleakd independent
in a certain sense; see Sections 3-5 for examples of such conditions. Denote
by & (n) the collection of all set partitions of a setioklements. For a set partition
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m = {B1, By, ..., Bi}, temporarily denote by (i) the index of the clas®.; to
whichi belongs. Then the stochastic measure corresponding to the pattitson

St (1) = / (0.1 dX(SC(l)) dX(SC(z)) - -dX(SC(n)).
all 5;’s distinct

In particular, denote by\, = St; the higher diagonal measures of the process
defined by

8= [ @xe)y.
[0,7)
and byy, = St, the full stochastic measures defined by
W= [ g dXGDAX () dX ().

all 5;’s distinct

Here the integrals are defined by approximation, as follows.

DEFINITION 2.1. Letd = {;}}_, be a subdivision of the intervdl0, ¢)
into disjoint half-open intervald; = [a;,ai+1), 0=a1 < a2 < -+ < an <
any+1 =t. Denote bys({) = max |I;|. Letr € £(n) and{X(s)} be a (possibly
noncommutative) stochastic process. Define

INI: =i e{L,2,..., NY":u(i) =u(j) <i~j)
and
n
Stt; )= ) [[(X(au@)+1) — X(au@))-
[N i=1
Finally, define
St;(¢) = lim St (z; 4
(1) = im St (t; 9)

if the limit exists.

The existence of the limits has been proven under various conditions, see
Sections 3-5 for the more precise description. For the purposes of this section
we will assume that the limits exist and consider purely combinatorial facts. The
most pertinent of these corresponds to linearization or, in the context of stochastic

integration, to the It6 formula. Set= Z];=1nj. Denote by
Tnq,no,...ng € P(n)

the partition whose classes are intervals of consecutive integers of lengths
ni, no,...,ng. Denote

.....
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the partitionsnhomogeneous with respect tar,, ,,....»,, that is, the collection of
all partitions which do not put together elements of Ahgistinguished subsets in
the same class. For example,

P22 ={{(LQAB®B}. {13}, {1 H2 (D)},
{(D2,3D}L{D2,HD)} {1329} {1, H(2,3)}}.
Then

k
(1) []vm 0= > St@.

Jj=1 weP (n1,n2,....1nk)

For a fixed subdivisiord, the statement

k
[]vn@: 0= > Skt

Jj=1 weP (ny,nz,....ng)

is purely combinatorial; see [12], Theorem 4, or [1], Proposition 4, for its proof.
The fact that the relation (1) also holds in the limit will again be treated in each of
the subsequent sections separately.

DenoteR, (t) = E[St; (t)] and R, () = E[A,,(¢)]. HereR,, is thenth general-
ized cumulant of the process; for a process with independent increments it is the
usual cumulant. Then

k
() E[]‘[wn,-(t)}z Yo Re().
j=1

weP(n1,n2,...,nk)

For a centered procesR; = 0. In all examples we will consider, this will imply
thatR, = 0 if = contains a singleton class (a class consisting of one element). One
consequence of this fact is that

3 E[yn () yr(1)] =0

forn £ k. Thatis, full stochastic measures of different orders are orthogonal. Thus,

in general, we may consider the stochastic measures as analogs of orthogonal
polynomials, and in this case formula (2) describes their linearization coefficients.
The purpose of this paper is to describe examples when stochastic measures are,
in fact, polynomials in the original process. ¥,(r) = P,(X(¢)), equation (3)

says that the polynomialsP,} are orthogonal with respect to the distributian

of X(¢) (which is a probability measure dR). So their linearization coefficients

are precisely

k k
(Puy Py - Poy) = E[H P,,j(X(t))i| = E[H Yn, (r)]
j=1

j=1
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Moreover, in all examples below (z) has infinite spectrum (takes on infinitely
many values). So if $t(¢) is also a polynomial inX(¢), equation (1) implies the
equality of the corresponding polynomials.

Another property which holds for some orthogonal polynomials, but which
always holds for stochastic measures, is the martingale property.

PrROPOSITION2.2. For r > 0, let A, be the von Neumann algebra generated
by the set {X (s) : s < t}. Assume the following:

(a) Thereexist consistent conditional expectations {E,[-]} from 4 onto each A,
preserving the expectation E[-].

(b) Theprocess {X (¢)} iscentered, that is, E[X (¢)] = O for all z.

(c) The increments of the process are singleton independent. That is, given a
collection of intervals [s;,¢;) C Ry, j=1,2,..., k such that for some i,

[si, 2i) N (U[Sj»tj)) =0,
J#
then E[(X (11) — X (s1)) ... (X (&) — X (5i)) ... (X (tx) — X (sx))] = 0.
(d) Thelimit defining v, (1; X) existsin the L2-normwith respect to E[-].
Then the process v, (¢; X) is a martingale with respect to the filtration {-4,}.
That is, for all s <1,

B[y (1 X1 =9 (s; X).
See the Appendix for the proof.

3. Processes with independent increments. Let {X(¢)} be a process with
stationary independent increments, and, thus, a Lévy process. Then by the results
of [12], the integrals defining stochastic measures exist as limits in probability.
Moreover, it is not hard to show that in this casefo& {B1, Bo, ..., B},

(4) Sty (1) = V(15 Ay A1By)s - -+ AlBy)).
Here we are using a slightly more general definition of a stochastic measure where
different factors in its defining integral may come from different processes:

Y (XD, x@, L xW)) = dXP(s)dXP(s2)---dX®(sp).

[0,
all s;’s distinct

See [3] for details. Throughout the paper we will consider stochastic processes for
which the diagonal measures are affine functions in the original prdce¥$a/o

types of processes that have this property are generalized Brownian motions and
generalized Poisson processes.
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A stochastic measure is multiplicative iff &, ()] = [[zc, E[A|5/()]. Both
stochastic measures in this section are multiplicative. For a multiplicative measure

(5) R: ()= [] Riz(0),
Berm
and the sum on the right-hand side of (2) is equal to
Z 1_[ Rip|(1).
reP(ny,ny,...,n;) Benx

In this case, (1) follows from [12], Theorem 4.

NOTATION 3.1. Denote by 2(n) partitions whose classes consist only
of one or two elements, otherwise known as “matchings,” and?bgn), the
collection of all pair partitions, otherwise known as “perfect matchings.” Denote

by s(zr) the number of singleton (one-element) classes pand bys» (), the
number of two-element classes.

3.1. Hermite. If {X(#)}is the Brownian motion, then by the strong law of large
numbersAs(t) =t¢, A, (t) =0 for m > 2. Moreover, it follows from the Kailath—
Segall formula (see [12], Theorem 2) that, (¢) = H,, (X (¢),t). Here H,,(x, 1)
are the Hermite polynomials, defined by the recursion relations

xHy(x,t) = Hpia1(x,t) +mtHy—1(x, t).
It follows from (4) that forz € £ 2,
Str (1) = 12" Hy () (X (1), 1)
and they are 0 otherwise. Therefore, (1) gives

k
[]Hn,(x.0)= > 200 Hy (o (x, 1).

j=1 TE€PL2(n1,n2,....10%)
In particular,
k
<1_[ Hy (x, l)> =1"2|Py(n1,na, ..., np)l.
j=1
This formula is well known and surely quite old. Singé,, (x, 1)2) = m!t™,

k n
1
[1Hne.t) =Y =t P5(n1, na, ..., nic,m)| Hyn (x, 1).
j=1 =0 !
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3.2. Centered Charlier. If {X(z)} is the centered Poisson process, then
from [12], Proposition 7,A,,(t) = X () + ¢ for m > 2. Moreover, y,,(t) =
Cn(X(),t). HereC,, (x, t) are the centered Charlier polynomials, defined by the
recursion relations

XCrp(x,1) =Cpy1(x, 1) + mCpy(x, 1) +tmCp—1(x, 1).
It follows from (4) that

S LEICON
St = Z ( / )tC|n|_1(X(t),t).

Therefore,
k |7|—s ()
[1Cux.0)= 3 3 (lnl_ls(n)>th|n|_1(x,t).
j=1 neP(ny,no,...,n;) 1=0
In particular,

k
<]‘[ C,,_,.(x,z)>= oo
j=1

weP(ny,ng,....,nk)
s(m)=0

This formula appears in [15] and a number of later sources. Sifigéx, 1)?) =
mt™,

k n
1
[Tcnn=3 = > =M C,, (L ).
j=1 m=0""

‘weP(n1,no,...,ng,m)
s(m)=0
Note that the noncentered polynomials, here and in the subsequent sections, will
have exactly the same linearization coefficients.

4. Processes with freely independent increments. The notion of free
independence was introduced by Voiculescu [14] in the context of operator
algebrasX, Y € A are freely independent if, whenever

El/1(X)]=Elg1a(Y)]=---=E[f,(X)] =Elg,(¥Y)] =0
andgo(Y), f,+1(X) each are either centered or scalar, then

Elgo(Y) f1(X)g1(Y) ... fu(X)gn(Y) fu+1(X)] = 0.

This property is easily seen to be incompatible with, but is parallel to, the usual
independence. Free probability is by now quite a rich theory which is based on
this notion; see [14] for an overview. In particular, there is a well-developed theory
of free cumulants, free infinitely divisible distributions and limit theorems, and
processes with freely independent increments.
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Outer classes

1 2 3&\ 5 /6 7 8 9 10

Inner classes

FiG. 1. Anoncrossing partition of 10 elements with 3 inner and 3 outer classes.

In this section, let{X(z)} be a process with stationary freely independent
increments, and, thus, a free Lévy process. It was shown in [1, 3] that in this
case the integrals defining stochastic measures exist as limits in the operator norm,
as long as the operatofX (¢)} are bounded. Moreover, it was shown in [1] that
St; = 0 unlessr is a noncrossing partition. Here a partitianis noncrossing if
there are nd < j <k <Iwithi k, j ~1,i + j.

In this case, (1) follows from [1], Proposition 4. For the analog of the
formula (4), we need a new notion. For a noncrossing partition, we distinguish
the classes that are inner, or covered by other classes, and outer. See Figure 1 for
an example.

ProPOSITION 4.1. Let w be a noncrossing partition with outer classes
B1, ..., Byir) andinner classes Cy, ..., Ci(r). Then

i)
St (1) = [ Rici) (@) - ¥ (A 13y (1), Aoy (1), .., AByry (1))
i=1

PrROOFE This is a particular case of the main theorem of [3]]

NOTATION 4.2. Denote byNC(n) the lattice of noncrossing partitions, and
by NCi2(n), NCa(n), NC(ny,...,nx), and so on, the corresponding subsets
of NC(n). Denote bysi(;r) the number of inner singletons af. Denote by
o(m) andi (7r) the number of outer and, respectively, inner classes. of

Free stochastic measures are not multiplicative in general. However, (5) does
hold for 7 € NC(n). So for a free stochastic measure, the general linearization
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coefficients are

k
E[]‘[wnja)}: > Ry (1) = > [ Ris@).

j=1 weNC(ny,na,....nx) mweNC(nq,ng,...,nx) Berw

4.1. Chebyshev. There is a free version of the central limit theorem, with in-
dependent variables replaced by freely independent ones. The limit distribution in
this theorem is the semicircular distribution. A process (consisting of noncommut-
ing operators) X (r)} with stationary freely independent increments all of which
have (scaled) semicircular distributions is the free Brownian motion.

If {X(¢)}is the free Brownian motion, then from [1A2(z) =1, A, (¢) =0 for
m > 2. Moreover, by [1], Corollary 8/,,(t) = U,,(X (¢), t). HereU,,(x, t) are the
Chebyshev polynomials of the second kind, defined by the recursion relations

XUm(x, t) = Um-i—l(x’ t) + tUm—l(x, t)
It follows from Proposition 4.1 that fat € NC4 2(n) andsi(z) =0,
St (1) = 27 Uy (X (1), 1)

and they are 0 otherwise. Therefore, by (1),

k
[TUsx.0)= > 12Uy (x, 1),
j=1 7eNCy 2(n1,n2,...,nk)
si(7)=0

In particular,

k
<H Un (x, t)> = t"2INCa(n1, n2, ... ).

j=1

This formula has essentially appeared in [8], in a slightly different guise (they
count the number of Dyck paths). Sinté,, (x, 1)) = 1™,

k n
[1U, . 0)=>" t""™2INCa(n1, na. ..., n. m)|Up (x, 1).
j=1 m=0

4.2. Centered free Charlier. The distribution of the sum on freely indepen-
dent Bernoulli((1 — %)80 + %61) variables converges, as— oo, to a distribution
which is naturally called the free Poisson distribution with paramethris also
known as the Marchenko—Pastur (or, foe 1, Wishart) distribution. A process
with stationary freely independent increments such that the increments have free
Poisson distributions is the free Poisson process.
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If {X(¢)}is the centered free Poisson process, then by [1], Corollaty,4¢) =
X (1) +1t for m > 2. By [1], Corollary 10y, () = Co,m(X (¢),t). HereCo_, (x, 1)
are the centered free Charlier polynomials, defined by the recursion relations

xCoo(x, 1) =Coa(x,1),
ch,m (-x9 t) = CO,m—‘,—l(x, t) + CO,m ()C, t) + tCO,m—l(-x7 t)

for m > 0. They are, of course, orthogonal with respect to the free Poisson
distribution.
It follows from Proposition 4.1 that fot € NC(n) andsi(r) =0,

o(m) —s(m) +8i(m)

St, = ¢/ > ; )thO,o(n)—l (X(1),1)

o(m)—s(mw)+si(m) (
=0

and they are 0 otherwise. Therefore, by (1),

k
[]Com;x.0)

j=1
I (v s+
meNC(ny,n2,...,nx), =0 !
si(m)=0
x 1T Co y—1(x, 7).
In particular,

k
<]'[ Co,nj(x,z)>= > £l

j=1 meNC(ny,no,...,nx)
s(m)=0

Since(Co, (x, 1)) =™,

n

k
[]Con;x.)="" > I Con (x, 1).

j=1 m=0 7 eNC(nq,no,...,ni,m)
s(m)=0

5. Processes on a g-defor med full Fock space.

5.1. g-Fock space. Consider the Hilbert spade?(R., dx). Let

o o0
Fag(L*(Ry)) = P LARy, dx)® = P LARE, dx®)
k=0 k=0
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be its algebraic Fock space. Here the Oth component is spanned by the vacuum
vectorQ2. Then(., -)o defined by

(1® @ [k, 81® - ® gn)o=kn(f1, 81) - - - (fk> &k)

is an inner product on the algebraic Fock space, wkereis the standard inner
product onL?(R.., dx). Define the operatopP, by

PR ®f)= Y ¢fhw® ® fom.
o eSym(n)

where Synin) is the permutation group arido) is the number of inversions of.
According to [7], this operator is strictly positive ferl < g < 1. Denote(-, -), =
(-, P4-)o- Then this is also an inner product, and we denoteryLz(R+)) the
completion of}‘a|g(L2(R+)) with respect to the corresponding norm, and call it
theg-deformed full Fock space.

For f € L3(Ry) N L>®(R,), define creation, annihilation and preservation
operators on thg-Fock spacé?q(Lz(]RJr)) by

a*(f) () = f,
a (f)(g1® - ®g)=f®g® - gn,
a(f)(2) =0,

a(f)(g) =(f. 8%,

n
a(f)(g1® - ®g) =Y " Hfg)g1® @&k ® - ® gn,
k=1

p(f)(€2) =0,

n
PNE® Q)= ¢ fa®g® @%@ g,
k=1
where g, means “omitkth term.” For f real-valued,p(f) is self-adjoint, and
a(f) anda*(f) are adjoints of each other.
The noncommutative stochastic process

X (1) =a*(10,) +a(lo,n)
is, by definition, the;-Brownian motion, and the process

X (1) =a*(10.) +a(L0.n) + p(Lj0.0))

is the centered-Poisson process. Let be the von Neumann algebra generated

by {X (¢)}:e[0.00), and let B-] be the vacuum vector statg-E= (2, -2). Then for

g = 0, these processes are the free Brownian motion and the centered free Poisson
process, while for the degenerate case 1, they give the corresponding classical
processes.
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"4 < < O <

FIG. 2. A partition of 6 elements with 2 restricted crossings.

NOTATION 5.1. Letr be a partition. Denote by ¢e) the number of restricted
crossings ofr. Here a restricted crossing ofis a 4-tuplei < j < k <[ such that
i ~k, j 1, andk =min{r:r >i,r = ihyI=minfr:r>j,r z j}. See Figure 2
for an example. Also, define the singleton dept{rdf 7 to be the sum of depths,
d(i)=1{j|3a,b e Bj:a <i < b}, over all the singleton§) of .

For—1<gqg <1, denote

n-1 1—_g" n
[O]q — 0’ [n]q — qu = —q and [l/l]q! = l_[[]]q
=0 1-¢q j=1

The stochastic measures for vy processes are described in a forthcom-
ing paper [4]. However, the functionalg, are known to be well defined, and the
following analog of (5) holds.

PROPOSITIONS.2 ([2], Theorem 3.8).

Ry (1) =q"" [ Rz (@)

Bern

Therefore, if (1) holds, the linearization coefficients are

k
E[]_[wn,«(t)}= Y. R(n)= Yoo 4O Re®.
j=1

weP (ny,no,...,nk) neP (n1,n2,...,ng) Benm

PrRoOPOSITIONS.3. If X (¢) isthe g-Brownian motion, then the limit defining
Ar(t; X) exists in the L2-norm with respect to E[-], and equals Ax(r) = ¢,
Ar(t) =0 for k > 2. Smilarly, if X(¢) is the centered ¢-Poisson process, the
limit defining Ax(#; X) exists in the L2-norm with respect to E[.], and equals
Ar(t)=X@) +1tfork>2.

See the Appendix for the proof.
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5.2. g-Hermite. If {X(z)} is the g-Brownian motion, then,,(r) =
H, n(X(1),1). Here the polynomial#l, ,, (x, t) are a scaled version of the contin-
uous (Rogersy-Hermite polynomials, defined by the recursion relations

XHq,m(x, t) = Hq,m+1(xs )+ t[m]q Hq,m—l(xv f).

The measure of orthogonality of these polynomials, and so the distributi (v pf
is the most common version of theGaussian measure; see [6] or (with a slightly
different normalization) [11], 3.26.

LEMMA 5.4 ([2], Proposition 6.12). For = € £1 2,
St; = qrc(”)'i_Sd(n)tsZ(n)Hq,s(n)(X 1), t)

and they are 0 otherwise. Here the limit in the definition of the stochastic measure
isin L°°~, thatis, in L? for any 1 < p < oo, with respect to E[-].

Therefore,
k
[ Hgm;(x.1) = > g TSI 2 g o (x, 1),
j=1 meP2(n1,n2,...,nk)
In particular,

k
(sl x o

j=1 TePr(n1,n2,....nk)

This formula has appeared in [9]. Sint&, ,, (x, 1)?) = [m],t™,

n

k
1 _
[1Hgw, o) =>" ——11=m/2 3 4" Hy o (x. 1).

j=1 m=0 [m]q! wePo(ny,no,...,ng,m)
5.3. Centered big g-Hermite. Let {X(¢)} be the centereg-Poisson process.

PropPoOSITION 5.5. For the centered ¢-Poisson process, v, (1) =
Cym(X(),1). Here C, ,, are a scaled version of the centered continuous big
g-Hermite polynomials, which in our context are g-analogs of the Charlier poly-
nomials. They are defined by the recursion relations

xCqm(x,1) = Cqmi1(x, 1) +[m]gCqm(x,t) +1[m]yCq m—1(x,1).

In particular, the stochastic measures v, are well defined, with the limitstakenin
the L2-norm with respect to E[-].
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See the Appendix for the proof. Also, see [13] for a detailed description of the
measure of orthogonality of these polynomials.
From Proposition 5.2, far(;r) = 0,

(6) Ry (t) = g™l

and they are 0 otherwise.

PROOF OF(1). We start with the known combinatorial formula

k
[Tvm,c:)= Y St d).

Jj=1 weP (n1,n2,....nk)

By the results of [4], St(r; 4) converges to S$t(r) in L2. By the previous
proposition, Vn; (t; 4) converges toyy,; (1) in L2. Thus, Yy (5 DY, (5 1)
converges toy,, (1)¥,,(t) in L1. On the other hand, it also converges to
Y e (nyng Str(?) In L2. Therefore, the two latter expressions are equal, and
Y, (15 DY, (¢ £) converges, in fact, inL2. By induction, we conclude that

,,,,,

We conclude that

k
<]"[ cq,,,j(x,t)>: Yoo gl

j=1 TeP(n1,n,...,nx)
s(m)=0
Since(Cy m(x, 1)%) = [m], '™,
k n 1
[1Con =3 -5 3 g ey (L h).
j=1 m=0 mlq: weP(ny,ng,...,ni,m)
s(m)=0

5.4. Limiting relations. The results of the previous sections can be obtained
as the limits of the results of this one. For the continuous (Roggtdgrmite
polynomials, takingg = 1 gives the formulas for the Hermite polynomials,
while takingg = 0 gives the formulas for the Chebyshev polynomials. For the
continuous bigg-Hermite polynomials, taking; = 1 gives the formulas for
the Charlier polynomials, while taking = O gives the formulas for the free
Charlier polynomials. Note that in the latter case we only recover the linearization
coefficients themselves, not the expressions for the products of polynomials as
sums over partitions.

Finally, consider the process

X(t, @) =a*(o.n) +a(lon) +ap(Lor).
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For this processA,, (1) = o™ 1X (1) + «”™ 2t and R, (t) = o™ %t for m > 2.
Therefore, fors(r) =0,
R, = qrc(n)tlnlan—Zln\’

and they are 0 otherwise. Also, for this procegs(t) = P, m.«(X(1),1), where

XPq,m,a(x’ 1) = Pq,m+1,(x(x’ 1)+ a[m]q Pq,m,(x(x’ 1)+ t[m]q Pq,m—l,ot(xa 1).
We conclude that

k
<1_[ qunjaa(xﬂ t)>: Z qrc(n)tlnlan—z‘ﬂl'

j=1 weP(ny,ny,....ng)
s(m)=0
For o = 1, this gives theg-Poisson process and the continuous &giglermite
polynomials. On the other hand, far= 0, this gives the;-Brownian motion and
the continuous (Rogerg)}Hermite polynomials. In the linearization formula, the
only partitions with a nonzero contribution are those witk- 2|7r| and without
singletons, that is, pair partitions.

APPENDIX

q-Lévy processes. We briefly review the definition of more generglLévy
processes and their stochastic measures; see [2] for more detalisbeet Hilbert
space, and considéf = L2(R;,dx) Q@ V. Define Fag(H), ¥,(H), E[-] and, for
& e H, a(¢) anda*(&) as in the beginning of Section 5 faf = C. For T an
essentially self-adjoint operator @, definep(T) on #,(H) by

p(T)() =0,

PNE® - ®E) =) ¢ TERER® - RER - R &
k=1

By [2], Proposition 2.2p(T) is an essentially self-adjoint operator.
Pick& € V, T an operator oV andX € R. Assume that

T is essentially self-adjoint, the vectqrE"g}g‘;O belong
to its dense domain, span it, and are analyticffor

Definea;(§) = a(Ljor) ® &), a/ () = a* (L0, ® &), and p,(T) = p(Ljo) ® T).
Then the correspondingLévy process is
piE, T, A) =a; (€) +a (&) + p(T) + At

Let {X (¢)} be such a process, I¢tbe a subdivision of the intervfld, r), and let
{X;} be the increments of this process corresponding to the subdivision intervals
of 4, X; = X(ai+1) — X (ai) for I; = [a;, ai+1) € J. Then

Ae(t; X, 1) =) X}
i

(A.1)
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and
vt X, D= Y Xip.. X,

1,02,..., 0k
distinct

The stochastic measures,(¢; X) and ¥ (¢; X) are the limits of the above
guantities as the size of the subdivisig) tends to 0, if these limits exist.
Similarly, for ak-tuple of processesx(l) X@, ..., x%) we can define

A(t' (X(l) X(Z) X(k) ZX(l)X(Z) X(k)
b 9 9 . i .

Such a&-tuple form a multiple;-Lévy process |f they satisfy an extra compatibility
condition ([2], equation 1), similar to the one in (A.1).

LEMMA A.1 ([2], Proposition 3.6). Let {XO(t) = p,(&,T;, 1)}, be a
multiple g-Lévy process. Then the g-cumulants

R(t; (X(l), X(Z), L X(k))) — B(Qm E[ ( : (X(l), X(Z), ey X(k)), l)]

are well defined, and equal to
tAq, if k=1,

k-1
Rt (XD, x@, ..., x®)) = t<sl,ﬂT,~sk>, it k=2.

j=2

PROPOSITIONA.2. Let X(#) = p;(¢§,T, 1) be a general one-dimensional
g-Lévy process. Then thelimit defining A (1; X) existsin the L2-normwith respect
to E[-], and equals

Y(t) = p(TF e, T, (5, TF%)).

ProoOFE Condition (A.1) implies that ang-tuple of processes whose compo-
nents areX andY is also compatible. It suffices to show that

sim (At X, ) = Y (0)°2, ) =0.

First expand
2
(Zx{f-ng)
_ZXZ"+ZX"X’< ZYXk Y vixh— ZX"Y Y xFy; +v?

i#] i#] i#]
= At X, )+ D XPXE— A (X, X),0) = ) VXS
i#] i#]
— At XL XY ) =Y XY Y (02
i#]
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From the pyramidal independence of the increments ([2], Lemma 3.3), it follows
that

(A.2) E[ZX{-‘X’J‘} Y ELXFIE[X5] = Re(r; X, 0)% — ZE[X"
i#]j i#]
By combining Proposition 5.2 with Lemma A.1 and the moment-cumulant formula
([2], equation 3)
EIX(OM= Y R.(0),
e (k)
it follows that HX (1)1 =Y, c ) 1™ Rz (1) = O(#). Since the increments of the
process are stationary, we also know thBX}EJ = E[X (|I;)¥]. Therefore,

lim E[x¥)2 <C I|m I; <C I|m tal =
im Z [ Z| 2 (1) =

We conclude that the limit of the expression (A.2)g(r; X)2. Similarly,

k| g ky. | _ )
lim ELZYX ]_3(%10'5[;}(1%} =E[Y(O)]R(t; X).

5(4)—0

Therefore,

. ‘ _ 2
5(9)n1>o((Ak(t’X’ H—-Y ()R, Q)

= Roi(t; X) + Ry (t; X)2 — R(t; Y, X,..., X)) —E[Y(@®)]R(t; X)
—R(t;(X,..., X, Y)) = Re(t; X)E[Y ()] + E[Y (1)?]
= (£, T%728) + (&, T"26)2 — (7" 1, TF 1) — (¢, T 28 ) (6, TH %)
— (&, TNy — (g, T 28 (6, TH %)
+ (Tt TR 1) 4 (g, TH )2
=0. O
PrROOF OF PROPOSITIONS5.3. For theg-Brownian motion,7 = 0, while

for the g-Poisson process] = Id. So the result follows from the preceding
proposition. [

ProoOF oFPROPOSITIONS.5. It suffices to show that the stochastic measures
satisfy the same recursion relations as the orthogonal polynojg)s That is,
we will show that
lim | X&)V, (t; X, 4) — Ynga(t; X, 1)
— [nlg¥n(; X, 8) — tlnlg¥n—1(t; X, 1)|l2=0.
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Indeed, if that is the case, then
Vnt1(t; X, ) = X @OV (t; X, L) +[nlg¥n (@ X, 1) +tnlg¥n—1(t; X, 1) + A(L),
with L2 — limss)—0A(4) = 0. By induction, the right-hand side convergedih
to
XY (t; X) + [n]an(t; X)+ t[n]an—l(t; X)
[for the first term, we use an argument similar to the proof of (1)]. So the left-hand
side also converges ib?. Moreover, also by induction, the limit of the right-hand
side is
X()Cqn(X(1) +[nlgCqn(X(1)) +1t[n]lgCqn-1(X (1)) = Cgnt1(X(1)).
We will omit X, £ andz in the notation. Expanding the norm in (A.3), we get
E[(wn-i-l + [n]q‘,”n + [n]q“ﬁn—l — XYn)
X (Yn+1+ [nlg¥m + [nlgtn—1 — wnX)]
= E[Yn41¥nt1] + [ E[Wn Y]
+ [P ElYn—1¥n—1] + ELX Y, X ]
— Bl X1 — B XY ¥yya] — [n]q Bl X]
- [n]q E[XYnn] — [n]nt[wn—lv/nX] - [n]nt[Xwnl//n—ll
Combining the general linearization formula (2) and the specific form (6) of the
cumulants of the-Poisson process,

ElVa¥ul= Y. q¢"™r"

T ePr(n,n)

(A.4)

It is easy to show by induction that
Z qI’C(JT) — [n]q'

T ePr(n,n)

This follows from the fact that 1 is connected hyto exactly one elementi2— k,
their class crosses exactly- 1 other classes, a@ﬁzlqk‘l = [n],. We conclude
that

Elynynl = [n]q 1",

We similarly simplify the other expressions in the sum (A.4). We treat in detail the
most complicated term

ELX YW X1 = (E[Yu Y] + [NIZE Y] + (L+ @) )2 Bl 19-1]
= [nlg%" Tt + [n13[nlg 1" + (14 q)lnly[n], "
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Denote byv the join of set partitions. In the first three terms in the sum betois,

a partition inP2(n, n) induced on the subs¢®, ..., 2n + 1} of {1,...,2n + 2}.
In the last two termsg is a partition inP2(n — 1,n — 1) induced on the subset
2. I+k....,20+2—j,....20+ 1} of {1,...,2n + 2}. Using (1),

wlwan Y
= Z Strvi1,2042),2),...,(2n+1))

T E€Pr(n,n)
22, 2n41)
+ > > Stev{L14k), (2n42—,2142),(2), ... (21+D)

mePo(n,n) k,j=1,...n
7 [{2,...,2n+1} k~j modn

+ > > S 14k, 2042—),2042),2). ... (214D}
wePo(n,n) k,j=1,...n
7w [{2,...,2n+1} k+*j modn

n
+ Z Z Strv{(1,144), 2n4+2—j,2142),(2),... ,(2n+1)}
k,j=1 reP(n—1n-1)
N2 Tk, e 2042 o 2041
n
+ Z Z Sty 2n42— ), (14k,2142),(2), .., (2n+1))
k,j=1 neP(n—1,n-1)

N2 Tk, oo 2042 o 2041}
+ terms containing singletons

See Figure 3 for an illustration. Five types of partitions in it correspond to the five
terms in the expression above. The classes containing the first (i.e., “1”) and the last
(i.e., “2n + 2") elements of the set are shown; the remaining classes consist of two
elements each and are inhomogeneous with respect to the partjtion+1. The
dashed classes belong to the partitiarNote that in the third diagram, the dashed
lines may cross each other as shown in the diagram, in which case the crossing is
counted among the crossingsofAlternatively, the dashed lines may not cross, in
which case one of them crosses a solid line, and this crossing is counted among the
extra ones in the sum below. In the first diagram, there are no crossings between
classes ofr and the extra class. In the next three diagrams, the two extra classes
cover(k — 1) and(j — 1) points, respectively. Becaugeis inhomogeneous, each
point covered by an extra class has to be connected to a point not covered by it,
hence, extrak — 1) + (j — 1) crossings are introduced. In the last diagram, the
classes containing poin{g, ..., k} have to cross the extra clags+ k, 2n + 2),
and the classes containing poig® + 3 — j, ..., 2n + 1} have to cross the extra
class(l, 2n + 2 — j). In addition, the two extra classes also cross each other. So
extra(k — 1) + (j — 1) + 1 crossings are introduced.

Taking expectations, using the fact that the process is centered, and the specific
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© © © T © O 1 =4 4
1 (2n+2) 1 (1+k) (2n+2-j) (2n+2)
AN
- 4 AR
o e e ot+o—o e e
1 (1+k) (20+2-j) (2n+2)
o o o o | o o o o
154 \S4 © © | \=4 \=4 © &
1 (1+k) (2n+2-j) (2n+2)

A )
A4

(]

1 T e

A\~ < T O

(2n+2\—1j) (2n+2)

Fic. 3. Five types of inhomogeneous partitions without singletons obtained from the product

Y1¥n¥n¥1.

form (6) of the cumulants, we obtain

Elv1yn¥nial
— Z qrc(n)t L
T ePr(n,n)
+ Z ( Z qk—lqj—lqrc(n)tn + Z qk_lqj_lqrc(”)t")
wePo(n,n) \k,j=1,....n k,j=1,...n
k~j modr k7 j modr
n
+ Z Z qk—lqj—lqrc(rr)ZZIn—l
k,j=lmePr(n—1,n-1)
n
+ Z Z q _qk—lq]—lqrc(n)IZIn—l

k,j=lmePr(n—1,n-1)

= [n],t" "t + [n
Similarly,

ElVn19,X]
ElYnyn X]

1glnlg!t" + [n13ln — g™+ g [n]GIn — Ll *,

= E[ XY ¥ui1]l = ElYni1¥nial =[n + 1]q!tn+l,
=E[ XYl = [n]qE[wan] = [n]q [n]q!tn
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and
ElVn-1¥n X1 = E[XYnn—1] = [n]gtElYn—1¥n—1] = [n]4!t".
Substituting these relations into (A.4), we obtain
[n+ 11" + (1[0l 1" + [y [n]y e+t
+ [t 4 [n1[n] 1" 4 (L+ @)nlyln]y "t
— 2[n + 11" — 2[n]2[n]y 1" — 2n]y[n] "
= [n), /"L 4 gl (n], 0"t — [0+ 20,2

= (1+qlnly — [n + 1y [nl "t =0. O

PROOF OFPROPOSITION2.2. LetY € A,. Then
E[YY,(H)]= Ilim E[Yy,(#; D]
VY] = im EY (0 )]
Since the limit exists, we may restri¢to subdivisions containingas an endpoint
of one of the intervals. The above expression is a sum of terms of the form
E[YXv(l)Xv(z) ... Xv(n)]-

If I,¢jy ¢ [0, s] for somej, the corresponding ;) is singleton independent from
the rest of the terms in the product. Since the process is also centered, the resulting
expectation is 0. As a result,

E[Y ¥, (t; D] =E[Y Y, (s; 1)]
and so
E[Y ¥, (1)] = E[Y ¥ (5)].

Since this equality holds for an arbitra¥ye 4, we conclude that the conditional
expectation offr, (r) onto Ay is ¥, (s). O

A transition operator for a Markov process is called Feller if it m@pgR) into
itself.

COROLLARY A.3. Let C,;, be the scaled version of the continuous big
g-Hermite polynomials and { X (r)} be the centered ¢-Poisson process:

(@) Cy.n(X(1),1) is a martingale with respect to the filtration induced by the
process { X (1)}, for every n.
(b) Let
H(x,t,7) ]O‘O[ 1
x’ b = .
O i = a2 A= g)x

Then H(X (1), t, z) isamartingale.
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(c) Theprocess {X (1)} isa Markov process with a Feller kerndl.

PROOF Let p;, be the orthogonal projection fromi?(R,,dx) onto the
subspacd.?([0, 1), dx). It can be extended to an operator GQ(LZ(R+)). The
conditional expectation ontd, is obtained by compression:

E/[A]l = p/Ap;.

The increments of g-Lévy process are pyramidally, and so singleton, indepen-
dent. Thus, the first part of the corollary follows from Propositions 2.2 and 5.5.
It can also be obtained from the chaos decomposition property fay-fP@isson
process,

Con(X (1), 1)Q =17,

The second part follows from the first one since

o

1
H(x, t, Z) = Z mcq,n(x, t)Zn.
n=0 q
Note that the product defining converges for alf since the sum

00 k

Z(th" - 1iq (1- q)X)

3
k=0 <q

converges.
The third part follows from the observations that the polynomjals .} are,

for everyt, a basis for the polynomial ring, and polynomials are uniformly dense

in the space of continuous functions on the (compact) spectrum(of Since

the conditional expectation ontd; is norm-continuous, this implies that for any

continuousf, it mapsf (X;) into the C-algebra generated by(s). The existence

of a Feller Markov kernel follows, see [5].C]
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