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WEAK POINCARE INEQUALITIES ON DOMAINS
DEFINED BY BROWNIAN ROUGH PATHS!

BY SHIGEKI AIDA
Osaka University

We prove weak Poincaré inequalities on domains which are inverse
images of open sets in Wiener spaces under continuous functions of Brownian
rough paths. The result is applicable to Dirichlet forms on loop groups and
connected open subsets of path spaces over compact Riemannian manifolds.

1. Introduction. Let w(z) be thed-dimensional standard Brownian motion
starting at the origin. LeW(s, 7)1 = w(z) — w(s). Also let us consider a two
parameter process with valuesltf ® R? defined by a Stratonovich stochastic
integral

t
1.1) W(s,t)2:/ (W) —w(s)) ® dw(u),

where 0< s <t <1 and® denotes a tensor product. Lyons [17] proved that
solutions of stochastic differential equations (SDEs) are continuous functions
of the Brownian rough patiw(s, ) = (W(s, )1, W(s, 1)2). We give a precise
definition of the Brownian rough path in the next section; see also [18] and [15].
The discontinuity of solutions of SDEs in the uniform convergence topology of
w causes difficulties in analysis on Wiener spaces. However, the Lyons results
provide a good topology on Wiener space and may be applied to problems
which have difficulties because of the discontinuity of Wiener functionals; for
example, see [16]. The present paper is an attempt to apply the Lyons continuity
theorem to problems in infinite-dimensional analysis and we prove weak Poincaré
inequalities (WPIs) on some “connected” domain on a Wiener space defined by
a continuous function of Brownian rough paths. The WPI (actually, equivalent
uniform positivity improving property of the corresponding diffusion semigroup)
on a connected domain was first proved by Kusuoka [14] and led to abundant
research on analysis on Wiener space and loop space. The WPI itself was
introduced in [21] and the equivalence to uniform positivity improving property
of the semigroup was proved therein. Aida [4] proved that WPI holds on a domain
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which is a “connected union” of domains on which WPI hold with respect to the
natural Dirichlet forms. This proves that a WPI holds on a connected open set on
a Wiener space with respect to the natural Dirichlet form because the Poincaré
inequality (PI) [actually, stronger logéhmic Sobolev inguality (LSI)] holds on
a ball [1, 4, 6]. Note that the inverse image of an open set by a solution of SDE is
not an open set in the usual topology and the above argument is not applicable to
such a set. However, by the Lyons theorem, by replacing the usual ball with a finer
ball in the sense of rough path, we may apply the above argument. This is the main
idea of this paper.

The structure of this paper is as follows. In Section 2, we introduce notation and
state WPIs on our unit séf, , defined by Brownian rough pati, which plays
the role of a ball in the usual continuous category. The domain is a honconvex
set which is defined by a quadratic Wiener functional, that is, Lévy’s stochastic
area in the Wiener space. However, comparing to convex case, it seems that useful
criteria for the validity of LSI, Pl and WPI on unbounded nonconvex domains are
not known. In Section 3, we prove a general result, Lemma 3.1, which enables us
to prove WPI on nhonconvex domains. This is a generalization of the fact that Pl is
stable when taking the product of the state spaces. Using this result, we prove WPI
onU, ; by an induction on the dimension of the Wiener space. We use the validity
of LSl on a convex domain (Lemma 3.4) as the first step of the induction and, next,
we use Lemma 3.1 to prove general cases. In Section 4, we prove the main theorem
and WPI on a domain on path spaces and a loop group. Note that key results in [1]
for the proof of the weak spectral gap property, which is equivalent to the validity
of WPI on loop spaces, are the existence of a good tubular neighborhood of a
submanifold (which is obtained by a solution of SDE) and a good retract map.
We need to show that the tubular neighborhood can be represented as a connected
union of our finer domains to prove a WPI on general loop spaces over compact
Riemannian manifolds. We will study the general cases and a concrete estimate on
a functioné& () in WPI in separate papers.

2. Preliminaries and notation. Let 7o(R9) = R? @ (R? @ RY). Let C(A,
T>(R%)) be a space of continuous functions on a simpex {(s, 1) e R2|0 < s <
t <1} with values inT>(R¢). Letg > 1. Forn: A — R, [In|l, is defined by

n—1 1/q
(2.1) Inllg = SUD[ > I, ti+1)|q} ,
D =0
whereD ={0=1 <1t1 <--- <t, =1} runs all partitions of[0, 1]. Let ¢; =
to,...,1,...,0). For n=mc, 1,0, )2 € C(A,Tz(Rd)), setnyi(s,t) =
(s, D1, €), m2,k,1(s, 1) = (n(s, )2, ex ® e;) and define

(2.2) InC.)1llg = maxiinG, )uillg.

2.3 o )2lle = .
(2:3) InC.)2llg = max Int.)zklly
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Let p be a positive number such that2p < 3 and define g-variation norm
10l cr(a.Tray TOr n(, ) € C(A, T2(RY)) by

(2.4) 7€ Iera, raray = MaxXinll . m2ll 2},

whereC? (A, T»(R%)) stands for the subset @f(A, T»(R?)) that consists of all
elements) with [[nllcpa . 7,rdy) < 00. Subsequently we denote [lcra . 7,rd))

by || - |lcr for simplicity. Also | - |, || - || stand for the usual Euclidean norm
unless otherwise indicated. We denoteW§ (= Wy x --- x W) the set of all
continuous pathsv(-) on [0, 1] with values inR¢ starting at O with the Wiener
measuregu, whereW; denotes the one-dimensional Wiener space Hebe the
Cameron—-Martin subspace. Hoe H4, leth(s,t)1 = h(t) — h(s) andh(s, 1)z =
Ji(h@) —h(s)) ® dh(u). Thenh(-,-) = (h(-, )1, h(,, -)2) € CP (A, T2(RY)) and

this is called a smooth rough path. The closure of all smooth rough paths in the
topology of C? (A, T>(R?)) is the space of geometric rough path which we denote
by GQ,(R?). Now we consider Brownian rough paths. We denoteFpy the
dyadic polygonal approximation @ ¢ W¢ such that

(P,wW) (1) =W(r) + 2" (Wt ) — W)@ — 1), <t=<t.,

wherer;! =k/2",0 <k < 2". Note thatP, is a projection operator dd? such that
P,H? c P, 1H? for all n € N and lim,_, o, P, = Iy strongly. SinceP,w € H¢,
we can associate a smooth rough p&ffw e GQP(R"’). The following lemma
was proved in [15] and [18].

LEMMA 2.1. For almost all w, there exists W ¢ GQP(Rd) such that
lim,— oo | P,W — W||cr = 0. Moreover, the convergenceisin the sense of L1(u).

The limit W(s, t) = (W(s, t)1, W(s, t)2) is called a Brownian rough path. Note
thatw(s, )2 = fs’(w(u) —w(s)) ® dw(u) a.s.w, where the right-hand side is the
Stratonovich integral. LeV,,(R"’) be the closure oH? with respect to the norm
N, == lIhll,. Thenu(V,(R?)) = 1 by Lemma 2.1 and,,(R?) is a separable
Banach space by part 3 of Lemma 2.2. Let

(2.5) Oq(h) = {w e W ||W —hllcr <a).

This set is a candidate of a ball-like set in the category of the continuity of
Brownian rough paths. For a technical reason, we introduce a different kind of
set.

Lethy € C([0, 1] — R¢) andh, € H™. We consider the Stieltjes integral

t
(2.6) Chyny(s.1) = f (h1w) — hi(s)) ® dha(u),

where 0<s <t < 1. Of course(h, h,(s, t) is also well defined in the case where
hy € H” hy € C([0, 1] — R%). Note thath(s, 7)o = Ch.n(s, t). Forthese integrals,
we use the following lemma several times.
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LEMMA 2.2. 1.For hy e C([0, 1] — R%) and hy € H™, we have
(2.7) [Chanall 2 < INallplhz]lHm.
In the casewherehy € H”, h, € C([0, 1] — R9), we have
(2.8) |Chahs 2 = Ulallim + el p) 2]l .

2. Let w and z be continuous paths on R? and R™, respectively. Then ||w1 ®
Zillpr2 = IWllp - NIzl p- _
3.For any h, [lh]l, < fo Ih()|dt.

PrRoor 1. We have
p/2

t
/ (h1(u) — ha(s)) ® dhou)
t . r/2
- ( [ 1 ) Ihz(u)ldu>

. /2
- (<Ze>—1 [ " Iha() — ha(s)Pdu + 2% / t |hz<u>|2du)p
(2.9) ’ ’
<272 —5)P/271 / t lhy(u) — hy(s)|” du

t . p/2
+ 2—1sp/2</ |h2(u)|2du)
S

r . p/2
<27%7P2(t — 5)P12|hy (uy) — ha(s)|P + 2‘18"/2( / |hz<u)|2du) ,
S

wheres < u, <t. Let{s}};_, be a partition of0, 1]. Noting that

Z( /:1 |hz<u>|2du)p/2

k

1. PI2 / [% ho(u)[?du P/
2.10 — ho(u)|2d ) (”“1—)
(2.10) ;(fo et i) (Tt

< lIhallf,

we get
n t p/2
S [ thw — hain) @ dhatw
k=1""1k-1

(2.11)

<271 P2 hal1h + P2 hallf).
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Minimizing the function ofe on the right-hand side, we get (2.7). Noti@g, n, =
—Cpi, n, +1® 2, (2.8) follows from (2.7) and part 2. Hetg}; |, stands for the

transposed matrix under the natural identification betvi&® R¢ and the space
of (m, d) matrices. We prove statement 2;

— = 2 _ —
0.1 WG )1 ® 2. )1llh)5 < 27 e lwls + &Yzl D)
< [lw|[5/2||z||5/2.

The proof of part 3 is similar to (2.10).0

The definition ofCh, h, can be extended to the Brownian path by using the
Wiener integral. That is, foz € C([0, 1] — R™), we can define, for almost all
weW¢?,

(2.13) Cw.z(s, 1) :/tw(s,u)1®dz(u)

as the Wiener integral. Clearl¢y z(-, ) € C(A,RY @ R™). Actually, if z has
more regularity, then so do&s, ;. To show this, we introduce a norm which is
useful in many calculations. Fare C([0, 1] — R™) andx > p — 1, let

00 20 1/p
(2.14) 1zl .« := [Z{nk >z - Z(tl?_l)IPH :

n=1 k=1

By the Schwarz inequality, we hayie||, , < C||z||u~. Also it is easy to check that

if |1z]l p,« < oo, then||Pyz|l, « <ooandlimy_ [|PNZ—2Z| .« =0. The estimate
below can be found in Lemma 2 in [15] and Proposition 4.1.1 in [18]. There exists
a positive numbe€ such that

(2.15) Izll, <Clizll,.  forallze C([0,1] — R™).

We denote byV, (R™) the space that consists of afl € V,(R™) with
[zl ,,« < oo. By the above results, we see tHgs . (R™) is a separable Banach
space ang@k(V, (R™)) = 1.

We give estimates 0@y ;.

LEMMA 2.3. Letze V), (R™).
1. It holds that

2

(2.16) E[[[Cw,zl%)3] < C(p. )iz B/2.

Here C(p, k) is a positive constant which dependsonly on p and «.
2. It holdsthat

(217) nll—>mOO E[HCW,Z — CPnW5Z||p/2:| == 0
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PrROOF 1. We use the argument in Proposition 4.1.1 in [18] and Lemma 2
in [15]. Since

t
(2.18) Cwz(s, 1) = (W() —W(s)) @ (z(r) — z(s)) —/ dw(u) ® (z(u) — z(s)),

by part 2 of Lemma 2.2, it suffices to estimaig, (-, -). Note that for any partitions
= {s;} o of [s, 1],

Czw(s, t)—ZCzw(Sz LS+ Y (260 — 2(si-1) ® (Wsj) —W(sj-1))

1<i<j<N
holds. Thus
|Crw(s, )72
N p/2
=< 2(r/2)-1 ZCZ,W(Si—l’ i)
i=1
p/2
(2.19) + 207N (2(si) — 2si-1) ® (W(sj) —W(s-1)
1<i<j<N
N p/2 N p
52“’/2)—1{ > Cowlsi—1, 1) +e—1<Z|z(s,->—z<s,-_1>|)
i=1 i=1

N p
+e(le(s,->—w(s,-_1)|) }
i=1

wheree is a positive number. Singe> p — 1 > (p/2) — 1, by the same argument
as in the proof of Proposition 4.1.1 in [18], we have

00 2"

ICwl)5 < Clp) S n 3 (1Cowtf_ g tP% + e Yz(tf) — 2|

(2.20) n=1 k=1
+ elw(ry) —w(t_1)I?),

whereC(p, k) is a constant which depends only prand«, although constants
may change line by line in the calculation below. We estimate the expectation
of Czw(-, "),

7 p/4
2
E[|CZ,W(tI?—17 )lp/Z] = C{/ |Zu - Zl/’(q71| d”}
!

k—1

of 1\P/4
:C|zuk—zt£l|p/ <2n) :

(2.21)
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wheret)_; <uy <t. Thus we get

E[|Cow(i_1,tH|P/?]

Cc( _ 1\9%/2 1\ (P—9)/2
St e () e 2))

where O< § < p — 2. By using this estimate and taking the expectation of both
sides in (2.20), we have

2 00 . 118/ 1\ (P—3-2)/2
EICall ) = )| Con e i () +e(5)

n=1

(2.22)

(2.23)
) © 1 1\/2-1
we ML e ()|
n=1

Therefore, by choosing to minimize the right-hand side, we get the desired
estimate.

2. Let P}w =w — P,w. Then it is easy to see that for any > 1,
E[|P-w(t) — Prw(s)|?] < C|t — s]7/?, where C is a positive number inde-
pendent ofz, + ands. Also E[|Cp .y ,(s,1)|?] < C - E[|Cw.2(s, 1)|?] for anyn,
E[ICpLy (s, DIP/2] < C - E[ICpLy (s, P14, Plw(z) =0 forallm < n and
im,; 00 E[|C p1yy £(s, 1)]2] = 0 for all 7, s. Hence by an argument similar to state-
ment 1, we can complete the proof of part 2]

Let us introduce a subset 67 (A, RY @ R™) (1 < ¢ < 3), V,(A,RY @ R™),
which is the closure of the following linear subspace ingheariation norm:

1€CI(A R @RM|1=Y" Cpy,.
i=1
(2.24)

whereg; € H, ¢; e H" andn e N}.

Lemma 2.2 implies thalt, (A, R? @ R™) is a separable Banach space. By Lemmas
2.2 and 2.3, we can find a version 6§, ; with values inV, (A, R ® R™) and
anH%-invariant subset ov¢ such thatX¢ + H? = X¢ with (W9 \ X¢) =0 and

for all w e X¢ andh € H?,

(2.25)  Cw+hz(s,1) = Cw.z(s,t) + Ch z(s, 1) forall0<s <t <1l

We note that by Lemma 2.2y, 7 is aV,/2(A, R? ® R™)-valuedH?-continuous
function. Note thatC, := 71 ® W1 — Cy, , is a version of Wiener integral

[ (z@u) — 2(s)) ® dW(u).
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We consider another?-invariant subset. LeX¢ be the set of allw which
converge as stated in Lemma 2.1. Thé§ is H? invariant. To show this note
that for anyg, ¢ € H?,

(;(S’ t)2 - QB(S, t)2

t
_ / (@ — $) W) — (9 — §) )] ® d () — 1))
t
(2.26) + / (g — ) ) — (9 — $)(5)] ® dep(u)

t
- / o) ® [(¢ — $)(u) — (¢ — $)(s)]
+ (1) —d() 1@ — D) ©) — (@ — D]

Puttingy = P,w, ¢ = P,h and combining Lemma 2.2,(w — h) converges in
CP for anyw € X4 andh € H?. In this sensew — h is well defined and (2.26)
still holds for ¢ = w e X4. Also w(e X9) — W(e CP/2(A,R? ® RY)) is an
H<-continuous function by this equation and Lemma 2.2.

We need results analogous to Lemma 2.1 for our purposes.

LEMMA 2.4. For almost all w and in the sense of L1 as N — oo,
(W — PyW)2ll»/2 and || Cw— pyw, Pywll p/2 CONvergeto 0.

PROOF We use (2.26) in the case whepe=w and ¢ = Pyw. Note that
E[|PyW(t) — PyW(s)|?] < C|t — s|P/2. HereC is a positive number independent
of N. Hence, sup E[|| PyW||} ] < co. Also by Lemma 2.1 and the independent
property of Pyw and Pﬁw =w — Pyw, the fourth term on the right-hand side
of (2.26) can be estimated by Lemma 2.2.2 and the It6—Nisio theorem [12]. So it
suffices to prove thatCPﬁW’PNWH,,/Z converges to 0. Using the independence of

Pyw andPﬁw and the Gaussian property, we have

9 1\ P/4
(2.27) E[|Cprw pyw—1. t)|"?] < CENPFw(uy) - P,&W(tf_l)lp/Z](?) :
wherer;! ; <uy <t;. By this, we have

) 2"
2
E[Zn"(Z € pt, w1 1) )} < CE|| Pywil}/?]
n=1 k=1

(2.28)

< Cp ELIPyw| P/,

Noting that Pyw(tk) = 0 for all 1<m < N and 0< k < 2" noting that
E[|Pyw(r) — Piw(s)|P’] < Cl|t — s|P/? (C is independent ofV), and using
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Lemma 2 in [15], we getE[||Pywlh ] <27V, wherer is a small positive
number. Hence by the same argument as in the proof of Lemma 2.3.1 and the
Borel-Cantelli lemma(w — Pyw), converges to 0 ir.1 and for almost allw.

O

By (2.26) and Lemma 2.2, it is easy to see that thé(%emf all w for which the
convergences in Lemma 2.4 are validH$ invariant. LetX? = ﬂ?zl Xf. Clearly,
X4 is also arH4-invariant subset withu (X?) = 1.

Now we define our unit set far > 0 andz € VP’K(R"):

(2.29) Usz=1{weX|[W(, Ycr <a, |Cuzllp/2 < a. |Cowllp/2 < a}.

Let duaz = duly,,/n(Uaz). We prove u(U,z) > 0 in Lemma 2.6. Since
U,z is an Hd—open set with positive measure, we can define a Dirichlet form
[€4.2,D(E4.2)] 0N L2(Ua,z, da 7). Itis the smallest closed extension of

@30 &alf )= [ IDFWEduaz orall feFeXly,,.

Here 3¢;° is the set of smooth cylindrical functions with bounded derivatives.
More generally, we can define a closeable Dirichlet form on Hfeopen set
domainU such thatsy (f, f) = [ |Df(w)|%, dpy(w), where f € §¢;°|y and
duy(-) =du(-)/u(U). Refer to [3] and the references therein for the definition.
The Dirichlet form is independent of the choice of tHé-continuous version of

the defining functions of the domain. In this paper, we consider the smallest closed
extension only. We prove WPI fag, ; in the next section; that is, we prove the
following lemma.

LEMMA 2.5. Thereexistsanonnegativejointly measurablefunction £(8, a, 2)
[(8,a,2) € (0,0) x (0,00) x VP’K(R")] which is a nonincreasing function of §
such that for any f € D(&,.2),

@3D) [ (F00) = (f)2) dbazW) 66,0 DEw (). )+ 31 F 1
where ( f) ., , Standsfor the expectation with respect to 1, z.

The joint measurability is almost obvious by the definitiontds, a, z). The
problem is to prove the boundedness. Finally, we prove the positivity of the
measure olJ, ; for all « > 0 andz although it seems to be almost obvious. Note
that we will use the notations in the proof of Lemma 2.6 in the argument below.

LEMMA 2.6. Foralla>0andzeV,  R"), u(U,z) > 0.
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PROOF  We prove this by induction on the dimension. We consider the case
whered = 2. Let

(2.32) Usz1={w1 € Wal|will, <a,

Cwl»ZHp/2<a’ Cz»w].Hp/2<a}’

233 Wa.(w1.2.2 = {w2 € Wal [ Cup wr.2) [ /2 < @,

|Cawr,2,ma 2 < @, lw2llp < a}.

Note that a measure on a Banach spac® is called a Gaussian measure
with mean 0 if all random variables(x) are one-dimensional Gaussian random
variables with mean 0, whekge B* andx € B. Although we do not determine

the dual spaced/,,>(A,R™) of V,(R), we can conclude that the law of
(w1, Cyy,z: Czuw,) defines a Gaussian measure dP(R) x V, (A, R™) x
V,2(A,R™) with mean 0. Let us explain it. Fo€,, ;, there existo (wy)-
measurable independent Gaussian random variables with meé& 10, and

{Cn(-, )} C Vy2(A,R™), and a subsequende(k)}z2,; C N such thatCy, ; =

My oo Z}ikl) C;& for almost allw; in the topology ofV,,2(A,R™). Clearly

the law of Z;’Lkl) Ci§ is a Gaussian measure with mean 0 Bp2(A,R™).

These statements imply that the law ©f,, ; is also a Gaussian measure with
mean 0. The proof of the Gaussian property of other random variables is similar.
Generally, any neighborhood of a 0 vector has a positive measure for any Gaussian
measure with mean O on a separable Banach space; see Theorem 3.6.1 in [5].
Thus, u (U, z1) > 0. The set (2.33) is defined for almost alp for eachw; €

Vy . (R). Also the law of (C(wy,2),wp> Cup,(wr,2)> w2) IS @ Gaussian measure on
Vy2(A, R 5 v, o(A, R™ L) x V,(R) with mean vector O for each fixa,

SO (W, (wy,2),2) > 0 for almost allwy € V,, . (R). SinceU, , coincides with

2
{(w1, w2) € WA w1 € Uy 2.1, w2 € Wy (wy,2).2}

except a null set, by the Fubini theorem, we haué/, ;) > 0. Next we prove
the (d + 1)-dimensional case by using tlkdimensional case. We denote=
(W, wgy1) € W x Wy, 1. For a givere, we consider a domaibi,,  in W2, Let

(2.34) Uaza=1{W e W |[W|cr <a, |Cw zllpj2 < a, |Cowllpj2 < a,

(2.35) Wa,w'.2.d+1 = {wa+1 € Wasl[Cow 2wy |l 2 < @

| Cugir.w 2,2 < @, llwatally < af.
Then, for almost allv,
(2.36) Usz={We W W € Uy 7.4, was1 € Wa,w.2).d11)-

By the same reasoning as in the case whletel, (W, (w',2),4+1) > 0 for almost
allw' e VP,K(Rd). Therefore, we complete the proof by the Fubini theorem again.
O
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3. WPI on U, ;. We begin by proving a lemma in general settings which
is used to prove Lemma 2.5. LéY;, F;,m;) (i =1, 2) be complete probability
spaces and Dirichlet formgg;, D(&;)] on them. Letl';(-,-) be the square field
operator ofg;. Let us consider a completed product probability spéce Y2 and
let U be a measurable subsetlaf x Y. Forx € Y1 andy € Y, definelU, = {y €
Yol(x,y) e U} andU” = {x € Y1|(x, y) e U}. LetUy = {x € Y1|m2(U,) > 0} and
Uy ={y € Y2|m1(U”) > 0}. Letm, (m”) be the normalized probability measure
on the sectior/, (U”). We consider a pre-Dirichlet form on a sectiéhy for
almost allx € Uy:

(3.1) E2(f. )= /U Ta(f. £)(3) dmy(y).

We define€, , on L2(UY,dm?(x)) in the same way. Lef (x, y) be a measurable
function onY1 x Y> such thatf (x, -) € D(&2) and f (-, y) € D(&y) for fixed x, y.
For suchf, set

(32) F(f7 f)(x’ y) = Fl(f(’ y)’ f(7 )’))(x) + FZ(f(x7 ')7 f(-x’ ))(y)

and define
(3.3) Eu(f. f) = /U C(f, ) y) dmy (x. ),

wheredmy denotes the normalized probability measure of the restriction of the
product measurém := dmi ® dm2 to U. We denote byD; the set of all functions

£ with &y (f, f) < 0.
LEMMA 3.1. Assumethat the following statements hold:

Al. For almost all x € U1 an y € Uy, there exist jointly measurable functions
&2(x,8) and &1(y, §) which are nonincreasing functions of § > 0 such that
WPI holds on almost all sections:

(3.4) /U (FO) = ()2 dm(y) < E20x, )25 (S, 1) + 811 FI12,

(3.5) /U (f ) = (Fhmr)2dm® () < E1(y. &L (S, [) + 81 £ 112

y

A2. For any ¢ > 0, there exist a measurable subset Uy . C Uz and §(¢) > 0 such
that

(3.6) m1(U1\ Uze) <e,
3.7) ma(Uy NUy) > 8(g) forany x,x" € Uy .

Then WPI holdsfor the pre-Dirichlet form &y on the domain Dy .
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PROOF.  First we prove that for any > 0O, there eX|stsUl ¢ C U; with
m; (U; \U, ¢) < & suchthat

(3.8) £(8, ) =sup£r(y,8), E2(x,8)|x € Ure, ye Uae} <00 foralls > 0.
Letn e N. TakeU, ; C U; such thatn; (U; \ U, ;) < 1/n® and

SU[J{&( ) §2<x })‘x eUy1,ye U,,,z} < 00.

Then, for sufficiently largev, it suffices to set; . = ;2 Un.i for our purpose.
Note that

/ fU ) = £ ) dmx, y) dm )
(3.9) )

< f (1) = £y dmr ) dm( ) +8el 1

where U, = {(x,y) eU,(x",y)eUlx € U1, x' € Ur,}. Letz € U, N Uy for
x, x" € Up. Noting that

I((x, ), (x",¥))
= (f.y) — f(" )
<3{(fx.y) - f(x.2)
+(F0 D — FL D)2+ (FO, ) — F( )P

and by assumption A2,

(3.10)

3 2
((X y), ',y )) <= (f(x, y) — f(x, Z)) dma(2)
3(e) Ju.nu v
+ % U, (f(xv 7) — f(xl, Z))deZ(Z)
(3.11) )
/ 7\ 2
5(e) Umux/(f(x ,2) = f(X ) dma(z)

=h+ DL+ 1

Let ¢’ be a positive number. By using Al and the propertﬁ@j;/,

f /U Idm(x, y)dm(x', y')

= @ xeUNUTy <.//z>eUx F&.)

(3.12) — f . 2) 2 dma() dm2<y>) dmy(x)



3128 S. AIDA

128/ 115
5( )
6£(8, &)
= ()  Jxeup.nU,, </yeUX Ta(f (x.)) () dmz()’)) dmi(x)

(12"3/ sz

3 8

BE(S, &’
B 53((8)8)// Ca(f (x, ))(y) dma(x) dma(y)

(12"3/ 6‘3’”(1]))||f||

8(¢e) + 4(¢e)

Next, we estimate the integral &3:
//N Ldm(x,y)dm(x',y")
Ue

3
<= (/ [ D = £ ) dmax) dmax) ) dimate)

3(e) z€Up

(3.13)

8()

655,
< 55(@8) / /U P/ () @) dmax) dma(y)

128 6smU)\ . . ,
+<8(8)+ 5(e) )”f”m'

The integral of/3 can be estimated in the same waylasConsequently we have

[, e = ray) amie, ydmis.y)

18§(8,8/)
< Wff[] C(f, ) y) dm(x, y)

36 18mU)\ .,
(88+6<e>+ 5(0) )”f”“'

This completes the proof.[]

(3.14)

REMARK 3.2. Assume Pl hold in Al, and assume the coefficiénts) and
£1(y) can be taken independently ofand y. Further assume that there exists
U1,0 C Uz such thatmy (U1 \ U1,0) =0 and inf ey, ym2(Ux N Uy) > 0. Then
we see that Pl holds ofi by the above method. The following domain is such an
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example. Letr; = W1 andY> = Wo, that is, one-dimensional Wiener spaces. For
positive numbers andb with a < b2, let

(3.15) Uap = {(w1, w2)lllwillpllw2llp <a, llwill, <b, w2ll, <b} C Y1 x Y2

By Lemma 3.4, this example satisfies the above assumptions.
To apply Lemma 3.1 to our problem, we use the following lemma.

LEMMA 3.3. For w e W91 we denotew = (W, wgy1) € W9 x Wyi1. Let
W w'.2).a+1 bethe set givenin (2.35). Let r be a positive number lessthan % The
following estimates hold.

1. For any ¢ > 0, we have

M(”wd—i-l”p,lc <§g, de+1,2”p/2 <ég, Cz,wd+1 ||p/2 < 8) > 0.

2. ForO<e=<C(p, K)_z/pa(oea,a,zr)“/”, it holds that

(316) Me,a,z(max{ ”CW’,wd_,_l ”p/2’ de+1,w’ p/2} = a) =< (aa,a,zr)z,

where 1. 4.z denotes the conditional probability measure

(3-17) Ms,a,z(’) = M(’|||wd+1||p,lc <§g,

}de+1,2”p/2 <a, [Czuwgyq ”p/2 <a),

daaz= LW lcr < a,|Cwzllp2 < a, lICowllp2 < a) and C(p,k) is a
constant which depends on p and « only. We take ¢ in the above interval in

parts 3 and 4.
3. Define
(318) Vp,r,a,z,s = {W/ € Wdlﬂs,a,Z(Wa,(W’,Z),d—&-l) >1- ”Ola,a,z}~

Then it holds that
(319) u(VyrazellWler <a, ICw zllpj2 <a, lICowllpj2 <a)>1—r.
4. For anywj, W5 € V1476,
(3.20) 1(Wa,wp2.d41 0 Wa,wp2).d+1) = 50,0,

where @e,q,z = n(llwa+ilipe < & 1Cuyya.2llp/2 < @, 1Czwy44llpj2 < ).

PrROOF 1. The law of(wg11, Cwy 1.2 Cziwgsy) € Vpc R) X Vyp2(A,R™) x
V,2(A,R™) is a Gaussian measure with mean 0. Hence, the open ball centered
at 0 has positive probability.

2. By Lemma 2.3,

E[” CW/vwd+l ||Z§§| ||wd+l||p,/< <§g,

<C(p.k) P2,

|Cusirzlpra < @ [ Comiiall 2 < @]

(3.21)
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where C(p, k) is a positive constant which depends only pnand «. By
Chebyshev’s inequality and Lemma 2.2.2, we obtain (3.16).
3. By (3.16),

1- (aa,a,zr)z

}de+1,W’ ”p/2 <a)

@22) = [ ([ roamadiCus.l,e

= ME,(I,Z(”CW,,U)d+1 ”p/z <a,

|Capsro | p/z})due,a,z<wd+l>) du (W)

= /W’ Ms’a’Z(Wa,(W’,Z),d-}-l) d//L(W/).
Hence, by Lemma 5.3 in [4], we g@t(V) ;.a.2.e) = 1 — rdg q,2- Thus,

w(Vp.raze W e WIIWlcr <a, [Cw zllpj2 < a, 1Cowllpj2 < a})
(323) > M(Vp,r,a,z,s) - (1 - aa,a,z)

= (1 - ”)Ola,a,z-

4.Sincer < 3, tte.a2(Wy w.4+1) = 5- SO it holds that

1
Me,a,Z(Wa,(w/l,z),d-i-l N Wa,(W’Z,Z),d+l) >3
which implies (3.20). O

The assertion thaW, 7 .4+1 IS an H-convex set inW,,1 and implies the
following result which is a key to proving Lemma 2.5; refer to [6]. We denote
Wa. w2, for simplicity, instead oW, w.2).4+1-

LEMMA 34 Let d/’Ld,(W/,Z) = d'u/|Wa,(W/,Z)/(M(Wa’(W/’Z))) Let ga’(wf’z) be the
Dirichlet formon W, (v 2. Then for any f € D(Ew, W Z)) the following LS and
PI hold: o

L2 og(F2)/ 1 f T2y ) diw, g, (W)

a,w’,2) 0w .2)
(3.24)
<2, DI dun,
// (f ) — f )2 dp(w)dpu(w)
Wow' 29X Wa w 2)
(3.25)
<2uWawa) [ DS dputw).

a,(w,z)
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We prove Lemma 2.5 by using Lemma 3.1.

PrROOF OF LEMMA 2.5. Recall the notation which we used in the proof
of Lemma 2.6. First, we prove the case where= 2. Below we denotd/, ;
by U simply. Also, we use the notation in Lemma 3.1. In the present case,
Y1 = W1, Yo = Wh, m; is the Wiener measure oW; and m is the Wiener
measure onW? = W1 x Wp. In this case,U; = {w; € W;|[|Cy, zllp2 < a,
1C2w; llpj2 < a, |lwill, < a}. Note that forwy € Ui, Uy, = Wy (wy,2),2. By
Lemma 3.4, PI holds oW,,,. Also Pl holds onU™"2 for the same reason. These
statements imply that Al holds fdy. We prove A2. LetV, ... be the set
in (3.18). Thenm(U1 N V), 4.2¢) = m(U1)(1 — r). Therefore, by (3.20), for
sufficiently small, V, . . 2 . satisfies the property of A2. This completes the proof
in the case off = 2. Now, we prove Lemma 2.5 in general dimension. We assume
that Theorem 4.1 is valid in the cased@limension. We prove Theorem 4.1 in the
case of(d + 1) dimension. We apply Lemma 3.1 in the case whEre= W¢,
Y, = Wy41 and U = U, ;. Note that the section o/, ; by w’ is nothing but
W . w2).d+1 C Wat1. By Lemma 3.4, PI holds on the set. Also the section of
Uaz by wgy1 € Vo (R) is Uy, (zwy,1),a- Therefore WPI holds on the set with
a constant (8, a, z, wgy+1) by the assumption of induction. Clearly, we take this
function to be measurable with respect to the variables z andw,,1. These
imply Al. By Lemma 3.3 parts 3 and 4, for ady> 0, we can find a subset
Ua,z,a,8 Of Uy z,a such thaw(Uy 2.4 \ Ua,z,a,6) <8 and, for anyw’,w” € Uy 4.,
ma(Wy w2 "Wy wr,2)) > B(8,a,2), wherep (8, a, z) is a positive number. This
implies A2. Consequently, we complete the prodf]

Forh e HY anda > 0, let

Bah = {we X/ (w—=h),ll,2 <a,
(3.26)
ICw—nh.nllp/2 < @, IChw—nllpj2 < a, W —h||, < a}.

As a corollary of Lemma 2.5, we have the following lemma.

LEMMA 3.5. ForanyheH?anda >0, B,.h = U, n+ h as. and WPI holds
on By h.

PROOF The equality B,h = Usn + h is obvious. Letf € F¢€;°. Then
applying WPI for f (w + h) on U, 1, and using the Cameron—Martin formula, we
have

| (Fw) - 1w(Ua ) E [ fon: Banl)®onW)(Ua.n) " du(w)
a,h

(3.27)
<&(8,a,h) /B |Df (W)|2; 1(Uq ) "L on(W) dpn(w) + 81| £112,,
a,h
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where pn(w) = exp((w, h) — ||h||ﬁd/2). By Lemma 2.2 in [4], this completes the
proof. [

The following lemma shows that Lemma 2.4 is a stronger statement than
Lemma 2.1.

LEMMA 3.6. 1.For any h € H?, the following estimate holds:
(3.28) [[W2 —hall,/2 < I[W—h)2ll,/2 + 2l Cw—h.hll py2 + DI, W — hl .

2. Thefollowing inclusion holdsfor any ¢ > 0and h € H?:

(3.29) Bey@+nih C W € XYW, ) —h(, )ller <e).

ProOOF Statement 1 follows from (2.26) immediately. Statement 2 follows
from 1 immediately. [

REMARK 3.7. At the moment, | do not know whether stronger Pl or LSI
hold onU, ;. Here, we prove that/, o is not H convex in the sense of [6] in
the case ot/ = 2. This implies that the usual convexity criterion as in [6] is not
applicable toU, ¢ at least. The proof is as follows. First note that the functional
onH?2 with values inC? (A, R) such thatF (h)(s, 1) = fs’ (h1(u) — h1(s)ho(u) du,
whereh = (h1, h2), is not continuous in the topology MP(RZ); see [22]. Hence,
there exists a sequenbg = (h%, h%) € H2 such that lim sup, ., Ih,ll, <a and
My o0 1 F (M)l pj2 = 00. Setg, = (1}, 0) € H?, ¢, = (0, h3) € H* and, =
on — ¢n. Then, for sufficiently large fixed, there exists a small positive number
e such that for almost all element8, ,, , B¢, + 1, C Us 0 by Lemma 2.2.1.
HoweverB; ,, + %nn - Uﬁ,o for almost all elements. This shows thHaf o is not
an H-convex set.

4, Main theorem. First we state our main theorem,

THEOREM 4.1. Let F be a real-valued function on H? and assume that F
satisfies the following continuity condition. For any R > 0 and hy, hy € H? with
IIh1lcr, IIh2]lcr < R, it holds that

(4.1) |F(hy) — F(hp)| < C(R)[[h1 — hyllcr,

where C(R) isan increasing positive function of R. Then the following statements
hold.

1. In the Hilbert space topology of H?, F is a continuous function. N
2. For any w € X4, lim,_ o F(P,w) converges. We denote the limit by F(w).
Then F(w) is an H4-continuous function.
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3. Let Up = {w e X?|F(w) > 0} and Ur = {h € HY|F (h) > O}. Then Ur # @ is
equi~valent to u(Ur) > 0. Also if U is a connected set in H?, then WPI holds
onUrp.

PROOE By lLemma 2.2 and the assumption,
|F(hy) — F(hy)|

< C((CamaX (Il + Dl las) ) sl + Izl + Dl = halls.

This proves statement 1. Sinégw converges irGQp(Rd), by the assumption
of continuity, the convergence in part 2 is obvious. By (4.1), it holds that for any
n1, n2 € X4 with [[71llcr. I72llcr < R,

|F(n) — F(n2)| < C(R) 1771 — izl cr-

By (2.26), we see théd? continuity. Now we prove part 3. We see that the
probability measure of), (h) = {w € X?|||W — h||c» < ¢} is positive by Lemmas
2.6 and 3.6 part 2. Assume that there extsts H¢ such thatF (h) > 0. Take

w € O, (h). Then by the assumption &f,

|F(w) — F(h)| < C([hllcr + &)e.

This impliesu(f > 0) > 0. Conversely, we assume(F > 0) > 0. Then there
existsw € X¢ such that# (w) > 0. Then for sufficiently largé, F(P,w) > 0. Now
we prove the latter half of statement 3. Take a countable denge;$gt; C Ur
in the topology oH¢. Let

B,y 1 ={heHYI(h=g)ollpj2 <7,

[Ch=pi0: 1,2 <7

}C¢nh—¢f ||p/2 <r,|lh— dillp < ”}-
For eachy;, let {r}2°, be all positive rational numberssuch that
(4.2) inf{ F(h)|h € B, 4, 1} > 0.

We use the following two claims; see (3.26) for the definitiongj@.

CLAIM 1. Wehave
(4.3) Up = Lg B 4 1
i,

(4.4) 0r=\UB,, as
ik

CLAIM 2. Thefollowing two statements are equivalent:

1. Br,’;,qﬁ,',H N Br,{,tbj,H %+ O,
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2. M(Br,i,qb,' N Br]{’%) > 0.

We can complete the proof of the theorem by these claims. By the connectivity
assumption, we can change the order such l{lﬁariv@’H} = {Bi}p2, and

(UL_1 Bo) N Biy1 # @ for all 1 > 1. Let us denote byB, the subset ofUp
that corresponds td;. Then Ur = U, Br and u((Ui_q Bx) N Bi1) > O.
Therefore, by Theorem 6.10 in [4], WPI holds 0f. Now, we prove the claims.
Noting the continuity ofF, for sufficiently smallr, we see that (4.2) holds, so
the set on the right-hand side of (4.3) is a nonempty set. igkeUr and fix a
rational number G< ¢ < 1 such that

F (ho)

(4.5) inf{F(MIh € Bepg ) = 8:= —

Then noting
(h=¢i)(s, )2 — (h—ho)(s, )2
t
= (ho— i) (s, )2+ / [(ho — ¢:) () — (ho — ¢:i) ()] ® d(h — ho) ()

(4.6) .

- /S d(h —ho)(u) ® [(ho — ¢:) (1) — (ho — i) (s)]

+ [(h —ho) (1) — (h —ho)(s)] ® [(ho — ¢;) (1) — (ho — i) (s)],
by Lemma 2.2, we get

I(h = ho)all p/2 < I[(h = ¢l p/2
+ 6llho — ¢illa (Ilh — @i ll , + Il — holla),

48) [ Cnonoholl 2 < 1Ch-gyi | 2+ 1ho — i la (Ih = i1l + 2[1holl ).
(4.9) Ih—holl, < IIh = ¢;llp + ll¢i — hollpa-
Hence, forg; andh with ||¢; — holl« < &2 andh € B, ¢, 1, we have

4.7)

(4.10) [(h —ho)zall /2 < €1+ Be2(e1 + €2),
(4.11) |Ch—honol 2 < €1+ e2(e1 + 2llholl »),
(4.12) Ih —holl, <e1+ e2.

Hence, it holds that i (h)|h € B, ¢, 1} > & for ¢; above,s; = %e andey =
e/(36(1+ 2|lholl,)). By applying (4.7), (4.8) and (4.9) to the case whiete ¢;,
we see thahg € B, ¢, 1 for the samee;, 2 and ¢;. This proves (4.3). Now
we prove (4.4). Take) € Ur and choosé > 0 andR > O such thatF () > §
and ||7j]lcr < R < co. Then by the definition of*, there exists: > 0 such that
F(w) > 8/2 holds for allw with |W — 7||cr < &. Also there existsV € N such
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that for alln > N, ||P,n — 51llcr < &/2. By Lemma 2.4, there exists> N
such that) € Be/@g@+|nil,)). pp- Choosep; such that|¢; — Pinllya is sufficiently
small. Then, applying (4.6) to the case whére= n andhg = P;n, we have
ne Bs/(4(3+”¢i”p))’¢i. Also, by Lemma 3.6.2,

w13 Be/a@+1ill,).6: C (W € XIW = illcr < &/4)
' C (weX4|[W—Prllcr <e/2) C Up.

Assume (4.2). We need to prove thigty, C Ur. Takew € B, ¢.. Applying (2.26)
to the case where =w — ¢; and¢ = P,w — ¢;, we haveP,w € B, 4, 1 for
all sufficiently largen. This impliesF (P,w) > § and F (w) > . This proves (4.4).
Now we prove Claim 2. ASSUMB,, 4, 1 N By, ¢, H # 2. Then there exists € H?
such that|¢; — hllcr <ri, |Cg;—h,¢: I pj2 < ri and[|Cy; ¢, —nll pj2 < ri. By (2.26),

C(ﬁ,’—W,d)i—W(S’ t) - C(ﬁ,’—h,(ﬁ,’—h(sv t)

=(h—-w)(s, )2+ ft((h —W) () — (h = W)(s)) ® depi ()

t
_/ dey; () ® ((h — W) (u) — (h — W)(s))
(4.14) ’

t
- / ((h—=w)(u) — (h—w)(s)) @ dh(u)

t
+ f dh(u) ® ((h — W) () — (h— W) (s))
(i — () — (¢ — () ® ((h—wW)(1) — (h — W)(s)).

Therefore, by Lemma 2.2w € B,, 4, holds for w such that|h —w|cr is
sufficiently small. This implieg.(B,; 4, N B, 4,) > 0. Nextwe assumg (B, ¢, N
Br2’¢2) > 0. Takew ¢ By ¢y N By g5y Then by (4.14)P,w € By ¢, H N Bry gy H-
This completes the proof of Claim 2 and, hence, the theorém.

Finally we present examples.

ExaMPLE 1. Let(M, g) be ad-dimensional compact Riemannian manifold.
We consider an orthonormal frame bundle O (M) — M. Let us take a metric
connection and IeZ;}¢_, be the corresponding canonical horizontal vector fields.
Let us consider a Stratonovich stochastic differential equation

d

(4.15) dr(t,u,w)y =" Li(r(t,u,w)) o dw;(1),
i=1

(4.16) r(0) =u,
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where (1) = x andw = (w1, ..., wy) denotes thal-dimensional Brownian
motion. Let X (¢, x,w) = 7 (r(z,w)), where X (¢, x,w) is a Brownian motion
whose generator ia /2, whereA is the Laplace—Beltrami operator. Let us denote
by n(z,u,h) the solution to the ordinary differential equation which is given
by replacingw with h € HY. We denotet(r, x, h) = w(n(t, u, h)). Let y e M

and consider a small open geodesic ll(y) centered at with radiuse. Let

us consider a smooth functiam on M such thaty(z) > 0 holds if and only

if z € Be(y). Then F(h) = ¢(£(1, x, h)) satisfies the continuity assumption in
Theorem 4.1 andF(w) = ©(X(1,x,w)); see [17], Theorem 6.2.2, and [18],
Proposition 6.2.2. Actually, the continuity result in Theorem 6.2.2 in [18] is a
stronger statement than we require in our theorem. Note that the connectivity
of Ur is equivalent to the simply connectedness\bf Therefore, WPI holds on
Ug ={weW?|X (L x,w) € B.(y)} if M is simply connected.

EXAMPLE 2. Next suppose tha¥ is isometrically embedded intB" and
let P(x):RN — T M be the projection operators. Consider a gradient Brownian
system

(4.17) dX(t,x,w) = P(X(t,x,W)) o dw(t),
(4.18) X0, x,w) =x.

In this casew € W . Supposé is simply connected. Then by the same argument
as above, we have that WPI holds ¢m € WV |X (1, x,w) € B,(y)}. By this,
Lemmas 4.2-4.5 in [2] and Lemma 5.1 in [1], we see that WPI holds on the
subset{y € P,(M)|y(1) € B.(y)} with natural Dirichlet form. Also, it is easy

to prove that WPI holds for the natural Dirichlet forms on any open connected sets
on P, (M) by a similar argument. Refer to [2] for the definition of Dirichlet forms.

ExaMPLE 3. We present an example for loop space. Suppose Mthas
a compact Lie groupG with biinvariant Riemannian metric. LeL.(G) =
C([0,1] - G|y(0) = y(1) = e), wheree denotes the unit element. By using
the H derivative D, F(y) = lim._0e 1(F(¢?"Vy (-)) — F(y)), we can define a
Dirichlet form; see [9]. By using the tubular neighborhood, the retract map in [9],
the conclusion in Example 1 above and Lemma 2.2 in [4], we see that WPI holds
on L.(G) if G is simply connected. We will study general cases for loop spaces
over Riemannian manifolds in forthcoming papers.
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