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ZERO TEMPERATURE LIMIT FOR INTERACTING BROWNIAN
PARTICLES. I. MOTION OF A SINGLE BODY?

BY TADAHISA FUNAKI
University of Tokyo

We consider a system of interacting Brownian particle®fhwith a
pairwise potential, which is radially symmetric, of finite range and attains
a unigue minimum when the distance of two particles became. The
asymptotic behavior of the system is studied under the zero temperature
limit from both microscopic and macroscopic aspects. If the system is rigidly
crystallized, namely if the particles are rigidly arranged in an equal distance
the crystallization is kept under the evolution in macroscopic time scale.
Then, assuming that the crystal has a definite limit shape under a macroscopic
spatial scaling, the translational and rotational motions of such shape are
characterized.

1. Introduction. This paper is concerned with a certain scaling limit for a
finite, but very large, system of interacting Brownian particleRin The positions
of N particles at time, which are denoted by(t) = (x;(1))Y_; € RY)", evolve
according to the stochastic differential equation (SDE)

(1.1) dxi(t)=—§inH(X(t))dt+dwi(t), 1<i<N,

where (w; (t))f":1 is a family of independent-dimensional standard Brownian

motions. The Hamiltoniard (x) of the configurationx = (x;)Y; € (R is
defined as a sum of pairwise interactions between particles:

(1.2) Hx)y= Y Uxi—ux).

1<i<j<N

The potentiall = U(x), x € RY, is radially symmetric, smooth, of finite range
and has a unique nondegenerate minimummjat ¢ > 0; see Assumption | stated
in Section 2 for details. The gradiewt, H(X) =3, VU (x; — x;) € R4 is taken
in the variablex;. The parameteg > O represents the inverse temperature of the
system.

The basic scaling parameter> 0 is the ratio of the microscopic spatial unit
length to the macroscopic one. The configuratios (xl-)f\’:1 iS a microscopic

object and its macroscopic correspondence is give(rbyfvzl under the spatial
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scalingx — ex. The goal of this paper is to investigate the asymptotic behavior
ase | 0 of the system defined by (1.1) wifli, 8 andr suitably scaled depending

on ¢, especially when the temperatyse® of the system converges sufficiently
fast to 0. The time change from the microscopic to the macroscopic levels will be
introduced forx(z) by

(1.3) X (1) = x(e 1), >0, «k=d+2

We say arigid crystal is formed at the microscopic level, if the particles are
arranged in an equal distanaeand the total energy (x) increases under any
deformation for such arrangement except isometric transformations; see Section 2.
As 81| 0, that is, under the zero temperature limit, the system is expected to be
frozen and rigidly crystallized.

The results of this paper are twofold and will be formulated at both the
microscopic and macroscopic levels in space. The result at the microscopic level
can be roughly stated as follows. If the initial configuratigf) of the system is
nearly a rigid crystal, so is for®) (r) asymptotically with probability one as| 0
if the temperature of the system decreases to 0 sufficiently fast; see Theorem 3.4.

The motion of the crystal at the macroscopic level is observed under the spatial
scalingx — ex. Assuming that the particles’ numbar= N (¢) behaves ags ¢
with a fixed 5 > 0 and the crystal has a limit densip(y),y € R? ase | 0

under the spatial scaling at time= 0, we shall prove that®) (¢) also has a limit
density o;(y) for ¢+ > 0, which actually coincides with the initial density being
isometrically transformed so thaf(y) = P(‘Pe_(tl),n(t) (y)) for somed(¢) andn(t).
Here, gy, denotes an isometry dR? defined bygy ,(y) = 8y + 1, y € R? for

0 = (0°F)s 4_1 € SOW), n = (1")4_; € RY; SO(d) stands for thel-dimensional
special orthogonal group. In other words, the macroscopic limit®f:) is a rigid
body with densityp(y), which is congruent to the initial body. The translational
and rotational motiongn(z), 6(¢)) of the limit body are random and mutually
independent. They are characterized as follows:

n(t) = (d-dimensional Brownian motiori/5,

while 6(¢) is a Brownian motion orS80(d) which is a solution of an SDE of
Stratonovich’s type

do()=06(t)odm(t).

Here m(t) = (m‘)’ﬂ(t))z’ﬂ:1 satisfiesm®? (1) = —mP%(r) and the upper half
componentgm®?(t); « < B} of the matrixm(r) are mutually independent such
that

m®P (1) = (one-dimensional Brownian motipn g% + ¢*
with G = [ra(¥*)?0(y)dy, when the coordinate = (y*)¢_, of R? is chosen
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in such a manner thak. yo(y) dy = 0 and(fga y*y? p(y) dy)z’ﬂ:1 is a diagonal
matrix; see Theorem 4.3 and Corollary 4.4. The constauaisdg* + 7” represent
the total mass and moments of inertia [13] of the rigid body with density),
respectively; note thai = [rs p(y) dy holds.

In Section 2, the notion of rigid and infinitesimally rigid crystals is introduced
together with several examples. Main results are formulated and proved in Sections
3 and 4. The reason that the time scaling (1.3) is the right one is easily observed
for the (macroscopic) translational motion [see the identity (4.15) in the proof of
Theorem 4.3], although it may not be obvious for rotation. At the microscopic
level, the crystal translates much faster than it rotates. Section 5 is devoted to
the proof of technical estimates which are needed for the proof of Theorem 4.3.
Section 6 contains concluding remarks.

One of the motivations of this paper comes from the theory of interfaces which
appears under the phase transitions. The macroscopic body we have introduced
can be regarded as a kind of Wulff shape (see, e.qg., [3]) at temperature zero. The
static theory for the Wulff shape is recently well developed. This paper attempts
to analyze the motion of the Wulff shape by proposing a simple model. Indeed,
at temperature zero, at least two pure phases arise in our model. One is the high
density region where particles are arranged in an equal distaand the other is
the empty region where there are no particles. In this respect, the body with density
p(y) is a mixture of high density and empty regions observed macroscopically. It
would be more natural and desirable to study the model with temperature being
sufficiently small but fixed under the scaling. However, this problem turns out to
be quite hard. Actually, to solve such a problem, we need to have information on
the phase transition for the Gibbseasures corresponding to our dynamics with
infinitely many patrticles, but it is not well known. Lang [14] considered a system
of ordinary differential equation (1.1) dropping Brownian motions vgth 1 and
N = oco. Such a system is obtained from the SDE in the zero temperature limit
B — oo under a time change— B~1z. In one dimension and for strictly convex
potentialU having a hard core, ergodic properties of the dynamics were studied
and equilibrium states (called rigid states) were characterized. Related problems
were discussed for the stochastic partial differential equations in [4] and [5].

This paper deals with the motion of a single body (or single crystal in
microscopic aspect). The coagulations of several bodies are discussed in [6] in
one dimension. The study of coagulations in higher dimensions is out of reach at
present.

2. Rigid configurations. We introduce the notion of rigidity and infinitesimal
rigidity for configurations of particles iiR? and expose several examples of
infinitesimally rigid configurations. The numbar of particles is fixed throughout
this section.
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2.1. Hamiltonian and rigidity of configurations. The HamiltonianH (x) of
x € (RHN is introduced by the formula (1.2). The potentlalis assumed to be
radially symmetric; that isl/ (x) = U (|x|), x € R? for U = U(r),r > 0, and the
functionU (r) satisfies the following conditions:

AssumPTIONI. (i) (Smoothness, finite rangd). € Cg(R), whereU (—r) :=
U(r).

(i) There exists a uniquer > 0 such thatU(a) = min,>oU(r) and ¢ :=
U"(a) > 0.

Condition (i) means that the energy for two particles takes minimal value
when the distance between these particles becam€&ke range olU is defined
by b :=inf{r > 0; U(s) = 0 for everys > r}. Let z= (z)); € RH)N be a
configuration satisfying

(2.1) lzi —zjl=a or |z; —zj|>b

for every 1<i # j < N. An additional condition o is necessary for suchto
exist; for example, see coitithn (2.6) for configurations on a triagular lattice. The
configuratiore is a critical point of the Hamiltonia® . This physically means that
zis a microscopically crystallized or frozen configuration of atoms at temperature
zero. Its rotated and shifted configuration, (z) := (g, ,(z))_; = Oz + MY,

is obviously a critical point off again for every € SO(d) andn € R¢. We shall
write

(2.2) M = {gg.(2); 0 € SO(d), n e R‘} ¢ RV,
and its tubular neighborhood
(2.3) M2(8) = {x € RHN; dist(x, M) < 8}, 5>0,

where the distance is defined under the Euclidean nor@®f” : dist(x, M) =
infyeu X — yll2 and [x — yll2 = (XX 1x; — »119Y2. The configurationz
satisfying (2.1) will be called arystal.

We say the crystaisrigid if H(x) > H (z) holds for every € M2(8) \ M and
somes > 0. The rigidity means tha has no internal degree of freedom except for
the isometry. For example, in two dimension, the three vertices of an equilateral
triangle form a rigid crystal, but the four vertices of a square do not. The rigid
crystal is a local minimum o by definition, but not necessarily a global one.

2.2. Orthogonal decomposition of x € M2(8). In order to study the rigidity of
a crystalz, we introduce a decomposition vfe M2(8). Let #, = {Xz+ h; X €
so(d),h € R4} ¢ RN be the tangent space t( at z, where Xz + h :=
(Xz; + h)fV:l andso(d) = {X € M(d); X +'X = 0} is the Lie algebra o80(d).
The setM(d) stands for the family of ali x d real matrices. The orthogonal
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subspace to#, in (RY)N under the inner producth, i) := >, (h;, h!) for
h = (h))}_; andh’ = (h})Y_, is denoted by#;-. The corresponding norm df
is [Ih]l2 = (N |hi1%)Y2 defined previously.

For everyx € M2(8), we denote by (x) :=y € M the minimizer of||[x — y||2 in
y € M. If § > 0 is sufficiently smallz(x) is uniquely determined arxie M>(5)
admits a decomposition:

(2.4) x=2(X)+h(X),  z(x) € M, h(X) € Hy,.

In fact, by the definition ok(x), we have

=0

u=0

for everyX € so(d) andh € R4, and this implieh(x) :=x — z(x) € Hy-

d 2
Ty T Penx un(ZO0) 12

2.3. Hessianof H on M. Let

2
e M(dN)

HessH (x) = ( 3 (X))
dx;’ 0x; l=e.p=d,1<i,j<N

be the Hessian off and define a quadratic form in= (h;)Y_; € RN by

92H

N d
(h,HessH()h)= Y > (x)h?‘hﬁ.}.

i,j=la,p=1 8xl‘-" 8xﬁ

J

Then a direct calculation yields the followingat z.

LEMMA 2.1.

&
€1(h) = &1.,(h) := (h, HessH (2)h) = = > (i —hjzi —z)? =0,
(&,7)

where the sum (i, j) is taken over all pairs {i, j} satisfying |z; — zj| = a. We call
such pairs neighboring.

This lemma immediately shows that the HessiatHoflegenerates fdr € #;.
The degeneracy fo(h; = h)f.V:1 comes from the invariance off under the
translation, while that forh; = Xz;)!_; comes from its invariance under the
rotation. The rigidity ofz follows from the nondegeneracy of the Hessiantbf
for h € #;-. This leads us to introduce the following notion.

DEFINITION 2.1. We call the crystat infinitesimally rigid if the quadratic
form Hesd4(z) restricted on the subspac#;- is (strictly) positive definite:
&1(h) =0=he #;.
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Since H(X) = H(2) + &1(h(xX))/2 + o(||h(x)||§) as ||h(x)|]2 — 0 under the
decomposition (2.4) [see (3.1)], we easily see that the infinitesimal rigidity implies
the rigidity.

REMARK 2.1. The study of rigidity and infinitesimal rigidity for bar and
joint frameworks has a long history; see [1], [2] and [17]. The length of bars is
alwaysa in our case, but such an assumption is unnecessary in a general theory.
According to ([1], page 281) is called rigid inR? if, for every x sufficiently
close toz satisfying|x; — x;| = a for every neighboring paiti, j), there exists
an isometryp of R? such thatx; = ¢(z;) holds for everyi. In [2] (page 173)

z is called infinitesimally rigid inR¢ if T, = kerdfs(z) holds, wherel, = #,

and kedfg(z) = {h € (RHN; &1(h) = 0}, respectively, in our terminology. We
therefore see that the definitions of rigidity and infinitesimal rigidity employed
by these papers coincide with ours. Three poimts p», p3} in R? sitting on a

line are rigid but not infinitesimally rigid ifR? when the distances between any
two points are specified; see [12], noting that the rigidity in that paper means the
infinitesimal one. This example is not for a crystal, but exhibits the difference in
two notions.

The rigidity of z implies the connectedness of the geinder the neighboring
relation (i, j) and therefore we have, under the infinitesimal rigidity, the spectral
gap for the quadratic forré1(h) in the following sense:

&1(h)
IVhil3

,\<1)(z)=inf{ ;heﬂ;,||Vh||2¢0}>o,

where
IVhIZ =" 1hi — ;%
(i,))
This can be rewritten as
(2.5) 2P @)|IVhIZ < &(h) <&IVhI3,  he st

Note that the second inequality is obvious.

REMARK 2.2. In one dimension, a chain= (z; = ai)}\_, arranged in an
equal distance is a rigid crystal and.Y(z) = ¢ since&;(h) = & Vh||3.

2.4. Examplesof infinitesimally rigid crystals. We prepare two lemmas before
constructing several examples of infinitesimally rigid crystals. We say & set
{xi}'_o C R, n < d, is ann-dimensional cell irR? if the dimension of the affine
hullof C isn and|x; — xj| =a forevery 0<i < j <n.
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LEMMA 2.2. Let {e;}¢_; beabasisof R and set eg = 0. If vectors {;}4_, C
R4 satisfy (h; —hj,e; —e;) =0forevery0 <i < j <d, thenthereexistsa unique
X e so(d) suchthat h; = Xe; + ho, 1 <i <d. In particular, a d-dimensional cell
isinfinitesimally rigid.

PROOF  The uniqueness of is obvious, sincge;}¢_, forms a basis oR?. To
show the existence of, we may assume théde, ..., ey) iS an upper triangular
matrix. In fact, by Schmidt's orthogonalization, one can fiRde O(d) and
upper triangular matrixés, ..., e;) such that(es,...,eq) = P(e1,...,¢eq). If
the conclusion holds fofé1, ..., &4), there existsX € so(d) such thatP~1x; =
Xé;,1<i <d. TakingX = PXP~1 € so(d), the conclusion is shown also for
feily

Now we assumeéeq, ..., eg) iS an upper triangular matrix and use an induction
in d to constructX. We may further assume) = 0 by replacing:; with h; — ho.
Sincee; has a form

/
()

with ] e R~ for 1 <i <d — 1, writing

h
b= ()
with h} e R%~1 andh! € R, we have
Oz(h,-—hj,e,-—e‘,-)z(hg—h’j,el/-—e’j), l<i<j<d-1,

and thereforé:; = X'e; holds for someX’ € so(d —1) and every I<i <d — 1 by
the assumption of the induction. Now, writing

/
e
€q

with ¢/, € R9~1 ande/, € R\ {0}, define

/ 1
X= ( )i y) eso(d) with y=—(h;—X'ey) € R4-L
-y 0 o

Then, we see that; = Xe; holds. We need to prove that = Xe; holds also for
1<i <d-1.Tothisend, itis enough to show thaty, ¢;) = 1. However, since
(hi - hda € — ed) = (hi7 ei) = (hda ed) = 0! we havtha ed) + (hd7 ei) =0. This
implies —(y, e}) = h7, since(hy, ;) = (h);, ¢;) and

(hi,eq) = (h;, e&) + h;/eg = (X/el/-, eii) + h;/eg

= — (e, X'ey) + hi'eq = —(ej, hy) +eqlei, y) + hieg.
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Therefore, the conclusion is showndrdimension if it is true ind — 1 dimension.
The procedure of the induction is complete once we can show the conclusion when
d = 2. However, this is already essentially done in the above argument.

The infinitesimal rigidity ofd-dimensional cellC = {xi}flzo is immediate by
takinge; = x; —xpoforl<i<d. O

LEMMA 2.3. Let two infinitesimally rigid crystals z» and z? be given and
assume that the dimension of the affine hull of zY N z@ isat least d — 1. Then,
the joined configuration zV U z@ isinfinitesimally rigid.

PROOF  Let us denote® N z? = {1 . Then, the conclusion follows

if one can show thathfo) +h = X’z}o) + h' for every 1<i < Ng implies
X =X andh =k, where X, X’ € so(d) andh,h’ € R?. However, from the
assumption, one can find at least— 1 linearly independent vector{szzk}ij

from {z(o) - zg.o)}lskjs,vo. The identitiesXe;, = X'ex hold for such vectors. Take

i

eq € R? in such a manner thde,}¢_, forms a basis oR“. Then, since
(Xeq, ex) = —(eq, Xex) = —(eq, X'ex) = (X'eq, ex)

forl<k<d-—1and(Xeg,eq) = 0= (X'ey,eq), Wwe seeXe; = X'ey. We
accordingly haveXe; = X'e; for every 1< k < d. This provesX = X’ and
thereforeh =h'. O

EXAMPLE 2.1. The set obtained by patching togettiedimensional cells on
their faces is infinitesimally rigid from Lemmas 2.2 and 2.3. More precisely, a
finite setA ¢ R satisfying the following two conditions is infinitesimally rigid:

1. A =i Cx with finitely manyd-dimensional cell<y.
2. ForanyCy, andCy, in A, there exists a sequen€g,, ..., Cx, , in A such that
Ci; N Cy,,, are(d — 1)-dimensional cells for i <n — 1.

In two dimension, the set as in Figure 1 is infinitesimally rigid. In general,
infinitesimally rigid crystals may have defects.

i+1

ExXAMPLE 2.2. In three dimension, the tetrahedroa: (three-dimensional
cell), octahedron and icosahedron are infinitesimally rigid by Cauchy’s rigidity
theorem or by Alexandrov’s rigidity theorem [2]. Note that the faces of the three
types of regular polyhedrons listed above are all equilateral triangles. In particular,
the set obtained by patching together polyhedrons of these three types as in
Example 2.1 is infinitesimally rigid.

ExamMPLE 2.3 (Crystals on triangular lattice). Lét, € Rd}gzl be a basis
of R? such that(ey, eg) = (1 + 84p)/2. In other words, it is a system of unit
vectors and arbitrarily chosen two of them are at an angle vi6th each other.
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Fic. 1. Two-dimensional crystal.

Then, ad-dimensional triangular lattice is defined as an integer lattice generated
by {ea}d_1: A=Ay ={X0_1E0eq € RY & = (5,)9_, € Z¢). Note thatAq = Z.

SetE ={e € A; le] = 1}, and then it is easy to see that= zgzlgaea cEIf

and only if¢ has the formé, = +8,,, for someag or &, = 8490 — Spy0 fOr some

ag # Bo. The triangular latticeA is the set of centers of circles (whéen= 2) or

balls (whend = 3) with radius ¥2 filled most densely in the space; this assertion
was known as the Kepler conjecture in three dimension and solved by Hales [8].
We need an additional assumption:

(2.6) b <c(Aga,

for a rigid z to exist ona A satisfying (2.1), where(Ay) = inficp,\g x| =2
(whend = 1), v/3 (whend = 2) andv/2 (whend > 3).

In two dimension A can be constructed by patching equilateral triangles, while
in three dimensionA is obtainable by patching tetrahedrons and octahedrons.
Therefore, at least in two and three dimensians,D NaA is infinitesimally rigid
for a bounded domai® in R? (d = 2 or 3) having smooth boundary and for
small ¢ by deleting or adding some points near the boundary in a proper way if
necessary.

2.5. Tubular neighborhoodsof M definedin two other norms. Let us consider
two norms|h|l« and||Vhl|s for h = (7)Y ; € R?)N defined by

Ihlleo = max|;| and [[Vhlle = r(??-))qhi —hjl,

respectively; recall thati, j) refers to neighboring pairs. Then, for every small
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¢ > 0, tubular neighborhood#( ~ (¢) andMZo(c) of M can be introduced as
2.7) Mos(c) = {x € RH: |h(X)[|oo < ¢},
(2.8) M3, (c) = {xe RDY; [Vh(X)[loo < c},

respectively, whereh(x) € (RH)V is defined by (2.4) forx € M2(8) with
sufficiently small§ > 0. For each crystat, since two normg/h||» and|h|»> are
mutually equivalent, one can firntd= ¢(z) > 0 such thah(x) is well defined for
all X € Moo (¢(2)).

Forl<i=£j<N,letp(, j)={i=ig~i1~ --~i, = j}bethe shortest path
connecting andj, wherei; ~ i1 means that the paii, ix+1) is neighboring.
We calln =: p(i, j) the length of (i, j) and define the radius afby

R(Z) =maxXtp(, j); 1<i##j <N}

LEMMA 2.4. For every X € Mo (c(2)), we have
(2.9) IhX¥)leo < R@IIVh(X)loo-
In particular, the set MZO(C) iswell defined for 0 < ¢ < ¢(2)/R(2).

PROOF. Sincezyzlhj =0forh=h(x) = (h)¥ |,

|h-|—h-—12Nj iZm —hjl
1 1 Nj-:]_ N

N
Yo Y i =iy S R@IVA®) s

J=1{ix,ix+1)€p(, )

for every 1<i < N. This shows (2.9) an(MZo(c) C Moo (R(2)c). [

3. Microscopic shape theorem. This section establishes the asymptotic be-
havior ass | 0 of x®)(¢), the solution of the SDE (1.1) which is scaled macroscop-
ically in time, when the initial configuratior® (0) is nearly infinitesimally rigid
and the temperatur@—! = B(¢)~! of the system decreases to 0 sufficiently fast
compared witle.

3.1. Behavior of H near M. Let z be a crystal, that is, a configuration
satisfying the condition (2.1). A configuration= (x,)N 1 Is then decomposed
asx =z -+ h aroundz just by settingh = (hi)f\’zl = (x; — Zz)lzl We shall write

N

G = |V HOP (= IVHX)I3).

i=1
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LEMMA 3.1. Supposethat x satisfies [x; — x| > b for nonneighboring pairs
{i, j} (of 2) and |x; — x| > ag for neighboring pairs (i, j) with someag € (0, a).
Then, there exists C > 0 (independent of x, z and N) such that

3.1) |H) — [H@) + 2ei}| < C Y 1hi — k3,
(i)
(3.2) G — &) <C Y |hi —hjl%,
(i)
where
bl 21 2
&x(h) := o 2; .;»(hi —hj,zi —zj)(zi —2j)| = ZZ;|Vh,~81(h)| .
i=11j:(,j i=

PROOF These two estimates are shown by Taylor's theorem applieH t&y
and G(x) in the variables{h; — h;} with neighboring pairs(i, j). Since the
computations are easy, the details are omittéd.

Now let us assume thatis infinitesimally rigid.

LEMMA 3.2. Thereexist C > 0and 1?(z) > 0 such that
creh <& < (A?@) e(h).  he .
PROOF The first inequality is obvious. To show the second, note that the
guadratic formé&1(h) is expressed a&;(h) = (Ah, h) with a symmetric matrix

A € M(dN) and J, is the eigenspace of corresponding to the eigenvalue 0.
Since we have

&(h) = | Ah|I5 = (A%h, h),
&>(h) = 0 holds if and only ith € #¢, and this implies the conclusion]

REMARK 3.1. The constant®(z) is related to the Poincaré inequality; see
Lemma 2.1 of [6] in one dimension. We may assume 02 (z) < 1 for everyz.

In the following, we shall normalize the Hamiltonigh as H (z) = 0 by adding
a constant [i.e., by considerirfg — H (z) instead ofH].

COROLLARY 3.3. If h=x—ze #+ and |Vh|e < s2P@2)1P(2) is
satisfied for sufficiently small § > 0, we have
CMP@HX <GXx) < CH®X),

for some C > 0.
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PrROOF The estimates (3.1), (2.5) and the assumptiofivh||,, show that
|H () — 361(0)| < CIVhlleo VN3 < C8E1(N),
sincer@(z) < 1. Therefore, taking sufficiently small so tha€s < 1/4, we have
(3.3) 761(h) < HX) < 3&1(h).
On the other hand, from (3.2), (2.5) and Lemma 3.2,
1G(x) — &2()| < C|Vhllw[IVhII3 < C8E2(N),
which shows
(3.4) 362(h) < G(X) < 362(h).
The conclusion follows from (3.3), (3.4) and Lemma 3.2]

3.2. Lyapounovargument. Assume thata sequenz® = (z"”)N ,,0<e<1,
of infinitesimally rigid and centered crystals is given, where “centered” means
YN,z = 0. The numbew = N (¢) of particles inz® may change depending
on the scaling parameter Let x(r) = (x; (t))f.V:1 e (RHN be the solution of the
SDE (1.1) and introduce the time changed proocé8sr) of x(r) by (1.3). The
inverse temperaturg = 8(¢) changes witle and diverges tetoco ase | 0 suffi-
ciently fast; see the condition (3.8) in Theorem 3.4.

Let M = M© and MY (c) = M%“)(c) be the sets (2.2) and (2.8) determined
from z®) instead ofz, respectively. Giver = c(¢) | 0, consider a sequence of
stopping times = o © defined by
(3.5) o =inf{r>0;x® @) ¢ ML® (c(e))).

The main result of this section can now be stated. The proof is based on the
Lyapounov type argument.

THEOREM 3.4. Let {c =c(e) | 0} (as ¢ | 0) and a sequence of (random)
initial data {x*)(0)} be given and satisfy the following conditions:
(3.6) 0 < c(e) <AL 2D A 5@
(3.7) E[|Vh(x?©) [5" 7% = o({x 2} 2c(e)),

as ¢ | 0 for some p > 1, where A(18) = A (D (z(&)), 1 2e) = 3@ (Ze)) @) =
¢(2¥)/R(z®) and § > 0 is the small constant appearing in Corollary 3.3. We
further assume the following condition on the sequence of temperatures g1 =

Be)~t ] 0:
(38) ﬂ(g)_l — 0({k(l,s)c(8)2N(8)—1}P/(P—l)k(Z,s)Elc/(p—l))’
ase | 0. Then we have, for everyt > 0,

lim P(c® >1) =1
el0
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Theorem 3.4 asserts that asymptotically, with probability otfé(r) keeps its
rigidly crystallized shape within fluctuatiomge). In order to make the fluctuations
smaller, we need better assumptions on initial data as required in (3.7) and on
the speed of convergence to 0 f)~* as in (3.8). This theorem characterizes
the microscopic structure of the solutions of the SDE (1.1), which are scaled
macroscopically in time.

REMARK 3.2. (i) Conditionc(e) < ¢® in (3.6) is necessary only for the set

Moo © (c(¢)) to be well defined; recall Lemma 2.4.

(i) Condition (3.7) is always satisfied ) (0) € M©).

(i) The theorem covers the situation purely microscopic in space, that is, the
case where the particles’ numb#ris fixed and does not change with In this
case, = c(e) can be taken independently ofif it is sufficiently small and the
condition (3.8) is satisfied if the temperature behave$(@s ! = o(g¢/(P~D),

(iv) The result will be reformulated in one dimension in [6], Theorem 2.2, and
the condition (3.8) will be rewritten into much simpler form based on Remarks
2.2 and 3.1 on™D andr(@, respectively.

For the proof of the theorem, we first note th&t (1) = (x(s) (t)N_; satisfies
the following SDE:
3.9) dxP ) = —ge—"vx,.H(x@)(t))dt +e%2quw;(t), 1<i<N,

in law’s sense. Simple application of It6’s formula shows the next lemma.

LEMMA 3.5. Forevery p >1,
HP (X (1)) = H? (X (0)) + m' (1)

+ f e b1, (X9 (5)) + e b, (x O (5))} ds
where
b1 p(X) = —H" G x),
by, p(X) = %(p DHP2(0)G(X) + £ SH 1<x>ZAx,H<x>
i=1

with the Laplacian A,, inthe variable x;, and m(e) (1) isthe martingale defined by
N
mE () =e"*2py" /O HP7 YO () (Ve H(XO(s5)), dw; (5)).
i=1

We have the following bounds on the drift functiols, andb; .
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LEMMA 3.6. Assume X € My @ (r19)28 A ¢@) where § > 0 is the
constant appearing in Corollary 3.3.Then, there exists C = C,, > 0 such that

(3.10) b1 ,(¥) > C~I O HP(x),

(3.11) b2.,(X) < CNHP1(x).

In particular,

(3.12) —Bb1.»(X) + by p(X) < CB~PTINP (A2} P+

PrROOF The lower bound (3.10) is immediate from Corollary 3.3. To
show (3.11), note that, for every9c; < co, |ZlN:1 Ay, H(X)| < CN holds for
someC > 0 and allx e (RY)N satisfyingcy < |x; — x| < co foreach(i, j). Then,
we have (3.11) from Corollary 3.3. Finally, to show (3.12), we estimate choosing
g=rp/(p—1 (whenp #1),

HP 7Y = (LB7IN (122) Y (LN 102 HP (x)) M
1 11 1
< S(LBINM@O)THP T L Z LN IR B (x),
P q

for everyL > 0. The inequality (3.12) follows from (3.10) and (3.11) by choosing
L > 0 sufficiently large. O

PROOF OFTHEOREM 3.4. Lemmas 3.5 and 3.6 show
E[H?(x®)(t Ao))] < E[HP(x®)(0))] + Ce™* PHINP {20} P T,

However, (3.3), (2.5) and the assumption)dfi (0) imply thata'" := (19 x
c(e)?) 7P x E[HP(x®)(0))] tends to 0 as |, 0. On the other hand, ¥= (x;)"; €
B(MXO’(“?) (c(e)),then|h; —h j| = c(e) for some neighboring paii, j) and therefore
H(x) > C~ a8 ¢(£)? from (3.3) and (2.5). Accordingly we have

E[H?(xX®(t A0))] = E[H? (xX©(0)),0 <] = (CTIA LD ¢(£)?)P P(o <1).
Therefore, we have
P(o <) < Cla® + (239 c(e)?) Pe  pmrHINP 1,20} 7Py,
which tends to 0 as | 0. The constant§’ may change from line to line.[]
4. Motion of amacroscopicbody. In this section we shall identify the motion

of a macroscopic body obtained in the limit under the spatial scalirg sx as
el 0.
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4.1. Coordinate 0(x). Let z = (zi)f\’zl be a centered infinitesimally rigid
crystal and we fix it throughout Section 4.1. Fere My (¢c(2)), z(X) € M
is defined in Section 2.2 as the minimizer f — y||2 in y € M; see also
Section 2.5. Since(x) € M, one can represent it aXx) = ¢g ,(2) for some
@,1) = BX),nX) € SO) x RY. The functionn(x) defined in this way
actually coincides with the center of the masxof

1 N
(4.1) n(x) = ~ ;xi cR?,

In fact, (4.1) is seen fromd||x — @y, (2)[13/dn® = O for every 1< a < d. On the
other hand, the functiofi(x) = (6*# (x))(‘fl’ﬁ:1 has the following property.

LEMMA 4.1. Foreveryl<aw, 8 <d and X € My (¢(2)),

N
(4.2) (VO*P (x), VH () = (V0% (), V., H(X)) = 0.
i=1

PROOF Step 1. For everyy € M, let e,(y) € (RHN and ry(y) >0, 1<
¢ < dN, be the eigenvectors and the corresponding eigenvalues of the Hessian
HessH (y) of H aty, respectively. Recalling that is infinitesimally rigid, we
may assumek,(y) = 0 for 1< ¢ <d and A¢(y) > 0 for d + 1 < £ < dN,
whered := d(d + 1)/2 is the dimension of the spac# or Hy. Then, the

vectors(ee(y))?:1 and (ee(y))ji’[”l span the space#) and nyL respectively.
Moreover, since the invariance of the Hamiltonidn H (¢, (X)) = H (X) implies

HessH (gg,,(Y)) = <p9,oH(y)<pré, one can takde,(y), A¢(y)} in such a manner
that

(4.3) ee(99.n (V) = wa.0(ec(y)), Le(@o,n(Y)) = Ae(y),

for every 1< ¢ <dN, (8, n) € SO(d) x R? andy € M.
Sincex — z(X) € ,%’ZL(X) by (2.4), settingy := z(X), X € M (c(2)) can be
decomposed as

dN
(4.4) x=y+ > ey

(=d+1
for somect e R, d +1<¢ <dN.We call(y, 9L, ..., ¢4N) € M x RIN— the
Fermi coordinate ok; see [7], page 4.

Sep 2. Under the Fermi coordinate, the Hamiltonidndoes not depend on the
variabley:

(4.5) HX) = H(, . i),
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To see (4.5), we first note that the Fermi coordinatepgf,(x) is given by
(@0.,(y). 9FL, ..., 4N). In fact, by (4.4) and then by (4.3),

dN dN
¢9,n(X)=¢9,n(Y)+<P9,0< > é'eee(Y))=<P9,n(Y)+ > tler(won ).

t=d+1 =d+1
Therefore, the invariance @& implies

H(y, é_d-i—l’ o {dN) — H((p@,n(Y), §d+1, o {dN)
under the Fermi coordinate for eve@, n) € SO(d) x R%. This shows (4.5).
Step 3. We finally proveV H (x) = (Vx, H (X);L; € Hyy, andVO*P (x) € Hyx).
Once these relations are established, the conclusion of the lemma is immediately
deduced. Take an arbitragye (R¢)"N and decompose it d&s= P& + P&, where
P:RHN — Hyx) and P+ (RY)N — Hy, are orthogonal projections. Then

(VH(x), &) = %H(X + ué)

u=0
(4.6)

— %H(x +uPrE)|  =(VHX), P§).

u=0

The second equality of (4.6) follows from (4.5) noting that @ét) +u P&, M) =
O (u?) asu — 0. Equation (4.6) implie¥ H (x) € ij(x). Since by definitior® (x)
depends only ory = z(x) :6(x) = 0(z(x)), one can similarly shovwo%f(x) e

J{Z(X) . D

In order to identify the motion of the macroscopic body, it becomes necessary
to calculate the derivatives @f(x) in the variablest;. We introduce notation to
give their representations. The spadéd) of d x d matrices is equipped with an
inner product(X,Y) :=Tr(X'Y) and a norm X | = /(X, X) for X,Y € M(d).

The orthogonal projection fromM (d) onto its subspaceo(d) under this inner
product is denoted by Proj, that is, P#j= (X — 'X)/2 for X € M(d). For
e = (e%),é = (&% e R?, determine the matrix @ ¢ = ((e ® &)*) € M(d) by
(e ® &) =e¥eP, 1<, p<d. They-directed unit vector iR? is denoted by
ey, 1<y <d.We defineQ(x) = (¢4*?(x)) € M(d) by

N N
@.7) 0 =Y z®x, thatis, ¢?x=Y 2, 1<ap<d

i=1 i=1
Note thatQ(z) is symmetric. The magProjo(Q(x)6(x))} 1 is the inverse of
Projo(Q(x)6(x)) :s0(d) > X > Proj(Q(x)8(x)X) = {Q(x)0(x)X + X' (Q(x) x
0(x))}/2 € so(d). Note that the derivative

00
M—?,(X) € Ty(x) (S0(d)) = 0 (X){so(d)},
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the tangent space 8D(d) at6(x).

PrROPOSITION4.2. Forl<y <dandl<i < N,wehave

00 . _ .
W(X) =6 (x){ Projo(Q(x)6(x))} 1 PI’OJ{(@(X)_ley) ® zi}.

PROOF  Sincegy(x),nx) (2) is the minimizer for the nornfix — y||§ inye M,
we have

u=0

d N
— Y =00z -2 =0
j=1

for every Y e so(d). However, sincezyzlzj =0 and (0(X)z;,0(X)Yz;) =
(zj,Yzj) =0 for all j, this implies Z;V:l(x]',e(X)YZj) = 0, which can be
rewritten as

(4.8) (Q(X)0(x),Y)=0.

Taking the derivative of (4.8) in! and noting thabg®# /ax! (x) = z#6#7, we get

30 d
(4.9) (Q(x)ax—_y(x), Y) = _<ax—Q?’(X)9(X)’ Y) = (00 tey) ®2:, Y)

for everyY e so(d). SetX := 0(x)—189/8x}’ (X) and then, sinc&¥ € so(d), (4.9)
shows that

Proj(Q(x)0(x)X) = Proj{ (00 e,) ® z: ).
This proves the conclusion]

4.2. ldentification of the limit. We now discuss the limit as | 0 under the
macroscopic spatial scaling— y = ex for the system with the particles’ number
N = N(e) changing withe.

Our formulation is the following. LeDt; = M ; (R%), p > 0, be the family of all
Radon measurgs on R? satisfyingu(R?) < 5. The spacéli; is equipped with
the topology determined by the weak convergence. A sequeéfice: (x )N .,

0 < e <1, with N = N(¢) of the system of particles iR? is identified under the
scaling withu® (x®)) € M, o = ¢? N defined by

N
(&) — @) (yE). o .d
(4.10) w®(dy) = u©(x®; dy) = ziaml@ (dy).
Let us assume that, as in Section 3.2, a sequefites (zfs))fvzl, O<e<1,

of centered infinitesimally rigid crystals is given and satisfies the following three
conditions:
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1. There exist® > 0 such thatzl@l < Re lforalli ande.

2. z®) has amacroscopic limit density function p(y), y € R?, in the sense that
w®(z®; dy) = p(y)dy weakly ase | 0.

3. (Nontriviality of the limit). The total mass of the macroscopic limit density is
positive:p := [ra p(y)dy > 0.

Examples of the sequene&’ will be given at the end of this section. We shall
denote byM)(c) the set (2.7) determined fromf®) instead ofz. The domain
D = {y € R%; p(y) > 0} with density p(y) may be called the macroscopic
shape of the body. The above conditions imply that {y € R?; |y| < R} and
lim.y0e?N(¢) = p. Sincez® are centered, the body with densjtyy) is also
centered in the sense thAt, yo(y)dy = 0. Let Q = (éaﬁ)z,ﬁzl e M(d) be the
matrix defined by

é"‘ﬁ=/ Yy p(y)dy.
Rd

Then, since the matrix) is symmetric, by rotating the body around the origin
0 e R?, we may assume tha is diagonal with diagonal elements:

(4.11) = [, 0"mdy.  lzasd.

Let x©)(¢) := x(¢7“1), k =d + 2, be the process obtained by macroscop-
ically scaling in time the solutiorx(r) of the SDE (1.1) with initial con-
figuration x(0) = z®). The spatially macroscopic scaling limit of®(r) is
characterized by the following theorem, in which the limit(gf® (r), 0 (1)) :=
(en(x® (1)), 6(x¥ (1)) e R? x SO(d) ase | 0 is obtained. Here, the coordinate
0(x), x € ME) (6(2®)), is defined as in Section 4.1 basedfi in place ofz.

If x©(¢) goes outside o) (c(z®)) at a certain timed©(r) may be defined
arbitrarily after such time keeping it continuouszinThis theorem, in particular,
shows that the proper macroscopic time scalings for the translational and rotational
motions of the body are the same.

THEOREM 4.3. Assume that the temperature 81 = B(¢)~1 of the system
convergesto 0 as in (3.8) for some c(¢) satisfying (3.6) and c(¢) < ¥ for some
v > 0. Then, the process (n'®) (1), 6 (1)) weakly convergesto (5(¢), 6(t)) ase | 0
inthe space C ([0, T'1, R¢ x SO(d)) for every T > 0. Thelimit is characterized by
the following three properties:

(i) n(r) and 6(¢) are mutually independent.
(i) +/pn(t) isad-dimensional Brownian motion starting at O.
(i) 6(r) isasolution of an SDE of Sratonovich’stypeon SO (d):

(4.12) do(t) =0(t) odm(t), 60 =1,
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where m(t) = (m*# (t))g’ p=1 is an so(d)-valued Brownian motion such that the
components {m®?(1); & < B} in the upper half of the matrix m(r) are mutually

independent and v/¢% 4+ g#m® (1) is one-dimensional Brownian motion for each
1<ea,B<d.

This theorem can be reformulated as the convergence for measure-valued
processes.

COROLLARY 4.4. Under the same assumption on B(g)~1 as Theorem 4.3,
(1) = O (x(1); ) weakly convergesto 1u(1) == p (@7, ) (¥)) dy ase | 0
in the space C([0, T'], M) for every T > 0, where p = sup)<8<1st(s). The
process ((t), n(t)) ischaracterized by the three properties (i)—(iii) in Theorem4.3
and p(y) isthe macroscopic limit density function of the initial configuration z©).

Before giving the proofs of Theorem 4.3 and Corollary 4.4, we state a
proposition vihose proof will be postpormko the next section.

PROPOSITION4.5. For every v > 0, there exist C > 0 and 0 < g9 < 1 such
that

<Ce L,

00
4.13 — (X
(4.13) ]axiym
00 0
4.14 ——(X) — —(z(X))| < Ce¥tVHL,
(4.14) ‘M() axiyu»\_ :

hold for every x € M) (e""1 A E(2®)), 1<y <d,1<i <N(e)and0 < ¢ < eg.

PROOF OF THEOREM 4.3. Step 1. From the SDE (3.9) fox®(r), since
VU (x) = —VU(—x) holds from the radial symmetry @f, we have

gl—x/2 N

@) ) — .
(4.15) n () = N l_;wl(t),

which is equivalent ta1=%/2N~12y)(r) in law. This shows the property (ii) for
the limit n(¢) of »°(¢) noting thatj = lim oe¢ N so that lim gl */2N~1/2 =
~—1/2

0 .
Step 2. We next consider the limit of®) (7). Let o® be the stopping time

defined by (3.5) with(¢) satisfying the conditions in the theorem. Thex® (1))
is well defined forr < ¢®, and again from the SDE (3.9) and using the
property (4.2) 0B (x), we have

N
(4.16) d6® (1) = e7/2> "V, 0(xE (1)) o dw; (1), t<o®,
i=1
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by applying Ité’s formula, wherev,.0 o dw; := Z;leae/axl?’ odw! € M(d).
This may be further rewritten as
do® ) =0® 1) o dm® (1), t<o®,
with anso(d)-valued martingale:® (1) = {m®f-© (t)}z’ﬂ:1 defined by

N
m® (1) :e_"/ZZ/otG(X(e)(s))_lvxie(X(e)(s))dw,-(s), t<o®.
i=1

Therefore, setting® (1) := 0 (t A ¢®) andm® (1) := m® ( A o) for all
t > 0,60 (1) satisfies an SDE

do® (1) =0® 1) o din® (1), t>0.
This SDE written in Stratonovich’s form is equivalent to
d0© ) =69 )dm® (1) + 36 (1)d(m'®, @ )(t)
in Itd’s form, where the quadratic variational procegs®, m©)(r) € M(d) is

defined by

d
(< (s) (t) Z 7oV @) P, (s))(t) l<a,B<d.

The goal is to show the&(“?)(t) weakly converges as 0 to the solutiord ()
of the SDE (4.12) which is equivalent to

do(t) =0t)dm(t) + 30(t)d (m, m) (1)
in 1td’s form. Indeed, once this is proved, since JimP(c® > T) = 1 from
the microscopic shape theorem (Theorem 3#))(r) also weakly converges
to 0(r); recall thatd®) (r) was arbitrarily defined after the time wheff) (1) goes
outside of M) (6(z®)). To show the weak convergence &) (1) to 6(t) in
C([0, T1, SO(d)), it suffices to prove the following two conditions for the driving
martingalen® (¢):
t(aaa(sﬁb _ 6ab6/3a) 0
3% +q” ] B

foreveryr >s>0,1<a,B,a,b <d,whereF; =o{w(s’); s’ <s}and

i ~ap, (s) 74b-(8) T _
(4.17) n%EH [ )(1)| F5]

d P
(4.18) sup sup EH—(:&:“‘B*(S),n&“b’(e))(t)’ } < o0
O<e<10<t<T dt

for somep > 2; see, for instance, [11], page 222, Theorem 5.2.1. Note that, from
the property (iii), the quadratic variational processe&:iof® (1))op are given by
t(aaa(sﬁb _ 6ab6/3a)

m®? m® (1) =
( ) (1) 7%+ 5P
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Now let us prove (4.17) and (4.18). Since we have

d

dt( (&) jab. (s)>(t)

0 . ab
1_y(x( )(0))

i

1 06 ap _
ek Z Z < X(s) (t) xV (X(s) (n)) (9 (X(e)(l‘))

i=1ly=1 i

fort <o® (and= 0 forr > ¢(®)), (4.13) in Proposition 4.5 implies
d

(4.19) ‘Ewaﬁv(”, rh"b’(s))(t)‘ <Ce ™ N H2 <,

which is bounded ir andt. This shows (4.18). To prove (4.17), definé&) (r) by

t/\o(g)

(4.20) m® () = e—K/ZZ / (Z(x®(5))) "1V, 0(2(x® (5))) dw (s).

We have replaced® (s) with z(x®)(s)) in m® (r). Then, since condition 1 on
z(’f) implies R(z®)) < Roe~! for some Rg > 0, Lemma 2.4 shows®)(s)

ML O (e(e)) € ME(RED)e(e)) € ME) (Ros" L A E2®)) € ME (¥~ A
c(z(’f))) for s < o® by takingy’ € (0, v) and for smalk > 0. Therefore, by (4.14)
in Proposition 4.5 and noting thatx) = 6(z(x)), we have

(4.21) (7% © — - ©\1)| < Ce ™ N(e4T" )21 < C'e?t.

Using (4.19) and (4.21), we get
|< AN (6) mabs (8)>(t) < af, (6) mabs (5)>(t)|

< \/<n~’l°‘/3’(5) — n_flaﬁ9(€)>([) . <,/;lab,(s))(t)

n \/(n'jlab,(e) — i) (1) - (@B ©))(1)
< C”Sv/l‘,

which tends to 0 as | 0; note that a similar estimate to (4.19) can be shown for
(m*P-©) mab-()y (1), We accordingly see that it ffices to show ondition @.17)
for m® instead ofn®.

For a configuratiof = @é’ﬁ(z(e)) e M® with some(d, 77) € SO(d) x R?, since
6(2) =6 andQ(2) = Q(z®)0~1, Proposition 4.3hows that

— (¢5.5(2)) =] Projo(Q(2))} " Proj{(d~%e,) ®2”}.
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However, we see that

d
4.22 lim & 0 (z® :Iim( B @) (2. g ) =0,
(422 lmeto@ ) =lm{ [ " wt @) =0

- Zyaﬁ d
4.23 Projo ly = ( ) ,
(4.23)  {Projo(Q)) 17 )upn

for Y = (y*/)ep € s0(d), and
Proj{(6~te,) ® 21} = %(éyazf’(g) — éyﬁzf"@)iﬂzy
whered = (6%f),5 and zl@ = (zf"(s))a. Therefore, from Lemma 5.1(ii) stated

below [note thafProjo(Q(z®))} 1 = ¢ ®® (z*))~1] and recallinge|zi(€)| <R,
we have

B.(e) ;7 &)\ d
9 +q°

. ~_, 00
(@24) lim e~ 1571 (g, 1 (20) —g(

0x;

a,f=1

uniformly in (@, 7). Hence,

% (PO b))

K

N d
&
= GG X o O 0 —ert O
i=1ly=1

x (074 )zl — 072 (1)) 1 0(1)
SO{QSﬁb _ 80{!)8/3&
T e+
ase | O for every 1< «, 8,a,b < d. The error term®(1), which come from the
errorsin (4.24), tend to 0 uniformly inandw [an element of the probability space
on whichm® (¢) are defined]. This proves (4.17) for) (z).
Sep 3. Finally, to show property (i), compute the quadratic variational processes
of m*#-® (1) andn?-® (1) from (4.15), (4.20) and (4.24):

+0(), t<o®,

d
o (P © ¥ ©)p)
N B.(e) a.(e)
e Gy""(e)(t)zi —grB.(® )z
_f 1), t<o®,

i=1
However, sincg® is centered, the sum vanishes and this proves property(().

PROOF OFCOROLLARY 4.4. Theorem 4.3 combined with Theorem 3.4 shows
that ( £, u®)(r)) weakly converges tof, (7)) ase | 0 in the spac& ([0, T'], R)
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for every f € C,(RY), where(f, u) := Jra f(¥)(dy). Therefore, to conclude the
corollary, it suffices to show the tightness of the family of laws@f* (¢); 0 <
e < 1} onthe spac€ ([0, T'], M ). But this can be deduced from:

1. For eachs > 0, there exists a compact sit in 9015 such thatP (1) (t) € X
foreveryt € [0, T]) > 1—6.

2. For every f € Cp,(RY), {(f,n®()); 0 < ¢ < 1} is tight on the space
C([0, T], R).

Condition 2 follows from what we mentioned above. Condition 1 is also easy,
since the support gi®) () is in the ball with centen®(r) and radiusk as long

ast <o® andn®(r) = n(r), which is the time changed Brownian motion, as
e}l 0. O

The solutiond () of the SDE (4.12) is called the left Brownian motion on
(d); see [15, 16]. A coordinate satisfying the relation like (4.2) was used by
Katzenberger [9] to make a cancellation for diverging terms as we have seen in
deriving (4.16).

EXAMPLE 4.1. (i) Let D be a bounded domain iR?(d = 2 or 3) having a
smooth boundary D and letz®®) be the infinitesimally rigid crystal constructed
from e 1D NaA on thed-dimensional triangular lattice as in Example 2.3. The
configurationz® is the microscopic crystal consisting of atoms arranged in an
equal distance and D is the corresponding macroscopic body. The macroscopic
density function o&® is given by

() = 1p(y)
P = d| detA’

whereA = (e1ez- - -e4) € M(d) is the matrix consisting af column vectorgey },
used for the definition of the triangular lattice. In this ser3as the high density
region and the outside d is the empty region.

(i) In higher dimensions, one can constrat? based on the idea explained in
Example 2.1.

5. Proof of Proposition 4.5. This section gives the proof of Proposition 4.5.
Consider an operato® on the spaceo(d) defined by®X = Proj(QX) for
X € so(d). Then, as we have seen in (4.28)js invertible and the operator norm
of ®~1 can be dominated by

(5.1) oY <C:= max —— .
1<a#p=d §* + P

Recall thatQ(x) = 0©)(x) is determined fronz® and setQ® (x) = £ Q® (x).
Then, we haveQ = lim. ;0 0® (z¥); see (4.22). We introduce another operator
®©® (x) onso(d) by

d©@ X)X =Proj(Q® x)0(x)X), X eso(d).
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In the following, we denoten ) (V=1 A ¢(2®)) simply by M) (¢~1), since we

only use the bountih(x)||« < &"~* for x.

LEMMA 5.1. (i) For everyv > 0, thereexists g > 0 such that

sup  sup @07 < o0
0<8§80X6M§)(s"—1)

(i) For everyv > 0,

im sup [ t-d71 =0
xe ME) (ev-1)

PrRoOR We first assume that e Mé?(e”—l) satisfiesz(x) = z®). Then, we
have

(5.2) 109 () — Q] <r(e),
with somer(¢) — 0 ase |, 0. Indeed, the left-hand side of (5.2) is dominated by
|Q(8)(x) - 0¥ (2(6))| 4 |Q(s) (Z(s)) — Q|
and the first term is further bounded as
N
|8anﬁ(X) _ gkqdﬁ(z(&‘))| <k Z |Z;x,(8)||xl(3 _ Z£~‘3,(t?)|
i=1
<& N -Re L' 1<ce,

while the second term tends to 0sa$ 0.
Denoting byw = ®© (x) — &, ®© (x)~1 can be expressed as

o
(I)(€)(X)—1 — (I + (D—lllj)—qu—l — Z(_qD—llp)k(D—l
k=0
Sinced(x) = 0(z®)) = I, we haveW X = 1{0® (x) — 0}X + 31X (0@ (x) — 0}
and thereford| W | < r(e) from (5.2). Accordingly, (5.1) implies

o0
Z(_q)—l\p)k
k=0
so ||®®© (x)~1|| < 2C for sufficiently smalle > 0 such that-(¢) < 1/(2C). By
acting rotation and translation, similar estimate can be deriveks6? (x) 1| for

everyx e M) (e"~1) [without assuming(x) = 2] and this concludes the proof
of (i). The second assertion (ii) follows from

Yo (o)

k=1

< =

7<2’
T 1-Cr(e)

_ Cr(e)

@)t -7l = —
&0 ” ~1-Cr(e) O
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PROOF OF(4.13)IN PROPOSITION4.5. By Proposition 4.2,

%(x) = £“000)d® (x)"TProj{ (60 e, ) ® 27},

and therefore (4.13) follows from Lemma 5.1(i) notin§)| <Re7L O

LEMMA 5.2. Foreveryl<vy,y’' <d,

—2+2

7 (X)

_ < 00.
axl?’ 8xi}f

sup sup sup ¢
O<e=<eg XeeMc(fo) (e"-1) 1<i,i’<N(e)

PrROOF The identity (4.9) may be rewritten as

(Q“”(X) > () + (217 ® ¢,)0(%), Y) 0.

l

Hence, taking the derivative of this identityjrrl.’i,, we have

820 90 a0
(Q(s)(X) /(X) + ( & ® ey’ )8 14 (Zi(e) ® ey) y’ ), Y) =0

ax,. axi, X; axi,
This implies
920
——(X) = —£“000) D (x) 7!
axyax,
. () 00 ©) 00 }
x Projj(z;;" ®e Qe ; .
1|67 @ )30+ 2w

The conclusion follows from Lemma 5.1(i) and (4.13) by noting tl@f)l,
1291 <Re™L. O

PROOF OF(4.14)IN PROPOSITION4.5. Applying the mean value theorem,
we have, from Lemma 5.2,

» y<x> » ﬂz(x))\ Z Z

i'=1y'=1'0

@) |

<CN- 82/(—2 . 81}—1 < C/8d+v+1,

where x* is a certain point on the segment connectixgand z(x). This
shows (4.14). O
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6. Concluding remarks.

6.1. We have studied in Section 4 the case where the macroscopic body
is d-dimensional, but one can consider thin bodies and derive their motion as
well. Assume that, for an-dimensional Riemannian manifold in R, n < d,

a sequence of infinitesimally rigid crystat§) = (z\”)Y , is given and it has a

macroscopic limit density functiop,,;(y) on M in the sense that

N
6.1 lime"» '8 o (dy)= dym,
(6.1) ime ; e:® () = pu (y)dym

wheredy,, denotes the volume element of. Then, comparing (6.1) with the
condition 2 forz® in Section 4.2, we see that(y) = 0 for the sequence®,
which we are considering here, under the scaling (4.10), and thejgfeig* =0

in Theorem 4.3. This means that a different time scaling is required(forto

have a nontrivial macroscopic limit. Indeed, one can show that the right scaling is
x® (1) := x(e~*+2¢), and under this scaling, random motion of the bos; o)

is obtained in the limit. Note that the affine hull ¥’ should bed-dimensional

to be infinitesimally rigid (see [2], page 174) and therefore, even for obtaining an
n-dimensional macroscopic body in the limitdimensional configurations should

be considered microscopically. High polymers or membranes studied in physical
chemistry usually have the above structures with 1 or 2 inRR3.

6.2. If the Hamiltonian is suitably modified, the notion of rigidity for
the microscopic configurations may change. Lete CS(R) be a symmetric
function having a deep well at 0 satisfyig’(0) > 0 and consider the modified
Hamiltonian of H (x) by adding a three-body interaction term:

xi—l—x]' .
A T Ak

HX)=HX+ Y V(

i,j,k

)ﬂ{diam{x,‘,xj,xk}<d0}’

where the sum is taken far j, k different andag is a constant smaller tharm 4

We assume < 2a for the potentialU in H(x). Then, one-dimensional straight
chainsz = (z)¥; in R?:z; — zg=i(z1 — z0), 1 <i < N, arranged in an equal
distanceu (i.e., |z1 — zo| = a) are local minima ofH . The proper time change is
x® (1) := x(¢~3¢), which is the same as takimg= 1 in Section 6.1. The particles’
numberN should behave g8 = lim, geN exists. Introducing an energy different
from ours, Kotani and Sunada [10] characterize the equilibrium configurations of
crystals.
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