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ANCHORED EXPANSION, PERCOLATION AND SPEED

BY DAYUE CHEN1 AND YUVAL PERES2

WITH AN APPENDIX BY GÁBOR PETE3

Peking University and University of California, Berkeley

Benjamini, Lyons and Schramm [Random Walks and Discrete Potential
Theory (1999) 56–84] considered properties of an infinite graphG, and the
simple random walk on it, that are preserved by random perturbations. In
this paper we solve several problems raised by those authors. The anchored
expansion constant is a variant of the Cheeger constant; its positivity implies
positive lower speed for the simple random walk, as shown by Virág
[Geom. Funct. Anal. 10 (2000) 1588–1605]. We prove that ifG has a
positive anchored expansion constant, then so does every infinite cluster of
independent percolation with parameterp sufficiently close to 1; a better
estimate for the parametersp where this holds is in the Appendix. We also
show that positivity of the anchored expansion constant is preserved under a
random stretch if and only if the stretching law has an exponential tail. We
then study a simple random walk in the infinite percolation cluster in Cayley
graphs of certain amenable groups known as “lamplighter groups.” We prove
that zero speed for a random walk on a lamplighter group implies zero
speed for random walk on an infinite cluster, for any supercritical percolation
parameterp. Forp large enough, we also establish the converse.

1. Introduction. Grimmett, Kesten and Zhang (1993) showed that a simple
random walk on the infinite cluster of supercritical Bernoulli percolation inZd is
transient ford ≥ 3; in other words, in Euclidean lattices, transience is preserved
when the whole lattice is replaced by an infinite percolation cluster. Benjamini,
Lyons and Schramm (1999), abbreviated as BLS (1999) hereafter, initiated a
systematic study of the properties of a transitive graphG that are preserved
under random perturbations such as passing fromG to an infinite percolation
cluster. They conjectured that positivity of the speed for a simple random walk
is preserved, and proved this for nonamenable Cayley graphs. Our results (see
Theorems 1.5 and 1.6) lend further support to this conjecture.

We first consider the stability of a related geometric quantity. Denote byV (G)

andE(G), respectively, the sets of vertices and edges of an infinite graphG. For
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S ⊂ V (G), denote by|S| the cardinality ofS and by∂S = ∂GS the set of edges that
have one end inS and the other inSc. We say thatS is connected if the induced
subgraph onS is connected. Fixo ∈ V (G). Theanchored expansion constant of G,

ı∗E(G) := lim
n→∞ inf

{ |∂S|
|S| :o ∈ S ⊂ V (G), S is connected,n ≤ |S| < ∞

}
was defined in BLS (1999). The quantityı∗E(G) does not depend on the choice of
the basepointo. It is related to the isoperimetric constant

ıE(G) := inf
{ |∂S|

|S| :S ⊂ V (G), S is connected, 1≤ |S| < ∞
}
,

but as we shall see,ı∗E(·) is more robust. BLS (1999) asked if the positivity
of ı∗E(G) is preserved whenG undergoes a random perturbation.

In p-Bernoulli bond percolation in G, each edge ofG is independently
declaredopen with probabilityp andclosed with probability 1− p. Thus a bond
percolationω is a random subset ofE(G). We usually identify the percolationω
with the subgraph ofG consisting of all open edges and their end-vertices.
A connected component of this subgraph is called anopen cluster, or simply a
cluster. The probability that there is an infinite cluster is monotone inp. Let
pc = pc(G) = inf{p: there is an infinite cluster a.s.}. When p ∈ (pc,1), with
positive probability the open clusterH that containso is infinite; it is easy to see
thatıE(H) = 0 a.s.

Theorem 2 of Benjamini and Schramm (1996) states thatpc(G) ≤ 1/(ıE(G) +
1), but their proof yields the stronger inequalitypc(G) ≤ 1/(ı∗E(G) + 1).

THEOREM1.1. Consider p-Bernoulli percolation on a graph G with ı∗E(G) >

0. If p < 1 is sufficiently close to 1, then almost surely on the event that the open
cluster H containing o is infinite, we have ı∗E(H) > 0.

Our proof of Theorem 1.1, given in the next section, shows the conclusion
holds for all p > 1 − h/(1 + h)1+1/h, whereh = ı∗E(G). A refinement of the
argument, due to Gábor Pete (see the Appendix) shows the conclusion holds for
all p > 1/(ı∗E(G) + 1). The Appendix also contains the analog of Theorem 1.1 for
site percolation.

Next, let G be an infinite graph of bounded degree and pick a probability
distributionν on the positive integers. Replace each edgee ∈ E(G) by a path that
consists ofLe new edges, where the random variables{Le}e∈E(G) are independent
with law ν. Let Gν denote the random graph obtained in this way. We callGν a
random stretch of G. If the support ofν is unbounded, thenıE(Gν) = 0 a.s. Say
thatν has anexponential tail if ν[�,∞) < e−ε� for someε > 0 and all sufficiently
large�.

THEOREM 1.2. Suppose that G is an infinite graph of bounded degree and
ı∗E(G) > 0. If ν has an exponential tail, then ı∗E(Gν) > 0 a.s.
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On the other hand, ifν has a tail that decays slower than exponentially, then
taking the binary tree asG, we haveı∗E(G) > 0 yetı∗E(Gν) = 0 a.s. See Remark 2.2
in the next section.

By a Galton–Watson tree we mean a family tree of a Galton–Watson process.

COROLLARY 1.3. For a supercritical Galton–Watson tree T, given nonextinc-
tion, we have ı∗E(T) > 0 a.s.

Theorem 1.2 and Corollary 1.3 answer Questions 6.3 and 6.4 of BLS (1999),
while Theorem 1.1 partially answers Question 6.5 of the same paper.

The importance of anchored expansion is exhibited by the following theorem,
conjectured in BLS [(1999), Conjecture 6.2]. For a vertexx, denote by|x| = |x|G
the distance (the least number of edges on a path) fromx to the basepointo in G.

THEOREM 1.4 [Virág (2000)]. Let G be a bounded degree graph with
ı∗E(G) > 0. Then the simple random walk {Xn} in G, started at o, satisfies
lim infn→∞ |Xn|/n > 0 a.s. and there exists C > 0 such that P[Xn = o] ≤
exp(−Cn1/3) for all n ≥ 1.

Earlier, Thomassen (1992) showed that a condition weaker thanı∗E(G) > 0
suffices for transience of the random walk{Xn}. As noted in Virág (2000),
Theorem 1.4, in conjunction with Corollary 1.3, implies that the speed of simple
random walk on supercritical Galton–Watson trees is positive, a result first proved
in Lyons, Pemantle and Peres (1995). Other applications of anchored expansion
are in Häggström, Schonmann and Steif (2000).

In Section 3 we address another problem in BLS (1999) concerning thespeed
limn

|Xn|
n

of a random walk{Xn}. Consider againp-Bernoulli bond percolation
in G with parameterp > pc(G). Theorem 1.3 of BLS (1999) states that if the
Cayley graphG is nonamenable [i.e.,ıE(G) > 0], then a simple random walk in
an infinite cluster of Bernoulli percolation onG has positive speed. On the other
hand, if a graphG has subexponential growth, that is, if lim sup|{x ∈ V (G) : |x| ≤
n}|1/n = 1, then a simple random walk onG (and on any subgraph) has zero speed
[Varopoulos (1985)]. It is therefore natural to study, as suggested in BLS (1999),
a simple random walk in the infinite cluster of an amenable Cayley graph with
exponential growth.

The lamplighter groupsGd are amenable groups with exponential growth,
introduced by Kaimanovich and Vershik (1983). The corresponding Cayley
graphsGd (for the standard generators) can be described as follows. A vertex
of Gd can be identified as(m,η) ∈ Zd ×{finite subsets ofZd}. Heuristically,Zd is
the set of lamps,η is the set of lamps which are on, andm is the position of the
lamplighter, or “marker.” In each step, either the lamplighter switches the current
lamp (from on to off, or from off to on) or moves to one of the neighboring sites
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in Zd . Each vertex inGd has degree 2d + 1; one edge corresponds to flipping the
state of the lamp at locationm, and the other 2d edges correspond to moving the
marker. For example, ifd = 1, the neighbors of(m,η) are(m + 1, η), (m − 1, η)

and(m,η�{m}), whereη�{m} is η \ {m} if m ∈ η, and isη ∪ {m} if m /∈ η. For a
more detailed description see Lyons, Pemantle and Peres (1996). Kaimanovich and
Vershik (1983) showed that simple random walk inGd has speed zero ford = 1,2
and has positive speed ford ≥ 3.

We now study simple random walk{Xn} in the unique infinite cluster of
p-Bernoulli bond percolation inGd . If x is a vertex in the open cluster
containingo, let |x|ω be the graph distance in this cluster fromx to o.

THEOREM 1.5. Let d ∈ {1,2}. Then the simple random walk in the infinite
cluster of Gd has zero speed, that is, limn

|Xn|ω
n

= 0 a.s. on the event that o is in
the infinite cluster.

THEOREM 1.6. Suppose that d ≥ 3. If p > pc(Z
d), then the simple random

walk in the infinite cluster of Bernoulli bond percolation in Gd has positive speed.

These results support Conjectures 1.4 and 1.5 of BLS (1999); they are extended
in Theorems 3.1 and 3.2.

2. Anchored expansion. The idea of the following lemma is from Kesten
(1982).

LEMMA 2.1. Let An = {S ⊂ V (G) :o ∈ S, S is connected, |∂S| = n}. If
ı∗E(G) > h > 0, then for all sufficiently large n,

|An| ≤ [�(h)]n,
where

�(h) = (1+ h)1+1/h/h.

PROOF. Considerp-Bernoulli bond percolation inG. Let H be the open
cluster containingo. ThenV (H) is the set of vertices which can be reached fromo

via open bonds. For anyS ∈ An, a spanning tree onS has|S|−1 edges. Also, note
that |∂S| ≥ h|S| if n = |∂S| is large enough. Therefore

P
(
V (H) = S

) ≥ p|S|−1(1− p)|∂S| ≥ pn/h−1(1− p)n,

whence

1≥ P
(
V (H) ∈ An

) = ∑
S∈An

P
(
V (H) = S

) ≥ |An|pn/h−1(1− p)n.
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Thus, ifn is sufficiently large,

|An| ≤
(

1

p

)n/h−1( 1

1− p

)n

holds for anyp ∈ (0,1). Lettingp = 1/(1+ h) concludes the proof.�

PROOF OFTHEOREM 1.1. LetH be the open cluster containingo. Denote

An(H) = {S ⊂ V (H) :o ∈ S, S is connected inH and|∂GS| = n}.
Suppose thatS ∈ An(H). ThenS is also a connected subset ofV (G); we shall
use a subscript to indicate the graph considered. ForS ∈ An, each edge in∂GS

is independently open with probabilityp. By the large deviation principle [see
Dembo and Zeitouni (1998), Theorem 2.1.14],

P

(
S ∈ An(H),

|∂HS|
|∂GS| ≤ α

)
≤ e−nIp(α),(2.1)

where the rate functionIp(α) = α log α
p

+ (1 − α) log 1−α
1−p

satisfiesIp(α) > 0 for
α < p. Recall �(h) defined in Lemma 2.1. Whenp > 1 − 1/�(h), we have
Ip(0) = − log(1 − p) > log�(h), so there existsα0 > 0 such thatIp(α0) >

log�(h). For sufficiently largen,

P

(
∃S ∈ An(H) :

|∂HS|
|∂GS| ≤ α0

)
≤ |An|e−nIp(α0) ≤ �(h)ne−nIp(α0),

which is summable inn. By the Borel–Cantelli lemma,

lim
n→∞ inf

{ |∂HS|
|∂GS| :o ∈ S ⊂ V (H), S is connected,n ≤ |∂GS|

}
≥ α0 a.s.,

whence

lim
n→∞ inf

{ |∂HS|
|S| :o ∈ S ⊂ V (H),

S is connected,n ≤ |S| < ∞
}

≥ α0ı
∗
E(G) a.s. �

PROOF OF THEOREM 1.2. Let L1,L2, . . . , Ln be i.i.d. random variables
with distributionν. Sinceν has an exponential tail, there is an increasing convex
rate functionI (·) such thatI (c) > 0 for c > ELi and P (

∑n
i=1 Li > cn) ≤

exp(−nI (c)) for all n [see Dembo and Zeitouni (1998), Theorem 2.2.3, page 27].
Choosec large enough such thatI (c) > log�(h). For anyS ∈ An, let Edge(S)

be the set of edges with at least one end inS. Note that|∂S| ≤ |Edge(S)| ≤ D|S|,
whereD is the maximal degree inG. Thus forS ∈ An,

P

(∑
e∈Edge(S) Le

D|S| > c

)
≤ P

(∑D|S|
i=1 Li

D|S| > c

)
≤ exp

(−D|S|I (c)
) ≤ exp

(−|∂S|I (c)
)
.
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Therefore for alln,

P

(
∃S ∈ An :

∑
e∈Edge(S) Le

D|S| > c

)
≤ |An|e−I (c)n,

which is summable. By the Borel–Cantelli lemma, with probability 1, for any
sequence of sets{Sn} such thatSn ∈ An for eachn, we have

lim sup
n→∞

∑
e∈Edge(Sn) Le

D|Sn| ≤ c a.s.

Therefore

lim
n→∞ inf

{ |∂S|∑
e∈Edge(S) Le

:o ∈ S ⊂ V (G),

S is connected,n ≤ |∂S|
}

≥ h

Dc
a.s.

SinceGν is obtained fromG by adding new vertices,V (G) can be embedded
into V (Gν) as a subset. In particular, we can choose the same basepointo in Gν

and inG. ForS connected inG such thato ∈ S ⊂ V (G), there is a uniquemaximal
connected̃S ⊂ V (Gν) such that̃S ∩ V (G) = S; it satisfies|S̃| ≤ ∑

e∈Edge(S) Le. In
computingı∗E(Gν) it suffices to consider only such maximalS̃ ’s, so we conclude
thatı∗E(Gν) ≥ h/dc > 0. �

REMARK 2.2. Suppose that the distributionν of L does not have an
exponential tail. Then for anyc > 0 and anyε > 0, we haveP (

∑n
i=1 Li ≥ cn) ≥

P (L1 ≥ cn) ≥ e−εn for infinitely manyn’s, where{Li} are i.i.d. with lawν. Let G
be a binary tree with the rooto as the basepoint. Pick a collection of 2n pairwise
disjoint paths from leveln to level 2n:

P

(
along at least one of these 2n paths

n∑
i=1

Li ≥ cn

)

≥ 1− (1− e−εn)2n ≥ 1− exp(−e−εn2n) → 1.

With probability very close to 1 (depending onn), there is a path from leveln to 2n
along which

∑n
i=1 Li ≥ cn. Take such a path and extend it to the rooto. Let S be

the set of vertices in the extended path from the rooto to level 2n. Then

|∂S|∑
e∈Edge(S) Le

≤ 2n + 1

cn
≈ 2

c
.

Sincec can be arbitrarily large,ı∗E(Gν) = 0 a.s. This shows that the exponential
tail condition is necessary to ensure the positivity ofı∗E(Gν).

PROOF OF COROLLARY 1.3. A Galton–Watson process is uniquely deter-
mined by the offspring distribution{p0,p1,p2, . . . }. Let T be a Galton–Watson
tree ando its root.
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Case (i) p0 = p1 = 0. For any finiteS ⊂ V (T), |S| ≤ |∂S|(1
2 + 1

22 + · · ·) ≤
|∂S|. Soı∗E(T) ≥ ıE(T) ≥ 1.

Case (ii) p0 = 0, p1 > 0. In this case the Galton–Watson treeT can be
viewed as random stretchGν of another Galton–Watson treeG, where G is
generated according top′

k = pk/(1− p1), k = 2,3, . . . , p′
0 = p′

1 = 0 andν is the
geometric distribution with parameterp1. By Theorem 1.2,ı∗E(T) = ı∗E(Gν) > 0
a.s.

Case (iii) p0 > 0. Let f (s) = ∑∞
i=0 pks

k and letq < 1 be the extinction
probability, so thatq = f (q). An infinite Galton–Watson tree can be constructed
as follows; see Lyons (1992). Begin with the root which is declared to beopen.
Add to the root a random number of edges according to probability distribution
P (Y = k) = pk(1− qk)/(1− q). Declare each vertexopen with probability 1− q

andclosed with probabilityq, independently of each other. If all the newly added
vertices are closed, discard the entire assignment and reassign open/closed all over
again. For each open vertex, repeat the same procedure. For each closed vertex,
attach to it independently a Galton–Watson tree conditioned to be finite.

The subtreeT1 consisting of open vertices and edges connecting them is a
Galton–Watson tree without leaves, andı∗E(T1) > 0 according to case (ii). For each
open vertexx of G, label its offspring from 1 toYx , whereYx is a random variable
with P (Yx = k) = pk(1− qk)/(1− q). Along the sequence ofYx vertices, each is
open with probability 1− q and closed with probabilityq (independently of each
other if we ignore the constraint that there is at least one open vertex). The number
of closed vertices before the first open vertex is stochastically bounded above by
a random variable with a geometric distribution. The same statement holds for the
number of closed vertices after the last open vertex, and for the number of closed
vertices between thekth open vertex and the(k + 1)st open vertex.

Let L1 be the total number of vertices of finite Galton–Watson trees attached
to the closed vertices before the second open vertex (if it ever exists). Similarly,
let L2 be the total number of vertices of finite Galton–Watson trees attached to
the closed vertices between the second open vertex and the third open vertex (if it
ever exists). And so on, until the last open vertex among the offspring ofx. The
variablesL2,L3, . . . are i.i.d.;L1 is independent of otherLi ’s but has a different
distribution. Thus we may identify the Galton–Watson treeT as a random stretch
of T1 in computingı∗E(T). Although there are two different distributions in the
random stretch, the same argument works since both have exponential tails.

All Li ’s are stochastically dominated by
∑W1+W2

j=1 Uj , whereW1,W2,U1,U2, . . .

are random variables, independent of each other,P (Wi = k) = qk(1 − q),
k = 0,1,2, . . . , andUj is the size of a Galton–Watson tree conditioned on extinc-

tion. Let ν be the probability distribution of
∑W1+W2

j=1 Uj . By the next lemma we
conclude thatν has an exponential tail. Applying Theorem 1.2 completes the proof.

�
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LEMMA 2.3 [Harris (1963), Theorem 13.1].For a supercritical Galton–
Watson process, the size of a Galton–Watson tree conditioned on extinction has
a distribution with an exponential tail.

3. Speed of random walk. We start with a generalization of the lamplighter
groups defined in the Introduction.

Let G be the Cayley graph of a finitely generated infinite groupG with a fixed,
symmetric (i.e., closed under inversion) set of generators. We identify vertices of
G with elements of the groupG. Two pointsx andy of G are neighbors ifxy−1 is
a generator.

Let F be the Cayley graph of a finite groupF generated by a fixed symmetric
set of generators.

By
∑

x∈G F we denote the set of elements ofFG such that at most finitely many
of the coordinates are not the identity element ofF. An element of

∑
x∈G F is called

a configuration and is denoted byη = {η(x) :x ∈ V (G)}, whereη(x) ∈ V (F) is
the x-coordinate ofη. We will sometimes writex ∈ G as an abbreviation for
x ∈ V (G).

Define a new graphW = G �
∑

x∈G F as a semidirect product ofG with
the direct sum of copies ofF indexed byG. Vertices ofW are identified as
{(m,η) :m ∈ V (G), η ∈ ∑

x∈G F}. Two vertices,(m,η) and(m1, ξ), are neighbors
if either:

(i) m = m1, η(x) = ξ(x) for all x = m, andη(m) is a neighbor ofξ(m) in F,
or

(ii) η = ξ , andm,m1 are neighbors inG.

In particular, if F = {0,1} is the group of two elements andG is Zd , then
G�

∑
x∈G F is exactlyGd described before Theorem 1.5. Also note that the above

definition applies to the case of an arbitrary graphG and a finite groupF, as well.
From now onG will be an infinite amenable Cayley graph. Then the graph

G �
∑

x∈G F is amenable and grows exponentially. By Burton and Keane (1989),
there is only one infinite cluster when percolation occurs.

We say thatG is recurrent if the simple random walk inG is recurrent;
this is equivalent toG being a finite extension ofZ1 or Z2 [see, e.g., Woess
(2000), Theorem 3.24, page 36]. The following theorem is a generalization of
Theorem 1.5.

THEOREM 3.1. Suppose that G is a recurrent Cayley graph and that F is the
Cayley graph of a finite group. Then the simple random walk in the infinite cluster
of supercritical Bernoulli bond percolation in W = G �

∑
x∈G F has zero speed

a.s.

On the other hand, ifG is a transient Cayley graph of polynomial or exponential
growth, then forp sufficiently close to 1, the infinite cluster ofp-Bernoulli bond
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percolation inG is transient. ForG = Zd, d ≥ 3 and anyp > pc(G), this is due
to Grimmett, Kesten and Zhang (1993); for other Cayley graphs of polynomial
growth it is due to Benjamini and Schramm (1998); see also Theorem 9 in Angel,
Benjamini, Berger and Peres (2004); for Cayley graphs of exponential growth it is
Theorem 1.8 of BLS (1999). The following theorem generalizes our Theorem 1.6.

THEOREM 3.2. Let 0 < p < 1.Suppose that the infinite cluster of p-Bernoulli
bond percolation in the Cayley graph G is transient and that F is the Cayley graph
of a finite group. Then the simple random walk in the infinite cluster of p-Bernoulli
bond percolation in W = G �

∑
x∈G F has positive speed a.s.

Fix a vertexo of W = G �
∑

x∈G F as the basepoint, for example, the vertex
corresponding to the unit element of the group. Let‖x‖ be the distance between
the vertexx and the basepointo in W. Certainly,‖x‖ ≤ |x|ω. In the other direction,
Lemma 4.6 of BLS (1999) states that if limn ‖Xn‖/n = 0, then limn |Xn|ω/n = 0.
For this reason we shall consider‖x‖ instead of|x|ω.

It will be useful to considerdelayed simple random walk Z = Zω onω, defined
as follows. LetZ(0) be some fixed vertex ofW = G �

∑
x∈G F. Forn ≥ 0, given

〈Z(0), . . . ,Z(n)〉 andω, let Z′(n + 1) be a uniform random choice fromZ(n)

and its neighbors inW. SetZ(n + 1) := Z′(n + 1) if the edge[Z(n),Z′(n + 1)]
belongs toω; otherwise, letZ(n + 1) := Z(n). By Lemma 4.2 of BLS (1999), the
speed limn→∞ ‖Z(n)‖/n exists and is constant a.s.

LEMMA 3.3.

lim
n→∞

‖Xn‖
n

≥ lim
n→∞

‖Z(n)‖
n

≥ c lim
n→∞

‖Xn‖
n

a.s.,(3.1)

where c > 0 is a deterministic constant.

PROOF. A sample path ofZ is obtained from a sample path ofX by
repeatingXn a random number of times, with a geometric distribution. The
parameter of the geometric distribution is in[1/(D + 1),D/(D + 1)], whereD

is the degree of a vertex ofW. Therefore (3.1) holds.�

Z will always denote the delayed random walk in a clusterω in W. Denote
by Pω the law of Z for fixed ω, and letEω be the corresponding expectation
operator. Denote byE the average over realizations ofω. Write Z(n) = (mn,ηn)

and call the first componentmn the marker. By Lemma 3.3 and the discussion
preceding it, it is enough to determine if limn→∞ ‖Z(n)‖/n is positive or not.

Our first goal is to prove Theorem 3.1. A key fact is that the motion of the
marker is recurrent in the following sense.
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LEMMA 3.4. Suppose that G is a recurrent Cayley graph and that F is the
Cayley graph of a finite group. Let Z be as above and write Z(n) = (mn,ηn).
Then

EPω(mn = m0 for some n ≥ 1) = 1.(3.2)

PROOF. Introduce the stopping times

τN = min{n ≥ 0; |mn|G = N},
τ+
o = min{n ≥ 1;mn = o}.

Then (3.2) can be rewritten as

lim
N→∞ EPω(τN < τ+

o |m0 = o) = 0.

Let GN = {x ∈ G : |x|G ≤ N}. There may be several disjoint clusters in a
realization ofp-Bernoulli bond percolation in the finite graphGN �

∑
x∈GN

F, and
each cluster may have several vertices with the marker ato. Consider a clusterH
with at least one vertex whose marker is ato. If there arek vertices inH with the
marker ato, “glue” thesek vertices together as one vertex denoted by�. LetH′ be
the modified graph of the clusterH. Coupling the delayed simple random walks in
V (H) and inV (H′), we find that

1

k

∑
x∈V (H),m(x)=o

Pω

(
τN < τ+

o |Z(0) = x
) = Pω

(
τ̃N < τ̃+

o |Z′(0) = �
)
,(3.3)

where

τ̃N = min{n ≥ 0; |mn|G = N} and τ̃+
o = min{n ≥ 1;mn = o}

are the stopping times for the delayed simple random walkZ′ in V (H′).
The delayed simple random walkZ′ in V (H′) is a reversible Markov chain with

respect to the measureπ whereπ(�) = k, andπ(x) = 1 for all otherx ∈ V (H′),
x = �. LetD denote the degree of a vertex inW = G �

∑
x∈G F, and letF be the

class of functions with the following properties:

f :V (H) ∪ {�} → [0,1], f (x) =
{

0, if x = � or m(x) = o,

1, if |m(x)|G = N .
(3.4)

Applying the Dirichlet principle [see Liggett (1985), page 99], we have that

2π(�)Pω

(
τ̃N < τ̃+

o |Z(0) = �
)

= inf
f ∈F

∑
u∈V (H′)

∑
[u,v]∈E(H′)

π(u)p(u, v)
(
f (u) − f (v)

)2

(3.5)
= inf

f ∈F

∑
[u,v]∈E(H′)

2

D + 1

(
f (u) − f (v)

)2

= inf
f ∈F

∑
[u,v]∈E(H)

2

D + 1

(
f (u) − f (v)

)2
.
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In particular, let{Yn} be the simple random walk inG and

σN = min{n ≥ 0; |Yn|G = N},
σ+

o = min{n ≥ 1;Yn = o},
ρ(m) = P (σN < σ+

o |Y0 = m).

Thenf (x) = ρ(m(x)) is in F . Plugging it into (3.5), in light of (3.3), we conclude
that ∑

x∈V (H)

m(x)=o

Pω

(
τN < τ+

o |Z(0) = x
) ≤ 1

D + 1

∑
[u,v]∈E(H)

(
ρ(m(u)) − ρ(m(v))

)2
.

Note thatPω(τN < τ+
o |Z(0) = x) = 0 if m(x) = o and there is noy in the cluster

such that|m(y)|G = N . Summing over all disjoint clusters, we get∑
x : m(x)=o

Pω

(
τN < τ+

o |Z(0) = x
)

= ∑
H

∑
x∈V (H),m(x)=o

Pω

(
τN < τ+

o |Z(0) = x
)

≤ |F||GN |

D + 1

∑
[u,v]∈E(GN)

(
ρ(u) − ρ(v)

)2
.

Averaging over realizations of percolation inGN �
∑

x∈GN
F, we see that

EPω(τN < τ+
o |Z(0) = (o, η)) is independent ofη. There are|F||GN | vertices in

GN �
∑

x∈V (GN) F with the marker ato. Therefore,

|F||GN |EPω

(
τN < τ+

o |Z(0) = (o, η)
)

≤ |F||GN |

D + 1

∑
[u,v]∈E(GN)

(
ρ(u) − ρ(v)

)2
.

After cancellation,

EPω

(
τN < τ+

o |Z(0) = (o, η)
)

≤ 1

D + 1

∑
[u,v]∈E(GN)

(
ρ(u) − ρ(v)

)2

= 1

D + 1
P (σN < σ+

o |Y0 = o) → 0 asN → ∞,

since the simple random walk inG is recurrent. �

PROOF OFTHEOREM 3.1. LetZ be the delayed simple random walk in the
infinite cluster. By Lemma 3.3, it suffices to show that limn ‖Z(n)‖/n = 0 a.s.
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Let Rn = {m0,m1, . . . ,mn} ⊂ V (G) be the range of the marker up to timen.
Then

|Rn| = 1+
n−1∑
k=0

1{mk =mk+1,mk =mk+2,...,mk =mn}

(3.6)

≤ � +
n−�∑
k=0

1{mk =mk+1,mk =mk+2,...,mk =mk+�}

for any fixed integer�. As explained in Lyons and Schramm (1999), in the large
probability space where both the percolation and the walkZ are defined, the law
of the infinite clusterω as seen from the walkerZ(n) is stationary. Therefore{

1{mk =mk+1,mk =mk+2,...,mk =mk+�}; k = 0,1,2,3, . . .
}

is a stationary sequence in the large space. By (3.6) and the Birkhoff ergodic
theorem,

EEω lim sup
n

|Rn|
n

≤ EEω lim
n

1

n

n−�∑
k=0

1{mk =mk+1,mk =mk+2,...,mk =mk+�}

= EPω(m0 = m1,m0 = m2, . . . ,m0 = m�).

By Lemma 3.4, the right-hand side tends to 0 as� → ∞. Consequently, for a.e.ω
andZ,

lim
n

|Rn|
n

= 0.

Note thatRn is connected inV (G), and all sites inRn can be visited within at
most 2|Rn| steps using depth-first search along a spanning tree inRn. Thus inW,

‖Z(n)‖ ≤ |mn|G + 2|Rn| +
∑

x∈Rn

|ηn(x)|F ≤ (1+ 2+ |F|)|Rn|.

We conclude thatEEω lim supn→∞ ‖Z(n)‖/n = 0. �

Our next goal is to prove Theorem 3.2.

LEMMA 3.5. Suppose that the infinite cluster of p-Bernoulli bond percolation
on the Cayley graph G is transient. Let Z be the delayed random walk in the
infinite cluster of p-Bernoulli bond percolation on W = G �

∑
x∈G F and write

Z(n) = (mn,ηn). Then

EPω(mn = m0 for all n ≥ 1) > 0.



2990 D. CHEN AND Y. PERES

PROOF. We shall prove that

lim
N→∞ EPω(τN < τ+

o |m0 = o) > 0,(3.7)

whereτN andτ+
o are stopping times defined in the proof of Lemma 3.4.

Recall the finite graphsGN and GN �
∑

x∈GN
F defined in the proof of

Lemma 3.4. Vertices(m,η) of GN �
∑

x∈GN
F are classified into|F||GN | classes

according to the second componentη. For a fixed configurationη, denote by
GN(η) the subgraph induced by the class of vertices{(m,η);m ∈ V (GN)}.
Clearly, there is a graph isomorphism betweenGN(η) and GN for any η ∈∑

x∈GN
F. Let the cluster withinGN(η) containing(o, η) be

Co(η) = {(m,η); (m,η) ↔ (o, η) within GN(η)}.
Run a simple random walk{(Y η

j , η)}j≥0 in Co(η) starting from(o, η). RecallσN =
min{j ≥ 0; |Y η

j |G = N} andσ+
o = min{j ≥ 1;Y

η
j = o}. ThenP (σN < σ+

o |Y η
0 = o)

is decreasing inN . The hypothesis of the lemma (transience of the infinite cluster)
means that

lim
N→∞ EPω(σN < σ+

o |Y η
0 = o) > 0.(3.8)

There may be several disjoint clusters in a realization ofp-Bernoulli bond
percolation inGN �

∑
x∈GN

F and each cluster may have several vertices with
the marker ato. Take a cluster, sayH, and run the delayed simple random walkZ

in V (H). It follows from (3.3) and (3.5) that∑
x∈V (H),m(x)=o

Pω

(
τN < τ+

o |Z(0) = x
)

(3.9)
= inf

f ∈F

∑
[u,v]∈E(H)

1

dG + dF + 1

(
f (u) − f (v)

)2
,

whereF is the class of functions satisfying (3.4), anddG anddF are the degrees of
a vertex ofG andF, respectively. Notice that (3.9) is still valid even if there is no
vertexy ∈ H such that|m(y)|G = N . Summing over all disjoint clusters, we get∑

η

Pω

(
τN < τ+

o |Z(0) = (o, η)
)

= ∑
H

∑
(o,η)∈V (H)

Pω

(
τN < τ+

o |Z(0) = (o, η)
)

(3.10)

= inf
f ∈F

∑ 1

dG + dF + 1

(
f (u) − f (v)

)2
,

where the summation is over all open bonds[u, v] of GN �
∑

x∈GN
F. Every term

in (3.10) is nonnegative. Discarding those terms involving an open edge[u, v]
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whereu andv are in different classes (i.e., the markers ofu andv are the same),
we get the following inequality:

RHS of (3.10)≥ inf
f ∈F

∑
η

∑
[u,v]∈E(GN(η)),open

1

dG + dF + 1

(
f (u) − f (v)

)2

(3.11)
= dG + 1

dG + dF + 1

∑
η

Pω(σN < σ+
o |Y η

0 = o).

Combining (3.11) with (3.10), we conclude that for a.e. realizationω of the
Bernoulli bond percolation,∑

η

Pω

(
τN < τ+

o |Z(0) = (o, η)
) ≥ ∑

η

dG + 1

dG + dF + 1
Pω(σN < σ+

o |Y η
0 = o).(3.12)

Taking expectation over the Bernoulli bond percolationω, we find thatEPω(τN <

τ+
o |Z(0) = (o, η)) is independent ofη. It follows from (3.12) that

EPω

(
τN < τ+

o |Z(0) = (o, η)
) ≥ dG + 1

dG + dF + 1
EPω(σN < σ+

o |Y η
0 = o).

Taking the limit asN → ∞, inequality (3.7) then follows from (3.8).�

PROOF OFTHEOREM 3.2. The delayed simple random walkZ = Zω on the
infinite clusterω is a reversible Markov chain with respect to the uniform measure
onω. In conjunction with the stationarity ofZ in the big space, this gives

EPω(mi = mn,0≤ i ≤ n − 1) = EPω(mi = m0,1 ≤ i ≤ n).(3.13)

Define

ζ(k) =
{

1, if ηk = ηk−1, mi = mk for 0 ≤ i ≤ k − 2 and fori ≥ k + 1,

0, otherwise.

Then

Eωζ(k) = Pω(ηk = ηk−1 andmi = mk for 0 ≤ i ≤ k − 2 and fori ≥ k + 1)

can be written as a product of three terms:

Pω(mi = mk for all i ≥ k + 1|ηk = ηk−1 andmj = mk for 0 ≤ j ≤ k − 2)

× Pω(ηk = ηk−1|mj = mk−1 for 0 ≤ j ≤ k − 2)

× Pω(mj = mk−1 for j = 0,1,2, . . . , k − 2).

In the big probability space, the distribution of(Z,ω) is invariant under the shift
by Lemma 4.1 of BLS (1999). Taking the expectation over realizations ofω, then

EPω(mi = mk for all i ≥ k + 1|ηk = ηk−1 andmj = mk for 0 ≤ j ≤ k − 2)

= EPω(mi = m0 for all i ≥ 1).
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The last equality holds because when a light at locationmk is switched for the
first time at stepk, and then the marker moves away from that site, a regeneration
occurs: whilemi = mk , the walkerZ(·) is traveling in virgin territory that was not
explored prior to timek.

Moreover,

EPω(ηk = ηk−1|mj = mk−1 for 0 ≤ j ≤ k − 2) ≥ pdF

dG + dF + 1
;

and using reversibility (3.13),

EPω(mi = mk−1 for 0 ≤ i ≤ k − 2) ≥ EPω(mi = m0 for all i ≥ 1).

Therefore

EEωζ(k) ≥ pdF

dG + dF + 1

(
EPω(mi = m0 for all i ≥ 1)

)2
.

Finally, because‖Z(n)‖ ≥ ∑n
k=1 ζ(k),

EEω lim
n

‖Z(n)‖
n

= lim
n

EEω

‖Z(n)‖
n

≥ lim
n

EEω

1

n

n∑
k=1

ζ(k) ≥ lim
n

1

n

n∑
k=1

EEωζ(k) > 0.

Since limn ‖Z(n)‖/n exists and is a constant a.s., it must be positive, and we are
done. �

APPENDIX

The goal of this Appendix is to prove the following sharpening of Theorem 1.1.

THEOREM A.1. Consider p-Bernoulli bond percolation on a graph G with
ı∗E(G) > 0. If p > 1/(1 + ı∗E(G)), then almost surely on the event that the open
cluster H containing o is infinite, it satisfies ı∗E(H) > 0.

PROOF. We will use the notation and some of the ideas of the proof of
Theorem 1.1. First note that inp-Bernoulli bond percolation, for any 0< α < p,
we can estimate the conditional probability

P

( |∂HS|
|∂GS| ≤ α|S ∈ An(H)

)
= P

(
Binom(n,p) ≤ αn

) ≤ e−nIp(α),(A.1)

where the rate functionIp(·) is continuous, and

− log(1− p) = Ip(0) > Ip(α) > 0 for 0< α < p.
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Therefore,

P

(
∃S ∈ An(H) :

|∂HS|
|∂GS| ≤ α

)

≤ ∑
S∈An

P

(
S ∈ An(H),

|∂HS|
|∂GS| ≤ α

)

≤ ∑
S∈An

e−nIp(α)P
(
S ∈ An(H)

)
(A.2)

= en(Ip(0)−Ip(α))
∑

S∈An

(1− p)nP
(
S ∈ An(H)

)
= en(Ip(0)−Ip(α))P

(|V (H)| < ∞, |∂GV (H)| = n
)
,

where the last step used the identity(1 − p)nP (S ∈ An(H)) = P (H = S) for
S ∈ An.

To estimateP (|V (H)| < ∞, |∂GV (H)| = n), we use the method of Theorem 2
of Benjamini and Schramm (1996); see also Theorem 6.18 in Lyons and Peres
(2004). Let us briefly recall that argument. Chooseh < ı∗E(G) such thatp > 1

1+h
.

Then there existsnh < ∞ such that|∂GS|/|S| > h for all S ∈ An with n > nh. Fix
an ordering of the edgesE(G) = (e1, e2, . . .) such thato is an endpoint ofe1, and
take two i.i.d. sequences{Yi} and{Y ′

i } of Bernoulli(p) variables. Build recursively
the percolation clusterH of o, together with its boundary∂GV (H), using the
sequence{Yi}, as follows. At step zero, we start withH0 consisting just ofo.
In stepj ≥ 1, consider the first unexamined edgeenj

in the ordering above that
has one endpoint inV (Hj−1), and one endpoint in its complement. (If there is no
such edge, the process stops and we haveH = Hj−1.) Let Hj beHj−1 with enj

added ifYj = 1, andHj = Hj−1 if Yj = 0. If the process continues indefinitely,
then the increasing union of all theHj is the infinite clusterH. Having finished
with growing the finite or infinite clusterH, build the remainder of the percolation
configuration using the sequence{Y ′

i }.
If the process terminates afterN steps with a finite clusterH = HN that hasv

vertices andn closed boundary edges, thenN ≥ n + v − 1 and
∑N

j=1Yj = v − 1.
Forn > nh we must haven > vh, whencev − 1 < N/(1+ h). It follows that

{|V (H)| < ∞, |∂GV (H)| = n} ⊂
∞⋃

N=n

BN,

where

BN =
{

N∑
j=1

Yj ≤ N

1+ h

}
.



2994 D. CHEN AND Y. PERES

By the large deviation principle,P (BN) ≤ e−Nδp , whereδp = Ip( 1
1+h

) > 0, since

p > 1
1+h

. Thus for some constantCp < ∞,

P
(|V (H)| < ∞, |∂GV (H)| = n

) ≤
∞∑

N=n

e−Nδp ≤ Cpe−nδp .(A.3)

Takingα > 0 in (A.2) so small thatIp(0) − Ip(α) < δp, we deduce that (A.2)
is summable inn. An application of the Borel–Cantelli lemma, just as at the end
of the proof of Theorem 1.1, gives that

ı∗E(H) ≥ αı∗E(G) > 0

almost surely on the event thatH is infinite. �

For site percolation onG, the vertex version of anchored expansion is the
relevant notion. Let∂V S denote the set of vertices inSc having a neighbor inS,
and suppose that

ı∗V (G) := lim
n→∞ inf

{ |∂V S|
|S| :o ∈ S ⊂ V (G), S is connected,n ≤ |S| < ∞

}
> 0.

Then the corresponding form of (A.2) needs no modification, while the analog
of (A.3) can be proved using an ordering of the verticesV (G). Hence, the
following result holds:

THEOREM A.2. Consider p-Bernoulli site percolation on a graph G with
ı∗V (G) > 0. If p > 1/(ı∗V (G) + 1), then almost surely on the event that the open
cluster H containing o is infinite, it satisfies ı∗V (H) > 0.

These results are sharp for the(b +1)-regular treesTb, for whichpc(Tb) = 1/b

for both bond and site percolations, whileı∗E(Tb) = ı∗V (Tb) = b − 1.
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