The Annals of Probability

2004, Vol. 32, No. 3A, 1746-1770

DOI 10.1214/009117904000000388

© Institute of Mathematical Statistics, 2004

THE SHATTERING DIMENSION OF SETS OF
LINEAR FUNCTIONALS
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We evaluate the shattering dimension of various classes of linear
functionals on various symmetric convex sets. The proofs here relay mostly
on methods from the local theory of nhormed spaces and include volume
estimates, factorization techniques and tail estimates of norms, viewed
as random variables on Euclidean spheres. The estimates of shattering
dimensions can be applied to obtain error bounds for certain classes of
functions, a fact which was the original motivation of this study. Although this
can probably be done in a more traditibneanner, we also use the approach
presented here to determine whethevesal classes of linear functionals
satisfy the uniform law of large numbers and the uniform central limit
theorem.

1. Introduction. Combinatorial dimensions, such as the Vapnik—Chervo-
nenkis dimension, and the shattering dimension, are parameters which measure
the richness of a given class of functions. The Vapnik—Chervonenkis dimension
(VC dimension) of a class dD, 1}-valued functions is the largest dimension of a
combinatorial cube that can be found in a coordinate projection of the class, that s,
in a restriction of the class to a finite subset of the domain. In this article we focus
on a real valued analog of the VC dimension, called the shattering dimension; it
is a scale sensitive parameter that measures the largest dimension of a “cube” of a

given side length that can be found in a coordinate projection of the class.

DEFINITION 1.1. For every > 0, a seto = {x1,...,x,} C Q is said to be
e-shattered by a set of functions onS2 if there is some function:o — R, such
that for everyl C {1,...,n}, there is somg; € F for which f;(x;) > s(x;) + ¢ if
iel,andf;(x;) <s(x;)—e¢ifi ¢ I. The shattering dimension &f is the function

VC(e, F, Q) =suf|o|o C 2, o is e-shattered by}.

f1 is called the shattering function of the gedind the sets(x;)|x; € o} is called a

witness to the-shattering. In cases where the underlying space is clear we denote

the shattering dimension by (€ F).
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In this article we evaluate the shattering dimension of various classes of linear
functionals on various symmetric convex sets. Before describing the actual results
obtained, we would like to describe the way one applies such estimates to obtain
results concerning the uniform law of large numbers and the uniform central limit
theorem (CLT), as well as error bounds in statistical learning theory.

Combinatorial dimensions have been frequently used in the theory of empirical
processes, mostly in the context of the uniform law of large numbers and the
uniform CLT. Recall the definition of the uniform law of large numbers, also
known as the uniform Glivenko—Cantelli condition.

DEFINITION 1.2. LetF be a class of functions. We say thatis a uniform
Glivenko Cantelli class (uGC class) if for every- 0,

1 n
Euf == f(X)
g
where(X;)7°, are independent random variables distributed accordipg to

(1.1) lim supPr{ sup > e} =0,
n—o00 feF

Let us remark that in this article we ignore the question of measurability, since
only mild assumptions on the class, such as admissibility, are required to resolve
this issue (see [6] for further details). Moreover, in all the cases we explore,
it suffices to consider the supremum over a countable dense set, and, thus, the
measurability issue does not arise.

Vapnik and Chervonenkis proved that (under mild measurability assumptions)
a class of binary-value functions is a uGC class if and only if it has a finite VC
dimension [23], and this result was extended in [1] to the real-valued case, where it
was shown that a class of uniformly bounded functions is a uGC class if and only if
VC(g, F) is finite for everye > O (see also [7] for a related earlier characterization
of uGC classes of functions).

The shattering dimension can be used to obtain the tail bounds needed in (1.1),
using the following line of argumentation. The starting point is a version of
Talagrand’s inequality (originally proved in [20]) due to Bousquet.

THEOREM 1.3 ([5]). Let F be a class of functions defined on a probability
space (€2, u) such that SUPrep I flloo < 1. Let (X;)?_, be independent random

variables distributed according to yu, put o2 > SUprer Varl f (X1)] and set Z =
SUPrep | 271 (f (Xi) — E, f)1. Then, for every x > 0,

(1.2) PHZ > EZ + x) Eexp<—vh<%)),

where v = no? + 2EZ and h(x) = (1 + x)log(1 + x) — x. Moreover, for every
x>0,

(1.3) Pr{ZzEZ—l-\/va—l-%} <o
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In order to apply this result and obtain uniform deviation estimates one needs to
boundEZ. By symmetrization,

D e f(Xi)

i=1

(1.4) E,Z <2, x SUp

fer

’

where (¢;)7_; are independent Rademacher random variables (i.e., take the
values=1 with probability /2 each). It turns out that the Rademacher averages
on the right-hand side of (1.4) can be estimated in terms odrtijpérical covering
numbers.

If (Y,d) is a metric space anfl C Y, then for everyg > 0, N(¢, F, d) denotes
the minimal number of open balls (with respect to the metjineeded to coveF.

DEFINITION 1.4. For every clasg let the empirical covering numbers be
N(e, F,n) =supN (e, F, L2(i,)),
Mn

where the supremum is taken with respect to all empirical meaauﬁegjl’.’zl Sx;
supported om points. logN (e, F) = sup, log N (¢, F, n) is called the unifornL;
entropy ofF.

The following result shows that the uniform entropy can be bounded via the
combinatorial parameters.

THEOREM1.5 ([16]). Thereare absolute constants K and ¢ such that for any
class F which consists of functions bounded by 1 and every 0 < ¢ < 1,

K-VC(ce,F)
N(Sa F) S <_)
&

Combining Theorem 1.5 with a chaining argument, one can bound the
Rademacher averages of (1.4) and, tHig, and obtain the necessary deviation
estimates. In all the examples presented in the sequel we will establish upper
bounds on the shattering dimension which are polynomiafin and in that case,
the following holds.

THEOREM 1.6 ([15]). Let F bea class of functions bounded by 1, and set Z
to be asin Theorem 1.3. Assume that thereare y > 1 and 0 < p < oo such that
VC(e, F) < ye P.Then

Jn, if0<p<2,
EZ < C,yY?{ /nlog*?n, if p=2,
n1=1/rlog'? n, if p>2,

where C,, are constants which depend only on p.
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We now turn to the description of the connection between bounds on the
shattering dimension and error bounds used in the analysis of regression problems
in nonparametric statistics and, more recently, in Learning Theory. In both
applications, combinatorial parameters have played an important role. In the
context of Learning Theory, they were used to estimate the size of a random
sample needed to construct an almost optimal approximation of an unknown target
function by an element in a fixed class of functions, where the given data are a
sample(X;)?_, and the values of the target on the sample [2, 15]. Such an error
bound which is based on the shattering dimension is presented in the next theorem,
which was adapted from [4].

THEOREM 1.7. Let (2, ) be a probability space, let F be a class of
measurable functions on Q with ranges in [—1, 1] and assume that there is
a constant B > 1 such that for every f € F, E, f2 < BE, f. If (X)), are
independent random variables distributed according to ., then for any x > 0,
thereis a set of probability larger than 1 — 2¢~*, on which for any f € F,

22 I Bx
E,f < ;;f(xi)+c<ﬁ+7),

where C is an absolute constant and

(1.5) I= /01 \/VC(s, FoiX1. ... XD |og<%) de.

Let us mention that it is possible to obtain error bounds even in some cases
whenl = oo [14], and that in [4], error bounds with faster rates of convergence
than 1/ ,/n were established in the same setup.

The analysis of the shattering dimension of classes of linear functionals we
present is based on methods from the local theory of normed spaces. We show
that for such classes the shattering dimension is determined by the geometry of
the class and the domain, which is expressed by the ability to factor a certain
operator throught’. First, we investigate in Section 3 the case wkeis the unit
ball of some Banach space aAds the dual unit ball. We show that ¥ is infinite
dimensional an®y is the unit ball ofX, the shattering dimension (€ Bx+, Bx)
is determined by th&ademacher type of X. In Section 4, which contain the main
new results of this article, we use a volumetric argument and establish estimates on
the shattering dimension when both the class and the domain are finite-dimensional
convex and symmetric sets. We then compute the shattering dimension of the unit
ball in ¢ when considered as functions on the unit ball@gf 1<p,g <o,
and show that in many cases the volumetric approach yields sharp bounds. For
example, we prove in Theorem 4.12 that fokp < ¢ < oo and forF = B/, the
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unit ball of £,/ (¢” is the conjugate index tg), andQ = B,,, VC(e, F, Q) is given,
up to constants depending only prandg, by the following expressions:

g=/la=1), ifl<p<2,

VEEED ™) yarimvo, 2 < p<oo.

Section 5 is devoted to computation of the shattering dimension of the image of
the unit ball of¢; under a linear transformation.

The applications of the estimates of the shattering dimensions to the determi-
nation of whether some classes of functionals satisfy the uniform law of large
numbers or the uniform CLT are scattered through Sections 3 and 4. In Section 3
we give, among other things, a new proof for a result from [7] giving a hecessary
and sufficient condition for the unit baBx+ of a dual Banach space to be uGC
class onBy. In Section 4 our results are used to investigate the following problem:
consider the unit ball of,, denoted byB,, as functions on the unit ball of,.

Does this class of functions satisfy the uniform CLT on this domain? In general,
one can show that for any infinite-dimensional Banach spac€ = By, does

not satisfy the uniform CLT on the domasa = Bx. Although this can probably

be deduced from earlier contributions, we show, as an application of the methods
presented here, that wheneyek g, F = B, satisfies the uniform CLT on the
domainQ = B,,.

2. Preliminaries. Throughout all absolute constants are denotedchy
or K. Their values may change from line to line or even within the same line.
¢y, Cy denote constants which depend only on the paramefahich is usually
a real numberp or a couple of real numberp, g), anda ~, b means that
cyb < a < Cyb. If the constants are absolute, we use the notationb. Given a
real Banach spack, let Bx or B(X) be the unit ball ofX. The dual ofX, denoted
by X*, consists of all the bounded linear functionalsXrendowed with the norm
[x*]l = sup =1 [x* (x)|. For every integen, we fix the Euclidean structurg, -)
onR" with an orthonormal basis denoted @y);_ .

A set K is called symmetric if the fact that € K implies that—x € K.
The symmetric convex hull ok, denoted by absconk), is the convex hull of
KU-K.

If K c R” is bounded, convex and symmetric with a nonempty interior, then
K is a unit ball of a norm denoted b || . It is possible to show that thgolar
of K, defined by

K° = {x e R"| suplk, x) < 1},
keK
is the unit ball of the dual space oR", || - ||x). In the sequel we shall abuse

notation and denote bk the normed space whose unit ballis From here on,
a ball will be a bounded, convex and symmetric subsé®’gfwith a nonempty
interior.
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If 1 < p <oo, let ¢} be R" endowed with the norm| Yiqaieill, =
(1 la;|P)YP. e is R* endowed with the normi Y7, a;eilloo = SUR la;l.
B) is the unit ball of ¢/, and for every 1< p < oo, (B})° = BZ,, where
1/p+1/p’ =1.Inthis casep’ is called the conjugate index pf

2.1. Volume estimates. As stated above, we can identif§ with R”. Hence,
¢35 is endowed with the-dimensional Lebesgue measure, denoteg pyLetG L,
be the set of invertible operators. R* — R”, and note that for every measurable
setA Cc R" and evenyT € GL,, |TA| = |det(T)||A|. We say that a set C R" is
an ellipsoid if there is som& € GL,, such thatA = T B5.

It will be useful to determine the volume of the balt§ and the volume of their
sections. First, let us mention the following well-known fact.

THEOREM 2.1 ([19]). There are absolute constants C and ¢ such that for
everyinteger n and every 1 < p < oo,

en P < |BZ|1/" <cnYr,

Unlike the clear structure of sections Bf, the geometry of sections @), is
far less obvious. The following result, due to Meyer and Pajor [17], bounds the
volume ofk-dimensional sections at7.

THEOREM2.2. For everyk-dimensional subspace E C R" andeveryl < p <
q = 00,
B"NE B'NE
|BY k 15 k |
| BX| | BY|

By selectingg = 2, it follows that for 1< p < 2, the volume of any
k-dimensional section a7 is smaller than the volume (ﬂf,. Similarly, by taking
p = 2, the volume of ang-dimensional section a8 for 2 < g < oo is larger than

the volume ofB(’;.

REMARK 2.3. A similar result holds in the infinite-dimensional case. In
particular, it follows that for any k p < ¢ < oo and for anyrn-dimensional
subspacé,

1/
(2.1) (M) ! <C, npYa=1/p.
|B,NE| - pa

An important fact about the volume of balls are the Santal6é and inverse Santalé
inequalities.
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THEOREM 2.4. Thereis an absolute constant ¢ such that for every integer n

and every ball K c R”,
|K||Ko\Y"
c<|—— <1
—< |BS |2 ) -

The upper bound was established by Santalo, while the lower bound is due to
Bourgain and Milman. The proof of both results can be found in [19].

One of the tools used in modern convex geometry is the notion of volume ratios.
The idea is to compare the volume of a given ball with the “best” possible volume
of an ellipsoid contained in it, since this may be used to understand “how close”
the norm induced by the ball is to a Euclidean structure.

DEFINITION 2.5. For every balk c R”, the volume ratio oK is

vr(K):inf( ) ,
|TB§|

where the infimum is taken with respect to Al GL, such thatl' B; C K.
The external volume ratio is defined as

|TB£’|)1/”

K)=inf
evr(K) |n< K|

where the infimum is with respectto dlle GL, such thatk C T B5.

It is possible to show [19] that both infimums in the definition above are
uniquely attained. Hence, for every b&llC R”, there is an ellipsoid of maximal
volume contained ik and an ellipsoid of minimal volume containirgj. The
ellipsoid of maximal volume contained K is denoted byek, and the ellipsoid
of minimal volume containingk is denoted byéx. Note that for every balk,
€% = Exo.

It follows from the definitions that iK is an ellipsoid, then IK) = evr(K) = 1.
Moreover, it is known that for every ball c R”", vr(K) < ,/n. More precisely,
the volume ratio o, which is of the order of/n, is the worst possible.

THEOREM 2.6 ([3]). For everyinteger n,

vr(K) < vr(BZ )—74
(K) = Vi) =
Another result we require is an estimate on the volume ratios of projections
of ¢,.
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THEOREM 2.7 ([12]). For every integer n,
sup vr(PgB)) ~ [ ’1/2_1/ Sep=2
ECR» P n P, 2<p=<oo,
where the supremumis taken with respect to all the projectionsonto n dimensional
subspacesof £,,.

A different notion of volume ratios is theubic ratios which was introduced by
Ball [3]. For every ballk c R", let

cr(K) =

in <|TBgo|)1/"
TeGL,,KCTBL\ |K| '
LEMMA 2.8 ([3]). There are absolute constants ¢ and C such that for every
integer n and every ball K c R”,
ca/n <vr(K)er(K) < C/n.

Finally, we can define the volume numbers of an operator. We follow the
definition used ¥ Gordon and unge [11, 12].

DEFINITION 2.9. Given Banach spac&sandY, an operatof : X — Y and
an integem, let thenth volume number of" be

v (T) = Su%(nf:yxim)l/n

EcCcX T(EyYCcFCY, dimE:dimF:n}.

Note that if T is of rank smaller tham, v,(T) = 0. Also, it is clear that the
volume numbers are submultiplicative, thatig(7172) < v, (TD)v,(T2). If T is
an operator between Hilbert spaces, then the volume numbers may be calculated
using the eigenvalug$,;) of «/7*T (which are arranged in a nonincreasing order).
In that case, for every integer v, (T) = ([T/_, »)¥/".

Another example in which the volume numbers may be estimated is for the
formal identity operatord : ¢)) — ¢7'. By Theorem 2.2 it is evident that for every
n<mandany I< p < g < o0,

|Bm N Ell/n |Bn|1/n
2.2 v, (idm_m) = suU p p <C, nYa-p
@2 wlidey—g)= U0 Tow g = g = Cre

and clearly also

B" 1/n
. B2
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In general, ifp > ¢, then
(2.4) vn(idey—en) < llid|loy e =m™97HP,

and this estimate is optimal, at least in cases wherdvides m. To see this,
letk=m/nandforj=1,...,n,letv; = Z{-‘Zleﬂrk(,-_l). Note that for each,
sparfvy, ..., v,} N B™ = E N B™ has volumeim /n)Y/?>~Y/"|B"|. Thus,

|By NEM"  rm\Ya-Yr |ByIM" Vg1
_( ) Cpgm /a=1/p,

B EM ~ \n B
proving that the bound on the volume numbers is tight.

2.2. The uniform CLT. The fact that the shattering dimension can be used to
bound the uniform entropy will enable us to show that some classes of functionals
satisfy theuniform CLT. Recall that a sequence of measurgsonverges tw
in law in £ (F) if for every bounded and continuous functiéh: £ (F) — R,
E*H(v,) — E*H(v), whereE* denotes the outer expectation.

DEFINITION 2.10 [6]. LetF C B(L~(f2)), SetP to be a probability measure
on © and assumé& p to be a Gaussian process indexedmhywhich has mean 0
and covariance

EGp(NGr(9)= [ fedP~ [ rap [gar.

F is called a universal Donsker class if for any probability meagtr¢he law
Gp is tight in £oo(F) andv? = n'2(P, — P) € £ (F) converges in law t@ p

in {5 (F), whereP, is a random empirical measure selected according, tthat

is, P, = % > i—18x,, where(X;)!_, are independent random variables distributed
according toP.

Stronger than the universal Donsker property is the uniform Donsker property,
which is the uniform version of the CLT. For such classg‘,'é,converg% to Gp
uniformly in P in some sense (see [6, 22] for more details). The following result
of Giné and Zinn [8] is a relatively simple characterization of uniform Donsker
classes.

For every probability measur® on Q, let p2(f, g) = Ep(f — g)?> — (Ep(f —

9))2, and for everys > 0, setFs = {f — g|f.g € F, pp(f. g) <$5}.

THEOREM 2.11 ([8]). F is a uniform Donsker class if and only if the
following holds: for every probability measure P on 2, G p has a version with
bounded, p p-uniformly continuous sample paths, and for these versions,

SUpE sup|Gp(f)| < oo, lim supE sup |G p(h)| =0.
P feF §=0 p  heF;
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The main tool in the analysis of uniform Donsker classes is the Koltchinskii—
Pollard entropy integral.

THEOREM2.12 ([8]). If F C B(Lxo(2)) satisfiesthat
o
/o srLlJpleip\/logN(s, F, La(pn))de < 00,

then it is a uniform Donsker class.

3. Shattering by Bx+. The goal of this section is to bound the shattering
dimension of the dual unit ball of a given Banach space. To that end, we present the
geometric interpretation of the shattering dimension wfzen X andF = Byx.

LEMMA 3.1. Let X beaBanach space. Assumethat {x1, ..., x,} iSe-shattered
by By« and set E = sparixq,...,x,}. If A is the symmetric convex hull of
{x1,...,xp},thene(Bx N E) C A.

PROOE Let {x1,...,x,} be e-shattered byBy+ and let{ss,...,s,} to be a
witness to the shattering. Put;)!_; C R, setl = {ila; > 0} and letx} be the
functional shattering the sét For every such and everyi € I,

X7 (X)) — xJe(x;) > si + & — (si — &) = 2e,
andifi ¢ I,

X7 (xi) —xje(xi) < si—e—(s5i + &) =—2e.

x*(Z a,-x,-)’

i=1

x*(Z aixl-) — )E*(Z al-xl-)‘ = (%).
i=1 i=1

Thus,

= sup
X*EBX*

n
2 aixi
i=1

1
Z35 Ssup
x* x*eByx

Selectingc* = x7 andx* = xJ,

xy (Z aix; + Z a,-x,-) — XJe (Zaixi + Z am)’

iel iel¢ iel iel¢

() > 3

-1
=2

Za,- (x7 (xi) — xJe(xi)) + Z(—ai)(xfc(xi) - x}k(xi))‘

iel iel°

n
>y |ail.
i=1

Since every pointc on the boundary ofd is given byx = >"_; a;x;, where
i qlail =1, then|x|| =|>_}_; aix;| = ¢, which proves our claim. [J
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COROLLARY 3.2. Theset{xy,...,x,} C By ise-shattered by Bx+ if and only
if (x;)7_, arelinearly independent and e-dominate the ¢/ unit-vector basis; that
is, for everyay,...,a, e R, e X" qlail < |1 X7_qaixill.

PROOF Let E = spafixy, ..., x,} for some linearly independent elements

of By, defineT : ¢} — {4 by Te; = x; and setA to be the symmetric convex
hull of {x1,...,x,}. For everyl C {1,...,n}, there is some € B, such that
(v,e;) =1if i € I and(v, ¢;) = —1 otherwise. Note tha, e;) = (v, T 1Te;) =
(T™Yv, Te;) and thatA® = (TB})° = T~1"BL, implying that T~1v € A°.
If {x1,...,x,} e-dominate the¢] unit-vector basis, thea(By N E) C A and
A° c e7Y(Bx N E)° = ¢~ 1PE Bx+, wherePp is the orthogonal projection ontb.
Thus, there is some* € By« such thatT ~1"v = t Ppx* for some O< ¢ < &1,
Hence,(x*, x;) = (x*, Te;) = (Ppx*, Te;) =t N T v, Te;) > ¢ if i € I. By
a similar argument{x*, Te;) < —e if j ¢ I, which shows tha{xy, ..., x,} is
e-shattered byBy+.

Conversely, if{x1, ..., x,} C By is e-shattered, then for eveny, ..., a, € R,

n n
ey lail <[> aix;
i=1 i=1

Hence,(x;)!_, are independent anddominate the/] unit-vector basis. []

This result enables us to estimate the shattering dimension of the dual unit ball
of an infinite-dimensional Banach spaXavhen considered as a class of functions
on By. It turns out that the shattering dimension is determined byye=of X .

DEFINITION 3.3. A Banach spac¥ has typep if there is some constarit
such that for every integerand everyxy, ..., x, € X,

n n 1/p
e SC<Z||x,-||") |
i=1 i=1

where (¢;)7_, are independent Rademacher random variables. The smallest
constant for which (3.1) holds is called the typeconstant ofX and is denoted
by T,(X).

(3.1) E

The basic facts concerning the concept of type may be found, for example,
in [18]. Clearly, for every Banach space (3.1) holds in the case 1 with
T1(X) = 1. If p* =supp|X has typep}, then 1< p* < 2, and if p* =1, then
X is said to have a trivial type.

Recall that the distance between two isomorphic Banach spacasdY is
defined asi/(X,Y) =inf||T| - |IT~1|, where the infimum is taken with respect
to all isomorphisms betweek andY. It is easy to see that ik, Y and Z are
isomorphic, therl (X, Z2) <d(X,Y)-d(Y, Z).



SHATTERING DIMENSION 1757

THEOREM 3.4. Let X be an infinite-dimensional Banach space. Then
VC(e, Bx+, By) is finite for every ¢ > 0 if and only if X has a nontrivial type.
If X hastype p, then

1\ P/ (p*=1)
<_> — 1< VC(e, By+, By) <
&

T.(X)\P/(P—D
(—”i )> + 1

The lower bound and a weaker version of the upper one were established in [13].
We repeat the proof of the lower bound for the sake of completeness.

PROOF OFTHEOREM 3.4. If{x1,..., x,} is e-shattered, then #-dominates
the ¢7 unit-vector basis. By selecting = ¢;, en < || }_i_1 &x;[l. On the other
hand, taking the expectation with respect to the Rademacher variables,

| X

n 1/p
< Tp<X><Z i ||§) < Tp(X)n"P.
X

i=1

Thus, there is a realizatiof;)?_; such that| > -7_; &;x;[| < T, (X)nY/P. Combin-
ing the two inequalities; < (T, (X)/e)?/P~D,

Conversely, for every. > 0 and every integet, there is a subspace, C X
such that dinX, =n andd(@’l’,*, X,) <1+ A (see [18]). Recall thad (¢7, ) =
n1=1r" (see[21]), hencei(X,, £}) < (1+1)n'~YP" and, in particular, there are
X1, ..., X, C Bx such that for everx/a,-)?:1 CR,

E a; xi

Therefore,{x1, ..., x,} is nd=P)/P" (1 4 A)—l—shattered byBx+, and the claim
follows by takingx — 0.
The assertion in the cage = 1 follows in a similar manner.

e Z'a" =

The uGC part of the next corollary was first proved in [7], and the second part
may also be known to experts; the proof presented below is new, as far as we know.

COROLLARY 3.5. Let X be an infinite-dimensional Banach space. Then,
F = Bx+ isa uGC classon 2 = By if and only if X has a nontrivial type. Also,
for any infinite-dimensional X, F isnot a uniform Donsker class on 2.

PROOF The fact that the pair is a uGC class if and onlxithas a nontrivial
type follows from Theorem 3.4 and the characterization of uGC classes as classes
with a finite shattering dimension at every scalsee [1]).

As for the second part, in [8], Example 3.3, it was shown thaf & ¢, then
F = By is nota uniform Donsker class dh= B>. Moreover, an easy modification
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of the proof reveals the following: if there is a constahtsuch that for every
integern there are spaces, C X of dimensiom for whichd(X,,, £5) < C, then
F = By~ is not a uniform Donsker class 6= By . By Dvoretzky’s theorem [18],
every infinite-dimensional Banach space has such subsfad@sth a constanC
arbitrarily close to 1). O

Unlike the infinite-dimensional case, in which the growth of (¢CBx+, Bx)
is determined by the type of, it is not clear whether the same holds for finite-
dimensional spaces; indeed, the lower bound in Theorem 3.4 is based on the fact
that X contains spaces which are arbitrarily closéj;o for every integern, which
is only true for infinite-dimensional spaces.

4. The shattering dimension of finite-dimensional bodies. It turns out that
some applications require that the set of functiorfais not the dual of the domain
but some other convex symmetric set; thus, in the finite-dimensional context it is
natural to investigate the following question.

QUESTION4.1. LetK andL be two convex symmetric bodiesif and view
the elements of.° as functions orkK using the fixed inner product iR¢. What is
VC(e, L°, K)?

We have shown that V&, L°, K) = n if and only if n is the largest such that
there aren points{xi, ..., x,} C K for which e(L N E) C absconyxy, ..., x,),
whereE = sparxy, ..., x,}.

The next theorem provides a general upper bound oe VL, K) based on a
volumetric argument. The result is presented for finite-dimensional bodies but can
be easily extended to the infinite-dimensional case.

THEOREM 4.2. There is an absolute constant C such that for every two
integersn < m andeverytwoballs K, L c R™ thefollowing holds: if {x1, ..., x,} C
K ise-shattered by L°, then
|K N E|Y"

C
<—VI((KNE)°)————
ﬁ_g (( ))ILﬂEll/”

’

where E = sparixy, ..., x,}.

PROOF Assume thafx1,...,x,} C K is e-shattered by.°. By Lemma 3.1,
e(LNE)CAcCKnNE, whereA is the symmetric convex hull dfxq, ..., x,},
and, thus(K N E)? C A°. By Lemma 2.8,

A% \M”
cv/n <Vvr((KNE)°)cr((K N E)?) <vr((K N E)")( I)

(K NE)°
|KﬂE|)1/”
ILNE| ’

o\ 1/n
(LNE) ||) §gvr((KmE)")<

<1vr KNE)°
<& e (i e
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where the last inequality follows from the Santalo and inverse Santald inequalities.
O

Combining this theorem with Remark 2.3 on the rdiiy, N E|/|B, N E| and
Theorem 2.7 on the volume ratio of projections’gf the following is evident:

COROLLARY 4.3. For every 1 < p < g < oo thereis a constant C, , for
which the following holds: if {x1, ..., x,} C B, ise-shattered by B/, then

nt/a-1, ifl<p=<2

e P T P N

In the sequel we will show that this estimate is sharp. Since a similar argument
is used in the proof of Theorem 4.10, we shall not present the proof of the corollary
here.

Let us mention the following observations: first, using Santald’s inequality,
vi((K N E))|K NE|Y" < |Exne|Y". Therefore, from the volumetric point of
view, all that matters is the ratio between the volume of the ellipsoid of minimal
volume containing the section & spanned by{x, ..., x,} and the volume of
LNE.

Second, estimating the shattering dimension is equivalent to understanding
the behavior of its formal inverse, which, for a given linearly independent set
{x1,...,x,} C K, is the largest > 0 such that(L N E) C absconyxy, ..., x,),
whereE = sparixy, ..., x,}. Thus, one can tak& = T By, whereT : ¢ — {5 is
defined byT'e; = x;, and the volume of the ellipsoid of minimal volume containing
T By is the significant quantity.

Finally, if (1;)7_; are the singular values of the operatfy that is, the
eigenvalues of/T*T, then|é; g |/" is equivalent tor ~Y/2(TT7_; 1)1/,

4.1. Shattering and factorization through ¢.  An alternative way to formulate
the problem of estimating the shattering dimension is as a factorization problem.

DEFINITION 4.4. Forevery two ball& andZ in R™ and every integet < m,
let
Tu(K, L) =inf |A[lIBII;

the infimum is taken with respect to all subspace€of R” of dimensionn,
and all operator8: (E, || - [lLng) — €}, A:8f — (E, || - Ikne) such thatAB =
id:LNE—- KNE.

The following lemma shows that/T",(K, L) is the formal inverse of the
shattering dimension.
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LEMMA 4.5. For everyinteger n and any balls K and L,

1
(4.1) KD =supe|I{x1,...,x,} CK, (LN E) C absconyxy, ..., x,)}

(4.2) =sude|VC(s, L°, K) > n},
where E = spafjx1, ..., x,}.
PrROOF If the identity admits an optimal factorizatioWd = AB, setA’ =

A/l Alley— kne and observe that the set’es, ..., A'e,} C K N E satisfies that
foranyay,...,a, € R,

=
L

IAller > knE - IBllLnE—e -

n
ZaiA/ei
i=1

n
B(Z aiAel-)
i=1

G

=

n n
Y aiei| =) lail.
i=1 i=1

Hence, abscor/er, ..., A’e,) C K N E contains(||A||||B|) (L N E) and

&

TK.L sup{e|3{x1, ..., x,} C K, e(LNE) C absconyxy, ..., x,)}.

For the reverse inequality, i{xy,...,x,} € K are such thats(L N E) C
absconyxy, ..., x,), defineT :R" — R" by Te; = x;. Clearly, || T |l¢— kne < 1
and

1

-1 -1
IT " llLnE—er = SUp IT “xllgp = sup |ixllzen < —.
xeLNE xeLNE &

Thus, ITlles— ke - 1T Hine—e <1/eand YT, (K, L) >e. O
Combining Theorem 4.2 and Lemma 4.5, we obtain the following:

COROLLARY 4.6. Thereis an absolute constant ¢ > 0 such that for any two
integersn < m and any two balls K, L ¢ R™,

N

v,(id : K — L)sup; Vr(PEK°)’

I'(K,L)>c
wheredim(E) = n.

4.2. Factorization constants of ¢7). The goal of the next section is to
investigate the shattering dimension of the class of linear functidﬁaisB;”, on
Q= ij for 1 < p,q < oo. First, in Theorems 4.9 and 4.10 below we present a
tight estimate on the factorization constant @t ¢; — ¢/, through¢j. Then, we
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use this result to estimate, (B™, B;”) and, thus, bound VG, BZ}, B,’;’); finally,
we show that if 1< p < ¢ < oo, then F = B, is a uniform Donsker class on
Q=B8B,.

We begin with two lemmas needed for the proof of Theorem 4.9.

LEMMA 4.7. Let u be the Haar measure on the n dimensional sphere §" 1.
Set K and L to beballsin R" and put « to be such that

M(x e 5" Ylxlx > 5) L
o 2n

If ¢ satisfiesthat
o
est o —) 2~ (D),
(e sl - )<
thenT', (K, L) <1/e.

PRoOF Denote byO, the orthogonal group and I&%, be the Haar measure
on 0,. SetU € 0, and define;; = aUe;. Using the standard connection between
Po, andu on "1,

n—1 1
Po,(xi € K) = u(x € 8" Hxllx = =),
hence,

1 1
Po,(x; € K forall i) > l—n,u(x e S" Yixlgx > —) > >
o

1)
<-].
L° €
For every vectofoy, ..., 0,) € {—1, 1}",

P 12;1: U Neop, (o2 an ¢
— ) oiUei| >-|= — ) ¢ > —
o ) o o ¢ o ﬁi:l l Lo &N

_ o
=M<x & "l |e > —)

Moreover,

1 n
Po, (conMtalUe;) D eL) = Py, ( sup =Y oiUe
(GRS ]

e/n
Thus,
1
Po,(comM*aUe; L>1—2”( sn—t O>L> Z,
o,(conv+ale;) Del) = 1—2"u(x € \nan_Eﬁ >3

and there is some orthogonal operator which belongs to both events. The operator
T = U satisfies thaﬂT||g:1_>KnE <1 and||T—1||mE_>q <1/e, as claimed. O
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LEMMA 4.8. Thereare constants C,, for which the following holds: for every
integer n,

u(x € 8" Yilxlley = Cpn*/P=Y2) < 274D,

ifl<p=<2andif2< p < o0, then

-1 1/p—1/2 —n?/p
ux € " lxlley = Cpn®/P=H2) <7

PrROOF  Denote byM (B}) the median of|x||,, on sn=1 By Lévy’s inequal-
ity [18],
t>nM?(BY) }

wix e S"_1|||x||p > (1+t)M(BZ)) < eXp{— —
2||ld||gg

-4}

Recall that M(B) ~, n'/P~Y/2 (see, e.g., [18]) and thaflid|le e =
max{n'/P~1/2 1}. It follows that for 1< p < 2 andC large enough, depending
only onp,

pu(x e Sn_1|||x||£;g > /P12y < e—crC?n < 2—(1+D)
while for 2 < p < oo andC depending only omp,

2,
wix € 8" Yllxllgy = CnY2YPy < e O

The above results will play an important role in the proof of the following
theorem, in which we construct factorizationsigf ¢; — ¢/, through¢7.

THEOREM4.9. Let K =BjandL = By. Then, I',, (K, L) satisfies that

nY2HUp=Ya if2 < p. g < oo,
ni-va, ifl<p=<2

Tn(K. L) = Cpg nl-1a, ifl<g<2<p<ooandp >gq,
nt/p, ifl<g<2<p<oocandp <g.

PROOF First, assume that 2 p < o0 and 2< ¢ < co. By Lemmas
4.8 and 4.7 it suffices to choos¢al= C,n'/P~1/2 and select which satisfies

that C,n4' Y2 = C,n¥/2-Y4 = C,a/e/n, that is, L ~, 2. Therefore,
Fn(B", B;l) < Cp’qnl/z-i-l/p—l/q_
Next, if 1 < p <2, then

Pu(K, L) < llidllgr— ey llidlle—en _
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If 2 < p<ooand 1< g < 2, one has to treat two cases; if<lg < p/, then
using the identity operator as abovg,(B”, B/) < n1=14_0On the other hand, if
p’' < g <2, then by the first part of our claim,

La(B}, By) < llid|les—e3Tn(By. B3) < Cpn/?.

Finally, one has to address the situation wipeis infinity. If p = ¢ = oo, then
T, (B, Bl) =d(¢}, ¢) < CnY/2[21].

For p = oo we first examine the casg= 2. Let ¢/,(C) to be C" endowed
with the ¢, norm and setl’ = (n~1/2e27i/k/myn . It is easy to check that
IT llency—en @) < n~Y2and that| 7' [l ¢z (c)— ez (c) = nl/2. Forour purpose;,) (C)
can be considered as tii& sum of two-dimensional Euclidean space, over
the reals, and since for any<lp < oo, ||l.d||gr£(([j)—>e%n . ||id||e§n_>g;(<c) <+/2, then
'y, (€2, zgg) < 2. The case whereis odd is easily reduced to the even case.

Finally, for a genera4,

Tn(BL, By) < IIidIIegaean(Bgo, Bj) < Cliidllen ey,

as claimed. O

The next step in our analysis is to show that the bounds in Theorem 4.9 are
tight. The proof uses the notion efsumming operators. Recall that an operator
T:X — Y isr-summing for 1< r < oo, if there is aC < oo such that

n n
(4.3) DITxl"<C" sup Y Ix*@)l

i=1 x*€Bxx =1
for all integersn and allx, ..., x, € X. The smallesC for which (4.3) holds is
denoted byr, (T) and is called the-summing norm off".

THEOREM 4.10. There exist ¢, 4 such that if K = B and L = By, then
I', (K, L) satisfies that

nl/2+1/p=1/q if2<p,qg <oo,
Fu(K, L) = cpyq nl-1/q ifl<p=<2

Also, therearec, , , suchthatif 1< ¢ <2< p <ooandr > maxp, ¢}, then

To(K,L)>cpg,mY".

PRooOF The first two cases follow from the volumetric estimate as in
Corollary 4.3. Indeed, ifxs, ..., x,} C K is e-shattered by.°, then
|K|

1/n
e/n < CVr(KO)<m>
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for some absolute constafit Sincek = B), andL = By, then(|K|/|L|)Y" ~p.q
nY/4=1/P and viik °) ~ n1/P=Y2for 1 < p <2 and~ 1 for 2< p < cc. Hence,

nl/q—l/p—l/Z’ if2 < p < oo,

e<C
- P et ifl<p<2,

and the lower estimate dn, is evident from Lemma 4.5.

For1<g <2 < p < oo we can get a better estimate than what the volumetric
estimates provide. We first investigaté:ﬁz — @Z,. Observe that ifAB is a
factorization of the identity through’;, then B*A* is a factorization ofid
through ¢ . A theorem of Maurey (see [21], Theorem 21.4(ii)) asserts that,
for everyr > ¢’, B* is r-summing withx,(B*) < C, ,||B*| and, thus, by the
properties ofr,, 7, (id) < [|A*||7w,(B*) < Cy ,T'n(By, By).

The behavior of ther, norm of the identity betweeff, and other spaces was
investigated in [9] and [10]. In particular, in the range we are interested in, it is
proved in [9] thatr, (id 1y — EZ,) > cq’,nl/’. (For the interested reader, we found
that the best way to understand this is to apply Theorem 1 there to our setup. This
is rather easy, as is the proof of Theorem 1.)

This settles the case = ¢’. Turning to the general case, assume first that 2
q' < p <r < oo. For any factorizatiom B = idyp, id,_., ABis afactorization
ofid,_,,. Therefore, for any > ¢,

Cqrn™” < 1Blllidyo g All < AN Blllidp g | < IANIBInY4 7,
hence,
IANIBI = Cqn*/PHH/o- Y4,
Choosings such that tr = 1/p + 1/s — 1/¢’ gives the result in this case.

A similar argument may be used to handle the egdse p. O

Next we estimaté™, (B}, Bg') whenn < m. Note that the results we obtain are
not for the full range ofp andg.

THEOREM4.11. For everyintegersn < m the following holds:

1. 1f2<q < p<oothenT,(BY, By') ~p 4 n*/?mt/P=14.
2. Ifg < p=<2thenT, (B, Bl') ~p g nt~t/Pmt/r=1/4,

3. 1fp<gandl<p<2thenT, (BN, BI') ~p 4 nt~/4.

4. If p<gand2 < p < oo thenT, (B, BI") ~pq nl/2+1/p=1/q

PrROOF In all cases, the lower bound follows from Corollary 4.6 combined
with the estimate on the volume numbersidf,_., in (2.2) and (2.4), and the
volume ratios of quotients @f, from Theorem 2.7.
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As for the upper bound, the optimal choice in (1) and (2) (at least witkvides
m) is the sectionE spanned by

k
vj=Zej+k(i_1), j=1...,n.
i=1

ThenB” N E = (m/n)/271/7B". Clearly,T', (B}, B)') < T,(Bl' N E, B)' N E)
and when 2< g < p the latter can be approximated using the probabilistic
argument from Lemmas 4.8 and 4.7. Indeed, a straightforward computation shows
that one can taker = m¥2-1/? and thate needs to satisfy thanl/2-1/7 =
a/nY2%e = mY2=Yr 1n12 Thus, Ye < n¥/2mYP=14 which proves the bound
is tight.

Wheng < p < 2 one uses the identity operator as the factorizing operator
between(m/n)Y/2~1/4 B! and(m/n)'/2~1/P B to obtain the required result.

The upper bound in(3) is obtained by taking the canonical section
spatei, ..., e,} and applying Theorem 4.9.0

Some of the information one can obtain from these estimates is summarized in
the following:

THEOREM4.12. Letl<p<g=<o00,SetF =By and Q = B,,. Then:
1.
- /(q—l) f1< <2
pq e ) ml=p=g
2. F isauniform Donsker classon 2.

3. Thereareconstants C), , such that for any probability measure i on B, every
integer n and every t > 0,

>C (1+t) <e!
_— e — e’
R WY

where (X;)_, areindependent and distributed according to 1.

Pr{ sup

X*EBq/

1 n
Eux*— = x* (X))
izt

Before presenting the proof, we require an additional lemma which follows
from Theorem 1.5. Although the first equality is not needed in the sequel, it might
be useful in other applications.

LEMMA 4.13. For any 1 < p < ¢q < oo thereis a constant C), , for which
the following holds: if x3,...,x, € B, and T :¢, — ¢} is given by Tx* =
n~Y2y" | x*(x;)e;, then, for every e > 0,

2
IOgN({;‘, TBq/a g) = IOgN(S, Bq/7 LZ(/’LV!)) S Cp,q VC(87 Bq’5 Bp) : Iog E?

where u,, isthe empirical measure supported on {x1, ..., x,}.
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PROOF OF THEOREM 4.12. The first part of the claim follows from
Corollary 4.3 which vyields the upper bound, while the lower one follows
immediately from Theorem 4.11.

The second part is evident because, by Lemma 4.13, the class has a converging
entropy integral, which by Theorem 2.12 suffices to ensure Ehat a uniform
Donsker class.

Finally, the last part follows from the first, combined with Talagrand’s inequality
(Theorem 1.3) and the estimate on the expected deviation in terms of the shattering
dimension (Theorem 1.6).0

5. The shattering dimension of images of Bf*. Although the volumetric
approach yields sharp results in some cases, and, in particuldr, (8, B;)
for a certain range op andg, an exact estimate on the factorization constant
I'w(TBY, B;’) does not follow from the volumetric argument, since the position of
B7 is significant, and not only the volume of the ellipsoid of minimal volume
containing 7 BY. Indeed, we show that spectral information does not suffice
for sharp estimates on the shattering dimension. To demonstrate this, given a
set of (nonnegative) singular values (arranged in a nonincreasing akder)
(A1, ..., An), let T be the subset offL,, consisting of the matrices which have
A as singular values.

THEOREMb5.1. For every set A of singular values,

LBl B! = - o ez
su , =— .

Teﬂ‘?\ " 1" I | 012, ifg <2,
and

1, ifg>2,

n 1/2
inf T,(TB", B") % A2
TeT, n( 1 q) (; i ) {nl/Z—l/q’ ifq<2.

To compare this result to the one obtained via the volumetric approach
(Theorem 4.2), take = 2, and recall that Theorem 4.2 implies that

" 1/2n
T, (TBY, BY) > cn1/2<1_[ /\;2> ,
i=1
which, by the means inequality, is weaker than the conclusion of Theorem 5.1.
PROOF OTTHEOREM5.1. ByLlLemma 3.1, for every € GL,,

I (T B}, B)) = (supele B} C TB{})™ = max |lx|7ps.

lxllg=1
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Since(T'B})° =T~ l*B” , then for every,

lxllrpy = sup (x.y)
ye(T By)°

= sup(x, T_l*y)
yEBL,

n
= sup <T_lx, Zé‘iei>
(e)f_e(=1L1" i=1
and
n
max |lx[l7gr = sup sup <T_lx, Zeiei>.
lxllg=1 (e))_ye{-1.2)" [Ix]l4=1 i1

By the polar decompositiorf; ! = ODU, WhereV and O are orthogonal and
D is the diagonal matrix with elgenvalue§ . Thus

inf max lx|l75»
TeTy llxllg=1 !

= inf sup sup <ODVx 8,€,>
O.VEOn (e)1_ (-1} lIxllg=1 Xi

and

sup max |x|lzpp
TeTx ||x||q—l

= sup sup sup <ODVx Zslel>,
0.VEO, (e ef{—1.1}" [Ix[l4=1 =

where O,, denotes the set of orthogonal matrices®h Set(u;);_, to be the
eigenvalues ofD arranged in a nonincreasing order, that;ig,= A;l > .0 >

MUn = )\Il-
Let

n
(0,V) = max max { ODVx, » ¢g;e; ),
! ey €l- 11} xlg=1 l; o

and observe that

f(0.V)= max max<x Z(Zvjkujza ]>ek>

g=1(e)i k=1\j=1
q/>l/q’

n n
dowy (Z & 0,-‘,-) Vik

j=1 i=1

(3

(8z,1k1
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Clearly,

)1/61,

maxf(0,V max max
naxf(0, V) =maxn (Z

l)l =1 k 1

D1 (281 U)

j=1 i=1
q)l/q’

ZM/ZJ ik

j=1

=max max (Z

llzll2= \/— k=1

=max max _|lxV|,
Vo lxll2=p1v/n

||x||
= pav/n max—2

x#O llxll2’

from which the first part of the claim follows.
To prove the second part, note that

q

n n
min(£(0, V))? =minE, >3 u; (Y & 0i | Vi
0.V 0.V j=1  \i=1

n n
= rOni‘r) E. Ze,- Z wiVikOij| = (%),

k=1 li=1 j=1

where (g;)7_, are independent Rademacher random variables. Therefore, by
Khintchine’s inequality,

n n 2 q’/Z
(>x<)>m|nC Z(Z(ZM}ijolj) ) .

k=1\i=1\j=1

Denotinghy = (1 Vik)i_y,

. 2\ 1/2 n 1/2
(Z<Zujvjkoi,~)) =||hk0||z=||hk||z=(Z@Vﬁ) :

i=1\j=1 j=1

and applying Khintchine’s inequality again,

n q//z
(Z M?v]?k) > C,Ee
j=1 =

By Jensen’s inequality and since the mat)(ij)’}’kzl is also orthogonal for any

q'/2
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realization of the Rademacher variables,

and

n n q/ 1/q/
min £ (0, V) = C, mV|n<EekX::1 jX::lejﬂjij )

n

n q'\ 1/q'
ZCﬂs”}‘”(Z > eiliVik )
j=1

k=1l j=
= Cymin |Vl
. , it q' <2,
min =
WVl =lillef s

Finally, to see that the lower bound is tight, €&t id, and, thus,

n
Y (Ve

i=1

f(id, V)= max

€i)i=1

=V ullg

/

q

The sharpness is evident by optimizing with respedfto (J
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