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In a celebrated work by Hoeffdingl[ Amer. Statist. Asso&3 (1963)
13-30], several ingualities for tail pobabilities of sumsM,, = X1 + --- +
Xn of bounded independent random variablEs were proved. These
inequalities had a considerable impact on the development of probability and
statistics, and remained unimproved until 1995 when Talagraistl Hautes
Etudes Sci. Publ. Matl81 (1995a) 73-205] inserted certain missing factors
in the bounds of two theorems. By similar factors, a third theorem was refined
by Pinelis Progress in Probability43 (1998) 257-314] and refined (and
extended) by me. In this article, | introduce a new type of inequality. Namely,
I show thatP{M,, > x} < cPP{S, > x}, wherec is an absolute constant and
Sqp =¢&1+ -+ e is a sum of independent identically distributed Bernoulli
random variables (a random variable is called Bernoulli if it assumes at
most two values). The inequality holds for thase R where the survival
functionx — P{S,, > x} has a jump down. For the remainindhe inequality
still holds provided that the function between the adjacent jump points is
interpolated linearly or log-linearly. If it is necessary, to estimags, > x}
specialbounds can be used for binomial proildies. The results extend to
martingales with bounded differences. It is apparent that Theorem 1.1 of this
article is the most important. The inequalities have applications to measure
concentration, leading to results of the type where, up to an absolute constant,
the measure concentration is dominated by the concentration in a simplest
appropriate model, such results will be considered elsewhere.

1. Introduction and results. To illustrate the flavor of the inequalities
provided below, let us start with the special case of a sym=Y1 + --- + ¥,
of bounded independent random variables such Hét< ¥; <1} = 1 and
EX; = p forall k. Then

(1.2) P{Z,>x} <ePle1+---+&, > x}, e=2.718...,

for integerx € Z, whereegq, .. ., g, are independent identically distributed (i.i.d.)
Bernoulli random variables that assume values 0 and 1 suclP{bat= 1} = p
with p = (p1+---+ py)/n. The bound (1.1) is a very special case of Theorem 1.2.
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The following bound (1.2) is independent @fand is much rougher than (1.1).
Furthermore, usually bounds of type (1.1) are more convenient in applications than
bounds of type (1.2). We have

63 X
1.2) P{Z, > x} < —]P’{n > }

2 1-p
for x such thatc /(1 — p) is an integer, where is a Poisson random variable with
parameten such that

r=pn/(1-p), P{n =k} =1 exp(—A}/k!  fork=0,1,2,....

The Introduction is organized as follows. First formulations of the results,
namely, of Theorems 1.1-1.3 are provided. Then their relationships to Hoeffding’s
inequalities are discussed, referencesmmpvided and the methods are explained.
Theorem 1.1 seems to be the most important. It has nice applications to the
measure concentration; such applications will be addressed elsewhere.

Henceforth replace the independence assumption by a martingale type depen-
dence. Let

Fo=@CFC---CF,CF

be a family ofo algebras of a measurable spage ). LetM,, = X1+ ---+ X,
be a martingale with difference§, = M — M;,_1. DefineMg = 0.
The simplest thinkable nontrivial martingale is a s$in=¢1 + --- + ¢, of
n i.i.d. Bernoullirandom variables. A random variable (or its distribution) is called
Bernoulli if it assumes at most two values with positive probability.&et 0 and
b >0.Bye =¢(c?, b) denote a Bernoulli random variable such that

(1.3) Ee =0, Ee? =02, P{e = b} > 0.
It is easy to check that
Ple = —0?/b} =b?/(b°+02), Ple=b}=02/(b*>+?).

Assuming (one-sided) boundedness of the differefge this article it is shown
that up to an absolute constant factor the tail probaliity/,, > x} is dominated
by the probabilityP{S, > x}. The result can be interpreted by saying that the
behavior of tail probabilities of martingales is controlled in a very precise way
by the simplest possible stochastic experiment—a series of eventually asymmetric
coin tosses. This is not unexpected due to a common belief that Bernoulli random
variables are those that are the most stochastic. It is less unexpected that one can
provide a relatively simple proof of this fact.

For differencesX; of a martingaleM,,, consider the following boundedness

condition: There exists a positive nonrandbm 0 such that

(1.4) P{X,<b}=1 fork=1,...,n.
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For the conditional variances? = E(X?|F;_1) of differencesX; of M,,
consider the following boundedness condition: There exist nonrantj(%)n_a 0
such that

(1.5) P{s?<o?)=1 fork=1,...,n.

THEOREM1.1. Assume thatthe differenc&s of a martingaleM,, satisfy the
conditions(1.4)and (1.5). Then for all x € R, we have

2
(1.6) P{M, > x} < %P"{Sn > x}

with ¢2/2 < 3.7, where S, is a sum ofn independent copies of a Bernoulli
random variables = e(o'2, b) with 02 = (62 +--- + 02)/n (the meaning of?°
is explained beloyv The inequality(1.6) yields

e? 5 X
(1.7) ]P’{anx}silP’ {772)»4-5},

wheren is a Poisson random variable with the parametet (62 + - - +0.2)/b°.

The bound (1.7) is much rougher compared with (1.6) because it has to cover
the casen = oo, which supplies the heaviest tails. In general, tails of a sum of
independent eventually nonidentically distributed Bernoulli random variables can
have a complicated structure.

Let me explain the meaning &°. Write B(x) = P{S,, > x} for the survival
function of S,,. For x such thatB(x) =1 or B(x) =0 or when the functiorB
has a positive jump down, understaiiti just as probability. LetB° be a log-
concave hull ofB, that is, a minimal function such th& < B° and the function
x — —log B°(x) is a convex function. DefinB°{S, > x} = B°(x). It is easy to
see (cf. Lemma 4.1) that in the case of the binomial or Poisson survival furigtion
the functionB® is a log-linear interpolation oB: if x <z <y andx andy are
adjacent points wherB has positive jumps down, then

(1.8)  B°(z) = B *(x) B*(y), if z=(1—A)x+iy, O<i <1

Similarly | introduce the linear interpolatioB® of B by writing B°®(x) = B(x),
for x such thatB(x) = 1 or B(x) = 0 or the functionB has a positive jump down,
and

B°(z)=(1—A)B(x)+AB(y)  forx,y,z Aasin (1.8)

We haveB < B° < B°.
For differencesX;. of a martingaleM,,, consider the boundedness condition

(1.9) Pl—pr <Xy <1—p}=1 fork=1,...,n,

wherep, are nonrandom (it is clear thatOp; < 1).
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THEOREM1.2. Assume that the differenc&s of a martingaleM,, satisfy the
condition(1.9).Then for x € R, we have
(2.10) P{M,, > x} < eP°{S, > x}

with e < 2.72, where S, =1 + --- + &, is a sum ofn independent copies of a
Bernoulli random variable

e=e(p—p%1l—p)  withp=(p1+--+ pa)/n.
Furthermore we have
63 X
(1.11) P{MnZX}S—PO{nZk+—}
2 1-p
with 3/2 < 10.1, wherey, is a Poisson random variable with= pn/(1— p).
It is easy to check that the Bernoulli random variablérom Theorem 1.2
satisfies
Ple=—-pt=1-p, Ple=1-p}=p.

By an application of (1.10) te-M,,, one can derive bounds f®{M,, < x}.
For differencesX; of a martingaleM,,, consider the following boundedness
conditions: There exist nonrandam > 0 such that, fok =1, ..., n,

(1.12) P{Xy <bi}=1

and

(1.13) P{ Xkl < b} =1.

Write

(1.14) ax=max{b, o),  a’= @i +---+ad/n,

whereo;, are from the condition (1.5).

THEOREM 1.3. Assume that the differencég of a martingaleM,, satisfy
the condition(1.5) and the one-sided boundedness condifbi2). Then for all
x € R, we have

2 3
(1.15) P{M, > x} < %PQ’{& > x}

with 2¢3/9 < 4.47, where S, is a sum ofn independent copies of a symmetric
Bernoulli random variable = £(a?, a) with a? defined by(1.14). The inequal-
ity (1.15)implies

(1.16) P{M, zx}g%g(l—cb(f)),

a
where® is the standard normal distribution function
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The symmetric Bernoulli random variable from Theorem 1.3 satidfies=
ta) = 3.
The following corollary is less general compared to Theorem 1.3.

CoOROLLARY 1.4. Assume that the differencé&% of a martingaleM,, satisfy
the symmetric boundedness conditidnl3). Then for all x € R, the bounds
(1.15)and(1.16)of Theorend.3hold, replacinga? with (b2 + - - - + b2) /n.

Theorems 1.1-1.3 show that the martingale type dependence does not influence
the bounds for tail probabilities much compared to the independent, the i.i.d. and
even the i.i.d. Bernoulli cases.

Most probably, the values of constants in Theorems 1.1-1.3 are not optimal; the
preferred intention herein was to simplify the proofs as far as possible. A more
powerful method that can improve constants and the structure of the bounds was
used by Bentkus (2001). A bound from Bentkus (2001) applies to the special case
of Theorem 1.2 whemp, = 1/2, and is precise for integer (a bound which is
precise for allx is in preparation). A consequence is that constants in the bounds
(1.6), (1.10) and (1.15) of Theorems 1.1-1.3 cannot be smaller than 2, and these
constants, say, have to satisfy

2<c=<37, 2<c=<272 2<c<447,

respectively, which means that space for improvement is restricted. In the case
of Theorem 1.1, the multiplicative factor of losses in (1.6) is at mo86.1In
contrast to the martingale dependence, finding precise values of these constants
in the independent and i.i.d. cases is considered a very difficult mathematical
problem. For a givem, let ¢, be the best possible constant in Theorem 1.1. An
impression that the sequengegis increasing ag — oo and that limy_, oo ¢, = 2
is supported by the fact that = 1.555884. Another supporting heuristic argument
comes from the analysis of constants in the Berry—Esseen bounds immcases
andn = oo in Bentkus and Kirsha (1989) and Bentkus (1994), where a similar
picture was observed.

One cannot repladé®{S, > x} in Theorems 1.1-1.3 with{S,, > x}. This taboo
clearly follows from the results (approach) of Bentkus (2001). A truly simple proof
is provided in Section 4 as Lemma 4.8.

Let us compare Hoeffding’s (1963) inequalities with bounds of Theorems
1.1-1.3. By Theorem 1 in Hoeffding (1963), under the conditions and notation
of Theorem 1.2, we have

(1.17) P{M, > x} < H"(p+x/n; p),
where, forO< p <1,

_ 1-a a
(1.18) H(a;p):(l p) (B) forp<ac<l1

1-a a
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and
H@;p)=1 fora < p; H(a; p)=0 fora > 1.

Among all inequalities that have a product form, Hoeffding’s bounds are the best
possible; see Lemma 4.7. Naturally, the product structure in our bounds is lost.

Hoeffding’s inequalities remained unimproved until 1995 when Talagrand
(19954, b) inserted certain missing factors. Assuming independence and under
the conditions of Theorem 1.2, Talagrand’s bound is as follows: There exists an
absolute constant> 0 such that

2
(1.19) P{M, =x} < (i + E)H”<p +3 p) forc<x< 8—,
§+x & n c
where 82 = np(1 — p). The right-hand side of (1.19) is simplified up to an
absolute factor. This is a nonessential loss because Talagrand’s bound depends
on an inexplicit absolute constant.

I have a feeling that more or less explicit analytical functions do not truly follow
the behavior of®{M,, > x} correctly.

The loss in Theorem 1.2 is at most the facég < 1.36. Up to an absolute
constant, Theorem 1.2 (and Theorems 1.1 and 1.3 as well) says that the talil
probability is maximized in the case of the simplest possible stochastic model,
namely, in the case of a series of eventually asymmetric Bernoulli trials. To
estimateP{S,, > x} one can usspecialbounds for the binomial probabilities [see,
e.g., Shorack and Wellner (1986)], and in the view of Theorems 1.1-1.3, these
special bounds are not so special at all.

Let us move on to Hoeffding’s Theorem 3. To simplify notation (and without
loss of generality) we assume that the numbén Theorem 1.1 satisfiels= 1.
Assuming independence and under the conditions and notation of Theorem 1.1,
Hoeffding proved that

o%+x/n ) o?
1+02 "1+ 02)'

The simplest Hoeffding bound (1.17) is implied by (1.20) by using rescaling and

choosing the maximal possible varianc&= p — p? for distributions supported

by the interval[—p,1— p]. Assuming, in addition, thatX;| < B, Talagrand

(1995b) improved (1.20): There exists an absolute constar such that

co/n N cB )Hn(az—i—x/n_ o? )
oJn+x on 1402 "1+02

for 0 < x <no?/(cB). Talagrand noticed that it is unclear how to improve (1.20)
without assumptions likeX; | < B. The inequality (1.21) nicely improves (1.20)
when the variance is not too small, that is, in cases of Gaussian type behavior. To
see this better, assume for simplicity tiat 1. Then, in the case of? = 1, the

(1.20) P{M, > x} sH”(

1.21) P{M,>x}< (
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factor in (1.21) is on the order of \/n/x, in the range/n < x < n. However,

for degenerating'2 — 0 (i.e., when the behavior is of Poisson type), the range
starts to shrink. To be definite, take = 1/n. Then the factor is~ 1 andx has

to satisfyx « 1. Notice that in such cases Theorem 1.1 still provides nice upper
bounds in the whole range< n of interest.

Theorem 1.3 extends and refines Hoeffding’s Theorem 2. The bound (1.16)
with a somewhat worse constant is contained in Bentkus (2003). Using another
approach, in Bentkus (2004) a bound similar to (1.16) was proved under the
asymmetric boundiness ondition

(1.22) P{dy — ax < Xx <dx + ar} = 1,

whered; = di (X1, ..., Xx_1) are arbitrary¥;_,-measurable random variables.
This bound applies to the measure concentration. It is unclear whether one
can extend and refine Hoeffding’s Theorem 2 under the condition (1.22) using
the methods of this article. Pinelis (1998) proved (1.16) under the symmetric
boundedness condition (1.13). Earlier [see Pinelis (1999), Theorem 5], the
bound (1.15) under the symmetric boundedness condition of Corollary 1.4 was
established by Pinelis, assuming independence, for integech thatc € n + 27
and|x| <n.

Hoeffding’s Theorem 2 had a considerable impact on research related to the
measure concentration phenomena. For an introduction to the topic, see Gromov
and Milman (1983), Alon and Milman (1984), Milman (1985, 1988), Milman and
Schechtman (1986), McDiarmid (1989), Talagrand (1995a) and Ledoux (1999).

For statistical applications, optimal bounds for finite (i.e., fixadgare of
interest [see Bentkus and van Zuijlen (2003)]. In this sense, the results herein
are not optimal and hopefully can be improved by extending the methods of
Bentkus (2001, 2004, b). However, the extensions involve considerable technical
difficulties.

The history of inequalities for tail probabilities is a very rich classical topic
[see, e.g., books Petrov (1975) and Shorack and Wellner (1986)]. The names
Chernoff, Bennett, Prokhorov and Hoeffding come to mind. #orconstant, the
bounds above refine all the classical bounds. Indeed, one can estimate the binomial
probability P{S,, > x} using these bounds.

On methods. Hoeffding (1963) applied the Chebyshev inequality to replace
an indicator function of an interval with an exponential function, which can be
interpreted as a kind of Fourier—Laplace transform. The further Hoeffding proof is
precise; hence such a method cannot be used to improve the bounds. Talagrand
(1995b) started with the Esscher transform, which is related to exponential
functions. The proof in the articles by Pinelis [following Eaton (1970, 1974)] starts
similarly to that of Hoeffding, but he used the functions> max0; (x — ¢)?}
instead of exponentials, with some= R and p € Z. In this article, we start in
the same way. A nice and short argument in the proof of Theorem 1.2, which
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allows derivation of the inequality (3}%rom the bound (3.5), is extracted from an
article by Pinelis (1999); see Lemma 4.2 below. The argument reduces the proof of
Theorem 1.2 to the verification of inequalities (3.2) and (3.3). The scheme of the
proof of Theorems 1.1 and 1.3 is similar, replacing (3.2) and (3.3) by appropriate
counterparts. It seems that methods used here do not allow improvement of the
constants and the structure of the bounds. In the aforementioned articles the
methods rely on induction on. Potentially such induction based methods can
provide optimal bounds and it seems as well that they are more robust against
generalizations.

2. Some supplements, improvements and extensions. In this section |
provide some well-known upper bounds for Poisson and normal survival functions,
a bit more complicated versions of bounds of Theorems 1.1-1.3 and precise
bounds in the case= 1.

A standard rather rough upper bound for a Poisson survival function is

P{n>x+x} <explx — (x +A)log(l+x/1)} forx > 0.

For larger x, an impression about Poisson tails can provide the following
inequalities [see Proposition 3 in Paulkas (2002)]: There exist absolute positive
constantsq andc, such that

c1g(x) <P{n =1+ x} <cogx) for x > max{ia — 1, 1},
where
g(x) = (A +x) Y2+ x /)M explx — (x + 1) log(1 + x /1))

and whergA + x} is the fractional part of + x.
A commonly used upper bound for the standard normal tail is

1- d(x) <px)/x, o(x) = (2m) Y?exp—x?/2},  x>0.

Let us pass to the extensions of Theorems 1.1-1.3. The extensions are more
convenient in applications because they do not require checking of log-concavity.
Hence, one can manipulate the bounds, for example, by applying limit theorems,
and check log-concavity at the final stage of the application. | provide as well a
direct generalization and extension of Hoeffding’s Theorem 3 to martingales. This
extension can be useful in cases where checking log-concavity is not available
or in cases when very precise bounds are not needed. It is interesting to notice
that in contrast to the much more subtle and powerful Theorem 3, there exist
lots of extensions, improvements and generalizations of Hoeffding’s Theorem 2.
Probably the reason is that Theorem 2 is simpler than Theorem 3, because instead
of variances, it involves only rather rough size parameters.

For differencesX; of a martingaleM,,, consider the following boundedness
condition: There exist positive nonranddm> 0 ando; > 0 such that

2.1) P{Xy <bi)=1, Pisf <of}=1
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fork=1,...,n, wheres? = E(X2|F,_1) are the conditional variances &f.
Introduce independent Bernoulli random varialdles- ek(o—kz, by) such that

(2.2) E6r =0, EO? = o2, P{6; = by} > 0
[cf. the definition (1.3) of the Bernoulli random variable= ¢ (o, b)]. Write
(2.3) T, =01+ +06,.

THEOREM 2.1. Assume that the differencgg, of a martingale M,, sat-
isfy (2.1). Then for & > 0, we have

(2.4) P{M,, > x} < exp{—hx}EexphT,}

for all x e R. If all b, are equa) b, = b, then

o? +bx/n o? )

b2+02 ' b24+02)
Here S, is a sum ofn independent copies of a Bernoulli random variable-
e(o2, b) with the variances? = (o2 + - -- + 0,2)/n and the functiond is given
by (1.18).

(2.5) P{M, >x}< }ilnfoexp{—hx}E explhsS,} = H”(

We provide proofs in Section 3. A number of upper bounds for the fundiion
are provided in Hoeffding (1963).
Letx; =maxO0, x} andx’ = (x4)°.

THEOREM 2.2. Write f(x) = (x — )%, wheres > 2, and assume that the
differencesX; of a martingaleM,, satisfy(2.1). Then for all # < x andx € R, we
have

(2.6) P{M, > x} <Ef(T,)/(x —1)*
and
2.7) P{M, > x} <e’s°T (s + DP°{T,, > x},

wherex — P°{T, > x} is a log-concave hull of the survival functian— P{7;, >
x} andT is the gamma functian

In the next proposition we provide precise boundsifes 1 under the conditions
of Theorems 1.1-1.3.

PROPOSITION 2.3 (Casen = 1). Assume that a random variable satisfies
EX =0.Leta <0O<bando > 0.

() LetB(x) =suplP{X > x}, wheresupis taken over all random variableX¥
suchthatP{a < X <b}=1.ThenB(x) = p with p=—a/(x —a) forO0<x <b.
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(i) Write B(x) = supP{X > x}, wheresupis taken over allX such that
P{X <b}=1 and EX?<o?
ThenB(x) = p with p = 02/(x2+02) for0 < x <b.
In both casesi) and (i) we haveB(x) = 1for x <0andB(x) =0for x > b.

3. Proofs. Write x; = max0, x} andx’ = (x;)*. Let us start with the proof
of Theorem 1.2 because it is simpler compared to the proof of Theorem 1.1.

PROOF OFTHEOREM1.2. Letus prove first the bound (1.10). In the proof we
assume that pn < x <n — pn because for other values othe inequality (1.10)
reduces either to £ e or to 0< 0, which is obvious.

Write f(z) = (z — t)1, wherer € R is a parameter to be chosen later. Notice
thatT{u > x} < f(u)/(x —t) for t < x, wherel{A} is the indicator function of
eventA. Using the Chebyshev inequality, we have

(3.1) P{M, >x} <Ef(M,)/(x —1t) fort < x.
Applying Lemma 4.3, we have
(3.2) Ef (M) <Ef(T),

whereT,, =&, + --- + &, is a sum of independent Bernoulli random varialdes
such that

Pl =—pi}=1—pr and P{&=1- pi} = px.

We are going to replace the eventually non-i.i.d. Bernoulli random varigples
with the i.i.d. Bernoulli random variables from the condition of the theoreryi.i#
a convex function, then

(3.3) Ef(T)) <Ef(ex+---+e&) =Ef(Sn),

with S, from the condition of the theorem. Hoeffding [(1956), Theorem 3]
proved (3.3) for strictly convex and Gleser [(1975), Corollary 2.1] extended (3.3)
to convexf. One can easily check (3.3) using the Schur concavity; see the proof
of Lemma 4.5 for a definition of Schur concave functions.

In the specific case of (x) = (x — ). we have

B4)  Ef(S)= —/Oo(z ) dP(S, = 2} = /OOIP{S,, > 2} dz.
t t
Combining (3.1)—(3.4), we obtain

(3.5) P{M, > x} < inf !

I<xx —1t

0
/ P(S, > z} dz.
t
To estimate the right-hand side of (3.5), we can apply Lemma 4.2 with

a=-pn, B=n—pn, s=1 and B(z)=P(S, >z}
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We getP{M,, > x} < eP°{S,, > z}, which concludes the proof of (1.10).

Let us prove prove (1.11). The sufj is a sum ofn independent copies of
a Bernoulli random variable = ¢(p — p2, 1 — p). Applying the bound (1.7) of
Theorem 1.1, we obtain

e? z
(3.6) P{SnZZ}S—PO{nZk+—},
2 1-p
where n is a Poisson random variable with = pn/(1 — p). Combining
inequalities (3.5) and (3.6), we have
© Z
[Tz i e
t 1

2
(3.7) P(M, > x} < & inf
—p

t<xx —t

and an application of Lemma 4.2 yields (1.11)

PROOF OFTHEOREM2.1. Letus prove the bound (2.4). Using the Chebyshev
inequality, we have

P{M, > x} < exp{—hx}EexphM,} forh > 0.

By Lemma 4.4, we hav& explhM,} < EexplhT,}, which concludes the proof
of (2.4).
Let us prove (2.5). The inequality

expl—hx}EexplhT,} < exp(—hx}EexpghsS,}

is proved in Hoeffding [(1963), (4.22) in the proof of Theorem 3]. The equality in
(2.5) is just the definition of the Hoeffding function; see Hoeffding (1963).

PROOF OFTHEOREM 2.2. Let us prove (2.6). Writ¢ (z) = (z — 1)’.. Using
the Chebyshev inequality, we have{M, > x} <Ef(M,)/(x —t)* for t < x.
By Lemma 4.4, we can estimate f(M,) <Ef(T,), and (2.6) follows. The
bound (2.7) is implied by Lemma 4.2[]

PROOF OF THEOREM 1.1. Let us prove (1.6). Without loss of generality
(rescaling if necessary), we can assume that the nuinfvem the condition (1.4)
satisfied) = 1. In the proof we assume thatio2 < x < n, because for-no? < x
or x > n the inequality (1.6) reduces to obviousk?/2 or 0< 0, respectively.

Write f(z) = (z — t)i, wheret € R is a parameter to be chosen later. Using the

Chebyshev inequality, we have
(3.8) P{M, > x} <Ef(M,)/(x —1)>  fort <x.

By Lemma 4.4, we can replade, with a sum of Bernoulli random variables,
that is,

(3.9) Ef(My) <Ef(Ty),
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where T, =61 + --- + 6, is a sum of independent eventually nonidentically
distributed Bernoulli random variablés = 6 (2, 1) [cf. (2.2)].

By Lemma 4.5, we can replace the non-i.i.d. with the i.i.d. Bernoulli random
variables,
(3.10) Ef(T)) <Ef(ex+---+e&») =Ef(Sn),

where S, =¢1 + --- + &, is a sum of i.i.d. Bernoulli random variableg =
er(0?,1).
In the specific case of (x) = (x — t)i, we have

(3.11) Ef(Sw) =— /Oo(z —)?dP(S, >z} = 2/00(2 —HP{S, > z}dz.
t t
Combining (3.8)—(3.11), we obtain

_ 2
(3.12) P{M, = x} < inf Ty

foou _DPB{S, = 2)dz.
t

To estimate the right-hand side of (3.12), we can apply Lemma 4.2 with
oz:—ncrz, B=n, s=2 and B(z)=P{S, >z}
We getP{M,, > x} < (¢2/2)P°{S, > z}, proving (1.6).

It remains to prove (1.7). Introduce the marting®&g.,, = Y1+ -+ Yyqm
with the differences

Yy = Xk, fork=1,...,n and

(3.13)
Y, =0, fork=n+1,...,n+m.

To the martingal&X,,,, we can apply the bound (1.6) of Theorem 1.1. We get

2
e
(314) P{M, > x} =]P){Kn+m >x} < E]P)O{Sn—i—m > x},

whereS,,+,, is a sum ol + m independent copies of a Bernoulli random variable
e=e(0?b)  Witho?=(0?+---+02)/(n+m)=b*\/(n+m).

Centering and rescaling, we get

(3.15) P{Sntm = x} =P{Zpim = (. +x/b) /(14 1/ (n +m))},

whereZ, ., is a sum ok + m independent copies of a Bernoullirandom variable,
say¢, such that

P{E=0}=g¢ withg=1-—p and p=P=1}=A/(n+m+1).

To the sumz,,.,, we can apply the Poisson limit theorem becapée+ m) — A
asm — oo. We get

(3.16)  lm P{Zyym = (h+x/b)/(1+4/(n+m))} =Pn =4+ x/b}.
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Combining (3.14)—(3.16), we conclude the proof of (1.7}

PROOF OF THEOREM 1.3. Let us prove (1.15). Writef(z) = (z — t)i.
Similar to (3.1) and (3.8), we have

(3.17) P{M, > x} <Ef(M,)/x—03 fors<x.

Let T, =61 +---+ 6, be a sum of independent Bernoulli random variables
such thatP{6; = —ay} = P{6; = ax} = 1/2. An application of Lemma 4.6 yields
Ef(M,) <Ef(T,). The inequality
(3.18) Ef(Tw) <Ef(e1+ - +e) =Ef(Sn),
whereS, =¢1+---+¢, is a sum oh independent copies of a symmetric Bernoulli
random variables = ¢(a?, a) as established in Eaton (1970, 1974) and Pinelis
(1994).

Using f(x) = (x — )3, integrating by parts and combining (3.17) and (3.18),
we have

: 3
P{M, > x} < inf p—
Now an application of Lemma 4.2 implies (1.15).
It remains to prove (1.16). Introduce the marting&lg,,, = Y1+ -+ + Yyqm
with the differences defined by (3.13). To the marting&)g.,,, we can apply the
bound (1.15) of Theorem 1.3. We get

/ T = 0?P(S, = 2)dz.
t

2 3
(3.19) P{M, >x}=P{Kppm > x} < %IP’O{(n +m) Y28, > ;ﬁ}

where S, 1,, is @ sum ofn +m independent copies of a symmetric Bernoulli
random variable, say, such thatP{e = —1} = P{¢ = 1} = 1/2. We conclude the
proof of (1.16) by passing to the limit in (3.19) as— oo and using the central
limit theorem. [J

PROOF OFCOROLLARY 1.4. The boundedness condition (1.13) guarantees
that the conditional varianceg are bounded from above kbf. Hence a; = by

and we can apply (1.15) and (1.16) with= b2 +--- +b2. O

PrROOF OF PROPOSITION 2.3. It suffices to prove (i) and (ii) only for
0 <x <b. Indeed, forx > b we have obvioushyB(x) =0. Forx <0, the upper
boundB(x) <1 is obvious; the lower bounH(x) > 1 follows by considering the
random variableX = 0.

(i) For 0<x <b, the linear function«(¢) = (1 — p)t + p satisfied{r > x} <
u(¢) for all r from the interval[a, b]. Therefore, we have
(3.20) P{X >x}<Eu(X)=p and B(x)<p.

The lower bound (x) > p is realized by a Bernoulli random variable, S8y ¢,
suchthatP{e =a}=1— p andP{e = b} = p.
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(i) For 0<x <b andt < b, the quadratic function () = (1 — p)%x2(r +
02/x)? satisfies the inequalitf{r > x} < u(z). Similar to (3.20) it follows that
B(x) < p. The lower bound(x) > p is realized by a Bernoulli random variable,
sayX = ¢, such thaP{e = —02/b} =1— pandP{e =b} = p. O

4. Auxiliary results. A function f: A — [0, co) defined on a subset C R
is called log-concave if the function+— —log f(x) is convex. Whereag can
assume the value 0, the functierlog f can assume the value. Call a random
variableX discrete if there exists a countable gesuch that

P{XeA}l=1 and P{X=x}>0 forallx € A.

A survival functionx — P{X > x} is called discrete ifX is discrete. A binomial
survival functionx — P{S, > x} is discrete and is not log-concave as a function
defined onR. However, it is log-concave as a function defined on theAseff
points at which it has positive jumps down (see Lemma 4.1). Therefore, a discrete
survival function is called log-concave if it is log-concave as a function defined
on the setA (hopefully this terminology will not lead to misunderstanding). For

a function f:R — [0, c0), introduce its log-concave hulf°:R — [0, c0) as

a minimal log-concave function such thit< f°. Any survival function has a
unique log-concave hull which is again a log-concave survival function.

For a random variablé, which assumes integer values, the probability mass
function is defined ag, = P{X = n} for n € Z. In the literature, distributions
with log-concave densities and probability mass functions are refered to as
strong unimodal in the sense of lIbragimov [cf. Keilson and Gerber (1971) and
Ibragimov (1956)]. We are interested in log-concave survival functions, which
have a weaker requirement compared to the strong unimodality. The next lemma
is just a reexposition of some facts from Keilson and Gerber (1971) and Pinelis
(1998, 1999).

LEMMA 4.1. (i) Letn+— p, andn — g, be log-concave functions such that
Pn»qn > 0.Then the convolution

o0
(P*@n= Y Pn-kdk
k=—00

is a log-concave function

(i) Letn— p, be alog-concave function such that > 0. Then the function
n+— t, witht, =% ;- px is alog-concave function

(i) Bernoulli random variables have log-concave probability mass functions
Binomial survival functions are log-concafas discrete ongs

(iv) Let B,y be a sequence of log-concave survival functions which have
probability mass functions supported By Then the pointwise limilim;_, ., Bx
is a log-concave functian
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(v) Poisson survival functions are log-concdas discrete ongs
(vi) Binomial and Poisson survival functiors satisfyB < B° < B°. In both
casesB° is just a log-linear interpolation oB.

In general, it is not true that a sum of two independent discrete random variables
with log-concave survival functions has a log-concave discrete survival function.
Indeed, let, ¢1, ¢2 be i.i.d. Bernoulli random variables such that

Ple=0}=qg and P{e=1}=p with p +¢g =1.

Then the discrete survival functioB(x) = P{e1 + ae2 > x} is not log-concave
provided that the numbers> 0 andp > 0 are sufficiently small. Indeed, assume
that the functionB is log-concave. The random variabklg+ aco; assumes values
0<a <1<1+a. The log-concavity ofB yields B(0)1~“B(1)* < B(a), which

is equivalent tp® < 2p — p2. Passing to the limit ag |, 0, we have k 2p — p?,
which is impossible ifp > 0 is sufficiently small. A similar consideration shows
that survival functions of discrete infinite divisible random variables are not
necessarily log-concave: for example, the survival functiom ef a&, where

n and & are Poisson random variables with parametess0O andy > 0 is not
log-concave provided that> 0 andy > 0 are sufficiently small (just consider the
values of the survival function at pointsdand 2:).

PROOF OFLEMMA 4.1. (i) Write

§=(p*q)2— (P *Qn-1(p * Qnt1-

We have to prove that> 0. It is easy to check that2= >, __ . af with

& = PkPr — Pk+1Pr—1 and B=qn—k9n—r — Gn—k—19n—r+1-

If kK >r, thena > 0 andg > 0, because both functions— p,, andn + g, are
log-concave. Ik < r, thena < 0 andg < 0, which concludes the proof éf> 0.

(i) Notice thatz, = (p * q),, Whereg,, = I{n < 0} is log-concave function,
and apply (i).

(iii) It is clear that Bernoulli probaitity mass functions are log-concave.
Hence, by applying (i), binomial probability mass functions are log-concave.
Therefore, (ii) guarantees that binomial survival functions are log-concave.

(iv) Obvious.

(v) A Poisson survival function is a limit of a sequence of Bernoulli survival
functions. Therefore we can apply (iii) and (iv).

(vi) The inequalityB < B° is obvious. The inequality3® < B° is equivalent
to the elementary inequality

al™b* <a+b fora>b>0 and O<i<1

To see thaBB® is a log-linear interpolation oB, it suffices to compare the graphs
of —logB and—logB°. O
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In the case of a log-concavg, the next lemma was proved by Pinelis (1999).
Actually, the work by Pinelis contains more general results. In the special case
s =1, the result was established by Bretagnolle (1980) and by Kemperman [see
Shorack and Wellner (1986), Chapter 25, Lemma 1].

LEMMA 4.2. Lets > 0. Let B be a survival function with a log-concave
hull B°. Let
a=sudy:B°(y)=1} and B=inf{y:B°(y)=0}.
Then for x such thaix < x < 8, we have

(41) (o t)_sfoos(z — 0 B(x)dz < e’s~*T'(s + 1)B°(x),
<X t
wherel'(s) = [g° t* " texp—t}dr.

PROOF Because it is short, the proof is provided. The function-
—logB°(z) is a convex function. It is clear that this function is strictly positive and
strictly increasing in the intervaly, 8]. Hence, for each < (¢, 8], there exists a
linear function, say(z) = a + bz, with some positivéd > 0, such that

y(x)=—logB°(x) and —IlogB°(z) > y(z) forall z e R.

The numbers = a(x, B) andb = b(x, B) can depend om and B. In particular,
we have

(4.2) B°(x) =exp{—a — bx}, B°(z) < exp{—a — bz} forall z e R.
Using B < B° and (4.2), we have

/Oos(z — 1) 1B(z)dz < exp(—a} /Oos(z — 1) texp—bz}dz
t t

(4.3) =T(s+1)b°exp—a — bt}
=T(s+ Db explb(x —1)}B°(x).
Using (4.3) and choosingsuch thab (x — ) = s, we obtain (4.1). O
It seems that the next lemma has to be a well-known fact [a useful related

reference is Karlin and Studden (1966)]. We wigte= £(a, b) for a Bernoulli
random variable such that

(4.4) Pl =a}=b/(b—a) and P{& =b}=—a/(b—a).
LEMMA 4.3. (i)Let f:R — R be a convex functiarAssume that a random
variable X satisfies
EX =0, Pla<X<b}=1, a<0<b.
ThenE f(X) < Ef (&), where¢ is a Bernoulli random variable satisfying.4).
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(i) Let a function f:R" — R be a convex function of each of variables
X1, ..., X, when the remaining — 1 variables are kept fixedAssume that the
differencesX; of a martingaleM,, = X; + - - - + X, satisfy

Plax < Xy < by} =1,

where numbersy, < 0 < b, are nonrandom for allk. Let & = & (ax, br) be
independent Bernoulli random variabléghen we have

(4.5) Ef(X1,....Xn) =Ef(81,.... 8.

PrROOF (i) We have to prove thaE f(X) <Ef(&). Letu:[a,b] > R be a
linear function. TherkEu (X) = Eu(¢) becaus&e X = EE = 0. Choose: such that
u(a) = f(a) andu(b) = f(b). Then f < u becausef is convex. Futhermore,
Eu(¢) = Ef (&) becausé{¢ € {a,b}} = 1. HenceE f(X) < Eu(X) = Eu(§¢) =
E f (&), which concludes the proof in the case (i).

(i) We use induction im. In the case: = 1, the result was proved in (i). Let
n>1andlet (4.5) hold for 1..,n — 1. Notice that for giverX, the sequence

(4.6) Zo=0, Z1=Xo,...,Zn_1=Xo0+---+ X,
is a martingale sequence with differences that satisfy
4.7) Plags1 < Zx — Zp—1 < by41} =1 fork=1,...,n—1.

Conditioning onX; and applying the induction assumption twice (for 1 and 1),
we have

E(f(Xl,...,X,,)|X1)
E(f(X1.&2.....6)|X1)
E(f(X1.82,....E)62, ... &)
<E(f(E1. & ....&)052, ..., &)

= Ef(SL ~~~v§n),
which completes the proof of (4.5) far> 1. [

Ef(X1,...,X

A ||

LEMMA 4.4. Let f be one of the functions
fO=@x-n%, teR;
fO=6-0%  s>2
f(x) =explhx}, h > 0.

(i) Assume that a random variabe satisfies
P{X <b)=1, Ex? <o

ThenE 7 (X) < Ef(6), where a Bernoulli random variabsatisfie®) = 6 (o2, b)
[see the definitiof2.2) of 6].
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(i) Assume that a martingal®,, satisfies conditiofi2.1),that is that X; < b,
and s? < o with probability 1, wheres? are the conditional variances of the
differencesX;. LetT, =61 + - -- + 6, be a sum of independent Bernoulli random
variablest = 6 (o, br). Then we have f (M,) < Ef(Ty).

PrRoOOF It suffices to prove the lemma witfi(x) = (x — t)i, t € R. Indeed,
both functionsg (x) = (x — 1)}, andg(x) = exp{hx} with s > 2 andh > 0 allow
the integral representation

(48) g(x) — %/Rg///(u)(x _ u)_%_du, g/// > 0.

Therefore, the inequaliti (M, — u)2 < E(T, —u)2 for all u € R clearly implies
Eg(M,) <Eg(Ty).
Henceforth letf (x) = (x —1)2.

() Let us prove thaE f(X) <Ef(0). The r.v.X satisfiedP{X < b} =1. We
consider the following cases separately:

(@) t <—0?/b;
(b) —02/b <t <b;
(c) t=b.
Case(a). Using
(x-n2<@x-1n? and EX=0, EX?<o¢?
we have
Ef(X) <E(X—12<0?+1?=E@ -1)>=E@ -2 =Ef ().

Case(b). Notice that
(x =02 <c(x +0%/b)?, for x < b, wherec = b%(b — 1)?/(b* + o2)°.
Using this inequality an&X = 0, EX? < o2, we obtain
Ef(X) <cE(X +0%%<c(0®+0%/b?) =E©@ — )3 =Ef(0).
Case(c). Now we haveE f(X) = Ef(0) = 0 and there is nothing to prove.
The proof of (i) is completed.
(i) Using induction inn, we shall show that (i) yields (ii). For = 1, the

asertion (i) is equivalent to (i). Assume that (ii) hold for.1.,n — 1. Let us
prove (ii) for n. Notice that for givenX, the sequence

Zo=0, Z1=Xo,....Z,_1=X2+---+ X,
is a martingale sequence with differences satisfying
P{Zy — Zr1<bipd =1 E((Zk — Z-0?1Z1, ..., Zi1) <0
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fork=1,...,n — 1. Conditioning onX1 and applying the induction assumption
twice (forn — 1 and 1), we have

Ef(My) =E(f(X1+---+ Xn)|X1)
<E(f(X1+62+---+6,)|X1)
=E(f(X1+602+4---+6,)]62,...,6,)
<E(f(B1+02+---+60)62,....0,) =Ef(Tp),

which completes the proof of (ii) and of the lemma.l

LEMMA 4.5. Let
4.9 X1, ..., %, >0, a=x1+---+x,)/n.

LetT, =61+ --- + 6, be a sum of independe(dventually non-i.d.) Bernoulli
random variable®, = 6 (xx, 1). LetS, =e1+--- + &, be a sum ofi independent
copies of a Bernoulli random variable= ¢(a, 1). Let f(x) = (x — t)i. Then for
anyr € R, we have

(4.10) Ef(T) <Ef(Sn).

PROOE Write
(411) g =P{or =—xx}=1/1+xp), pi=P{0r =1} = xi. /(L + xp)

and notice thaP{e = —a} =1/(1+a) andP{e =1} =a/(1 + a).

We use well known properties of Schur convex functions [see Marshall
and OIlkin (1979)]. Recall that a vectar = (x1,...,x,) € R" majorizesy =
(¥1, ..., yn) € R" (we use the notation >* y) if

Xpint o FXkn ZYnint o+ Yion forallk=1,...,n,

wherex,,-, > --- > x1., is a decreasing rearragement of the sequengce., x,.
Notice thatx >* y(x) for any x € R4, where the vectop(x) = (a, ...,a) has
equal coordinates such that= (x1 + -+ - 4+ x,,) /n.

A real valued functiong defined on an open subs€tc R? is called Schur
concave ifx >* y implies g(x) < g(y). Assuming thafg has continuous partial
derivatives such that

(4.12) 8jg —0;g >0, whenx; > Xj,

whered; = d/dx;, a result of Schur [see Schur (1923) and Ostrowski (1952)] says
that g is Schur concave in cases when the Gels a symetric open convex set
and g is a symmetric function of its arguments. Notice that the result of Schur
still holds if the setC instead of the symmetry assumption satisfies: there exists a
z=(b,...,b) e R? such that the sef — z is symmetric. Indeed, the majorization
and (4.12) are preserved by a shift transformation of this kind.
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Write g(x) = g(x1, ..., x,) = Ef(T},). Due to the result of Schur, to prove the
inequality (4.10) it suffices to check that the functis a Schur concave function
Notice, that a€” we can choose a sufficiently large open cube which, for a given
contains the set

(xeRY:x1+---+x,=an,x1,...,x, > 0}.

Because the cube is open, we have to allgwto assume negative values. We
assume that; > —1/3. Now the probabilities defined by (4.11) can be negative,
and in such cases we underst&d(6y) asEw (6y) = w(—xz)gr + w(l) px.

Due to the symmetry of in its arguments, it suffices to check the condi-
tion (4.10) withj = 1 andi = 2. The inequality has to hold for allke R. Therefore,
conditioning orvs, . .., 6,, it is easy to see that we can assume that

(4.13) g(x) =Ef(61+62).
To simplify notation writex; = & andx, = 8. Then

1 =P1=-a)=1/1+a), p1=P01=1=a/1+a)
and

q2=Plo2=—-p}=1/(1+p), p2=Plo2=1=8/1+p5),

and we have to check thatg — dgg > 0 assuming thaé > «, whered, = d/da.
For the functiorg from (4.13) we have

(4.14) g=f(—a—PB)qgig2+ f(L—B)p1g2+ f(1—a)qip2 + f(2) p1p2.

We consider the following five cases separately:

(i) t<—a—8;

(i) —~«a—B<t<1-p;
(i) 1 —B<t<l-—a;
(iv) 1—a<t<2;

(v) t>2.

In the proof of (i)—(v) we writel (t) = d,& — dgg. The functions — I(¢) is a
continuous function. We have to show thdt) > 0.

Case()). Inthis casef (x) = (x — 1)2 on the support of; + 6> and, therefore,
(4.15) g=E@1+0 -1’ =a+p+1°

and the inequality (r) > 0 is just the equality &= 0.
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Case(ii). Now [cf. (4.14)]
g=1-B—0pig2+ 1 —a—12qp2+ (2—1)p1pa.
Adding and subtracting—« — 8 — 1)%g1g2 and using (4.15), we have
g=a+p+1%>—(a+ B+
Usingd,q1 = —¢? anddgq = 0, it is easy to find that
1(t)=(a+ B +1%q3q5( — ) > 0,
which concludes the proof of case (ii).

Case(iii). We have [cf. (4.14)]
g=(t+a—D2qpo+(t —22pipa.
Usingdy p1 = qf anddgp1 =0, itis easy to see that
[()=2(t +a - Daip2 — (t + o« — D%qfpa+ (t — 2%qipa

(4.16)
— (t + o — 1)%q195 — (t — 2)*p1g3.

The function! (t) = Ar? + Bt + C is a quadratic function of with someA, B
andC. It is clear from (4.16) thatt = —q195 — p1g5 = —q3. This means that
the functionr — 71 (¢):[1— B,1— a] — R is a concave function. Hencg(r) > 0
will follow if we check the inequality at the endpoints of the interval. However, the
inequalityl (1 — 8) > 0O is already established in (ii). The inequalityl — o) > 0
is proved in case (iv).

Case(iv). In this cases = (t — 2)2p1p» and

1(t) = (t — 2%(gp2 — p193) = (t — D°q192(Ba1 — xq2).
Hence, it suffices to check thay1 — ag2 > 0, which is equivalent t¢g — o) (1 +
B + a) > 0, which is obvious.

Case(v). Now g =0 and there is nothing to prove. The proof of the lemma is
completed. O
LEMMA 4.6. Let f be one of the following functions
f=&-n3, 1€k
fO=x-0%, s>2
f(x) =explhx}, h > 0.

(i) Assume that a random variablé satisfies
(4.17) P{X <b}=1, Ex? <o?

Then we have f (X) < Ef(0), whered is a symmetric Bernoulli random variable
0 = 0(a?, a) with a = max{o, b}.
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(i) Assume that a martingal®,, satisfieg(2.1),that is X < by ands? < o
with probabilityl,wheres,f are the conditional variances of the differencgs Let
T, =01+ ---+6, be asum of independent symmetric Bernoulli random variables
Or = 9k(“]37 ay) with a, = maxXoy, by}. ThenE f (M,,)) < E f(T;,).

PrROOF  Similar to the proof of Lemma 4.4, it suffices to establish (i).
Assume first that < b. By (i) of Lemma 4.4, we have f (X) < E f(6p), where
a Bernoulli random variabléy = 6p(c2, b). The conditioro < b implies

(4.18) P{6o < b} =1, E62 < b2.

In the view of (4.18) we can estimate the expectatyi(6p) using (i) of
Lemma 4.4. We g€t f (6p) < E f(0) with a symmetric Bernoulli random variable
0 = 6(a?, a) because = maxo, b} = b, due to the assumptian< ». Combining
the inequalities, we obtain the desiled (X) < Ef(6).

Assume now that > b. A random variables which satisfies (4.17), satisfies as
well P{X <o} =1 andEX? < ¢2, and we can again apply (i) of Lemma 4.4,
because now = maxo, b} =0c. O

LEMMA 4.7. Assume that for a functio@ (a; o2) the bound
(4.19) P{M,, > an} < Q"(a; c°)

holds for allz and all sums\f,, = ¢1 +- - - +¢, of i.i.d. Bernoulli random variables
er = €1 (02, 1) so that the conditions of HoeffdirgTheoren8 are fulfilled Then
we have

Q(a; 0% = H(aq + p; p), wherep =o?/(1+0?), g=1—p.

PROOFE We haveP{s; = —02} = ¢, P{e; =1} = p and
P{M, >an} =P{61+---+6, >z} with z =aqg + p andb;, = g& + p.
The random variableg;, are i.i.d. Bernoulli random variables such tip; =
0} = g andP{6; = 1} = p. The inequality (4.19) implies
1
log Q(a; 6%) = = l0gP{61 + - -- + 6,& > z}.
n

Passing to the limit a8 — oo and using a well-known result on large deviations
[see Bahadur (1971), Example 1.2], we get

log Q(a; 0% > —f

with f =zlog(z/p) + (1 — z2)log((1 — 2)/(1 — p)), for p < z < 1. Using the
explicit formula (1.18) forH, it is clear that exp- f} = H (a; o?), which proves
0 > H and the lemma. [J
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LEMMA 4.8. In Theoremd.1-1.3P{S, > x} cannot replac&°{S,, > x}.

PROOF It suffices to prove the lemma in the case- 1. Let X be a random
variable such thaP{X <1} =1, EX =0 andEX?2 < ¢2. Lete = ¢(c2,1) be a
Bernoulli random variable. To prove the lemma it suffices to check that

(4.20) supP{X > 0}/P{e > 0} = oo.
L(X)

Taking X = 0 we haveP{X > 0} = 1. UsingP{e > 0} = 02/(1 + 02), we see
that (4.20) is implied by the obvious spp o(14 02)/02 =o00. O
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