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BALLISTIC RANDOM WALKS IN RANDOM ENVIRONMENT
AT LOW DISORDER

BY CHRISTOPHESABOT

CNRS, Université Paris 6

We consider random walks in a random environment of the type
p0 + γ ξz, where p0 denotes the transition probabilities of a stationary
random walk onZ

d , to nearest neighbors, andξz is an i.i.d. random
perturbation. We give an explicit expansion, for smallγ , of the asymptotic
speed of the random walk under the annealed law, up to order 2. As an
application, we construct, in dimensiond ≥ 2, a walk which goes faster than
the stationary walk under the mean environment.

Multidimensional random walks in random environment (RWRE) have received
a considerable attention these last few years. In particular, several important
qualitative results have been obtained, as a law of large numbers, a central limit
theorem under certain conditions (by Sznitman, Zerner and Sznitman in the case
of independent identically distributed (i.i.d.) environment, [9, 12]; cf. [2, 10] for a
review). Unfortunately, in dimensiond ≥ 2, there are, at the present time, very few
quantitative results. For example, the Kalikow’s condition, under which the law
of large numbers is satisfied with a nonnull velocity, is not very explicit (nor the
conditions (T), (T′), [10]), and we have very few information about the parameters
entering the law of large numbers and the central limit theorem. The aim of this
paper is to give an expansion of the asymptotic velocity of the RWRE, which is
the parameter entering the law of large numbers, in the case of an environment
obtained as a small i.i.d. perturbation of an homogeneous walk.

In this article we consider random walks in random environment inZ
d , for

an environment of the typep0 + γ ξz, wherep0 is the transition probabilities
of a deterministic, stationary, random walk onZd , and ξz an i.i.d. random
perturbation. We make the assumption that the mean drift, that is, the drift of
the mean environmentp0 + γ E(ξz), is nonnull for γ small enough,γ �= 0.
In this case, for smallγ ’s, the random walk in random environmentXn, with
transition probabilitiesp0+γ ξz, has a ballistic behavior with speedvγ �= 0, which
means that

lim
n→∞Xn/n = vγ a.s.
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In this article we give an expansion ofvγ , up to order 2, for smallγ .
The second term of the expansion quantifies the first order of the interaction
between the randomness of the environment and the global behavior given
by the mean environment. From this formula, we can exhibit an acceleration
phenomenon, which is specific to dimensiond ≥ 2: we can construct explicitly
some environment for which the speedvγ of the RWRE is larger than the speed of
the walk under the mean environment: this cannot happen in dimension 1, where
there is always slowdown (similar phenomenons are shown in [3]).

The proofs of our results are mainly based on the auxiliary random walk
introduced by Kalikow [6], and the result of Sznitman and Zerner on balistic
RWRE [12]. In [6], Kalikow gave a formula which expresses the expectation of
the Green function of the RWRE (killed at its exit of a bounded domain) as the
Green function of an auxiliary random walk. The transition probabilities of this
random walk are obtained as weighted expectation of the environment. Under
a certain condition, usually named Kalikow’s condition, this was used in [6] to
prove the transience of the RWRE in dimensiond ≥ 2, and later by Sznitman and
Zerner to prove a law of large number, compare [12]. As we show in Section 3, this
auxiliary random walk can also give some information about the asymptotic speed
of the RWRE. The expansion ofvγ is obtained by an expansion of the transition
probabilities of the auxiliary random walk. This relies on estimates of perturbed
Green functions. These estimates are easy to derive whenp0 has a drift, but are
much finer whenp0 has no drift.

Let us now point out that random perturbations of simple random walks have
been considered in several different works (cf. [3, 4, 11]). The type of perturbation
we consider here is very specific: the mean drift is at least of orderγ , which
is also the order of the perturbation. More precisely, it means that under our
assumption (H) (cf. Section 1), the drift of the mean environment at a single point,
E(p0 + γ ξz), is at least of orderγ , which is also the order of the perturbationγ ξz.
For comparison, whenp0 is the transition probability of the simple random walk,
then our assumption (H) is stronger than the assumption (0.9) of [11], which
implies that the RWRE has a ballistic behavior. When the drift is smaller than the
order of the perturbation, different phenomenons may appear as diffusive behavior
with nonnull static drift (cf. [3]).

1. Statement of the results. In this paper we consider random walks in
random environment inZd , d ≥ 1, to nearest neighbors. We denote by(e1, . . . , ed)

the canonical basis of the latticesZ
d . We denote byV the set of elementse in Z

d

with |e| = 1, that is,V = {±e1, . . . ,±ed}. We will consider environments of the
form

ωγ (z, e) = p0(e) + γ ξ(z, e),

for z in Z
d ande ∈ V, wherep0 is a vector of]0,1[V such that

∑
e∈V p0(e) = 1,

and(ξ(z, ·))z∈Zd are i.i.d. random variables with values in[−1,1]V and common
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law ν, and such that
∑

e∈V ξ(z, e) = 0, ν-almost surely. We denote byµ = ν⊗Z
d
,

the law of(ξ(z, ·))z∈Zd . Clearly, there existsγ0 > 0 andκ0 > 0, such that for all
γ < γ0, we haveκ0 < ωγ (z, e) < 1 for all z ande, µ-almost surely.

We denote byP ωγ

z0
the law of the Markov chain to nearest neighbors onZ

d ,
starting fromz0, and with transition probability

P ωγ

z0
[Xn+1 = z + e|Xn = z] = ωγ (z, e) ∀ z, z0 ∈ Z

d, e ∈ V,

and by

P
γ
z0

(·) = Eµ

(
P ωγ

z0
(·)),

the annealed law, whereEµ denotes the expectation with respect toµ. The aim
of this paper is to give an expansion of the asymptotic speed of the random walk
underPγ

z0, up to order 2, in the limit of smallγ ’s.
Let us introduce some notation. We set

p1(e) = Eµ

(
ξ(0, e)

)
, ξ(z, e) = ξ(z, e)− p1(e), pγ (e) = p0(e)+ γp1(e)

and

d0 = ∑
e∈V

p0(e)e, d1 = ∑
e∈V

p1(e)e.

We also set

Ce,e′ = Covν
(
ξ(0, e), ξ(0, e′)

) = Eν

(
ξ(0, e)ξ(0, e′)

)
.

Let us make the following assumption:

(H) d0 �= 0 ord1 �= 0.

Then, forγ small enough,d0 + γ d1 �= 0 and the stationary random walk with
transition probabilitypγ = p0 + γp1 is transient. We denote byGpγ

(z, z′) the
Green function of this walk, and we set

J γ
e = Gpγ

(e,0) − Gpγ

(0,0) ∀ e ∈ V.

Finally, we set

p2,γ (e) = ∑
e′∈V

Ce,e′J γ

e′

and

d2,γ = ∑
e∈V

p2,γ (e)e.

THEOREM 1. (i) For γ small enough, γ �= 0, Xn is ballistic underPγ· , that is,
there existsvγ ∈ R

d , vγ �= 0, such that

lim
n→∞

Xn

n
= vγ , P

γ -a.s.
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(ii) The asymptotic speedvγ has the following expansion for smallγ , γ �= 0,

vγ = d0 + γ d1 + γ 2d2,γ + O(γ 3−ε),

for all ε > 0.

REMARK 1. Of course, the interesting part of this formula is the termd2,γ ,
which quantifies the interaction between the randomness of the walk, contained in
the termCe,e′ , and the global behavior of the walk, contained in the termJ γ .

REMARK 2. Whend0 �= 0, we can prove much better estimates, and even get
the third order of the expansion. This is the object of Theorem 3 in Section 6.

REMARK 3. This result is valid ford ≥ 1, in particular, it includesd = 1
(where the explicit value ofvγ is known). As we shall see, ford ≥ 2, the second-
order termd2,γ can be replaced by a termd2, independent ofγ , at the order
O(γ 3−ε). This is not the case ford = 1, whered2,γ have a discontinuity atγ = 0
whend0 = 0.

We can prove the previous result by giving an explicit expansion of the
termJ

γ
e .

Dimension1. This case is not very interesting since the explicit value of the
speed is known [8], but we include it here for completeness. In this case,J

γ
±e1

can be computed explicitly and we have the following: if(d0 + γ d1) · e1 > 0,
then

J
γ
−e1

= 0, J γ
e1

= − 1

p0(e1) + γp1(e1)
,(1)

and the symmetric result holds when(d0 + γ d1) · e1 < 0. In particular, when
d0 �= 0 and d0 · e1 > 0, then J

γ
−e1

= 0 and J
γ
e1 = − 1

p0(e1)
+ O(γ ). It gives

that

d2,γ = −2
1

p0(e1)
Eν

(
ξ(0, e1)

2)e1 + O(γ ).

Whend0 = 0 [i.e.,p0(e1) = p0(−e1) = 1
2], andd1 · e1 > 0, then there is a discon-

tinuity in the second-order term atγ = 0, and

d2,γ = −4 sgn(γ )Eν

(
ξ(0, e1)

2)e1 + O(γ ).(2)
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Dimensiond ≥ 2. If d0 �= 0, then we have

J
γ
±ei

= 1

(2π)d

(√
p0(∓ei)

p0(±ei)
− 1

)

×
∫
[0,2π ]d

cosui

1− 2
∑d

j=1

√
p0(ej )p0(−ej )cos(uj )

∏
duj

(3)

+ 1

(2π)d

∫
[0,2π ]d

(cos(ui) − 1)

1− 2
∑d

j=1

√
p0(ej )p0(−ej )cos(uj )

∏
duj

+ O(γ ).

If d0 = 0, d1 �= 0, then we havep0(ei) = p0(−ei) and

J
γ
±ei

= 1

(2π)d

∫
[0,2π ]d

(cos(ui) − 1)

1− 2
∑d

j=1 p0(ej )cos(uj )

∏
duj

(4)

+
{

O(γ logγ ), for d = 2,

O(γ ), for d ≥ 3.

NOTE. Remark that whend0 �= 0, then 2
∑d

i=1
√

p0(ei)p0(−ei) < 1 and the
integrand in both terms of (3) is bounded. Whend0 = 0, the integrand in (4) is also
bounded due to the presence of the term(cos(ui) − 1) in the numerator.

In these two cases, we writeJe for the first term of the expansion ofJ
γ
e , which

is independent ofγ . Hence, we see that ford ≥ 2, the expansion of Theorem 1 can
be rewritten

vγ = d0 + γ d1 + γ 2d2 + O(γ 3−ε),(5)

with d2 = ∑
e∈V p2(e)e, wherep2(e) = ∑

e′ Ce,e′Je′ .

REMARK 4. In dimensiond = 2, the second term of the expansion ofJ
γ
e

induces the Green function of a symmetric walk killed at rateKγ 2, for some
K > 0, compare Section 4. This Green function diverges like logγ , and the
estimate we give in Theorem 1 does not allow to include this term in the expansion
of vγ . We think our estimates in Theorem 1 could be improved in order to allow
us to include this term.

Heuristic interpretation. Remark that the termγ 2d2,γ can also be written

γ 2d2,γ = Eν

[( ∑
e∈V

γ ξ(0, e)e

)(
γ

∑
e∈V

ξ(0, e)
(
Gpγ

(e,0) − Gpγ

(0,0)
))]

(6)

= Eν

[( ∑
e∈V

γ ξ(0, e)e

)(
1− Gpγ

(0,0)

Gp̃γ
(0,0)

)]
,
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where p̃γ is the one point modification ofpγ , given by p̃γ (z, ·) = pγ (z, ·),
z �= 0, p̃γ (0, ·) = ωγ (0, ·). Hence, we see thatγ 2d2,γ is a weighted expectation
of the random part of the driftγ

∑
e ξ(0, e)e. The weight is positive when

Gp̃γ
(0,0) > Gpγ

(0,0), that is, when the statistical number of visit of 0 is
increased by the randomization of the environment at the point 0. This means that
at this order, the environment has a larger weight when the point is more often
visited. In fact, this is one of the pieces of information contained in Kalikow’s
formula (cf. Section 3). The interest of this formula is to quantify this effect.

Let us now explain the structure of the paper. In Section 2 we apply these results
to show that the speedvγ can be larger than the speed of the stationary walk under
the mean environment. In Section 3 we recall the definition of the auxiliary random
walk introduced by Kalikow and the law of large numbers proved by Sznitman and
Zerner, and give a simple result relating the effective value of the asymptotic speed
with the drift of the Kalikow’s random walk. In Section 4 we prove Theorem 1.
Section 5 is devoted to the proof of the formulas concerningJ

γ
e . In Section 6 we

give the third order of the expansion, whend0 �= 0.

2. Speedup in higher dimension. Considering the formula ofd2,γ in the case
d = 1, we see that the second-order drift is in opposite direction to the main
drift d0 + γ d1. It is actually true for any balistic RWRE in dimension 1, that
the asymptotic speed of the RWRE is smaller than the mean drift given by the
random environment. Indeed, in dimension 1, if we consider a RWRE with i.i.d.
environmentwz, then this walk has a ballistic behavior in the positive direction if
and only ifE(ω(−e1)

ω(e1)
) < 1, and in this case, the asymptotic speed has the following

expression (cf. [8]):

1− E(ω(−e1))/ω(e1)

1+ E(ω(−e1)/ω(e1))
= E((ω(e1) − ω(−e1))/E(ω(e1)))

E(1/ω(e1))
,

which is easily seen to be smaller thanE(ω(e1) − ω(−e1)). The intuitive
explanation for this slowdown effect is that the sites where the environment plays
against the main behavior are overweighted, in the sense that the expected number
of visits of these sites is larger.

This phenomenon is no longer valid in higher dimension. We construct here an
explicit RWRE, for which the asymptotic speed is larger than the mean drift at one
site.

REMARK 5. Similar phenomenons are shown in [3], where the authors exhibit
RWRE with positive velocity and negative mean drift in large dimension (cf.
Remark 4.3.2 and Section 5.3 of [3]).

REMARK 6. We give here an example in dimensiond = 2, but we could easily
give a similar example in any dimensiond ≥ 2.
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Let us considerd = 2, andp0 given by

p0(e1) = p0(−e1) = 1+ a

4
,

p0(e2) = 1− a

4
(1+ ε),

p0(−e2) = 1− a

4
(1− ε),

for some reals 0< a < 1, and 0< ε < 1. We see that

d0 = ε
1− a

2
e2.

Let us now defineU ∈ R
V by

U(e1) = U(−e1) = 1,

U(e2) = 0, U(−e2) = −2,

and the random variable(ξ(z, ·)) by

ξ(z, ·) = U(·) with probability 1
2,

ξ(z, ·) = −U(·) with probability 1
2,

independently on each sitez in Z
2. It is clear thatE(ξ(z, e)) = 0 for all z, e and,

hence, thatp1 = 0. The covariance matrix is given by

Cov
(
ξ(±e1), ξ(±e1)

) = 1,

Cov
(
ξ(±e1), ξ(e2)

) = Cov
(
ξ(±e2), ξ(e2)

) = 0,

Cov
(
ξ(−e2), ξ(−e2)

) = 4,

Cov
(
ξ(±e1), ξ(−e2)

) = −2,

where we simply wroteξ(e) for ξ(z, e). It is clear, by symmetry, thatd2 will be in
the direction±e2 [we recall thatd2 is defined in (5)], and computation gives

d2 = (
2
(
J−e1 + Je1

) − 4J−e2

)
e2,

whereJ±ei
is the first order inγ of J

γ
e , given by (3). Whenε goes to zero, the first

term in formula (3) goes to zero [indeed, the term(
√

p0(−e2)
p0(e2)

− 1) is of orderε and
the second term is of order logε, since it is the Green function at 0 of a stationary
Markov chain with killing rate of orderε2 (cf. the discussion of Section 4)]. It
implies that

lim
ε→0

d2 =
(∫

[0,2π ]2
(cos(u1) − 1) − (cos(u2) − 1)

1− (1/2)((1− a)cos(u2) + (1+ a)cos(u1))

)
e2

=
(∫

[0,2π ]2
2(cos(u1) − cos(u2))

(1− cos(u2)) + (1− cos(u1)) + a(cos(u2) − cos(u1))

)
e2.
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It is not difficult to check that the previous integral is positive. Indeed, if we
considerU1 andU2, two uniform random variables on[0,2π ], andS = cos(U1)+
cos(U2), A = cos(U2) − cos(U1), then, by symmetry, we haveE(A|S) = 0, and
since the previous integral is equal to

E

( −2A

2− S + aA

)
= E

(
E

( −2A

2− S + aA

∣∣∣S))
,

we classically get that it is positive, whena is positive. This implies that forε small
enough, the termd2 is in the direction+e2, hence, in the same direction asd0. It
implies that forγ small enough,vγ · e2 > d0 · e2.

REMARK 7. The intuitive explanation for this phenomena is that, due to the
nonsymmetry of the horizontal and vertical direction, it is easier for the walk,
under the mean environmentp0, to come back to 0 from the point±e1 than
from the point±e2. Then we choose a random environment which correlates
the acceleration of the walk, that is, a drift in the directione2 larger than the
mean drift, with a larger probability to go on the horizontal direction. This
overweights, in Kalikow’s formula, the environment which have a larger drift in
the directione2 than the mean drift. Indeed, in formula (6), forε small enough,
the drift γ

∑
e ξ(0, e)e has a positive weight whenξ = U , and a negative weight

when ξ = −U (indeed, the one-point modification ofpγ in p̃γ increases the
statistical number of visit of 0, whenξ = U , and decreases it whenξ = −U ).
But, (γ

∑
e ξ(0, e)e) · e2 is positive whenξ = U and negative whenξ = −U .

3. Kalikow’s auxiliary random walk. We present a generalization of the
random walk introduced by Kalikow in [6].

Let us first introduce some notation. Letκ0 > 0 be a positive real. We denote
by �κ0 the set of environments with uniform ellipticity constantκ0, that is,

�κ0 =
{(

w(x, e)
)
x∈Zd ,e∈V ∈ ( ]0,1[2d

)Z
d

,

such that
∑
e∈V

ω(x, e) = 1 andω(x, e) ≥ κ0 ∀x, e

}
.

We suppose thatµ is a probability measure on�κ0. (We do not assume, for the
moment, thatµ is the law of an i.i.d. environment.) LetU be a connected subset
of Z

d , andδ a real 0< δ ≤ 1. We denote by∂U the boundary set ofU , that is,
∂U = {z ∈ Z

d \ U, ∃x ∈ U, |z − x| = 1}. If ω ∈ � is an environment, we denote,
as usual, byP ω

z the law of the random walk in the environmentω, starting fromz.
We set, forz ∈ U , z′ ∈ U ∪ ∂U ,

Gω
U,δ(z, z

′) = Eω
z

(
TU∑
k=0

δk1{Xk=z′}
)
,
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whereTU = inf{k,Xk ∈ Z
d \ U }. Forz′ ∈ U , Gω

U,δ(z, z
′) is the value of the usual

Green function of the process killed at constant rateδ, and stopped after its first
hitting time ofZd \ U , and forz′ ∈ ∂U ,

Gω
U(z, z′) = Eω

z

(
1{XTU

=z′}δTU
)

is the probability to exitU at the pointz′, before having been killed.
Let us now fix a pointz0 in U . We suppose that eitherU is bounded, orδ < 1.

For all z in U , we set

ŵU,δ,z0(z, e) = Eµ(Gω
U,δ(z0, z)ω(z, e))

Eµ(Gω
U,δ(z0, z))

.

Obviously, (ω̂U,δ,z0(z, ·)) defines the transition probabilities of a Markov chain

on U . We denote byG
ω̂U,δ,z0
U the Green function of this Markov chain, killed at

constant rateδ, and stopped after the first exit time ofU ,

G
ω̂U,δ,z0
U,δ (z, z′) = E

ω̂U,δ,z0
z

(
TU∑
k=0

δk1{Xk=z′}
)
.

We simply writeGω
U and ω̂U,z0, whenδ = 1 andU is a bounded subset ofZd ,

andGδ, ω̂δ,z0, whenU = Z
d andδ < 1.

In its generalized version, the result of Kalikow says the following:

PROPOSITION1. If eitherU is bounded orδ < 1, then for allz in U ∩ ∂U ,

Eµ

(
Gω

U,δ(z0, z)
) = G

ω̂U,δ,z0
U,δ (z0, z).

REMARK 8. The original result of Kalikow was given forU bounded and
δ = 1.

REMARK 9. In the sequel, Kalikow’s formula will refer to the formula of
Proposition 1.

PROOF. The proof is essentially the same as the proof of Kalikow, but we
give it for convenience since the hypothesis are not exactly the same. Let us first
remark that 0< Gω

U,δ(x, y) < cx,y for a constant independent ofω in �κ0 (indeed,
this comes from the uniform ellipticity condition). This implies thatω̂U,δ,z0 is well
defined. Remark now that for allz in U ∪ ∂U ,

Gω
U,δ(z0, z) = δz0,z + ∑

e∈V, s.t.
z−e∈U

Gω
U,δ(z0, z − e)δω(z − e, e),(7)

which gives

Eµ

(
Gω

U,δ(z0, z)
) = δz0,z + ∑

e∈V, s.t.
z−e∈U

Eµ

(
Gω

U,δ(z0, z − e)
)
δω̂U,δ,z0(z − e, e).
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Let us set

G
(n)
U,δ(z0, z) = E

ω̂U,δ,z0
z0

(
n∧TU∑
k=0

δk1{Xk=z′}
)
.

We see that

G
(n+1)
U,δ (z0, z) = δz0,z + ∑

e∈V, s.t.
z−e∈U

G
(n)
U,δ(z0, z − e)δω̂U,δ,z0(z − e, e).

It is clear that

G
ω̂U,δ,z0
U,δ (z0, z) = lim

n→∞G
(n)
U,δ(z0, z),

and thatG
ω̂U,δ,z0
U,δ satisfies the same equation asGω

U,δ in (7). By induction, we have

G
(n)
U,δ(z0, z) ≤ Eµ

(
Gω

U,δ(z0, z)
)

for all n and, thus,

G
ω̂U,δ,z0
U,δ (z0, z) ≤ Eµ

(
Gω

U,δ(z0, z)
)

(8)

for all z in U ∪ ∂U . Forδ < 1, it is clear that for all environmentω in �κ0,

1

1− δ
=

∞∑
k=0

δk

= Eω
z0

(
TU −1∑
k=0

δk + δTu
1

1− δ

)

= Eω
z0

( ∑
z∈U

Tu−1∑
k=0

δk1{Xk=z} + 1

1− δ

∑
z∈∂U

δTU 1{XTU
=z}

)

= ∑
z∈U

Gω
U,δ(z0, z) + 1

1− δ

∑
z∈∂U

Gω
U,δ(z0, z).

This implies both

1

1− δ
= ∑

z∈U

Eµ

(
Gω

U,δ(z0, z)
) + 1

1− δ

∑
z∈∂U

Eµ

(
Gω

U,δ(z0, z)
)

and

1

1− δ
= ∑

z∈U

G
ω̂U,δ,z0
U,δ (z0, z) + 1

1− δ

∑
z∈∂U

G
ω̂U,δ,z0
U,δ (z0, z).

This necessarily implies equality in (8) for allz in U ∪ ∂U .
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Whenδ = 1 andU is bounded, thenTU < ∞ almost surely underP ω
z0

, for any
elliptic environmentω. This implies

1 = ∑
z∈∂U

G
ω̂U,z0
U (z0, z) = ∑

z∈∂U

Eµ

(
Gω

U(z0, z)
)
,

which gives equality in (8) for allz in ∂U , and then by induction for allz in U .
�

3.1. Application to the asymptotic speed.We first recall a result of Sznitman
and Zerner (cf. [12]). Let us suppose now thatµ = ν⊗Z

d
is the law of a uniformly

elliptic, i.i.d. random environment(w(x, ·)) in �κ0.

THEOREM 2 [12]. If there exists a vectorl in R
d , a constantε > 0, such that

for all bounded connected subsetU ⊂ Z
d , U �= ∅, and all z0 ∈ U ,( ∑

e∈V

ω̂U,z0(z, e)e

)
· l ≥ ε ∀ z ∈ U,

then there exists a vectorv ∈ R
d , such that

lim
n→∞

Xn

n
= v, P ω-a.s.,

for µ-almost all environmentω. Moreover, v · l > 0, hence, Xn is ballistic in the
direction l.

REMARK 10. The velocity can be expressed in terms of the expectation of
some renewal time (cf. [12]) or in terms of Lyapounov exponents [13], but we will
not need these expressions.

We suppose now that our RWRE satisfies the condition of the previous theorem.
We can easily get some information on the asymptotic speed from the walk
of Kalikow. We consider nowU = Z

d and δ < 1. The transition probabilities,
ŵδ,z0(z, e), of the Kalikow’s walk depend only on the differencez− z0. We denote
by d̂δ(z) = ∑

e∈V ω̂δ,0(z, e)e the drift associated with the Kalikow’s walk. We
denote byAδ the convex hull of the set⋃

z∈Zd

dδ(z),

and byA, the set of accumulation points ofAδ, whenδ goes to 1.

PROPOSITION2. The asymptotic speedv is in A.
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PROOF. We denote byE0 the expectation with respect to the annealed law

E0(·) = Eµ

(
Eω

0 (·)).
We consider an independent geometric random variableτδ with parameterδ.
We have

E0
(
Xτδ

) = Eµ

(
Eω

0

(
τδ−1∑
k=0

Xk+1 − Xk

))

= ∑
z∈Zd

∞∑
k=0

Eµ

(
Eω

0
(
1{τδ>k,xk=z}(Xk+1 − Xk)

))

= ∑
z∈Zd

∞∑
k=0

Eµ

(
1{τδ>k,xk=z}

( ∑
e∈V

ω(z, e)e

))

= ∑
z∈Zd

Eµ

(
Gω

δ (0, z)
)( ∑

e∈V

ω̂δ,0(z, e)e

)

= ∑
z∈Zd

G
ω̂δ,0
δ (0, z)d̂δ(z).

But E(τδ) = ∑
z∈Zd Ĝ

ω̂δ,0
δ (0, z). Thus,

E0(Xτδ
)

E(τδ)
=

∑
z∈Zd G

ω̂δ,0
δ (0, z)d̂δ(z)∑

z∈Zd G
ω̂δ,0
δ (0, z)

∈ Aδ,

and since limδ→1 E0(Xτδ
)/E(τδ) = v, we know thatv is in A. �

4. Proof of Theorem 1. We will use the following simple estimates several
times in the article.

LEMMA 1. Let ω and ω′ be two environments in�κ0 for someκ0 > 0. We
suppose thatω′ is a perturbation ofω, at some pointz in Z

d , that is, that we have

ω′(z′, e) = ω(z′, e) for z′ �= z, e ∈ V,

ω′(z, e) = ω(z, e) + �ω(e) for e ∈ V,

for some(�ω(e)) ∈] −1,1[V . Let U ⊂ Z
d , 0 < δ ≤ 1, be such that eitherU is

bounded orδ < 1, and such thatz is in U . Then, we have the following estimates:
for all y in U , y′ in U ∪ ∂U ,∣∣Gω′

U,δ(y, y′) − Gω
U,δ(y, y′)

∣∣ ≤ 2d supe∈V |�ω(e)|
κ2

0

Gω′
U,δ(y, y′)



3008 C. SABOT

and ∣∣∣∣∣Gω′
U,δ(y, y′) − Gω

U,δ(y, y′)

− Gω
U,δ(y, z)

∑
e∈V

�ω(e)
(
δGω

U,δ(z + e, y′) − Gω
U,δ(z, y

′)
)∣∣∣∣∣

≤ (2d supe∈V |�ω(e)|)2

κ3
0

Gω′
U,δ(y, y′).

PROOF. To simplify notation, in this proof we simply writeGω for Gω
U,δ.

We will use several times in this paper the following classical expansion of
Green functions: letP and P ′ be the transition operators of two random
walks onZ

d (with eventually some killing, so that 0≤ ∑
y Px,y ≤ 1, the

left-hand side inequality being eventually strict), to nearest neighbors, and
GP

δ = (I − δP )−1 = ∑
δkP k, and GP ′

δ = (I − δP ′)−1 the associated Green
functions (for 0< δ < 1). Then for alln ≥ 0, we have

GP ′
δ = GP

δ +
n∑

k=1

δk(GP
δ (P ′ − P )

)k
GP

δ + δn+1(GP
δ (P ′ − P )

)n+1
GP ′

δ .(9)

In particular, forn = 0, we have

GP ′
δ = GP

δ + δGP
δ (P ′ − P )GP ′

δ .(10)

We apply the previous formula for the transition operators associated with
transition probabilitiesω andω′, and we get

Gω′
(y, y′) − Gω(y, y′)
= δGω(y, z)

∑
e∈V

�ω(e)Gω′
(z + e, y′)

= Gω(y, z)
∑
e∈V

�ω(e)
(
δGω′

(z + e, y′) − Gω′
(z, y′)

)
.

(11)

In the last formula, we used that
∑

e∈V �ω(e) = 0. If we setTz = inf{n ≥ 0,

Xn = z}, we get

δGω′
(z + e, y′) − Gω′

(z, y′)
≥ (

δE
ω′
z+e

(
1{Tz<TU }δTz

) − 1
)
Gω′

(z, y′)

= (
δE

ω
z+e

(
1{Tz<TU }δTz

) − 1
)
Gω′

(z, y′)

≥ 1

κ0
Gω′

(z, y′)
∑
e′∈V

ω(z, e′)
(
δE

ω
z+e′

(
1{Tz<TU }δTz

) − 1
)

= − 1

κ0

Gω′
(z, y′)

Gω(z, z)
.

(12)
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Remark that with the same argument, we also have

δGω′
(z + e, y′) − Gω′

(z, y′) ≥ − 1

κ0

Gω′
(z, y′)

Gω′
(z, z)

,

which is equal to− 1
κ0

, if y′ = z. If y′ = z, thenδGω′
(z + e, z) − Gω′

(z, z) ≤ 0. In
particular, this gives, wheny′ = z,∣∣δGω′

(z + e, z) − Gω′
(z, z)

∣∣ ≤ 1

κ0
.(13)

If z �= y′, then

δ
∑
e′∈V

ω′(z, e′)Gω′
(z + e′, y′) = Gω′

(z, y′),

which gives(
δGω′

(z + e, y′) − Gω′
(z, y′)

)
= − ∑

e′∈V,e′ �=e

ω′(z, e′)
ω′(z, e)

(
δGω′

(z + e′, y′) − Gω′
(z, y′)

)

≤ 1

κ2
0

Gω′
(z, y′)

Gω(z, z)
,

where in the last inequality we used estimate (12). Thus, we get

∣∣δGω′
(z + e, y′) − Gω′

(z, y′)
∣∣ ≤ 1

κ2
0

Gω′
(z, y′)

Gω(z, z)
.(14)

Applied to (11), it gives∣∣Gω′
(y, y′) − Gω(y, y′)

∣∣ ≤ 2d supe∈V |�ω(e)|
κ2

0

E
ω
y

(
1{Tz<TU }δTz

)
Gω′

(z, y′)

≤ 2d supe∈V |�ω(e)|
κ2

0

Gω′
(y, y′).

The second estimate is similar. We expandGω′
at order 2 [i.e., we use (9) with

n = 1] which gives

Gω′
(y, y′) − Gω(y, y′) − ∑

e∈V

Gω(y, z)�ω(e)
(
δGω(z + e, y′) − Gω(z, y′)

)
= ∑

e∈V

∑
e′∈V

Gω(y, z)�ω(e)
(
δGω(z + e, z) − Gω(z, z)

)
×�ω(e′)

(
δGω′

(z + e′, y′) − Gω′
(z, y′)

)
.
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But, |δGω(z + e, z) − Gω
δ (z, z)| ≤ 1

κ0
, compare (13), and using (14), we get the

second estimate.�

In order to prove Theorem 1, we give an expansion of Kalikow’s transition
probabilities. This is based on two successive applications of Proposition 1. We
come back to the notation of Section 1. We have an i.i.d. random environment of
the form

ωγ (x, e) = p0(e) + γ ξ(x, e) = p0(e) + γ
(
p1(e) + ξ(x, e)

)
,

whereξ(x, e) is distributed according to the lawµ = ν⊗Z
d
, and

p1(e) = Eµ

(
ξ(x, e)

)
, ξ(x, e) = ξ(x, e) − p1(e) ∀x ∈ Z

d, e ∈ V.

For anyy in Z
d , we denote byωγ,y the environment

ωγ,y(z, e) =
{

ωγ (z, e), if z �= y,

p0(e) + γp1(e), if z = y.

For 0≤ δ ≤ 1 andU ⊂ Z
d , with eitherδ < 1 or U bounded,z0 ∈ U , we denote

by ω̂
γ
U,δ,z0

the transition probabilities of the auxiliary random walk defined in
Section 3, associated with the environmentωγ underµ.

LEMMA 2. We have the following expansion, for smallγ ’s,

ω̂
γ
U,δ,z0

(y, e) = p0(e) + γp1(e) + γ 2
∑
e′∈V

Ce,e′ J̃ U,δ,z0,γ

e′ (y) + O(γ 3),

where

J̃
U,δ,z0,γ

e′ (y) = Eµ(Gωγ,y

U,δ (z0, y)(δGωγ,y

U,δ (y + e′, y) − Gωγ,y

U,δ (y, y)))

Eµ(Gωγ,y

U,δ (z0, y))
,

and where|O(γ 3)| ≤ 2(2d)2

κ4
0

γ 3.

PROOF. We simply writeGω for Gω
U,δ in this proof. Let us first remark that

we have

ω̂
γ
U,δ,z0

(y, e) = pγ (e) + γ
Eµ(Gωγ

(z0, y)ξ(y, e))

Eµ(Gωγ
(z0, y))

,

wherepγ = p0 + γp1. Applying Lemma 1 toωγ andωγ,y , we get

Eµ(Gωγ
(z0, y)ξ(y, e))

Eµ(Gωγ
(z0, y))

= Eµ(Gωγ,y
(z0, y)ξ(y, e))

Eµ(Gωγ
(z0, y))



BALLISTIC RWRE AT LOW DISORDER 3011

+ γ
∑
e′∈V

Eµ

(
Gωγ,y

(z0, y)ξ(y, e′)

× (
δGωγ,y

(y + e′, y) − Gωγ,y

(y, y)
)
ξ(y, e)

)
× [

Eµ

(
Gωγ

(z0, y)
)]−1 + O1(γ

2)

= γ
∑
e′∈V

Eµ

(
ξ(y, e)ξ(y, e′)

)

× Eµ(Gωγ,y
(z0, y)(δGωγ,y

(y + e′, y) − Gωγ,y
(y, y)))

Eµ(Gωγ
(z0, y))

+ O1(γ
2),

where|O1(γ
2)| ≤ (2d)2

κ3
0

γ 2. [In the last formula, we used the independence ofGωγ,y

andξ(y, e), and the fact thatEµ(ξ(y, e)) = 0.] Considering now that by Lemma 1
we have ∣∣∣∣1− Eµ(Gωγ,y

δ (z0, y))

Eµ(Gωγ

δ (z0, y))

∣∣∣∣ ≤ (2d)2

κ3
0

γ 2,

we get

Eµ(Gωγ,y
(z0, y)(δGωγ,y

(y + e′, y) − Gωγ,y
(y, y)))

Eµ(Gωγ
(z0, y))

= Eµ(Gωγ,y
(z0, y)(δGωγ,y

(y + e′, y) − Gωγ,y
(y, y)))

Eµ(Gωγ,y
(z0, y))

+ O2(γ
2),

where|O2(γ
2)| ≤ (2d)2

κ4
0

γ 2. �

Let us remark that the previous lemma implies that, under the hypothesis (H),
for γ small enough,γ �= 0, there exists a positive constantcγ , such that for all
bounded connected subsetU andz0 in U ,( ∑

e∈V

ω̂U,z0(z, e)e

)
· (d0 + γ d1) > cγ ∀ z ∈ U.

[Indeed, |JU,δ,z0,γ
e (y)| ≤ 1

κ0
, using (13).] Hence, we are in the condition of

application of Theorem 2, forl = d0+γ d1. To obtain information on the speedvγ ,
we have to estimate the transition probabilitiesω

γ
δ,0, whenδ goes to 1. This is the

object of the next lemma. We simply writẽJ δ,γ
e (y) for J̃

U,δ,z0,γ
e (y) whenU = Z

d

andz0 = 0.

LEMMA 3. (i) If d0 �= 0, then there exists a constantC > 0, such that forγ
sufficiently small,

lim sup
δ→1

|J̃ δ,γ
e (y) − J γ

e | ≤ Cγ 2,
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for all e ∈ V, y ∈ Z
d .

(ii) If d0 = 0 andd1 �= 0, then, for all 0 < ε < 1, there exists a constantCε > 0,
such that forγ sufficiently small,

lim sup
δ→1

|J̃ δ,γ
e (y) − J γ

e | ≤ Cεγ
1−ε,

for all e ∈ V, y ∈ Z
d .

Let us first point out that this lemma concludes the proof of Theorem 1 using
Lemma 2 and Proposition 2.

PROOF OFLEMMA 3. Let us first describe the structure of the proof. In the
first step, we apply Proposition 1 to a certain modified measureµ̃y to write J̃

δ,γ
e (y)

as the Green functionδGpγ +γ 2�ω
δ (y + e, y) − G

pγ +γ 2�ω
δ (y, y), for a certain

deterministic environmentpγ + γ 2�ω, which is a second-order perturbation

of pγ . In the second step, we expand the Green functionG
pγ +γ 2�ω
δ , and rewrite

the Green function ofGpγ
as the Green function of a symmetric random walk plus

a killing. The last step is to use estimates on quantities like∑
z∈Zd

|pn+1(0, z) − pn(e, z)|,

which are adapted from Lawler’s book [7].

Step1. Fory, y′, y′′ in Z
d , we write

I δ,γ,y(y′, y′′) = Eµ(Gωγ,y

δ (0, y)Gωγ,y

δ (y′, y′′))
Eµ(Gωγ,y

δ (0, y))
,

so that we havẽJ δ,γ
e (y) = δI δ,γ,y(y + e, y) − I δ,γ,y(y, y). We denote bỹµy the

probability measure on�κ0 given by

µ̃y = Gωγ,y

δ (0, y)

Eµ(Gωγ,y

δ (0, y))
µ.

It is clear that

I δ,γ,y(y′, y′′) = Eµ̃y

(
Gωγ,y

δ (y′, y′′)
)
.

We apply Proposition 1 for the environmentωγ,y under the measurẽµy , for the
initial point z0 = y′. This means that the Kalikow’s random walk has transition
probabilities

ω̃(z, e) = Eµ̃y (Gωγ,y

δ (y′, z)ωγ,y(z, e))

Eµ̃y (Gωγ,y

δ (y′, z))
,
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and that by Proposition 1 we get

I δ,γ,y(y′, y′′) = Gω̃
δ (y′, y′′).

We have

ω̃(z, e) = pγ (e) + γ
Eµ̃y (Gωγ,y

δ (y′, z)ξ(z, e))

Eµ̃y (Gωγ,y

δ (y′, z))
,

for z �= y, andω̃(y, e) = pγ (e). We want to prove that

ω̃(z, e) = pγ (e) + γ 2�ω(z, e),

for a perturbative term�ω(z, e), uniformly bounded iny, y′, z, e, δ, γ . So we
write

�ω(z, e) = 1

γ 2

(
ω̃(z, e) − pγ (e)

)
for γ �= 0. As in Lemma 2, we define the environment(ωγ,y,z(z′, e))z′,e in �κ0, by

ωγ,y,z(z′, e) =
{

pγ (e), if z′ = z or z′ = y,

ωγ (z′, e), if z′ �= z, z′ �= y.

Using Lemma 1, we get

Eµ̃y (Gωγ,y

δ (y, z)ξ(z, e))

Eµ̃y (Gωγ,y

δ (y, z))
= Eµ̃y (Gωγ,y,z

δ (y, z)ξ(z, e))

Eµ̃y (Gωγ,y,z

δ (y, z))
+ O(γ )

= Eµ(Gωγ,y

δ (0, y)Gωγ,y,z

δ (y, z)ξ(z, e))

Eµ(Gωγ,y

δ (0, y)Gωγ,y,z

δ (y, z))
+ O(γ )

= Eµ(Gωγ,y,z

δ (0, y)Gωγ,y,z

δ (y, z)ξ(z, e))

Eµ(Gωγ,y,z

δ (0, y)Gωγ,y,z

δ (y, z))
+ O(γ )

= O(γ ),

where, as usual, the remainder termsO(γ ) satisfy |O(γ )| ≤ C|γ |, whereC > 0
is a constant depending only onκ0, d . [In the last equality, we used, as usual,
the independence ofGωγ,y,z

δ with ξ(z, e), and the fact thatEµ(ξ(z, e)) = 0.] This
implies that�ω(z, e) is bounded by a constant depending only onκ0, d .

Step2. We transform now the Green functionGpγ

δ into the Green function of
a symmetric walk plus a killing. Letφγ :Zd → R be defined by

φγ (z) =
d∏

i=1

(√
pγ (ei)

pγ (−ei)

)zi

.
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Let Mφ be the operator of multiplication byφ, given, forf :Zd → R, by

Mφγ (f )(z) = φγ (z)f (z).

If P pγ
is the transition operator of the walk with stationary transition probabilities

(pγ (e))e∈V , then we have

Mφγ P pγ

M−1
φγ = kγ P sγ

,

where

kγ = 2
d∑

i=1

(
pγ (−ei)p

γ (ei)
)1/2

,

andP sγ
is the transition operator of the symmetric, stationary random walk, with

transition probabilities

sγ (ei) = sγ (−ei) = (pγ (−ei)p
γ (ei))

1/2

kγ
.

As we shall see later,kγ < 1, and we have

G
pγ

δ = (
I − δP pγ )−1 = M−1

φγ

(
I − δkγ P sγ )−1

Mφγ = M−1
φγ Gsγ

δkγ Mφγ .

Let us come back tokγ . We trivially have

1− kγ =
d∑

i=1

(√
pγ (ei) − √

pγ (−ei)
)2

,

which implies thatkγ < 1 under the hypothesis (H) for smallγ . If d0 �= 0, then

1− kγ =
d∑

i=1

(√
p0(ei) − √

p0(−ei)
)2 + O(γ ).

If d0 = 0 andd1 �= 0, then we easily get

1− kγ = γ 2

4

d∑
i=1

(
√

p1(ei) − √
p1(−ei) )2

p0(ei)
+ O(γ 3).

It means that in this case 1− kγ = Kγ 2 + O(γ 3) for a positive constantK > 0.
We can easily get, similarly, that

G
pγ +γ 2�ω
δ = M−1

φγ Gs̃γ

δk̃γ Mφγ ,

wheres̃γ = s̃γ (z, e) is, a priori, a nonsymmetric, nonstationary environment of the
form

s̃γ (z, e) = sγ (e) + γ 2�s(z, e),
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where�s is uniformly bounded independently of the variablesy, y′, z, e, γ, δ.
Whend0 �= 0, the termk̃γ = k̃γ (z) is of the form

k̃γ (z) = kγ + γ 2�k(z),

where�k is uniformly bounded. Whend0 = 0, d1 �= 0, then the term̃kγ (z) is of
the form

k̃γ (z) = kγ + γ 3�k(z),

where�k is uniformly bounded [this comes from the fact that
∑

e �ω(e) = 0, and

that
√

pγ (±ei)
pγ (∓ei)

− 1= O(γ ), from which the term of order 2 is null].

Step3. We consider now the following expansion at ordern [which is a
consequence of the classical expansion of Green functions, cf. (9)]:

G
pγ +γ 2�ω
δ (z, z′) − G

pγ

δ (z, z′)

=
n∑

k=1

(δγ 2)kSk(z, z
′) + (δγ 2)n+1Rn(z, z

′),

where

Sn(z, z
′) = ∑

z1,...,zn

∑
e1,...,en

G
pγ

δ (z, z1)�ω(z1, e1)G
pγ

δ (z1 + e1, z2) · · ·

× �ω(zn, en)G
pγ

δ (zn + en, z
′)

and

Rn = ∑
z′′∈Zd

Sn(z, z
′′)

∑
e′′∈V

�ω(z′′, e′′)Gpγ +γ 2�ω
δ (z′′ + e′′, z′).

Considering the transformation of step 2, we get

Sn(z, z
′)

= φγ (z′ − z)
∑

z1,...,zn
e1,...,en

Gsγ

δkγ (z, z1)�ω(z1, e1)φ
γ (−e1)G

sγ

δkγ (z1 + e1, z2) · · ·

× �ω(zn, en)φ
γ (−en)G

sγ

δkγ (zn + en, z
′)

and

Rn(z, z
′)

= φγ (z′ − z)
∑

z1,...,zn,z′′
e1,...,en,e′′

Gsγ

δkγ (z, z1)�ω(z1, e1)φ
γ (−e1)G

sγ

δkγ (z1 + e1, z2) · · ·

× �ω(zn, en)φ
γ (−en)G

sγ

δkγ (zn + en, z
′)

× �ω(z′′, e′′)φγ (−e′′)Gs̃γ

δk̃γ (z′′ + e′′, z′).
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If d0 �= 0, then

|1− δkγ | ≤ 2
d∑

i=1

(√
p0(ei) − √

p0(−ei)
)2 + O(γ ).

Thus, we get [sinceφγ (e) ≤ 1
κ0

, for γ < γ0]

Sn(z, z
′) ≤ φγ (z′ − z)

(
1

κ0
2d

(
sup
z,e

|�ω(z, e)|
) ∑

z∈Zd

Gsγ

δkγ (0, z)

)n+1

= φγ (z′ − z)

(
1

κ0
2d

(
sup
z,e

|�ω(z, e)|
)

1

1− δkγ

)n+1

≤ φγ (z′ − z)Cn+1,

for some positive constantC, depending only onκ0, d , p0. We can get a similar
estimate for the remaining termRn(z, z

′) considering that 1− k̃γ (z) ∼ 1 − δkγ .
This implies that forγ small enough, the series

∑∞
k=0(δk

γ )kSk(z
′, z) is convergent

and that

G
pγ +γ 2�ω
δ (z, z′) − G

pγ

δ (z, z′) =
∞∑

k=1

(δγ 2)kSk(z, z
′)

= φγ (z′ − z)O(γ 2).

Considering the discussion of step 1, this concludes Lemma 3(i).
If d0 = 0 andd1 �= 0, then we rewrite

Sn(z, z
′)

= φγ (z′ − z)
∑

z1,...,zn
e1,...,en

Gsγ

δkγ (z, z1)�ω(z1, e1)

× (
φγ (−e1)G

sγ

δkγ (z1 + e1, z2) − Gsγ

δkγ (z1, z2)
) · · ·

× �ω(zn, en)
(
φγ (−en)G

sγ

δkγ (zn + en, z
′) − Gsγ

δkγ (zn, z
′)

)
≤ φγ (z′ − z)(2d)nGsγ

δkγ (0,0)

(
sup
e∈V

∣∣∣∣∣ ∑
z∈Zd

φγ (−e)Gsγ

δkγ (e, z) − Gsγ

δkγ (0, z)

∣∣∣∣∣
)n

≤ φγ (z′ − z)(2d)nGsγ

δkγ (0,0)

× sup
e∈V

(∣∣∣∣φγ (−e) − 1

1− δkγ

∣∣∣∣ +
∣∣∣∣∣ ∑
z∈Zd

Gsγ

δkγ (e, z) − Gsγ

δkγ (0, z)

∣∣∣∣∣
)n

.
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We writepn(y, y′) for thenth step transition probability of the random walk with
transition probabilitysγ . We consider the term∣∣∣∣∣ ∑

z∈Zd

Gsγ

δkγ (e, z) − Gsγ

δkγ (0, z)

∣∣∣∣∣
=

∣∣∣∣∣ ∑
z∈Zd

∑
n∈N

(δkγ )n
(
pn(e, z) − pn(0, z)

)∣∣∣∣∣
≤ 1+

∣∣∣∣∣ ∑
z∈Zd

∑
n∈N

(δkγ )npn(e, z) − (δkγ )n+1pn+1(0, z)

∣∣∣∣∣
≤ 1+ (1− δkγ )

∣∣∣∣∣ ∑
z∈Zd

∑
n∈N

(δkγ )npn(e, z)

∣∣∣∣∣
+ ∑

n∈N

(δkγ )n

∣∣∣∣∣ ∑
z∈Zd

pn(e, z) − pn+1(0, z)

∣∣∣∣∣
≤ 2+ ∑

n∈N

(δkγ )n

∣∣∣∣∣ ∑
z∈Zd

pn(e, z) − pn+1(0, z)

∣∣∣∣∣.
We now use the following lemma, which specifies and generalizes Corollary 1.2.3
of [7] (we will prove this lemma later on).

LEMMA 4. Let (s(e))e∈V ∈]0,1[V be such that

s(ei) = s(−ei) ≥ κ0, 2
d∑

i=1

s(ei) = 1.

Then, for all ε > 0, there exists a positive constantCε, depending only onκ0, d ,
such that ∑

z∈Zd

|pn+1(0, z) − pn(e, z)| ≤ Cεn
−(1/2)+ε ∀ e ∈ V,

wherepn(z, z
′) is thenth step transition probability of the stationary, symmetric,

random walk onZd , with transition probability(s(e))e∈V .

NOTE. The difference in the indicesn andn + 1 comes from the fact that
pn(z, z

′) is null if n and
∑

j z′
j − zj do not have the same parity.

It means that for all 0< ε < 1, there is a positive constantCε > 0, such that∣∣∣∣∣ ∑
z∈Zd

Gsγ

δkγ (e, z) − Gsγ

δkγ (0, z)

∣∣∣∣∣ ≤ 2+ Cε

∞∑
n=0

(δkγ )nn−(1/2)+ε.
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Considering that forx > 0,

(1− δkγ )−x =
∞∑

n=0

x(x + 1) · · · (x + n − 1)

n! (δkγ )n,

and thatx(x+1)···(x+n−1)
n! � nx−1 for largen [which means that there is a constant

K̃ > 0, for which K̃−1nx−1 ≤ x(x+1)···(x+n−1)
n! ≤ K̃nx−1], we see that for allx

such that(1− x) < 1
2 − ε, we can find a constantC > 0 such that

∞∑
n=0

(δkγ )nn−(1/2)+ε ≤ C(1− δkγ )−x.

This means that for allε > 0, we can find a new constantCε > 0, such that∣∣∣∣∣ ∑
z∈Zd

Gsγ

δkγ (e, z) − Gsγ

δkγ (0, z)

∣∣∣∣∣ ≤ Cε(1− δkγ )−(1/2)−ε

≤ Cε(1− δkγ )−(1/2)−ε.

Considering that 1− kγ ∼ Kγ 2 for smallγ ’s, we see that, for all positiveε, we
can find a new constantCε > 0, such that∣∣∣∣∣ ∑

z∈Zd

Gsγ

δkγ (e, z) − Gsγ

δkγ (0, z)

∣∣∣∣∣ ≤ Cεγ
−1−ε.

Coming back toSn(z, z
′) and considering thatφγ (−e) − 1 = O(γ ), we see that

|Sn(z, z
′)| ≤ φγ (z′ − z)

(
O(γ −1−ε)

)n∣∣Gsγ

δkγ (0,0)
∣∣

≤ φγ (z′ − z)
(
O(γ −1−ε)

)n∣∣Gsγ

kγ (0,0)
∣∣.

It clearly implies that
∑

k≥1(δγ
2)kSk(z, z

′) is absolutely convergent forγ
sufficiently small, and that∑

n

(δγ 2)nSn(z, z
′) = φγ (z′ − z)O

(
Gsγ

kγ (0,0)γ 1−ε
)
,

for all positive ε. It is not difficult, using the same arguments and the fact that
1 − k̃γ (z) = Kγ 2 + O(γ 3) for the same constantK > 0, to prove that the
remaining termRn goes to 0, whenn goes to infinity, which means that

G
pγ

δ (z, z′) − G
pγ +γ 2�ω
δ (z, z′) = φγ (z − z′) × O

(
Gsγ

kγ (0,0)γ 1−ε
)

and the estimateO(Gsγ

kγ (0,0)γ 1−ε) is uniform inδ, z, z′. Coming back to step 1,
we see that it means that

lim sup
δ→0

|J̃ δ,γ
e (y) − J γ

e | = O
(
Gsγ

kγ (0,0)γ 1−ε
)
.
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Since, in dim 2,Gsγ

kγ (0,0) diverges like ln(1 − kγ ) ∼ lnγ , and is bounded in
dimensiond ≥ 3, we see that it means that

lim sup
δ→1

|J̃ δ,γ
e (y) − J γ

e | = O(γ 1−ε)

for all positiveε. This concludes the proof ford ≥ 2. For d = 1, the expansion
of vγ can be checked directly from the explicit formula forvγ . (It could also be
deduced from the same method.)�

PROOF OFLEMMA 4. Let si = s(ei) = s(−ei). We suppose thatn + 1 and∑d
j=1 zj have the same parity, since, otherwise,pn+1(0, z) andpn(e, z) are null.

By the Fourier transform we have

pn+1(0, z) − pn(±ei, z)

= 1

(2π)d

∫
[0,2π ]d

�n+1
d∏

j=1

cos(zjuj ) duj

− 1

(2π)d

∫
[0,2π ]d

�n cos
(
(zi ∓ 1)ui

) ∏
j �=i

cos(zjuj )

d∏
j=1

duj ,

where

� =
d∑

j=1

sj cos(uj ).

We can findρ < 1, r > 0, such that|�| ≤ ρ if (u1, . . . , ud) /∈]−r, r[d ∪]π − r,

π + r[d . We take constantsC > 0 and 0< η < 1 such that

|1−cosu| ≤ Cu, |sinu| ≤ C|u|, |cosu| ≤
∣∣∣∣1− (ηu)2

2

∣∣∣∣ ∀u ∈]−r, r[.
Hence, we have, using parity of the integrands,

|pn+1(0, z) − pn(±ei, z)|

≤ 2ρn + 2

(2π)d

∫
]−r,r[d

(
d∑

j=1

sj
(
cos(uj ) − 1

))
�n

d∏
j=1

cos(zjuj ) duj

+ 2

(2π)d

∫
]−r,r[d

(1− cosui)�
n

d∏
j=1

cos(zjuj ) duj

+ 2

(2π)d

∫
]−r,r[d

�n sinui sinziui

∏
j �=i

cos(zjuj ) duj

≤ 2ρn + C′|zi |
∫
]−r,r[d

(
d∑

j=1

u2
j

)(
1− 1

2

d∑
j=1

sj (ηuj )
2

)n d∏
j=1

duj,
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with C′ = 6C
(2π)d

. Consideringαj = √
nuj , the last expression is equal to

2ρn + C′ 1

n(d+2)/2 |zi |
∫
|αj |≤r

√
n

(
d∑

j=1

α2
j

)(
1− 1

2

d∑
j=1

sj (ηαj )
2/n

)n d∏
j=1

dαj .

Considering the inequality(1− 1
2u2/n)n ≤ exp(−u2/2) for u ≤ √

2n, we get that
the last expression is smaller than

2ρn + C′ 1

n(d+2)/2 |zi |
∫

Rd

(
d∑

j=1

α2
j

)
exp

(
1− 1

2

d∑
j=1

sj (ηαj )
2

)
d∏

j=1

dαj

= |zi |O
(

1

n(d+2)/2

)
.

[Let us remark that thisO( 1
n(d+2)/2 ) can be uniformly estimated on the set

of transition probabilitiess satisfying the uniform ellipticity condition with
constantκ0.]

Let us takeθ > 1
2. Fore ∈ V, we consider the sum∑

z∈Zd

|pn+1(0, z) − pn(e, z)|

= ∑
|z|>nθ

|pn+1(0, z) − pn(e, z)| +
∑

|z|≤nθ

|pn+1(0, z) − pn(e, z)|.

The first term is bounded by 4 exp− 1
2d

n2θ−1 using Hoeffding’s inequality (cf.,
e.g., [5]). For the second term we use the previous estimate∑

|z|≤nθ

|pn+1(0, z) − pn(e, z)| ≤ O

(
1

n(d+2)/2

) ∑
|z|≤nθ

|z|

= O
(
nθ(d+1)−(d+2)/2)

= O
(
nθ−1+d(θ−(1/2))

)
.

Since we can take anyθ > 1
2, we can get any orderO(n−(1/2)+ε) for ε > 0. �

5. Development of J
γ
e .

In dimensiond = 1. When (d0 + γ d1) · e1 > 0, the random walk with
stationary probabilitypγ is transcient in the positive direction. This implies that

P
pγ

−e1
(T0 < ∞) = 1

and, thus, that

Gpγ

(−e1,0) − Gpγ

(0,0) = 0.
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Hence,

1 = −pγ (e1)
(
Gpγ

(e1,0) − Gpγ

(0,0)
)
,

which gives formula (1).

Dimensiond ≥ 2. We use the transformation described in step 2 of the proof
of Lemma 3 to get

Gpγ

(z, z′) = φγ (z′ − z)Gsγ

kγ (z, z′).

It gives

J γ
e = (

φγ (−e) − 1
)
Gsγ

kγ (e,0) + (
Gsγ

kγ (e,0) − Gsγ

kγ (0,0)
)
.

Using the Fourier transform and sincekγ sγ (±ei) = √
pγ (ei)pγ (−ei), we get

J
γ
±ei

= 1

(2π)d

(√
pγ (∓ei)

pγ (±ei)
− 1

)

×
∫
[0,2π ]d

cosui

1− 2
∑d

j=1

√
pγ (ej )p

γ (−ej )cos(uj )

∏
duj

+ 1

(2π)d

∫
[0,2π ]d

cos(ui) − 1

1− 2
∑d

j=1

√
pγ (ej )p

γ (−ej )cos(uj )

∏
duj .

When d0 �= 0, it is clear that the last formula gives (3), at first order inγ

[since 2
∑d

j=1

√
p0(ej )p0(−ej ) < 1, which implies that the denominator is

uniformly bounded away from 0]. Whend = 2 and d0 = 0, d1 �= 0, then
(φγ (−e) − 1)Gsγ

kγ (e,0) is of orderγ logγ . Whend0 = 0,d1 �= 0,d ≥ 3,Gsγ

kγ (e,0)

is uniformly bounded, and the first term is of orderO(γ ). In any case, the second
term is uniformly bounded and gives (4) at first order inγ .

6. The third order when d0 �= 0. Whend0 �= 0, we can improve Theorem 1.

THEOREM 3. If d0 �= 0, then

vγ = d0 + γ d1 + γ 2d2,γ + γ 3d3 + O(γ 4),

whered3 = ∑
e∈V p3(e)e, and

p3(e) = ∑
e′,e′′∈V

Eµ

(
ξ(e)ξ(e′)ξ(e′′)

)
Je′Je′′ .

NOTE. Je is the first order of the expansion ofJ
γ
e , compare (3).
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PROOF. We just sketch the proof, since it is simple and very similar to the
proof of the second order in the cased0 �= 0. We can improve Lemma 2 as follows
(we only consider the caseδ < 1 andU = Z

d ):

ω̂
γ
δ,0(y, e) = p0(e) + γp1(e) + γ 2

∑
e′∈V

Eµ

(
ξ(e)ξ(e′)

)
J̃

δ,γ

e′ (y)

+ γ 3
∑

e′,e′′∈V

Eµ

(
ξ(e)ξ(e′)ξ(e′′)

)
J̃

δ,γ

e′,e′′(y) + O(γ 4),

whereJ
δ,γ
e (y) is given in Lemma 2, and where

J̃
δ,γ

e′,e′′(y)

= Eµ

(
Gωγ,y

U,δ (0, y)
(
δGωγ,y

δ (y + e′, y) − Gωγ,y

δ (y, y)
)

×(
δGωγ,y

δ (y + e′′, y) − Gωγ,y

δ (y, y)
))[

Eµ

(
Gωγ,y

δ (0, y)
)]−1

,

and where, as usual,|O(γ 4)| ≤ Cγ 4, for a constantC > 0, depending only onκ0,
d . In Lemma 3, we estimated the limit of̃J

δ,γ

e′ (y) whenδ goes to 1, byJ γ

e′ , up to or-

der 2 inγ . We can easily get an estimate ofJ̃
δ,γ

e′,e′′ at order 1 inγ , simply by expand-

ing the termsGωγ,y
(y + e′, y) − Gωγ,y

(y, y) andGωγ,y
(y + e′′, y) − Gωγ,y

(y, y)

at the pointGp0(y + e′, y)−Gp0(y, y) andGp0(y + e′′, y)−Gp0(y, y), and using
the transformation of step 2 to bound the rest.�
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