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ZERO TEMPERATURE LIMIT FOR INTERACTING BROWNIAN
PARTICLES. II. COAGULATION IN ONE DIMENSION1

BY TADAHISA FUNAKI

University of Tokyo

We study the zero temperature limit for interacting Brownian particles in
one dimension with a pairwise potential which is of finite range and attains
a unique minimum when the distance of two particles becomesa > 0. We
say a chain is formed when the particles are arranged in an “almost equal”
distancea. If a chain is formed at time 0, so is for positive time as the
temperature of the system decreases to 0 and, under a suitable macroscopic
space-time scaling, the center of mass of the chain performs the Brownian
motion with the speed inversely proportional to the total mass. If there are
two chains, they independently move until the time when they meet. Then,
they immediately coalesce and continue the evolution as a single chain. This
can be extended for finitely many chains.

1. Introduction. We consider a system of interacting Brownian particles in
a real line R. The positions ofN particles at timet are denoted byx(t) =
(xi(t))

N
i=1 ∈ R

N and evolve according to the stochastic differential equation (SDE)

dxi(t) = −1

2
ε−α ∂H

∂xi

(x(t)) dt + dwi(t), 1 ≤ i ≤ N.(1.1)

Here (wi(t))
N
i=1 is a family of independent one-dimensional standard Brownian

motions. The parameterε > 0, which is very small, represents the ratio of the
microscopic spatial unit length to the macroscopic one andε−α with α > 0 is the
inverse temperature of the system, which is already rescaled inε. The Hamiltonian
H(x) of the configurationx = (xi)

N
i=1 ∈ R

N is defined as a sum of pairwise
interactions between particles:

H(x) = ∑
1≤i<j≤N

U(xi − xj ).(1.2)

The potentialU = U(|x|) is symmetric, smooth, of finite range and has a unique
nondegenerate minimum at|x| = a > 0; see Assumptions I and II stated in
Sections 2 and 3 for details. The configurationx = (xi)

N
i=1 is a microscopic object

and its macroscopic correspondence is given by(εxi)
N
i=1 under the spatial scaling

x �→ εx.
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The aim of this paper is to investigate the asymptotic behavior of the system as
ε ↓ 0 under a proper scaling both in particles’ numberN and timet besides the
temperature of the system. The particles’ numberN ≡ N(ε) will change in such a
manner that

lim
ε↓0

εN(ε) = ρ(1.3)

with someρ > 0. We shall simply writeN ∼ ρε−1 for (1.3). Then, the solution
x(t) = (xi(t))

N(ε)
i=1 of the SDE (1.1) is rescaled in time as

x(ε)(t) = x(ε−3t), t ≥ 0.(1.4)

As the temperature, given byεα, tends to 0, the system of the particles is expected
to be frozen and arranged in an almost equal distancea. This naturally leads us
to the following notion: a configurationx = (xi)

N
i=1 arranged in increasing order

is called achain with fluctuationc ≥ 0 if it satisfies|xi+1 − xi − a| ≤ c for every
1 ≤ i ≤ N − 1. Whenε ↓ 0, the fluctuationc ≡ c(ε) of the chain is expected to
be small. Macroscopically, arod, which is an interval[εx1, εxN(ε)] in R, rather

than a set of points(εxi)
N(ε)
i=1 is associated with the chainx = (xi)

N(ε)
i=1 with small

fluctuation under the spatial scalingx �→ εx. The constantsρ andρa represent the
mass and the length of the associated rod, respectively.

The first paper [1] studied the behavior of the rescaled processx(ε)(t) for
a single crystal which is an extended notion of chain in higher dimensions,
and the result can be reformulated as follows in one dimension. Ifx(ε)(0) is a
chain with particles’ numberN ∼ ρε−1 and fluctuationεν∗

with certainν∗ > 0
at t = 0, thenx(ε)(t) = (x

(ε)
i (t))Ni=1 remains to be a chain with fluctuationεν

with slightly smallerν than ν∗ for t > 0 asymptotically with probability one
as ε ↓ 0. Moreover, the (macroscopic) center of mass of the associated rod
defined byη(ε)(t) := ε

N

∑N
i=1 x

(ε)
i (t) behaves asymptotically asε ↓ 0 asη(0) +

w(t/ρ) if η(0) = limε↓0 η(ε)(0) exists, wherew(t) is the one-dimensional standard
Brownian motion. This means that the evolutional speed of the rod is proportional
to the inverse of the macroscopic massρ, see Theorem 2.2 for details.

The main result of this paper is stated in Section 3. Assume thatx(ε)(0) =
x(ε,1)(0) ∪ x(ε,2)(0) consists of two chainsx(ε,1)(0) and x(ε,2)(0) with N1 ∼
ρ1ε

−1 andN2 ∼ ρ2ε
−1 particles, respectively, whereρ1, ρ2 > 0. Then, these two

chains evolve independently until they meet. Once they meet, they immediately
coalesce and form a larger single chain with particles’ numberN = N1 + N2,
see Theorem 3.1. Afterwards it evolves as a single chain, so the associated rod
performs the Brownian motion with speed inversely proportional toρ1 + ρ2. This
result can be extended for finitely many chains; see Corollary 3.9.

As is explained in [1], one of the motivations of our study comes from the theory
of interfaces and, in this respect, the rod we have introduced can be regarded as a
kind of Wulff shape at temperature zero. The system of sticky Brownian motions
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was discussed by Smoluchowski; see [6]. Another model for coalescing rods in
one dimension was studied by Mullins [7]. These models have, however, a slightly
different character from ours, since the speeds of the particles or the rods do
not change after coalescence in these models. Lang [5] investigated a system of
ordinary differential equations (1.1) dropping Brownian motions withε−α = 1
andN = ∞. Such system arises from the SDE in the zero temperature limit under
a proper time change.

2. Motion of a single chain. This section summarizes the results for a single
chain, which are deduced from Theorem 3.4 of Funaki [1] by restricting the system
in one dimension.

2.1. Hamiltonian. The spaceRN∗ stands for the set of allx = (xi)
N
i=1 ∈ R

N

arranged in increasing orderx1 ≤ x2 ≤ · · · ≤ xN . The HamiltonianH(x) of x is
introduced by the formula (1.2). The pair potentialU in (1.2) satisfies the following
conditions:

ASSUMPTIONI. (i) (symmetry)U(x) = U(−x), x ∈ R.
(ii) (smoothness, finite range)U ∈ C3

0(R).
(iii) There exists a uniquea > 0 such thatU(a) = minx≥0U(x) and č :=

U ′′(a) > 0.
(iv) b < 2a, whereb := inf{x > 0;U(y) = 0 for everyy > x}.
We denote byz the configuration such thatzi+1 − zi = a,1 ≤ i ≤ N − 1. Note

that z is a local minimum, which is sometimes called an instanton in physics,
of the HamiltonianH . By Assumption I(iv), each particle in the configurationz
interacts only with neighboring particles. The (microscopic) center of mass of the
configurationx ∈ R

N∗ is defined by

η(x) = 1

N

N∑
i=1

xi ∈ R.(2.1)

Let z0 = (z0
i )

N
i=1 be the centered local minimumz, that is,η(z0) = 0. Then, each

configurationx ∈ R
N∗ can be decomposed as

x = z0 + h + η(x)(2.2)

with h ≡ h(x) = (hi)
N
i=1 ∈ R

N satisfying
∑N

i=1 hi = 0, wherez0 + h + η :=
(z0

i + hi + η)Ni=1 for η ∈ R. For h = (hi)
N
i=1 ∈ R

N satisfying
∑N

i=1 hi = 0, we
introduce three norms‖∇h‖2,‖∇h‖∞ and‖�h‖2, respectively, by

‖∇h‖2
2 =

N−1∑
i=1

(hi+1 − hi)
2, ‖∇h‖∞ = max

1≤i≤N−1
|hi+1 − hi|,

‖�h‖2
2 =

N−1∑
i=2

(2hi − hi+1 − hi−1)
2 + (h2 − h1)

2 + (hN − hN−1)
2.
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LEMMA 2.1. For every h ∈ R
N ,

1
2‖�h‖2 ≤ ‖∇h‖2 ≤ N‖�h‖2.

PROOF. The first inequality is obvious from the definition of two norms. To
show the next, setgi = hi+1 − hi,1≤ i ≤ N − 1. Then, we have

‖∇h‖2
2 =

N−1∑
i=1

g2
i =

N−1∑
i=1

{
g1 +

i∑
j=2

(gj − gj−1)

}2

≤
N−1∑
i=1

i

{
g2

1 +
i∑

j=2

(gj − gj−1)
2

}
≤ N(N − 1)

2
‖�h‖2

2.

This implies the second inequality.�

Two quadratic formsE1 andE2 of h introduced in Lemmas 2.1 and 3.1 of [1]
related to the HamiltonianH(x) have the formsE1(h) = č‖∇h‖2

2 andE2(h) =
č2‖�h‖2

2 in one dimension, respectively. Lemma 2.1 shows that the constant
λ(2)(z) arising in a bound between these two quadratic forms stated in Lemma 3.2
of [1] can be taken asλ(2)(z) = čN−2.

Let M ≡ MN = {z0 + η;η ∈ R} be the set of local minima and letM∇(c) ≡
M∇,N(c) = {x ∈ R

N∗ ; ‖∇h(x)‖∞ ≤ c} be the tubular neighborhood ofM for
c ∈ [0, b − a]. The configurationx ∈ M∇(c) will be called achain with particles’
numberN and fluctuationc. Note thatx ∈ M∇(c) means|xi+1 − xi − a| ≤ c for
every 1≤ i ≤ N − 1.

2.2. Microscopic shape theorem and motion of the macroscopic center of mass.
We now discuss the scaling limit for the solutionx(t) of the SDE (1.1). The
particles’ number of the system is assumed to behave asN ≡ N(ε) ∼ ρε−1 with
ρ > 0. Let x(ε)(t) = (x

(ε)
i (t))

N(ε)
i=1 ∈ R

N(ε) be the time changed process ofx(t)

defined by (1.4). Forν > 0, consider the stopping timeσ ≡ σ (ε) determined by

σ = inf
{
t ≥ 0; x(ε)(t) /∈ M∇,N(ε)(εν)

} ≡ inf
{
t ≥ 0; ∥∥∇h

(
x(ε)(t)

)∥∥∞ > εν}
.

THEOREM 2.2. (1)Assume ν > 2, α > 2ν + 3 and x(ε)(0) ∈ M∇,N(ε)(c̄(ε))

with c̄(ε) = o(εν+1/2) as ε ↓ 0. Then, we have limε↓0 P (σ (ε) ≥ t) = 1 for every
t > 0.

(2) Let η(ε)(t) := εη(x(ε)(t)) be the (macroscopic) center of mass of the rod
associated with the chain x(ε)(t). Then, η(ε)(t) weakly converges to η(0)+w(t/ρ)

as ε ↓ 0 in the space C([0, T ],R) for every T > 0 if η(0) = limε↓0 η(ε)(0) exists,
where w(t) is the one-dimensional standard Brownian motion.
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PROOF. We apply Theorem 3.4 of [1] to show assertion (1). Note that
λ(1,ε) ≡ č (see Remark 2.2 of [1]),λ(2,ε) = čN−2 ∼ čρ−2ε2 (see the remark after
Lemma 2.1) in one dimension and we takec(ε) = εν . Then, condition (3.6) in [1]
is satisfied ifc(ε) ≤ cε2 (as ε ↓ 0) for some smallc > 0, which is valid when
ν > 2. (The conditionc(ε) ≤ c̄(ε) in (3.6) automatically holds for sufficiently small
ε > 0, since we can takēc(ε) = b − a; see Remark 3.2(1) of [1] as well.) To see
that condition (3.7) in [1] holds, note that∥∥∇h

(
x(ε)(0)

)∥∥2
2 ≤ N

∥∥∇h
(
x(ε)(0)

)∥∥2
∞ ≤ Cε−1{o(εν+1/2)}2 = o(ε2ν)

and therefore{
λ(1,ε)c(ε)2}−p

E
[∥∥∇h

(
x(ε)(0)

)∥∥2p
2

] ≤ Cε−2νp × o(ε2νp) → 0.

Condition (3.8) in [1] also holds since{
λ(1,ε)c(ε)2}−p

ε−κβ(ε)−p+1N(ε)p
{
λ(2,ε)

}−p+1 ≤ Cε(α−2ν−3)p−α−1 → 0

for largep; recallκ = 3, β(ε) = ε−α andα−2ν −3 > 0 from our assumption. As-
sertion (2) is easy, sinceη(ε)(t) = η(ε)(0)+εN−1 ∑N

i=1 wi(ε
−3t). The constantsC

in the above estimates may change from line to line.�

Theorem 2.2(1) asserts that asymptotically with probability onex(ε)(t) remains
to be a chain with fluctuationεν if it is a chain with fluctuationo(εν+1/2)

at t = 0. This characterizes the microscopic structure of the solutions of the
SDE (1.1) which are scaled macroscopically in time. Theorem 2.2(2) determines
the macroscopic evolution of the associated rod.

3. Coagulation of two chains. In this section, we assume that there are two
chainsx(1) ≡ x(ε,1) andx(2) ≡ x(ε,2) in R with particles’ numbersN1 ≡ N1(ε) and
N2 ≡ N2(ε), respectively. The chainx(1) is located on the left side ofx(2). If the
distance between the right most particle ofx(1) and the left most one ofx(2) (which
will be called the distance of two chains) is larger thanb, these two chains move
independently. We shall show that, once the distance of two chains becomesb,
these two chains coalesce immediately in macroscopic time scale and afterwards
move as a single chain with particles’ numberN ≡ N(ε) := N1 + N2.

To be more precise, we assume the following conditions onx(0) [= x(ε)(0),
a sequence depending onε > 0] and consider the solutionx(t) = x(1)(t) ∪ x(2)(t)

of the SDE (1.1) starting atx(0), where x(1)(t) = (xi(t))
N1
i=1 and x(2)(t) =

(xi(t))
N
i=N1+1.

CONDITION A. (i) x(0) = x(1)(0) ∪ x(2)(0) consists of two chainsx(1)(0) =
(xi(0))

N1
i=1 andx(2)(0) = (xi(0))Ni=N1+1 with particles’ numbersN1 ∼ ρ1ε

−1,N2 ∼
ρ2ε

−1 and fluctuationεµ,µ > 0, that is,x(�)(0) ∈ M∇,N�(εµ), � = 1,2, where
ρ1, ρ2 > 0.

(ii) The distance of these two chains isb, that is,xN1+1(0) − xN1(0) = b.
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We need, in addition to Assumption I, the following rather technical assump-
tions on the shape of the potentialU . We shall denote the connected component of
the set{x > 0; U ′′(x) > 0} containinga by D = (b1, b2).

ASSUMPTIONII. (i) 2U(b2) > U(a) andU(b1) + U(b2) > U(a).
(ii) U ′(x) ≥ 0 for everyx ≥ b2 (and therefore forx ≥ a).
(iii) 2b3 > b, whereb3 ∈ (b1, a) is determined byU(b2) + U(b3) = U(a).

Note that, sinceU(a) < U(a) − U(b2) < U(b1) from (i) and (ii), b3 in (iii)
exists uniquely. Assumptions (i) and (iii) mean that the well ata is deep and located
away from 0, respectively. An example of the potentialU , which satisfies both
Assumptions I and II, is given byU(x) = ψ((|x| − a)2 − 4), where we assume
a ≥ 4 andψ ∈ C3(R) is a nondecreasing function such thatψ(x) = x for x ≤ −1
andψ(x) = 0 for x ≥ 0. Note thatU(b1),U(b2) > −1, b ≤ a + 2 andb3 > a − 1
in this example.

The main result of this section is now formulated.

THEOREM 3.1. Let x(ε)(t) = x(ε−3t) be the time changed process of x(t) with
initial data x(0) satisfying Condition A with µ > 1/2. Assume that ν̃ > 0 is given
and α satisfies α > 4∨ (2ν̃ + 3). Then we have, for every δ > 0,

lim
ε↓0

P
(
x(ε)(t) ∈ M∇,N(ε)(εν̃ ) for some t ≤ ε1−δ

) = 1.

Theorem 3.1 combined with Theorem 2.2 establishes the asymptotic behavior
of two chains located in a general position. Suppose thatν > 2, ν̃ > 5/2 are given
and α > (2ν + 3) ∨ (2ν̃ + 3), and that the initial datax(0) = x(1)(0) ∪ x(2)(0)

of the SDE (1.1) satisfies only Condition A(i) for someµ > ν + 1/2. Then,
by Theorem 2.2, two chainsx(ε,�)(t), � = 1,2, scaled macroscopically in time
both stay inM∇,N�(εν) until the time when the distance of these two chains
becomesb. However, at the time when the distance of two chains becomesb,
Condition A(ii) is also satisfied and therefore we can apply Theorem 3.1 to see that,
within the timeε1−δ , a single chainx(ε)(t) ∈ M∇,N(εν̃ ) is formed from two chains
x(ε,�)(t), � = 1,2. Afterward, applying Theorem 2.2 again, the single chainx(ε)(t)

moves staying in
⋂

δ>0M∇,N(εν̃−1/2−δ). All these statements hold asymptotically
with probability one asε ↓ 0. The coagulation of several chains will be discussed
in Corollary 3.9.

The first step for the proof of Theorem 3.1 is to show that, asymptotically
with probability one asε ↓ 0, the distances of all neighboring particles ofx(t)

belong to the convex regionD′′ of the potentialU [which is slightly smaller
thanD; see (3.22)] at certain timet smaller thanε−2−δ for arbitraryδ > 0, see
Proposition 3.5 and the remark after it. In the proof, we always considerx(t)

without introducing the scaling in time. The second step is to prove that, once the
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distances of all neighboring particles belong toD′′, the two chains coagulate and
form a single chain within the timeεα−2−δ for everyδ > 0; see Proposition 3.8.

Let z(1,2) = z(1) ∪ z(2), z(1) = (zi)
N1
i=1, z(2) = (zi)

N
i=N1+1 be the configuration

satisfyingzi+1 − zi = a, i �= N1 andzN1+1 − zN1 = b. Note thatz(1,2) is a saddle
point ofH(x). Condition A means thatx(0) is in a neighborhood ofz(1,2).

From Assumptions II(i) and II(iii), there existsb4 ∈ (a, b2) such thatU(b4) =
U(b3). Then, choose an intervalD′ = (b′

3, b
′
4) and b′

2 in such a manner that
b1 < b′

3 < b3, b4 < b′
4 < b′

2 < b2,2b′
3 > b, U(b′

3) = U(b′
4) and δ̄ := U(b′

2) +
U(b′

3) − U(a) > 0. This is possible by takingb′
2, b

′
3 slightly smaller thanb2, b3

andb′
4 slightly larger thanb4, respectively. We introduce four stopping times:

τ1 = inf
{
t ≥ 0; xN1+1(t) − xN1(t) ≤ b′

2
}
,

τ2 = inf
{
t ≥ 0; xi+1(t) − xi(t) /∈ D′ for somei �= N1

}
,

τ3 = inf
{
t ≥ 0; H̃ (x(t)) ≥ δ1

}
,

τ4 = inf
{
t ≥ 0; η

(
x(2)(t)

) − η
(
x(1)(t)

) ≤ a

2
N − Nκ

}
,

whereH̃ (x) := H(x) − H(z(1,2)), 0 < δ1 < δ̄ and 0< κ < 1; κ will be chosen
later in the proof of Proposition 3.5. The functionsη(x(1)) = 1

N1

∑N1
i=1 xi and

η(x(2)) = 1
N2

∑N
i=N1+1xi , defined by (2.1) with particles’ numberN replaced by

N1 andN2 in each chain, represent the microscopic centers of mass ofx(1) andx(2),
respectively. We first discuss withτ1, τ2, τ3 in Lemmas 3.2, 3.3 andτ4 will be
treated in Lemma 3.4, later; see Remark 3.1 for the meaning ofτ4. These three
lemmas are prepared for the proof of Proposition 3.5.

LEMMA 3.2. (i) For every t ≤ τ1 ∧ τ2, min1≤i≤N−2{xi+2(t) − xi(t)} ≥ b. In
particular, in the configuration x := x(t), only neighboring particles interact and
we have

H̃ (x) = ∑
1≤i≤N−1,i �=N1

{U(xi+1 − xi) − U(a)} + U
(
xN1+1 − xN1

)
.(3.1)

(ii) τ1 ∧ τ3 < τ2.

PROOF. For t ≤ τ1 ∧ τ2, we havexN1+1(t) − xN1(t) ≥ b′
2 andb′

3 ≤ xi+1(t) −
xi(t) ≤ b′

4 for every i �= N1. This implies xi+2(t) − xi(t) ≥ 2b′
3(≥ b) for all

1 ≤ i ≤ N − 2, and therefore (i) is shown. To prove (ii), assumeτ2 ≤ τ1 ∧ τ3 and
setx ≡ (xi)

N
i=1 := x(τ2). Then, there existsi0 (�= N1) such thatxi0+1 − xi0 = b′

3
(or b′

4), andxN1+1 − xN1 ≥ b′
2 becauseτ2 ≤ τ1. Moreover, sinceτ2 ≤ τ1, we can

apply (1) att = τ2 and see that̃H(x) has the form (3.1). Therefore,

H̃ (x) ≥ {
U(xi0+1 − xi0) − U(a)

} + U
(
xN1+1 − xN1

)
≥ {

U(b′
3) − U(a)

} + U(b′
2) = δ̄ > δ1.



ZERO TEMPERATURE LIMIT. II. COAGULATION 1235

This contradictsτ2 ≤ τ3 and the proof of (ii) is complete.�

LEMMA 3.3. Assume α > 4 and µ > 1/2 in Condition A on x(0). Then, for
every γ > 0,

lim
ε↓0

P (τ1 ∧ ε−γ ≤ τ3) = 1.

PROOF. Step 1. Takeδ0 ∈ (0, δ1) and fix it. In this step, we prove that there
existc1, ε0 > 0 such that

N∑
j=1

(
∂H

∂xj

)2

(x(t)) ≥ c1δ0

N3(3.2)

if t ≤ τ1 ∧ τ2, H̃ (x(t)) ≥ δ0 and ε ∈ (0, ε0). Indeed, since (3.1) holds for
x := x(t) and sincexN1+1 − xN1 ≥ b′

2 implies U(xN1+1 − xN1) ≤ 0 [by
Assumption II(ii)], we see fromH̃ (x) ≥ δ0 that U(xi0+1 − xi0) − U(a) ≥ δ0/N

holds for somei0 �= N1. However, for suchi0, |(xi0+1 − xi0) − a| ≥ c2
√

δ0/N

[by Assumption I(iii)] and accordingly|U ′(xi0+1 − xi0)| ≥ c3
√

δ0/N (by noting
xi0+1 − xi0 ∈ D′) for certainc2, c3 > 0.

Now let us assume that (3.2) does not hold. Then, we have∣∣∣∣∂H

∂xj

(x)

∣∣∣∣ = ∣∣U ′(xj − xj−1) − U ′(xj+1 − xj )
∣∣ ≤

√
c1δ0

N3
(3.3)

for every 1≤ j ≤ N ; we regard asU ′(x1 − x0) = U ′(xN+1 − xN) = 0. First
consider the case wherei0 ≤ N1 − 1 andU ′(xi0+1 − xi0) ≥ c3

√
δ0/N . [The case

wherei0 ≥ N1+1 orU ′(xi0+1−xi0) ≤ −c3
√

δ0/N can be similarly treated.] Then,
using (3.3) withj = i0, we have

U ′(xi0 − xi0−1
) ≥ c3

√
δ0/N −

√
c1δ0/N3.

Continuing this procedure of estimatesi0 − 1 times, we finally arrive at

U ′(x2 − x1) ≥ c3
√

δ0/N − (i0 − 1)

√
c1δ0/N

3 ≥ (c3 − √
c1 )

√
δ0/N.(3.4)

But, if one takesc1 > 0 such thatc3 >
√

c1, (3.4) contradicts (3.3) withj = 1 for
sufficiently smallε > 0. Therefore (3.2) is shown.

Step 2. Simple application of Itô’s formula for the solutionx(t) of (1.1) shows

dH̃(x(t)) = dm(t) + {−ε−αb(1)(x(t)) + b(2)(x(t))
}
dt,

whereb(1)(x) = 1
2

∑N
j=1(∂H/∂xj )

2(x), b(2)(x) = 1
2

∑N
j=1∂2H/∂x2

j (x) andm(t)

is a martingale defined by

m(t) =
N∑

j=1

∫ t

0

∂H

∂xj

(x(s)) dwj(s).
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However, in Step 1,we have seenb(1)(x(t)) ≥ c1δ0/(2N3) ≥ c4ε
3 for somec4 > 0

if t ≤ τ1∧τ2 andH̃ (x(t)) ≥ δ0. Moreover, since∂2H/∂x2
j are bounded,|b(2)(x)| ≤

c5ε
−1. Therefore, recallingα > 4, we obtain

dH̃(x(t)) ≤ dm(t) − c6ε
−α+3dt,(3.5)

for t ≤ τ1 ∧ τ2 satisfyingH̃ (x(t)) ≥ δ0; or, more precisely saying,̃H(x(t)) − m(t)

is differentiable int and d{H̃ (x(t)) − m(t)}/dt ≤ −c6ε
−α+3 for such t . Since

∂H/∂xj are bounded, the derivative of the quadratic variational process ofm(t) is
dominated by

d

dt
〈m〉t =

N∑
j=1

(
∂H

∂xj

)2

(x(t)) ≤ c7ε
−1.(3.6)

Step 3. Introduce a time changed processyt of H̃ (x(t)) asyt := H̃ (x(〈m〉−1
t )),

where〈m〉−1
t denotes the inverse function of〈m〉t . Then, from (3.5) and (3.6), we

have

dyt ≤ dBt − cε−α+4dt(3.7)

if t ≤ 〈m〉τ1∧τ2 andyt ∈ [δ0,∞), wherec := c6c
−1
7 . Note thatBt := m(〈m〉−1

t ) is a
Brownian motion andy0 = H̃ (x(0)) ≤ c8ε

2µ−1 from Condition A onx(0) and the
boundH(x(�)(0)) − H(z(�)) ≤ CE1(h(x(�)(0))), � = 1,2, shown in (3.3) of [1],
whereH(x(�)) denotes the Hamiltonian of the system withN� particles.

Chooseδ2 ∈ (δ0, δ1) and take a smooth functionf : (δ0,∞) → [0,∞), which
satisfiesf (x) = 0 for everyx ≥ δ2 and s(δ0+) ≡ limx↓δ0 s(x) = −∞, where
s(x) ≡ s(ε)(x) is a function defined by

s(x) =
∫ x

δ2

exp
{
−2

∫ y

δ2

(−cε−α+4 + f (z)
)
dz

}
dy, x > δ0.

In fact, such functionf can be taken, since, iff (x) behaves asf (x) ∼
C(x − δ0)

−λ as x ↓ δ0 with λ > 1 andC > 0, thens(ε)(δ0+) = −∞ for each
ε > 0. We consider the SDE forzt ≡ z

(ε)
t :

dzt = dBt − cε−α+4dt + f (zt ) dt, z0 = δ2.(3.8)

The functions(x) is the so-called natural scale (or canonical scale) for the diffusion
processzt ; see [3] or [4], page 339. Sinces(δ0+) = −∞, it holds that

zt > δ0, t ≥ 0, a.s.(3.9)

Moreover, for every sufficiently smallε > 0,

yt ≤ zt(3.10)

holds for every 0≤ t ≤ 〈m〉τ1∧τ2. Indeed, sinceµ > 1/2, y0 ≤ c8ε
2µ−1 ≤ z0

(as ε ↓ 0) and therefore (3.10) is true att = 0. If yt ≤ δ0, (3.10) automatically
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holds becausezt > δ0. Onceyt moves into the interval[δ0,∞), one can apply
the comparison theorem (see, e.g., [2]) between two processesyt andzt recalling
(3.7), (3.8) andf ≥ 0, and (3.10) is shown for allt ≤ 〈m〉τ1∧τ2.

We now consider a stopping timeσ1 ≡ σ
(ε)
1 = inf{t ≥ 0; zt = δ1} for the

solution of the SDE (3.8). Then, (3.10) impliesσ1 ≤ 〈m〉τ3 if τ3 ≤ τ1 ∧ τ2, which
shows {

τ3 < τ1 ∧ τ2 ∧ ε−γ
} ⊂ {

σ1 ≤ 〈m〉ε−γ

} ⊂ {
σ1 ≤ c7ε

−1−γ
}
.

The second inclusion follows from (3.6). Hence, if one can show

lim
ε↓0

P (σ1 ≤ c7ε
−1−γ ) = 0,(3.11)

then we have limε↓0 P (τ3 < τ1 ∧ τ2 ∧ ε−γ ) = 0. However, since{
τ3 < τ1 ∧ ε−γ

} ⊂ {
τ3 < τ1 ∧ τ2 ∧ ε−γ

} ∪ {τ2 ≤ τ1 ∧ τ3},
Lemma 3.2(2) concludes the lemma.

Step 4. Only the proof of (3.11) is left. The argument of this step is rather
standard. We introduce another stopping timeσ2 ≡ σ

(ε)
2 = inf{t ≥ 0; zt = δ3} by

choosingδ3 ∈ (δ2, δ1). Then, one can find̄λ > 0 such that

P (σ2 > 1) ≥ λ̄(3.12)

for every 0< ε < 1. In fact, consider an SDE

dz̃t = dBt + f (z̃t ) dt, z̃0 = z0 = δ2.

Then, zt ≤ z̃t holds for every t ≥ 0, which implies σ̃2 ≤ σ
(ε)
2 for σ̃2 =

inf{t ≥ 0; z̃t = δ3}. We may therefore takēλ := P (σ̃2 > 1) > 0.
Let {σ (k) ≡ σ (k,ε)}k=0,1,2,... andK ≡ K(ε) be a sequence of stopping times and

a random variable inductively defined byσ (0) = 0 and fork = 1,2, . . . ,

σ (2k−1) = inf
{
t > σ (2k−2); zt = δ3

}
,

σ (2k) = inf
{
t > σ (2k−1); zt /∈ (δ2, δ1)

}
,

K = inf{k ≥ 1; zσ (2k) = δ1},
respectively. Then,{σ (k)}k=0,1,2,... and K have the following four properties:
(i) {σ (2k−1) − σ (2k−2)}k=1,2,... is an independent system, (ii) the law ofσ (2k−1) −
σ (2k−2) is identical to that ofσ2 for eachk = 1,2, . . . , (iii) σ1 ≥ ∑K

k=1(σ
(2k−1) −

σ (2k−2)) and (iv)K − 1 has the geometric distribution:P (K − 1= n) = pqn,n =
0,1,2, . . . with p ≡ p(ε) := P (K = 1) andq = 1−p. Indeed, (i) is a consequence
of the strong Markov property ofzt , while (ii) and (iii) are obvious. To see (iv),
one may note that{z̄k := zσ (2k)}k=0,1,2,... forms a two state Markov chain on the set
{δ2, δ1} with the transition probabilityP (z̄1 = δ1|z̄0 = δ2) = p andP (z̄1 = δ2|z̄0 =
δ2) = q. Furthermore, for every sufficiently smallε > 0,

p ≤ exp{−c̄ε−α+4},(3.13)
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wherec̄ = c(δ1−δ3). In fact, this is shown noting thatp = {s(δ3)−s(δ2)}/{s(δ1)−
s(δ2)} and the natural scales(x) is given by

s(x) = 1

2c
εα−4{exp{2cε−α+4(x − δ2)} − 1

}
for x ≥ δ2; recall thatf (x) = 0 if x ≥ δ2.

With the choice ofK0 ≡ K
(ε)
0 := ε exp{c̄ε−α+4} (≤ ε/p), (3.13) and prop-

erty (iv) show that

P (K ≤ K0) = 1− (1− p)K0 → 0, ε ↓ 0.

Therefore, from property (iii), the proof of (3.11) is complete if one can prove

lim
ε↓0

P

(
K0∑
k=1

(
σ (2k−1) − σ (2k−2)

) ≤ c7ε
−1−γ

)
= 0(3.14)

for everyγ > 0. SetXk = 1{σ (2k−1)−σ (2k−2)>1} for k = 1,2, . . . . Then,{Xk}k=1,2,...

is a sequence of independent and identically distributed random variables such that
λ ≡ λ(ε) := P (X1 = 1) ≥ λ̄ > 0 from (3.12) and the property (ii). Since

Y :=
K0∑
k=1

Xk ≤
K0∑
k=1

(
σ (2k−1) − σ (2k−2)),

(3.14) follows from limε↓0 P (Y ≤ c7ε
−1−γ ) = 0. But, this is easy fromE[Y ] =

λK0,E[(Y − E[Y ])2] = λ(1− λ)K0 by applying Chebyshev’s inequality.�

LEMMA 3.4. Assume µ + κ > 1 for the constants µ,κ > 0 appearing in
Condition A on x(0) and in the definition of τ4, respectively. Then, for every δ > 0,

lim
ε↓0

P
(
τ1 ∧ τ4 ≤ ε−(1+2κ+δ)

) = 1.

PROOF. From the SDE (1.1), we have

dη
(
x(1)(t)

) = − 1

2N1
ε−αU ′(xN1 − xN1+1

)
dt + 1

N1

N1∑
i=1

dwi(t)

≥ 1

N1

N1∑
i=1

dwi(t), t ≤ τ1,

and a similar bound ondη(x(2)(t)) from above fort ≤ τ1; recall thatU ′(x) ≥ 0 for
x ≥ a [by Assumption II(ii)] and the symmetry ofU [by Assumption I(i)]. Hence,

η
(
x(2)(t)

) − η
(
x(1)(t)

) ≤ η
(
x(2)(0)

) − η
(
x(1)(0)

) + (N−1
1 + N−1

2 )1/2w(t)
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for t ≤ τ1, where

w(t) := (N−1
1 + N−1

2 )−1/2

(
1

N2

N∑
i=N1+1

wi(t) − 1

N1

N1∑
i=1

wi(t)

)

is a Brownian motion. Let us introduce a stopping time:

σ3 = inf
{
t ≥ 0; (N−1

1 + N−1
2 )1/2w(t) ≤ −(b − a) − εµN − Nκ

}
.

Then, decomposingx(1) andx(2) as in (2.2), respectively, we have

η
(
x(1)) = a

2
(1− N1) + 1

N1

N1∑
i=1

(
hi − hN1

) + xN1,

η
(
x(2)

) = a

2
(N2 − 1) + 1

N2

N∑
i=N1+1

(
hi − hN1+1

) + xN1+1,

(3.15)

since
∑N1

i=1 hi = ∑N
i=N1+1hi = 0 andz0

M = −z0
1 = a(M − 1)/2 for the centered

local minimumz0 = (z0
i )

M
i=1 with particles’ numberM (we takeM = N1,N2).

Therefore, Condition A onx(0) = x(1)(0) ∪ x(2)(0) implies∣∣∣∣{η(
x(2)(0)

) − η
(
x(1)(0)

)} − a

2
N − (b − a)

∣∣∣∣
≤ εµ

(
1

N1

N1∑
i=1

(N1 − i) + 1

N2

N∑
i=N1+1

(i − N1 − 1)

)
≤ εµN,

from which we seeτ4 ≤ σ3 if σ3 ≤ τ1. Accordingly, we have{τ1 ∧ τ4 >

ε−(1+2κ+δ)} ⊂ {σ3 > ε−(1+2κ+δ)}. However, sinceµ + κ > 1 impliesεµN � Nκ

asε ↓ 0, we see(N−1
1 + N−1

2 )−1/2(b − a + εµN + Nκ) ≤ cε−(1/2+κ) for some
c > 0 so thatσ3 ≤ σ̃3 := inf{t ≥ 0;w(t) ≤ −cε−(1/2+κ)}. The scaling invariance
of the Brownian motion shows̃σ3 = ε−(1+2κ)σ̄3 in law, whereσ̄3 := inf{t ≥ 0;
w(t) ≤ −c}. Therefore, we get

P
(
τ1 ∧ τ4 > ε−(1+2κ+δ)

) ≤ P
(
σ̃3 > ε−(1+2κ+δ)

) = P (σ̄3 > ε−δ) → 0

asε ↓ 0, which completes the proof.�

REMARK 3.1. If x = z(1) ∪ z(2) = (zi)
N1
i=1 ∪ (zi)

N
i=N1+1 satisfieszi+1 − zi = a

for all i �= N1, then (3.15) takinghi = 0 for all i showsη(z(2)) − η(z(1)) = a
2N −

a + zN1+1 − zN1. In particular, if the distance ofz(1) andz(2) is a (i.e., x ∈ MN ),
thenη(z(2)) − η(z(1)) = a

2N [cf. this with η(z(2)) − η(z(1)) = a
2N + (b − a) for

x = z(1,2)]. This may explain the meaning of the stopping timeτ4. The randomness
coming from the Brownian motions(wi(t))

N
i=1 helps to make the distance between

two chains shorter. Such effect was measured by the difference of the centers of
mass of two chains.
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The results obtained in Lemmas 3.2, 3.3 and 3.4 are summarized in the
following proposition.

PROPOSITION3.5. Assume α > 4 and µ > 1/2. Then, for every δ > 0,

lim
ε↓0

P (τ1 ≤ ε−2−δ, τ1 < τ2) = 1.

PROOF. Taking1
2 < κ < 1+δ

2 ∧1 and denotingδ′ := 1−2κ +δ > 0 byδ again,
we may prove that

lim
ε↓0

P
(
τ1 ≤ ε−(1+2κ+δ), τ1 < τ2

) = 1, δ > 0.(3.16)

Step 1. We first note that (3.16) can be deduced from

lim
ε↓0

P
(
τ1 ≤ ε−(1+2κ+δ)

) = 1.(3.17)

In fact, this is seen from Lemma 3.2(2) and Lemma 3.3 withγ = 1+2κ + δ, since{
τ1 ∧ τ3 < τ2

} ∩ {
τ1 ∧ ε−(1+2κ+δ) ≤ τ3

} ∩ {
τ1 ≤ ε−(1+2κ+δ)

}
⊂ {

τ1 ≤ ε−(1+2κ+δ), τ1 < τ2
}
.

We now give the proof of (3.17). Lemmas 3.3 and 3.4 show limε↓0 P (A(ε)) = 1
for A(ε) = {τ1 ∧ ε−(1+2κ+δ) ≤ τ3, τ1 ∧ τ4 ≤ ε−(1+2κ+δ)}. Assumeτ4 ≤ τ3 and
τ1 > ε−(1+2κ+δ) on the eventA(ε), and setx := x(τ4) = x(1) ∪ x(2) = (xi)

N
i=1.

Then, we haveH̃ (x) ≤ δ1 andxN1+1−xN1 ≥ b′
2 sinceτ4 < τ1. Accordingly, noting

τ4 ≤ τ1 ∧ τ3 ≤ τ1 ∧ τ2 by Lemma 3.2(2), we see that formula (3.1) holds forH̃ (x)

and ∑
1≤i≤N−1,i �=N1

{
U(xi+1 − xi) − U(a)

} = H̃ (x) − U
(
xN1+1 − xN1

)
≤ δ̄ − U(b′

2) = U(b′
3) − U(a).

(3.18)

On the other hand,x satisfies

η
(
x(2)

) − η
(
x(1)

) = a

2
N − Nκ.(3.19)

We shall prove in Step 2 that (3.18) and (3.19) are incompatible. Once this is
proved, we haveτ4 > τ3 or τ1 ≤ ε−(1+2κ+δ) onA(ε) and this shows (3.17).

Step 2. Set C̄ := U(b′
3) − U(a) > 0. Then, (3.18) impliesU(xi+1 − xi) −

U(a) ≤ C̄ for every i �= N1 and, in particular,xi+1 − xi ∈ D. However,U is
dominated from below by a quadratic function onD, that is, there existsc− > 0
such that

c−(g − a)2 ≤ U(g) − U(a) if g ∈ D.
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Therefore, (3.18) shows that forgi := xi+1 − xi , 1≤ i ≤ N − 1,

∑
1≤i≤N,i �=N1

(gi − a)2 ≤ C̄

c−
.(3.20)

Next, noting thatxj = xN1 − ∑N1−1
i=j gi for 1 ≤ j ≤ N1 and xj = xN1+1 +∑j−1

i=N1+1 gi for N1 + 1 ≤ j ≤ N , we rewrite the difference of the centers of mass
of two chains in terms ofg = (gi)i �=N1:

η
(
x(2)

) − η
(
x(1)

) = (
xN1+1 − xN1

) + 1

N1

N1−1∑
i=1

igi + 1

N2

N−1∑
i=N1+1

(N − i)gi .

Hence, recalling thatxN1+1 − xN1 ≥ b′
2, (3.19) implies

F(g) := 1

N1

N1−1∑
i=1

i(gi − a) + 1

N2

N−1∑
i=N1+1

(N − i)(gi − a)

≤ −Nκ − b′
2 + a.

(3.21)

However, using Schwarz’s inequality and (3.20),|F(g)| is dominated by

|F(g)| ≤ 1

N1

(
N1−1∑
i=1

i2

)1/2( N1−1∑
i=1

(gi − a)2

)1/2

+ 1

N2

(
N−1∑

i=N1+1

(N − i)2

)1/2( N−1∑
i=N1+1

(gi − a)2

)1/2

≤ cN1/2

for somec > 0, which contradicts (3.21) sinceκ > 1/2. Therefore, (3.18) and
(3.19) are incompatible.�

If τ1 < τ2, the solutionx := x(τ1) = (xi)
N
i=1 of the SDE (1.1) at timeτ1 satisfies

xN1+1 − xN1 = b′
2 andxi+1 − xi ∈ D′ for everyi �= N1. In particular, it holds that

xi+1 − xi ∈ D′′ for every 1≤ i ≤ N − 1,(3.22)

whereD′′ := (b′
3, b

′
2] � D = (b1, b2). Note thatc∗ := infx∈D′′ U ′′(x) > 0.

We now move to the second stage. We begin with the investigation of the
classical flow determined by the SDE (1.1) dropping the noise terms. Letx̄(t) =
(x̄i(t))

N
i=1 be the solution of the ordinary differential equation (ODE)

dx̄i

dt
= −1

2
ε−α ∂H

∂xi

(x̄), 1 ≤ i ≤ N,(3.23)
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with an initial datax̄(0) = x satisfying the condition (3.22), and set

gi(t) = x̄i+1(t) − x̄i(t), 1 ≤ i ≤ N − 1.

Then, as long as min1≤i≤N−2{x̄i+2(t) − x̄i(t)} ≥ b, g(t) = (gi(t))
N−1
i=1 satisfies the

ODE

dgi

dt
= 1

2
ε−α{

U ′(gi+1) + U ′(gi−1) − 2U ′(gi)
}
, 1 ≤ i ≤ N − 1,(3.24)

whereg0(t) = gN(t) := a in the right-hand side. The first assertion in the next
lemma is the maximum principle, while the second is an energy inequality for the
ODE (3.24). The convexity ofU onD′′ is essential.

LEMMA 3.6. Assume that gi(0) ∈ D′′ for all 1 ≤ i ≤ N − 1. Then, for every
t > 0, we have

gi(t) ∈ D′′ for all 1 ≤ i ≤ N − 1,(3.25)

and

N−1∑
i=1

(
gi(t) − a

)2 ≤ exp{−c∗ε−αN−2t}
N−1∑
i=1

(
gi(0) − a

)2
.(3.26)

PROOF. Assume that (3.25) holds at somet ≥ 0. If gi0(t) = max0≤i≤N gi(t)

for such t with some 1≤ i0 ≤ N − 1, then, sinceU ′ is increasing onD′′,
the ODE (3.24) givesdgi0(t)/dt ≤ 0 so thatgi0(t) is nonincreasing. Therefore,
max0≤i≤N gi(t) is also nonincreasing int [remembering the boundary conditions
g0(t) = gN(t) = a]. Similarly, if gi0(t) = min0≤i≤N gi(t) for some 1≤ i0 ≤ N −1,
then gi0(t) and accordingly min0≤i≤N gi(t) are nondecreasing. This shows that
gi(t) can not go outside ofD′′ for all 1 ≤ i ≤ N − 1. Thus assertion (3.25) is
shown. To prove (3.26), we see from the ODE (3.24) that

d

dt

N−1∑
i=1

(
gi(t) − a

)2

= −ε−α
N−1∑
i=0

(
gi+1(t) − gi(t)

){
U ′(gi+1(t)

) − U ′(gi(t)
)}

≤ −c∗ε−α
N−1∑
i=0

(
gi+1(t) − gi(t)

)2

≤ −c∗ε−αN−2
N−1∑
i=1

(
gi(t) − a

)2
.

(3.27)

The second line is fromU ′′ ≥ c∗ on D′′, while the third line is by the Poincaré
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inequality:
∑N−1

i=1 ḡ2
i ≤ N2 ∑N−1

i=0 (ḡi+1 − ḡi )
2 if ḡ0 = 0, applied forḡi = gi − a.

The bound (3.26) follows from (3.27). The Poincaré inequality is immediate from
Schwarz’s inequality as we saw in the proof of Lemma 2.1.�

We shall next prove that, asymptotically with probability one, the solutionx(t)

of the SDE (1.1) moves along with the solutionx̄(t) of the ODE (3.23). This
implies, with the help of Lemma 3.6, thatx(t) goes into a neighborhood of a single
chain; see Proposition 3.8.

Assume thatx(t) andx̄(t) have a common initial datax = x(0) = x̄(0) satisfying
condition (3.22) and introduce a stopping time:

τ5 = inf
{
t ≥ 0; max

1≤i≤N
|xi(t) − x̄i (t)| ≥ εθ

}
, θ > 0.

LEMMA 3.7. For every δ > 0, we have

lim
ε↓0

P (τ5 ≥ ε2θ+1+δ) = 1.

PROOF. Applying Itô’s formula forI (t) := ∑N
i=1(xi(t) − x̄i(t))

2, we have

I (t) = I (0) + m(t) − ε−α
∫ t

0
b
(
x(s), x̄(s)

)
ds + Nt,

where

b(x, x̄) =
N∑

i=1

(xi − x̄i)

{
∂H

∂xi

(x) − ∂H

∂xi

(x̄)

}
,

m(t) = 2
N∑

i=1

∫ t

0

(
xi(s) − x̄i(s)

)
dwi(s).

Denote the 2εθ -neighborhood ofD′′ by D′′
ε := (b′

3 − 2εθ , b′
2 + 2εθ). Then, since

infx∈D′′
ε
U ′′(x) ≥ 0 and 2(b′

3 − 2εθ ) ≥ b (for sufficiently smallε > 0), we have

b(x, x̄) =
N−1∑
i=1

{
(xi+1 − x̄i+1) − (xi − x̄i)

}{
U ′(xi+1 − xi) − U ′(x̄i+1 − x̄i)

} ≥ 0,

if xi+1 − xi, x̄i+1 − x̄i ∈ D′′
ε for all 1 ≤ i ≤ N − 1. Noting that (3.25) implies

x̄i+1(t) − x̄i(t) ∈ D′′ for every t ≥ 0 and 1≤ i ≤ N − 1, we see thatxi+1(t) −
xi(t) ∈ D′′

ε for everyt ≤ τ5 and 1≤ i ≤ N − 1. Therefore, recallingI (0) = 0, we
obtainI (t) ≤ m(t) + Nt for everyt ≤ τ5, and accordinglyE[I (τ5 ∧ t)] ≤ Nt for
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all t ≥ 0. SinceI (τ5) ≥ ε2θ andN ≤ Cε−1, we have, forλ = 2θ + 1+ δ,

P (τ5 ≤ ελ) ≤ ε−2θE[I (τ5 ∧ ελ)] ≤ ε−2θCε−1ελ = Cεδ → 0, ε ↓ 0. �

Lemmas 3.6 and 3.7 can be summarized into the following proposition for the
stopping timeτ ≡ τ (ε) defined by

τ = inf
{
t > 0; x(t) ∈ M∇,N(εν̃)

}
, ν̃ > 0.(3.28)

PROPOSITION 3.8. Assume α > 2ν̃ + 3 and x(0) satisfies condition (3.22).
Then, for every δ > 0,

lim
ε↓0

P (τ ≤ εα−2−δ) = 1.(3.29)

PROOF. To show (3.29), we may assume thatδ > 0 is sufficiently small.
Take θ ∈ (ν̃, α−3

2 ). Then, sinceα − 2 − δ > 2θ + 1 (for sufficiently smallδ),
we have limε↓0 P (τ5 ≥ εα−2−δ) = 1 from Lemma 3.7. However, on the event
B(ε) := {τ5 ≥ εα−2−δ}, we see max1≤i≤N |xi(t) − x̄i(t)| ≤ εθ at t = εα−2−δ, and
therefore

‖∇h(x(t))‖∞ = max
1≤i≤N−1

|xi+1(t) − xi(t) − a|
≤ max

1≤i≤N−1
|x̄i+1(t) − x̄i(t) − a| + 2 max

1≤i≤N
|xi(t) − x̄i (t)|

≤ (|b′
3 − a| ∨ |b′

2 − a|){N exp(−c∗ε−αN−2εα−2−δ)
}1/2 + 2εθ ≤ εν̃

if ε > 0 is sufficiently small. We have used (3.26) and thenθ > ν̃ for the third line.
This implies thatx(t) ∈ M∇,N(εν̃ ) at t = εα−2−δ and thereforeτ ≤ εα−2−δ on the
eventB(ε), which proves (3.29). �

We are now at the position to complete the proof of Theorem 3.1.

PROOF OFTHEOREM 3.1. Combining Proposition 3.8 with Proposition 3.5
by means of the strong Markov property ofx(t), we obtain

lim
ε↓0

P
(
x(t) ∈ M∇,N(εν̃) for somet ≤ ε−2−δ + εα−2−δ) = 1.

However, sinceεα−2−δ � ε−2−δ , the factorεα−2−δ may be omitted by replacingδ
if necessary. Hence, by introducing the time change (1.4), we obtain the
conclusion. �

We finally consider the case where the initial configurationx(0) consists of
n chains:x(0) = x(1)(0) ∪ · · · ∪ x(n)(0) arranged from left to right with particles’
numbersN1 ∼ ρ1ε

−1, . . . ,Nn ∼ ρnε
−1 and fluctuationsεν, ν > 2 + (n − 1)/2,
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respectively, whereρ1, . . . , ρn > 0. Let x(ε)(t) = (x
(ε)
i (t))Ni=1,N = ∑n

�=1 N� be
the solution of the SDE (1.1) scaled macroscopically in time and starting atx(0).
Denote the macroscopic center of mass of the associated�th rod byη(ε,�)(t) :=
ε

N�

∑M�

i=M�−1+1 x
(ε)
i (t),1 ≤ � ≤ n, where M� = ∑�

�′=1 N�′ for 1 ≤ � ≤ n and
M0 = 0.

COROLLARY 3.9. Assume α > 2ν + 3. Then, the process {η(ε,�)(t)}n�=1
converges to {η(�)(t)}n�=1 as ε ↓ 0 weakly in the space C([0, T ],R

n) for every
T > 0 if η(�)(0) = limε↓0 η(ε,�)(0) exist.

The limit process{η(�)(t)}n�=1 of Corollary 3.9 is constructed as follows:

(1) {η̃(�)(t) := η(�)(t) − a(
∑�−1

�′=1ρ�′ + 1
2ρ�)}n�=1 perform the Brownian motions

with speeds inversely proportional toρ� independently with each other until
the timeτ (1) = inf{t; η̃(�)(t) = η̃(�+1)(t) for some 1≤ � ≤ n − 1}.

(2) If the equality in the infimum forτ (1) holds for � = �(1), then η̃(�(1))(t) =
η̃(�(1)+1)(t) for all t ≥ τ (1).

(3) The system{η̃(�)(t); � �= �(1) + 1} is afreshed at the timeτ (1) and, afterτ (1),
each of them performs the Brownian motion with the same speed as above
except � = �(1), for which the new speed is inversely proportional to
ρ�(1) + ρ�(1)+1. The evolution continues independently until the timeτ (2) =
inf{t; η̃(�)(t) = η̃(�+1)(t) for some 1≤ �(�= �(1)) ≤ n − 1 or η̃(�(1))(t) =
η̃(�(1)+2)(t)}.

(4) After the time τ (2), the procedure is continued similarly along with the
coagulation timesτ (2) < τ (3) < · · · < τ(n−1). A single rod is finally left after
the timeτ (n−1).

The proof of Corollary 3.9 is immediate from Theorems 2.2 and 3.1. Note that
{η(ε,�)(t)}n�=1 are independent Brownian motions until the time when the minimal
distance between two ofn rods becomesεb and the coagulation of two rods occurs
within the time interval of lengthε1−δ, δ > 0. The probability that more than three
rods interact within the same such small time interval is negligible asε ↓ 0. We
can therefore continue the argument given just after Theorem 3.1 also forn ≥ 2.

REFERENCES

[1] FUNAKI , T. (2004). Zero temperature limit for interacting Brownian particles. I. Motion of a
single body.Ann. Probab. 32 1201–1227.

[2] I KEDA, N. and WATANABE, S. (1989). Stochastic Differential Equations and Diffusion
Processes, 2nd ed. North-Holland, Amsterdam.

[3] I TÔ, K. and MCKEAN, H. P., JR. (1974).Diffusion Processes and Their Sample Paths, 2nd
printing, corrected. Springer, Berlin.

[4] K ARATZAS, I. and SHREVE, S. E. (1991).Brownian Motion and Stochastic Calculus, 2nd ed.
Springer, New York.



1246 T. FUNAKI

[5] L ANG, R. (1979). On the asymptotic behaviour of infinite gradient systems.Comm. Math. Phys.
65 129–149.

[6] L ANG, R. and NGUYEN, X.-X. (1980). Smoluchowski’s theory of coagulation in colloids holds
rigorously in the Boltzmann–Grad-limit.Z. Wahrsch. Verw. Gebiete 54 227–280.

[7] M ULLINS, W. W. (1992). A one dimensional stochastic model of coarsening. InOn the
Evolution of Phase Boundaries (M. E. Gurtin and G. B. McFadden, eds.) 101–105.
Springer, New York.

GRADUATE SCHOOL

OF MATHEMATICAL SCIENCES

UNIVERSITY OF TOKYO

3-8-1 KOMABA MEGURO-KU

TOKYO 153-8914
JAPAN

E-MAIL : funaki@ms.u-tokyo.ac.jp


