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ZERO TEMPERATURE LIMIT FOR INTERACTING BROWNIAN
PARTICLES. Il. COAGULATION IN ONE DIMENSION?

BY TADAHISA FUNAKI
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We study the zero temperature limit for interacting Brownian particles in
one dimension with a pairwise potential which is of finite range and attains
a unique minimum when the distance of two particles becamesd. We
say a chain is formed when the particles are arranged in an “almost equal”
distancea. If a chain is formed at time 0, so is for positive time as the
temperature of the system decreases to 0 and, under a suitable macroscopic
space-time scaling, the center of mass of the chain performs the Brownian
motion with the speed inversely proportional to the total mass. If there are
two chains, they independently move until the time when they meet. Then,
they immediately coalesce and continue the evolution as a single chain. This
can be extended for finitely many chains.

1. Introduction. We consider a system of interacting Brownian patrticles in
a real lineR. The positions ofN particles at timer are denoted bw(r) =
(x; (t))fV:l e R" and evolve according to the stochastic differential equation (SDE)

1 _,0H .
(1.1) dxi(t) = —Ze "~ (XO)dt +dwi().  1<i<N.
Xi

Here (w; (t))f":1 is a family of independent one-dimensional standard Brownian
motions. The parameter > 0, which is very small, represents the ratio of the
microscopic spatial unit length to the macroscopic onearidwith « > 0 is the
inverse temperature of the system, which is already rescaledime Hamiltonian
H(x) of the configurationx = (xl-)fvz1 e RV is defined as a sum of pairwise
interactions between patrticles:

(1.2) HX)= Y Uxi—x).

1<i<j<N
The potentiall = U(|x|) is symmetric, smooth, of finite range and has a unique
nondegenerate minimum &t| = a > 0; see Assumptions | and Il stated in
Sections 2 and 3 for details. The configuratiog (xl-){V:1 is a microscopic object
and its macroscopic correspondence is givematxy)f.v:l under the spatial scaling
X = EX.
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The aim of this paper is to investigate the asymptotic behavior of the system as
¢ | 0 under a proper scaling both in particles’ numbeand timer besides the
temperature of the system. The particles’ numies N (¢) will change in such a
manner that

(1.3) IEI% eN(e)=p

with somep > 0. We shall simply writeN ~ pe~1 for (1.3). Then, the solution
X() = (x; (t))fvz(i) of the SDE (1.1) is rescaled in time as

(1.4) xXO@) =xe"3), >0

As the temperature, given lay, tends to 0, the system of the particles is expected
to be frozen and arranged in an almost equal distandenis naturally leads us

to the following notion: a configuration = (xl-){\’:1 arranged in increasing order
is called achain with fluctuationc > O if it satisfies|x;+1 — x; — a| < c for every
1<i <N —1. Whene | 0, the fluctuatiorc = c(¢) of the chain is expected to
be small. Macroscopically, eod, which is an intervalexy, exy)] in R, rather

than a set of point(s;sx,-)fvz(i) is associated with the chain= (x,-)fvz(f) with small

fluctuation under the spatial scaling— ¢x. The constantg andpa represent the
mass and the length of the associated rod, respectively.

The first paper [1] studied the behavior of the rescaled prog€&sg) for
a single crystal which is an extended notion of chain in higher dimensions,
and the result can be reformulated as follows in one dimensiox(é)If0) is a
chain with particles’ numbeN ~ ps~1 and fluctuatiore’” with certainv* > 0
atr =0, thenx®(r) = (xl.(e) ()X, remains to be a chain with fluctuation
with slightly smallerv than v* for ¢+ > 0 asymptotically with probability one
as ¢ | 0. Moreover, the (macroscopic) center of mass of the associated rod
defined byn® (1) := & >N 1xl.(8) (1) behaves asymptotically as) 0 asn(0) +
w(t/p) if n(0) =limg o n® (0) exists, wherew(r) is the one-dimensional standard
Brownian motion. This means that the evolutional speed of the rod is proportional
to the inverse of the macroscopic massee Theorem 2.2 for details.

The main result of this paper is stated in Section 3. Assumexttis0) =
x@D(0) U x®2(0) consists of two chaing®Y0) and x2(0) with Ny ~
p1e~ L and Ny ~ poe~t particles, respectively, whegg, p2 > 0. Then, these two
chains evolve independently until they meet. Once they meet, they immediately
coalesce and form a larger single chain with particles’ numbes N1 + N>,
see Theorem 3.1. Afterwards it evolves as a single chain, so the associated rod
performs the Brownian motion with speed inversely proportionahte- po. This
result can be extended for finitely many chains; see Corollary 3.9.

As is explained in [1], one of the motivations of our study comes from the theory
of interfaces and, in this respect, the rod we have introduced can be regarded as a
kind of Wulff shape at temperature zero. The system of sticky Brownian motions
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was discussed by Smoluchowski; see [6]. Another model for coalescing rods in
one dimension was studied by Mullins [7]. These models have, however, a slightly
different character from ours, since the speeds of the particles or the rods do
not change after coalescence in these models. Lang [5] investigated a system of
ordinary differential equations (1.1) dropping Brownian motions wittf = 1

andN = oco. Such system arises from the SDE in the zero temperature limit under
a proper time change.

2. Motion of asinglechain. This section summarizes the results for a single
chain, which are deduced from Theorem 3.4 of Funaki [1] by restricting the system
in one dimension.

2.1. Hamiltonian. The spac&R? stands for the set of alt = (x;))¥ ; e RV
arranged in increasing ordef < x2 < --- < xy. The HamiltonianH (x) of x is
introduced by the formula (1.2). The pair potentiain (1.2) satisfies the following
conditions:

ASSUMPTIONI. (i) (symmetry)U (x) = U(—x), x € R.

(ii) (smoothness, finite rangé) CS(]R{).

(iii) There exists a uniquer > 0 such thatU(a) = min,>oU(x) and ¢ :=
U’ (a) > 0.

(iv) b < 2a, whereb :=inf{x > 0; U(y) = 0 for everyy > x}.

We denote by the configuration such that,1 —z; =a,1<i < N — 1. Note
that z is a local minimum, which is sometimes called an instanton in physics,
of the HamiltonianH. By Assumption I(iv), each particle in the configuratinn
interacts only with neighboring particles. The (microscopic) center of mass of the
configuratiorx € RY is defined by

1 N
(2.1) n(x) = N ;xi eR.

Let 0 = (z?)lNzl be the centered local minimum that is,n(zo) = 0. Then, each
configurationx € RY can be decomposed as
(2.2) x=2"+h + n(x)
with h = h(x) = (1), € RN satisfying >~ ,#; = 0, wherez® + h + 5 :=
@+ h; + N, for n e R. Forh = (b)Y, € RN satisfying>"Y ; h; =0, we
introduce three normgVh|2, [Vh|l« and||Ah||2, respectively, by
N-1
IVhIZ= > (hiva—h)?  [Vhleo=_max |hiz1— hil,
-1 1<i<N-1
N-1
lahIZ = " (2h; — hiya — hi—1)? + (ha — h)® + (hy — hy-1)?.
i=2
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LEMMA 2.1. For everyh e RV,

$IAh[2 < [Vh]2 < N||Ah]|2.

PROOF The first inequality is obvious from the definition of two norms. To
show the next, sef; = h;+1 — h;, 1 <i < N — 1. Then, we have

N-1

N-1
IvhiZ= > g?=>"
i=1

i=1

; 2
g1+ (g — gj—l)}

j=2

N-1 i
. N(N —1)
<> z{g% +) (g - g{,-_l)z} < TnAhn%-
i=1 j=2

This implies the second inequality]

Two quadratic formsg; and & of h introduced in Lemmas 2.1 and 3.1 of [1]
related to the HamiltoniarZ (x) have the formsg1(h) = é||Vh||% and &;(h) =
&2|Ah|1Z in one dimension, respectively. Lemma 2.1 shows that the constant
1@ (z) arising in a bound between these two quadratic forms stated in Lemma 3.2
of [1] can be taken as@ (z) = ¢N 2.

Let M = MY = {20 + n; n € R} be the set of local minima and leit ¥ (c) =
MVN(c) = {x e RY; |[Vh(X) |l < c} be the tubular neighborhood oft for
c € [0, b — a]. The configurationx € M " (c) will be called achain with particles’
numberN and fluctuatiore. Note thatx € MY (¢) meansx; 11 — x; — a| < ¢ for
every1<i <N — 1.

2.2. Microscopic shape theoremand motion of the macroscopic center of mass.
We now discuss the scaling limit for the solutiour) of the SDE (1.1). The
particles’ number of the system is assumed to behaveé asN (¢) ~ ps~1 with
p > 0. Letx® () = x” (1) € RN® pe the time changed process xif)

defined by (1.4). Fop > 0, consider the stopping time= ¢ ©) determined by

o =inf{t>0;x® ) ¢ MYV (")) =inf{r>0;

}Vh(x(s) M) >€"}

THEOREM 2.2. (1)Assume v > 2, o > 2v + 3 and x©(0) € MYV (G(e))
with ¢(e) = o(e"*Y/2) as e | 0. Then, we have lim; o P(c® > 1) = 1 for every
t > 0.

(2) Let n® (1) := en(x®(¢)) be the (macroscopic) center of mass of the rod
associated with the chain x®) (¢). Then, n® () weakly convergesto 7(0) + w(z/p)
ase | 0in the space C ([0, T1,R) for every T > 0 if n(0) = lim, 07 (0) exists,
where w(t) isthe one-dimensional standard Brownian motion.
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PrROOF We apply Theorem 3.4 of [1] to show assertion (1). Note that
118 = ¢ (see Remark 2.2 of [1]),28) = ¢ N2 ~ ¢p 262 (see the remark after
Lemma 2.1) in one dimension and we take) = ¢”. Then, condition (3.6) in [1]
is satisfied ifc(e) < ce? (ase | 0) for some smalk > 0, which is valid when
v > 2. (The conditiorr(¢) < ¢® in (3.6) automatically holds for sufficiently small
e > 0, since we can take® = b — a; see Remark 3.2(1) of [1] as well.) To see
that condition (3.7) in [1] holds, note that

[Vh(x® ()5 < N|Vh(x®(0)) |2, < Cs~ Ho(e" )2 = 0(s?)
and therefore
(A& e(e)2} P E[|Vh(X®(0))[|57] < Ce ™2 x 0(?"P) — 0.
Condition (3.8) in [1] also holds since
{K(l,s)c(g)Z}—PS—Kﬁ(S)—p-‘rlN(S)p{k(Z,s)}—P"Fl < Cel@—2-3)p—a-1__ g

forlargep; recallx = 3, B(¢) = 7 anda — 2v — 3 > 0 from our assumption. As-
sertion (2) is easy, sineg® (1) = n®(0) +e N1 N | w;(¢73¢). The constant€
in the above estimates may change from line to ling.

Theorem 2.2(1) asserts that asymptotically with probabilityx3fiéz) remains
to be a chain with fluctuation” if it is a chain with fluctuationo(s"+1/2)
at + = 0. This characterizes the microscopic structure of the solutions of the
SDE (1.1) which are scaled macroscopically in time. Theorem 2.2(2) determines
the macroscopic evolution of the associated rod.

3. Coagulation of two chains. In this section, we assume that there are two
chainsx® = x@D andx@ = x¢-2 in R with particles’ numbersV; = N1(¢) and
No = Na(¢), respectively. The chair® is located on the left side of®. If the
distance between the right most particled and the left most one of® (which
will be called the distance of two chains) is larger tlianthese two chains move
independently. We shall show that, once the distance of two chains beéggmes
these two chains coalesce immediately in macroscopic time scale and afterwards
move as a single chain with particles’ numiée N (e) := N1 + No.

To be more precise, we assume the following conditionsc@ [= x)(0),
a sequence depending en- 0] and consider the solutiox(r) = x® (1) Ux@ ()
of the SDE (1.1) starting ak(0), where xP(r) = (x;(1))%, and x@ (1) =

CHO) A

ConDITION A. (i) x(0) = xP(0) Ux®@(0) consists of two chains™® (0) =
(x; (O))fvzl1 andx®@(0) = (x; (0)){V:N1Jrl with particles’ numberdV; ~ p1e 1, No ~
p2¢ 1 and fluctuations®, i > 0, that is,x©(0) € MV Ne(et), ¢ = 1,2, where

p1, p2 > 0.
(if) The distance of these two chaingisthat is,xy, +1(0) — xy, (0) = b.



ZERO TEMPERATURE LIMIT. Il. COAGULATION 1233

We need, in addition to Assumption I, the following rather technical assump-
tions on the shape of the potential We shall denote the connected component of
the set{x > 0; U”(x) > 0} containinga by D = (b1, b>).

ASSUMPTIONIL. (i) 2U(b2) > U(a) andU (b1) + U (b2) > U(a).
(i) U'(x) > 0 for everyx > b, (and therefore fox > a).
(i) 2b3 > b, wherebs € (b1, a) is determined by/ (b2) + U (b3) = U (a).

Note that, sincd/(a) < U(a) — U(b2) < U(by) from (i) and (ii), b3 in (iii)
exists uniquely. Assumptions (i) and (iii) mean that the wedl stdeep and located
away from 0, respectively. An example of the potentigl which satisfies both
Assumptions | and Il, is given by (x) = ¥ ((|x| — a)2 — 4), where we assume
a >4 andy € C3(R) is a nondecreasing function such thiatx) = x for x < —1
andy (x) =0 for x > 0. Note that/ (b1), U(b2) > —1,b<a+2andbz3>a—1
in this example.

The main result of this section is now formulated.

THEOREM3.1. Letx® (r) = x(¢~3r) bethetime changed process of x(z) with
initial data x(0) satisfying Condition A with i« > 1/2. Assumethat v > 0 is given
and o satisfiesa > 4 v (2v + 3). Then we have, for every § > 0,

im P (<)1) € MY (e) for somer < ¢1%) = 1
&

Theorem 3.1 combined with Theorem 2.2 establishes the asymptotic behavior
of two chains located in a general position. Supposeitha®, v > 5/2 are given
anda > (2v + 3) v (20 + 3), and that the initial data(0) = x (0) U x@(0)
of the SDE (1.1) satisfies only Condition A(i) for some> v + 1/2. Then,
by Theorem 2.2, two chains'®? (), ¢ = 1,2, scaled macroscopically in time
both stay in.MY-V¢(¢”) until the time when the distance of these two chains
becomesh. However, at the time when the distance of two chains becdmes
Condition A(ii) is also satisfied and therefore we can apply Theorem 3.1 to see that,
within the times1~9, a single chaix® (1) € MYV (£") is formed from two chains
x&0 (1), £ =1, 2. Afterward, applying Theorem 2.2 again, the single cix&ih)
moves staying ifM- o M VY (¢ ~1/2-%) All these statements hold asymptotically
with probability one ag | 0. The coagulation of several chains will be discussed
in Corollary 3.9.

The first step for the proof of Theorem 3.1 is to show that, asymptotically
with probability one as | 0, the distances of all neighboring particlesxgf)
belong to the convex regio®” of the potentialU [which is slightly smaller
than D; see (3.22)] at certain timesmaller thare=2-% for arbitrarys > 0, see
Proposition 3.5 and the remark after it. In the proof, we always consigdéer
without introducing the scaling in time. The second step is to prove that, once the
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distances of all neighboring particles belongii8, the two chains coagulate and
form a single chain within the time®—2-? for everys > 0; see Proposition 3.8.

Let 232 =z U 2@, 20 = (), 2@ = ()} ;1 be the configuration
satisfyingzi+1 — zi = a,i # N1 andzy, 1 — zy, = b. Note thatz1-? is a saddle
point of H (x). Condition A means that(0) is in a neighborhood a2,

From Assumptions II(i) and lI(iii), there existy € (a, bp) such thatU (b4) =
U(b3). Then, choose an intervd)’ = (b3, b,) and b; in such a manner that
b1 < b/3 < b3, by < bﬁ < b/2 < b2,2b/3 > b, U(b/3) U(b4) and$ := U(b ) +
U(b3) — U(a) > 0. This is possible by takings, b5 slightly smaller tharbz, b3
andby slightly larger tharbs, respectively. We introduce four stopping times:

1 =inf{t > 0; xn,+1() — xn, (1) < b5},
> 0; x;41(r) — x;(¢) ¢ D' for somei # N1},

{
T2 = inf {¢ {
t3=inf{r >0; H(X(1)) > 81},

u=inf{r>0; n(x2)) — n(xP @) < %N —~ N"},

where H(x) := H(x) — H(z%?), 0 < 81 < § and 0< k < 1; « will be chosen
later in the proof of Proposition 3.5. The functiongx®) = -1 Zl L x; and
n(x®@) = 'L v,+1%i» defined by (2.1) with particles’ numbe}\f replaced by
N1 ansz in each chain, represent the microscopic centers of mag8 @ndx?,
respectively. We first discuss with, 72, t3 in Lemmas 3.2, 3.3 andy will be
treated in Lemma 3.4, later; see Remark 3.1 for the meaning.dfhese three
lemmas are prepared for the proof of Proposition 3.5.

LEMMA 3.2. (i) For everyt < 11 A 12, MiNi<j<ny—2{xi42(¢) — x; (1)} > b. In
particular, in the configuration x := x(¢), only neighboring particles interact and
we have

Bl HM= Yy  {UGisa—x)—U@}+ Ul —xny).
1<i<N-1,i#N;

(i) i AT3 < T2

PROOF  Fort <11 A 12, Wwe havexy,1(f) — xy, () > b, andby < x;41(1) —
x;i(t) < by for everyi # Ni1. This implies x;12(t) — x;(t) > 2b5(> b) for all
1<i <N — 2, and therefore (i) is shown. To prove (ii), assurpe 71 A 13 and
setx = (x;))_; := X(r2). Then, there exist& (# N1) such thaty; 11 — x;, = b}
(or by), andxy, 41 — xn; > b, because, < t1. Moreover, sincer, < r1, we can
apply (1) att = o and see thal (x) has the form (3.1). Therefore,

H(X) > {U (xigr1 — Xig) — U(@)} + U (xny 41— Xny)
> Uy —U(a)} +U(by) =6 > 81.
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This contradictg, < r3 and the proof of (ii) is complete.[]

LEMMA 3.3. Assumea > 4 and u > 1/2 in Condition A on x(0). Then, for
every y > 0,

ImP(tpAne™ <13)=1.
el0

PROOFR Step 1. Takedg € (0, §1) and fix it. In this step, we prove that there
existcy, €9 > 0 such that

N OH\? 180
(3.2) > (g) X))z <7

j=1"""J
if 1 <711 A T HX(#)) > 8o and ¢ € (0,g0). Indeed, since (3.1) holds for
X 1= X(t) and sincexy,41 — xn; = b, implies U(xy,41 — xn,) < 0 [by
Assumption 11(ii)], we see fromH (x) > 8o that U (xjg+1 — xiy) — U(a) > 8o/N
holds for someip # N1. However, for suchip, [(xjj+1 — Xiy) — al = c24/80/N
[by Assumption I(iii)] and accordinglyU’ (x;y+1 — xiy)| > c3+4/80/N (by noting
Xig+1 — Xiy € D) for certaincy, c3 > 0.

Now let us assume that (3.2) does not hold. Then, we have

OH [c16
(3.3) ‘@(X)‘ =|U'(xj —xj-1) —U'(xjy1—x))| < %

for every 1< j < N; we regard ad/'(x1 — xo) = U'(xy+1 — xn) = 0. First
consider the case wheig< N1 — 1 andU’(x;y1+1 — xi,) > c3+/30/N. [The case
whereig > N1+10rU’ (xjy+1—Xiy) < —c3+/80/N can be similarly treated.] Then,
using (3.3) withj = ip, we have

U’ (xjg — Xig—1) > c3v/80/N — y/c180/ N3.

Continuing this procedure of estimatgs- 1 times, we finally arrive at

(3.4) U'(x2—x1) > ¢3v/80/N — (io — 1)y/c180/N3 > (c3 — +/c1)v/80/N.

But, if one takes; > 0 such thatz > ,/c1, (3.4) contradicts (3.3) with = 1 for
sufficiently smalle > 0. Therefore (3.2) is shown.
Sep 2. Simple application of 1td’s formula for the solutioudr) of (1.1) shows

dHX(0) =dm(t) + {—e*bD x(®)) + b@ (x(1))} dt,
whereb® (x) = 3 SN (0H/9x)%(x), b@ (x) = 3 X1 02H/3x2(x) andm (1)
is a martingale defined by ‘

N ol
m(r)=zl /0 ax, KO o)
]:
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However, in Step 1,we have sekf (x(1)) > c180/(2N3) > c4¢3 for somecy > 0
if t < t1AT2@NdH (X(2)) > 8o. Moreover, sincézH/axJZ are boundedp@ (x)| <

cse L. Therefore, recalling: > 4, we obtain
(3.5) dH(x(1)) < dm(t) — cee *3dt,

for 1 < 71 A 12 satisfyingH (x(1)) > 8o; or, more precisely sayindf (x(1)) — m(r)

is differentiable inr and d{H (x(t)) — m(1)}/dt < —cee—**3 for sucht. Since
dH /dx; are bounded, the derivative of the quadratic variational proceas:ofis
dominated by

d N 9H\?
(3.6) Smi =Y (55 ) o) ere

j=1 9x;

Sep 3. Introduce a time changed procasof H (x(r)) asy; := ﬁ(x((m),‘l)),
Where(m),_1 denotes the inverse function ¢f),. Then, from (3.5) and (3.6), we
have

(3.7) dy, <dB; — ce “*ds

if 1 < ()7, 1z, andy, € [80, 00), Wherec := cge7 *. Note thatB, := m((m); 1) is a
Brownian motion andg = H (x(0)) < cge?*~1 from Condition A onx(0) and the
bound H (x©(0)) — H((z¥) < C&1(h(x¥(0))), £ = 1, 2, shown in (3.3) of [1],
whereH (x¥) denotes the Hamiltonian of the system wih particles.

Chooses, € (8g, 1) and take a smooth functiofi: (§g, o0) — [0, o0), which
satisfies f(x) = 0 for everyx > &> and s(do+) = lim,5,5(x) = —oo, where
s(x) = 5@ (x) is a function defined by

s(x) = /ax eXp{—Z ay(—ce_“+4+ f(Z))dz}dy, x > 8.
2 2

In fact, such functionf can be taken, since, iff (x) behaves asf(x) ~

C(x —809)~* asx | 8o with A > 1 andC > 0, thens® (§g+) = —oo for each

¢ > 0. We consider the SDE faf = 7\

(3.8) dz; =dB; — ce % *dt + f(z,)dt, 20 = 82.

The functions (x) is the so-called natural scale (or canonical scale) for the diffusion
process;; see [3] or [4], page 339. Sine&sp+) = —oo, it holds that

(3.9) Z: > 80, t>0, a.s.
Moreover, for every sufficiently smadl > 0,
(3.10) Ve <2

holds for every 0< t < (m)gar,. Indeed, sincer > 1/2, yo < cge?* ™1 < zg
(ase | 0) and therefore (3.10) is true at= 0. If y; < 8o, (3.10) automatically
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holds because; > §p. Oncey, moves into the intervaldg, oo), one can apply
the comparison theorem (see, e.g., [2]) between two processesiz, recalling
(3.7), (3.8) andf > 0, and (3.10) is shown for al< (m), rr, .

We now consider a stopping time; = al(e) = inf{t > 0; z;, = &1} for the
solution of the SDE (3.8). Then, (3.10) implies < (m); if 13 < 71 A 12, Which
shows

{m<tirnnrne}clor<(m)e—r} Clo1< C7£_1_V}.
The second inclusion follows from (3.6). Hence, if one can show

(3.11) lim P(o1 <c7e 7)) =0,
el0

then we have limyg P(t3 < 11 A 12 A ¢77) = 0. However, since
{m<tre?}c{m<nurnare’U{n<tArts},

Lemma 3.2(2) concludes the lemma.
Sep 4. Only the proof of (3.11) is left. The argument of this step is rather
standard. We introduce another stopping tishe= 02(8) = inf{r > 0; z; = 3} by

choosingsz € (82, 81). Then, one can find > 0 such that
(3.12) P(oy>1)> 1
for every O< ¢ < 1. In fact, consider an SDE

dz; =dB; + f(z;)dt, Z0=20=02.

Then, z; < z; holds for everys > 0, which implies 62 < 02(8) for 6o =
inf{r > 0; z; = §3}. We may therefore take:= P(62 > 1) > 0.
Let{c® =0®9},_o12 . andK = K© be a sequence of stopping times and
a random variable inductively defined b)?o) =0andfork=1,2,...,
o@D —inf{r > o @72, 7, =83},
o@® =inf{r > o@D, 7, ¢ (82,81},
K =inflk >1; z @ =61},

respectively. Then{o®},_012.. and K have the following four properties:
(i) {0 —5@=2y,_,, is anindependent system, (i) the lawaP*—b —

o %~2) is identical to that ofr, for eachk = 1,2, ..., (iii) 01> 2K ;(c@®~D —

o @=2)) and (iv) K — 1 has the geometric distributio®(K — 1=n) = pg",n =
0,1,2,... with p= p® := P(K =1) andg = 1— p. Indeed, (i) is a consequence
of the strong Markov property of;, while (ii) and (iii) are obvious. To see (iv),
one may note thgk := z, @ }k=0.1.2,... forms a two state Markov chain on the set
{82, 81} with the transition probability? (z1 = §1|z0 = 82) = p andP (1 = §2|z0 =

82) = ¢g. Furthermore, for every sufficiently smalt- 0,

(3.13) p <expl—ce 4,
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wherec = ¢(§1—4§3). In fact, this is shown noting that = {s(63) —s(82)}/{s(81) —
s(82)} and the natural scalgx) is given by

s(x) = zie“—“{ exp(2ce T (x — 82)} — 1)
C

for x > 82; recall thatf (x) =0 if x > 8o.
With the choice ofKg = K((f) = eexplce %4} (< ¢/p), (3.13) and prop-
erty (iv) show that

P(K<Kgp=1-@1-pFe—0  e}0.
Therefore, from property (iii), the proof of (3.11) is complete if one can prove
Ko
(3.14) imP( Y (0@ 6@ 2)<c7e77 ) =0
el0 =1

for everyy > 0. SetX; = Lip@-1_g@-2 -1 fork=1,2,.... Then{Xi}r=12. .
is a sequence of independent and identically distributed random variables such that
r=1® = P(X;=1)> A >0 from (3.12) and the property (ii). Since

Ko Ko
Y = Z X < Z (O-(Zk—l) _ O.(Zk—Z))’
k=1 k=1

(3.14) follows from lim o P(Y < c7e~177) = 0. But, this is easy fronE[Y] =
AKo, E[(Y — E[Y])?] = A(1 — 1) K{ by applying Chebyshev’s inequality]

LEMMA 3.4. Assume u + « > 1 for the constants i, x > 0 appearing in
Condition A on x(0) and in the definition of ¢4, respectively. Then, for every § > 0,

|i£T(1) P(‘El ATg < 8_(1+2K+5)) =1
e

PrRoOOF From the SDE (1.1), we have

N1

1, 1
dn(x (1)) = —z—ng U'(xn, — Xny+1)dt + N > dwi(t)
i—1

1M
> — > dw;(), t <11,

and a similar bound odn(x@ (7)) from above for < 1; recall that’(x) > 0 for
x > a [by Assumption II(ii)] and the symmetry df [by Assumption I(i)]. Hence,

n(x? () —n(xP ) < n(x?(0)) = n(xP(©) + (N; T+ Ny HY 2w ()
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for r < 11, where

1 X 1 M
w(t) = (N1_1+N2_1)_1/2<F > win) - MZwim)
i=N1+1 i=1

is a Brownian motion. Let us introduce a stopping time:
oz=inf{t>0; (N{ 2+ Ny HY2w(r) < —(b —a) — "N — N¥).
Then, decomposing? andx@ as in (2.2), respectively, we have
N1

a 1
n(xV) = Z(1— N + N > (hi =) + 2wy,
(3.15) 1 =
a
n(x®)= SN2 =D+ = 3 (i —hnysa) + vy,
2 i=N1+1

sincey " by =Ny 1 hi =0 andzy = —z9 = a(M — 1)/2 for the centered
local minimumz® = (z9)#, with particles’ numberM (we take M = N1, Np).
Therefore, Condition A om(0) = xV (0) U x@(0) implies

‘{n(x@(O)) — (@)} =N - (b -a)

( Z(Nl_lﬂ_ﬁ Z (t—N1—1)>§8“N,

21 =N1+1

from which we seety < o3 if o3 < 11. Accordingly, we have{r; A 14 >
e~ 240 (55 > ¢~ A4} However, sincgr + k > 1 impliese“ N « N¥
ase | 0, we see(N; Lt + Ny H)"Y2(b — a 4 "N + N¥) < ce~1/?+9 for some
¢ > 0 so thatos < 63 := inf{r > 0; w(r) < —ce~ Y29} The scaling invariance
of the Brownian motion showds = ¢~ 11t2%)53 in law, wheregs := inf{r > 0;
w(t) < —c}. Therefore, we get

P(tiAtg>e W2 < P63 > e IH2HD) = p(53>67%) - 0

ase | 0, which completes the proof.[]

REMARK 3.1. Ifx=2zDUz® = (z)", U (z))~ vy 41 Satisfiesi 11—z =a
for all i # N1, then (3.15) taking;; = O for all i showsn(z(z)) n(zM)=4N —
a+zn,41 — zn,- In particular, if the distance &V andz® isa (i.e.,x € MN)
thenn(z?) — nzW) = 4N [cf. this with (@) — n@®) = 4N + (b — a) for
x = z1:2]. This may explaln the meaning of the stopping tlmeThe randomness
coming from the Brownian motionav; (t))fV:l helps to make the distance between

two chains shorter. Such effect was measured by the difference of the centers of
mass of two chains.
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The results obtained in Lemmas 3.2, 3.3 and 3.4 are summarized in the
following proposition.

PROPOSITION3.5. Assumew« > 4 and u > 1/2. Then, for every § > 0,

lim P(t1 < g8

, =1
m T1 < 12)

PROOF  Taking; <« < 33 Aland denoting’ := 1— 2« +8 > 0 by again,
we may prove that

(3.16) Iiirg) P(t1 < g~ At2e4) 70 1) =1, §>0.
&€

Sep 1. We first note that (3.16) can be deduced from

(3.17) n%P@ng*H%Hn=1
&

In fact, this is seen from Lemma 3.2(2) and Lemma 3.3 wite 1+ 2« + §, since

{tiAm<nln{nA g~ (IH2+d) < 3N{n < 8_(1+2K+8)}

—(1+2+8)

clnu=<e , T1 < T2}

We now give the proof of (3.17). Lemmas 3.3 and 3.4 shoijm’(A(s)) =1

for A® = (g A e~ @H2&4D) < 73 11 A 7 < e~ WHZ+) Assumer, < 13 and
11 > ¢~ 249 on the eventd®, and setx := x(r4) = XD U x@ = (x)Y ;.

Then, we haveéd (x) < 81 andxy, +1—xy, > b, sincers < 71. Accordingly, noting
T4 < T1 A T3 < T1 A T2 by Lemma 3.2(2), we see that formula (3.1) holds £bix)

and

[Uip1—x) —U@)} = HX) — U(xny+1 — Xn,)

(3.18) 1<i<N-1,i%N; B
<5 UMY =U®y — U.

On the other hand satisfies
(3.19) n(x?) — n(x¥) = %N — N¥.

We shall prove in Step 2 that (3.18) and (3.19) are incompatible. Once this is
proved, we have, > 13 or 11 < e~112+9 on A and this shows (3.17).

Step 2. SetC := U(by) — U(a) > 0. Then, (3.18) implies/ (x;+1 — x;) —
U(a) < C for everyi # Ny and, in particularx; 1 — x; € D. However,U is
dominated from below by a quadratic function fn that is, there exists_ > 0
such that

c (g—a)’<U(g)—Ula) IifgeD.
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Therefore, (3.18) shows that fgy :=x; 41 —x;, 1<i <N —1,

(3.20) Y @-ats—.

1<i<N,i%£N; €-

Next noting thatx; = xy, — ZlNlj g for 1 <j <Ny andx; =xy41+

Zl N1+1 gi for N1 +1 < j < N, we rewrite the difference of the centers of mass
of two chains in terms of = (g;)i«n;:

n(x®) = n(xP) = (xy, 41— xn;) + Z igi+—— Z (N —i)gi.
21 =N1+1

Hence, recalling thaty, 11 — xn; > b5, (3.19) implies

1 N1—1 1 N-1
F(Q) = — i(gi —a)+ — (N—=i)(g —a)
(3.21) N1 l; N, i:%:—‘rl
<—-N“-Db5+a.

However, using Schwarz’s inequality and (3.2@(g)| is dominated by

1 (M1 1/2 /N1 1/2
|F(9)| < F( > i2) ( > (i —a)z)
1 i=1

i=1
1 N-1 12 , N-1 1/2
+ﬁ< > (N—i)2> ( > (gi—a)2>
2\ i=N1+1
< N2

for somec > 0, which contradicts (3.21) since > 1/2. Therefore, (3.18) and
(3.19) are incompatible.d

If 71 < 12, the solutionx := X(11) = (xl)N , of the SDE (1.1) at time; satisfies
XN+1 — XN, = b5 andx; 11 — x; € D’ for everyi # Ni. In particular, it holds that

(3.22) Xit1—x;ieD” forevery1<i < N — 1,

whereD” := (b3, b,] € D = (b1, b2). Note thatc, :=inf,cpr U"(x) > 0.
We now move to the second stage. We begin with the investigation of the
classical flow determined by the SDE (1.1) dropping the noise termsk(bet
(x; (t))fV:l be the solution of the ordinary differential equation (ODE)
dx; 1
3.23 — == 1<i<N
(3.23) a2 axl(x) ==
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with an initial datax(0) = x satisfying the condition (3.22), and set

8i (1) =Xxiy1(t) — Xx; (1), 1<i<N-1

Then, as long as mir; <y _2{xi+2(t) — x; (1)} > b, 9(t) = (gi (¢) fvz‘ll satisfies the

ODE

dgi 1 —a / / / .
(3.24) =2t {U'(gi+1) + U'(gi-1) — 2U" (g1}, 1<i<N-1,
where go(r) = gn(¢) := a in the right-hand side. The first assertion in the next
lemma is the maximum principle, while the second is an energy inequality for the
ODE (3.24). The convexity off on D" is essential.

LEMMA 3.6. Assumethat g;(0) € D” for all 1 <i < N — 1. Then, for every
t > 0, we have

(3.25) gi(t)e D’ foralll<i <N —1,
and
N—1 ) N—1 )
(3.26) Z (gi(1) —a)” < exp(—c.e YN %1} Z (gi(0) —a)”.
i=1 i=1

PROOF Assume that (3.25) holds at some: 0. If g;, (1) = maxy<;<y & (1)
for sucht with some 1< ip < N — 1, then, sinceU’ is increasing onD”,
the ODE (3.24) giveslg;,(t)/dt < 0 so thatg;,(¢) is nonincreasing. Therefore,
maxp<i<n &i(¢) is also nonincreasing in[remembering the boundary conditions
go(t) = gn(t) = a]. Similarly, if g;,(1) = ming<;<n g; (¢) forsome 1I<ig < N —1,
then g;,(r) and accordingly migw;<y g;(t) are nondecreasing. This shows that
gi(r) can not go outside oD” for all 1 <i < N — 1. Thus assertion (3.25) is
shown. To prove (3.26), we see from the ODE (3.24) that

N-1 2
a7 - (gi(1) —a)
i=1
N-1
=—"" Y (gi+1() — g O){U'(gi11()) — U'(g: (1))}
(3.27) ’:]3_1

< —cee™ ) (giva() — g 0)?
i=0
N-1
<—c, e N2 Z (gi(r) — a)z.
i=1

The second line is front/” > ¢, on D”, while the third line is by the Poincaré
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inequality: >} 7122 < N2>V Y341 — 2)? if 30=0, applied forg; = g; — a.
The bound (3.26) follows from (3.27). The Poincaré inequality is immediate from
Schwarz’s inequality as we saw in the proof of Lemma 2[T..

We shall next prove that, asymptotically with probability one, the solution
of the SDE (1.1) moves along with the soluti@) of the ODE (3.23). This
implies, with the help of Lemma 3.6, thaf) goes into a neighborhood of a single
chain; see Proposition 3.8.

Assume thax(r) andX(¢) have a common initial data= x(0) = X(0) satisfying
condition @.22) and introdue a stopping time:

r5:inf{tzo; lr<r}§>]§]|x,-(t)—i,-(t)|289}, 0 > 0.
LEMMA 3.7. For every§ > 0, we have
E?g) Prg> ey 1,
PROOF  Applying Itd's formula for7 (¢) := "N, (x; (t) — %;(1))?, we have

I(t)y=10)+m(t) —e“ /Ot b(x(s), X(s))ds + Nt,

where

oH
0x;

N OH
b(x,X) = i— X)) — X — X) [,
(X, X) ;:l(x x ){ ox (X) (X)}

N
m(t) :22/0 (xi (s) — %; (s)) dw; ().
i=1

Denote the 2°-neighborhood o” by D! := (b3 — 2%, b, + 2¢%). Then, since
infyepr U”(x) > 0 and 2b3 — 2¢%) > b (for sufficiently smalle > 0), we have

N-1

b, %)= > {(xiy1— Xiy1) — (i =D HU (xig1 — %) —U'(Fig1 — %)} = 0,
i=1

if xit1 — xi,Xit1 — X% € D] forall 1 <i < N — 1. Noting that (3.25) implies

Xiy1(t) — x;(t) € D" for everyr >0 and 1<i < N — 1, we see that; . 1(r) —

xi(t) € D] for everyr < s and 1<i < N — 1. Therefore, recalling (0) =0, we

obtainl (r) < m(t) + Nt for everyr < 5, and accordinghE[I (t5 A t)] < Nt for
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all + > 0. Sincel (t5) > ¢% andN < Ce~1, we have, fon. =20 + 1+ 6,
Prs<et) <e PE[I(tsne™)] <e @ Ce e =Ce® — 0, £l0. O
Lemmas 3.6 and 3.7 can be summarized into the following proposition for the
stopping timer = t® defined by
(3.28) t=inf{r > 0; x(t) e MYV (")}, b >0.
PROPOSITION3.8. Assume o > 20 + 3 and x(0) satisfies condition (3.22).
Then, for every § > 0,

(3.29) lim P(r <&* 2% =1
el0

PrROOF To show (3.29), we may assume thiat- O is sufficiently small.
Take 6 € (v, “—53). Then, sincex — 2 — § > 20 4+ 1 (for sufficiently smalls),
we have lim o P(t5 > £2=2-%y = 1 from Lemma 3.7. However, on the event
B® := {15 > %7273}, we see ma;<y |x; (1) — % ()| <&’ atr =£*~27%, and
therefore

IVRX()lloo = MaX_ |xi42(r) — xi (1) —a

< max |xj41(1) —x;(t) —al+2 max |x;(t) — x;(1)]
1<i<N-1 1<i<N

< (b —a| v by — a) [N exp(—cye N2 2\ /2 4 000 < o7

if ¢ > 0 is sufficiently small. We have used (3.26) and then v for the third line.
This implies thatc(r) € MYV (e”) atr = ¢*~2-% and therefore < ¢*~2-% on the
eventB®, which proves (3.29). O

We are now at the position to complete the proof of Theorem 3.1.

PROOF OFTHEOREM 3.1. Combining Proposition 3.8 with Proposition 3.5
by means of the strong Markov property>at), we obtain

Ii?(]) P(x(t) € MYV (") for somer <7270 4 %7270 =1,
€

However, since® 279 « ¢=27% the factors*~2-% may be omitted by replacing
if necessary. Hence, by introducing the time change (1.4), we obtain the
conclusion. O

We finally consider the case where the initial configuratigf) consists of
n chains:x(0) = xP(0) U - - - Ux™ (0) arranged from left to right with particles’
numbersNy ~ p1e~ L, ..., N, ~ p,e~1 and fluctuations’,v > 2+ (n — 1)/2,
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respectively, where, ..., p, > 0. Letx® (1) = (xl.(e) N, N=3}_,1N, be

the solution of the SDE (1.1) scaled macroscopically in time and startin¢Dat

Denote the macroscopic center of mass of the associdtead by 9 (1) :=
M, (

N%ZizMg,lJrlxis)(’)’ 1<¢ <n, where M, = Zﬁ,le@ for 1<¢<n and

Mo=0.

COROLLARY 3.9. Assume « > 2v + 3. Then, the process {9 (1)}r_,
converges to {n'“(#)}7_, as e | 0 weakly in the space C([0, T],R") for every
T > 0if n©(0) =lim. 079 (0) exist.

The limit procesgn© (1)};_, of Corollary 3.9 is constructed as follows:

@) (79 = nO@) — a(TL pe + 3p0)}¥i_, perform the Brownian motions
with speeds inversely proportional @ independently with each other until
the timer@ =inf{¢; 7O (r) = 7tV (r) for some 1< ¢ <n — 1}.

(2) If the equality in the infimum for® holds for ¢ = ¢@, then 7€) (1) =
7P+ () forall ¢ > ¢ @,

(3) The systeniii‘© (¢); £ # ¢ + 1} is afreshed at the time™? and, afterr D,
each of them performs the Brownian motion with the same speed as above
except ¢ = ¢ for which the new speed is inversely proportional to
Py + ppw 1. The evolution continues independently until the tim@ =
inf{r; 7 (1) = 7¢+D (1) for some 1< £(£ (D) <n — 1 or 5¢ () =
;’(€<1)+2) ().

(4) After the time t@, the procedure is continued similarly along with the
coagulation timeg@ < t® < ... < 1D A single rod is finally left after
the timer D,

The proof of Corollary 3.9 is immediate from Theorems 2.2 and 3.1. Note that

{n®9(t)}_, are independent Brownian motions until the time when the minimal
distance between two afrods becomesb and the coagulation of two rods occurs
within the time interval of lengtal=?, § > 0. The probability that more than three
rods interact within the same such small time interval is negligible 89€. We
can therefore continue the argument given just after Theorem 3.1 alsg-f@r.
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