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AUXILIARY SDEs FOR HOMOGENIZATION OF QUASILINEAR
PDEs WITH PERIODIC COEFFICIENTS

BY FRANCOIS DELARUE

Université Paris VII

We study the homogenization property of systems of quasi-linear PDEs
of parabolic type with periodic coefficients, highly oscillating drift and highly
oscillating nonlinear term. To thisne, we propose a probabilistic approach
based on the theory of forward—backward stochastic differential equations
and introduce the new coapt of “auxiliary SDEs.”

1. Introduction and assumptions.

1.1. Objective and structure of the papefThe aim of the following work is to
present a probabilistic approach to the homogenization of systems of quasi-linear
parabolic PDEs with periodic coefficients. More precisely, for a given arbitrary
positive realT’, we wish to study the asymptotic behavior of the solutions of the
following family of equations as — O:

For(t,x) € [0, T[ xR and¢ e {1, ..., 0},

3(6e)e 12 1 92(0e)e
a; (1) + 5 > aij(e x,Qg(t,x))aXi asxj(t,x)

i,j=1

3(0e)e
ax,-

P
ge)  + Y [ (e x, 0:(t, 1)) 4 ci(e7Mx, 05 (1, x), Vibs (2, X)) (t, x)
i=1

+ e Yo (e7x, 0. (1, x)) + fo(e7tx, 0:(1, x), VB (1, x)) =0,
0:(T,x) = H(x),

where the coefficients, b, ¢, e and f are periodic inx of period one in each
direction of the spac®” (pay attention to the fact thatis R-valued and that

V.u is thereforeR2*?-valued). Equations such &€ (¢)),-0o are called quasi-
linear since their coefficients depend on the solution or on its gradient (recall that
they are said to be “semi-linear” when the differential parts are purely linear, i.e.,
whena, b andc just depend on the variabig.
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Actually, several results of homogenization of second-order partial differential
equations have been already established both by analytical methods [we refer to
the monographs of Bensoussan, Lions and Papanicolaou (1978) and Jikov, Kozlov
and Oleinik (1994) on the subject] and by probabilistic ones. In particular, Freidlin
(1964) and Bensoussan, Lions and Papanicolaou (1978) have established earlier
homogenization results in the case of linear equations by means of the well-known
Feynman-Kac formula.

The theory of backward stochastic differential equations (in short, BSDES),
whose study is how well known [see, e.g., Pardoux and Peng (1990) and Pardoux
(1999a)], provides a probabilistic representation of systems of semi-linear PDEs
of second order. Thanks to this deep connection between BSDEs and semi-linear
PDEs, two different probabilistic schemes have been developed so far to treat
homogenization of such PDEs. On the one hand, Buckdahn, Hu and Peng (1999)
base their approach on a stability property of BSDESs. They first deal with the case
of classical solutions and then manage from a regularization procedure to weaken
the sense given to these solutions. On the other hand, Pardoux (1999a, b) uses
weak convergence techniques. He achieves to relax the assumptions made on the
coefficients in Buckdahn, Hu and Peng (1999) when the nonlinear term does not
depend on the gradient of the solution. Inspired by this latter scheme, Gaudron and
Pardoux (2001) consider PDEs whose nonlinearity has a quadratic growth in the
gradient, whereas Lejay (2002) deals with the case of PDE operators in divergence
form.

As already mentioned, our article treats, again from a probabilistic point of view,
the quasi-linear case. It requires work with forward—backward SDEs [see, e.g.,
Delarue (2002b), Ma, Protter and Yong (1994) and Pardoux and Tang (1999)],
which provide a stochastic representation of systems of quasi-linear parabolic
PDEs: given a probability space, #, P) and aP-dimensional Brownian motion
(B:)1>0, We can connect, for evegy> 0, the systeng (¢) to a family of FBSDEs
(E(e, t,%));.x)e0.71xrE - FOr €veryinitial conditioriz, x) € [0, T'] xRP, E(e, t, x)
is then given by

Vselt, T],
S /b X (e, t,
XS(87 ta-x) =X +/ (_ +c)(ya Yr(g,t7x)7zr(5,t7x)) dr

+ / (X’(e’t’x) Yr<e,z,x))dBr,
£
Ys(e,t,x) = H(Xr(¢, 1, x))

+/ ( )(X (Sgt . %) Yr(s,t,x),Z,(s,t,x))dr

/ Z,(e.1.X)0 ( Xr (&1, %) Y,(e,z,x)) dB,.

T
3 (|Xs<s,r,x>|2+|Ys<s,r,x>|2+|zs<e,r,x>|2)ds<oo,
t

E(e, t, x)
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where, for alle > 0 and (x,y,z) € R” x R2 x R2*P, (¢~1p(resp.e) +
c(resp.f))(x, y,z) = e th(resp.e)(x,y) + c(resp.f)(x,y,z). Note that, for
every (x,y) € RP x R2, the matrixa(x, y) can be assumed to be symmetric:
o is then chosen to satisfy, for alt, y) e R x R2, a(x, y) = oo *(x, y). Recall
also that the connection betweéns) and He, 7, x) can be summarized in the
following roughwayVs € [t, T1, Ys(e, t, x) = 0. (s, X (e, 1, x)).

In order to adapt the stability property approach to this new framework,
Buckdahn and Hu (1998) have restricted themselves to the smooth coefficients
case. This permits them to avoid any regularization procedure as done in
Buckdahn, Hu and Peng (1999) and to use crucial estimates of the solutions
of the homogenized system. Basically, we manage in this paper to improve this
approach and to relax in a very significant way these regularity assumptions. We
finally establish the homogenization property despite the weaker regularity of the
solution of the limit equation. The reader may find this result quite anecdotal.
However, we feel that techniques that we develop to reach our objective permit us
to work under assumptions that seem natural when compared to the usual quasi-
linear PDEs theory. We guess that they also lead to a better understanding of the
FBSDEs machinery and we finally think that our strategy might be applied to
similar nonlinear asymptotic problems.

Our approach is largely based on our previous paper, Delarue (2002b), on
FBSDEs. In fact, instead of dealing in a first time with the smooth coefficients
case and applying then a regularization procedure as proposed by Buckdahn, Hu
and Peng (1999), we show that it may be more powerful to couple homogenization
and regularization in one unigue step, as soon as this regularization procedure
is efficiently controlled and does not compete with homogenization. Roughly
speaking, this strategy can be divided in four steps:

1. We first modify the processe$(e, ¢, x) andY (e, ¢, x) in order to get rid of
the highly oscillating terms—15 ande~le. This step is well known in the
probabilistic literature devoted to homogenization and leads to the study of the
so-called “auxiliary problems.”

2. Denoting byX (e, ,x) and Y(s t,x) the modified processes, we then aim
to compare the quantit§(-, X.(e, 7, x)) with the proces¥.(s, ¢, x), where6
denotes the solution of the presumed limit system. Basically, we aim to write
from It6’s formulad (-, X.(¢, t, x)) as the solution of a BSDE and then to apply
a stability property of BSDEs to estimate the distance from this process to
Y.(e,t, x).

3. Sinced is not regular enough under our assumptions, we introduce a well-
chosen regularization sequencegpfdenoted by(¢,).en+, and then estimate
the distance betwee, (-, X.(e, t, x)) andY.(e, t, x). Unfortunately, we will
see that our assumptions are still too weak to estimate these quantities in a
good way. In a nutshell, to apply this strategy, we should be able to control in
an appropriate sense the partial derivatiV§§§n uniformly in n, but we are
actually not.
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4. To face this difficulty, we introduce so-called “auxiliary SDEs” (as far as
we know, this point is completely new in the probabilistic literature devoted
to homogenization). Basically, we aim to compatés, 7, x) with a quantity
of the formg, (-, U.(e, n, t, x)), wheren belongs tdN* andU (e, n, t, x) denotes
the solution of a well-chosen SDE. In this approach, the distance between
the processe¥ (¢, n, t,x) and X (e, t, x) has to tend toward 0 as— 0 and
n — +o00. We will see in this article how to perform a good choice for these
auxiliary SDEs.

From an adapted ergodic property, we finally establish, for every) €
[0, T] x RP, the following kind of convergence:

lim (E sup |Ys(e, 1, x) —Q(S,Xs(s,t,x))|2
e—>

t<s<T

t

ZS(85t7x)

— V.05, X;(e, 1, )) xa(e X (e, 1, %), Ys (&, 1, X))
2
- XZ(S_lXS(87 tv x)a YS (‘95 t? x))‘ ds) = 05
where x1 and x» denote appropriate corrector terms. It is readily seen from this
convergence property that, for evey x) € [0, T] x R”, 6.(t,x) — (¢, x) as
¢ — 0. The reader can find a precise statement of the homogenization property (in
particular, a precise description gf and x> and of the limit system) at the end of

this section. Note that we also manage to deduce the asymptotic behavior of the
distribution of the processes:

<X'(85 t? x)7 Y-(87 ta -x)a / Zr(ga t? x)a(‘g—lxr(ev ta -x)a Yr(ga t? x)) dBr,
t

f (p(r,e_er(s,t,x),X,(s,t,x),Yr(s,t,x),Z,(s,t,x))dr) ,
t e>0

on the space of continuous functions [ 7] endowed with the topology of
the uniform convergence, whete denotes an arbitrary continuol®-valued
function, d € N*. From our point of view, this result improves the approach
proposed by Pardoux (1999a, b).

In fact, the reader can find another proof of the homogenization property es-
tablished in this paper in our Ph.D. thesis [Delarue (2002a), Chapter 3]. In this
latter work, we adapt to our case the compactness techniques introduced by
Pardoux (1999a, b) (in particular, wegpose a method to handle nonlinearities in
gradient with this approach), but we just manage to describe the limit distribution
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of the processes(X.(e,t,x),Y.(e,t,x), [ Z (s, 1, x)a(s_er(e, t,x), Y. (e t,
x))dB,)¢~0 in a weaker sense than above: roughly speaking, , x) and/; Z, x

o(e X, (e, 1,x), Y, (e, t,x))dB, are considered as elements of the space of
cadlag functions o0, 7] endowed withS-topology [S-topology is a topology
weaker than the Skorohod topology whose compact sets are described in a sim-
ple way from the supremum norm and thevariations of a cadlag function. See
Jakubowski (1997)]. Nevertheless, to obtain such a result, we also use the concept
of “auxiliary SDEs,” and therefore, confirm the deep interest of these equations in
homogenization of quasi-linear PDEs.

Note finally that we do not know any published analytical proofs of the
result established in our paper. In fact, most of the analytical results devoted
to homogenization of nonlinear equations deal with divergence form operators:
we refer the reader to the monograph of Pankov (1997) for a detailed survey of
available results. Nevertheless, in a different framework than ours, several articles
deal with the nondivergent case [see, e.g., Avellaneda and Lin (1989) or Evans
(1989)].

Our paper is organized as follows. In Section 2 we give several basic preliminary
results that are crucial to establish the homogenization property. Most of them are
quite well known in the literature devoted to this subject. We detail in Section 3
our strategy to establish the homogenization property. The proof is then given in
Section 4. In Appendices A-D, we prove some of the results given in Section 2.

1.2. General notation and assumption.

Notation.

1. For everyN € N*, let (-, -) and| - | denote, respectively, the Euclidean scalar
product and the Euclidean norm &Y ; for everyx € RV, letx; denote theth
coordinate of the vector; and for everyR > 0, let By (x, R) [resp.By (x, R)]
denote the open (resp. closed) Euclidean ball of dimensipof centerx and
of radiusR.

2. For everyN e N*, let py denote a nonnegative and smooth function fifh
into R, null outside{u € RY, |u| < 1}, such that/gy o (1) du = 1.

3. Recallthat2, ¥, P) denotes a probability space af®});~o a P-dimensional
Brownian motion. The usual augmentation of the natural filtratio{Bpf;>o is
denoted by #;};>0.

4. Let TP denote the torus of dimensioR (i.e., the quotient spack” /Z").
Then, for everyg > 1, || - llg, | - lnqy @and | - |l2,, denote, respectively, the
L4, W14 and W24 norms onT”. Note that we do not make any differences
between a periodic functiog: R” — R¢ of period one in each direction and
the associated functiof: ¥ € T” — g(x) with x € %.
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5. Recall thafr is an arbitrarily prescribed positive real and that

b:T? xRC - R?,

c TP x RE x R*P 5 RP,
e TP xR2 - RQ,

f:TP xRC x RSP - RO,

o,a TV x R¢ - RP*P,
H :RY - R?
are measurable functions satisfying, for all, y) € T? x RC, a(x,y) =

(0o™)(x, y).
6. Recall finally that for aly > 2 andR > 0 [see also Ladyzenskaja, Solonnikov
and Ural’ceva (1968), Chapter I, Section 1],

wl24(10, T[ x Bp(0, R), R?)
= {h:10, T[ xBp(0, R) — RZ,
|B1, [Vihl, [Vhl, V2 | € L9(10, T[ x Bp(0, R))}.
We then assume that the coefficiehis, e, f, H ando satisfy in the whole

paper the following properties:

ASSUMPTION (#). We say that the functions, c, e, f, H ando satisfy
Assumption §) if there exist three constants A > 0 andA and an increasing
functionK : Ry — R, such that:

(#.1). The function®, ¢, e, f, H ando are continuous on their definition set.
H.2). V(x,y) eRP xR2,V(x',y) eRF xR2,VzeREXP,
y y

(b(x',y) = b(x, y),x' — x) < KO)x' - x/?,
(e(x',y,2) —c(x, y,2), 5" —x) < K(lyl + |zDIx' — x|,

(FG Y 2= f. 3.2, Y =) < KUyl + 1Y+ 12Dy — yI2

(#.3). V(x,y,2) e RP x RZ x RZXP V(x/,y, 7)) e RF x RC x R&*P,
lo(x",y) —o (e, I+ [HE) — H@)| <k(x" = x|+ 1y =y,

Ib(x,y") —b(x, )| +le(x,y) —e(x, )| < KO (Ix"— x|+ [y = yD),
|f(x" v, 2) = fx,y. ) < K(lyl + Iz
x (|x" — x| +12 =z,
le(x,y',2) —c(x, y, D1 < Kyl + '] + Iz])

x (Iy" =yl + 12 = z]).



HOMOGENIZATION OF QUASILINEAR PDEs 2311
(#.4). V(x,y,2) e RP x RO,
1bCx, )|+ le(x, M +lo(x, M+ [HX)| <A,
le(x, y, DI+ 1f(x, y, Dl < AL+ |yl + 1z]).

(#.5). V(x,y) e RP x R2,VE e RP, (£, a(x, y)&) > A|E|2.

(#.6). 0 € COTP x R2,RP*P), b e @O%(TP x R, R?) ande € CO2(TF x
R2 R9).

(#.7). V(x,y) e RP xRC,

Vyb(x, )|+ V5 b, y)| + [Vye(x, y)|

+IV2 e, Y+ [Vyo (x, )| + V2 o (x, y)| < K(0).

1.3. Precise statement of the homogenization propertiere is the main result
of the paper:

THEOREM (HP). Suppose that Assumpti@#) is in force Then set

V= {h e (0, TIxRP, R n () () WH29(10, T[ x Bp(0, R), R9),

q>2R>0
|h(t7 x/) - h(t’x)l
sup | sup|a(t, x)| + sup p <00¢.
1€[0,T] L xeR? x,x'€RP xsx! X" — x|

1. For everye > 0, the system of PDE&(¢) admits a unique solution in the
spaceV. It is denoted by, .

2. Foreveryy e R9, there exists a unique density on the tqmsnoted by (-, y),
belonging to the spac®1-2(T*) and satisfying the following equation aH’:

*k — —
V() Lt =0 [ peeydr=1
where
Gen(y) L= Y o= S
== a; i(., i, y)—.
Y Y 21.1.:1 A 0x; 0x; b iy 0x;

3. If, for everyy € R2, the functiongb; (-, Y)1<i<p and(e; (-, y))1<j<o satisfy
Vie(..Pl [ b ypey)dx=0
T

(%.8).
Vi@ [ e yptndi=0
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then V (¢, x) € [0, T] x R?, lim._06:(t, x) = 6(t, x), whered denotes the
unique solution in the space of the system of PDEs

For (t,x) € [0, T[ xRY and?¢ € {1, ..., O},
2

aeg(t X)+ = Z &,j(0(.2)) 7
lj =1

(7, x)
dx;
&(lim) P

gﬁ (O(t, x), Vi 01(t, x))g(t x)
+ ¢ (0(t, x), VO(t, x)) =0,
0(T,x)=H(x).

4. The so-called“homogenized coefficientsa, # and v are given by the
relationships

V(y.2) eREx RO a(y,0) = /T u(x, y. 2+ Vib)(x, ) p(x. y) dx,
0(y,2) = /TP v(x, y, 2(I + Vib)(x, ) p(x. y) dx,
G = [, atr.y)pt.y)dx.
where for all(x, y, z) € TY x RZ x R2*F:
u(x,y,z) = (I + Vib)(x, y)e(x, y, 7+ Vié(x, y)) — (Vybe)(x, y)
+ V2 bx, yat, y)(z + Viex, »)*].
v(x,y,2) = f(x,y, 2+ Vié(x,y))
+ V. eé(x, y)c(x, y,z+ Ve(x, y)) - (Vyée)(x, y)
+ V2 e(x, malx, y)(z+ Vié(x, )],
a(x,y) = (I + Vib)(x, y)a(x, y)(I + Vib)*(x, y),

with the conventiorV, ,b(x, y)z* = (¥, ; #’;yizj,i)lgip, Ve l(x, )zt =

dey
(Xi.j oy 0y, 2i)1st=0-

The functionsh and é appearing in the definitions of these coefficients are
given as the solutions of an auxiliary family of PDEs. More precisely, for every
y € R2, the functionsh(-, y) andé(-, y) are the unique solutions in the spaces
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(Ny=2 W24(T?)* and(N, =, W29(T"))€ of the systems of equations @H:

Vie{l,...,P},  Lybi(,y)+bi(,y)=0 and

/ l;l-(x, y)dx =0,
TP
AUX(Y)
V.]e{lan}’ L}’é](vy)-"_e](ay):() and

/11‘1’ ej(x,y)dx=0.

Note that the existence of the integrals and derivatives that may appear in the
definitions of the homogenized coefficients will be justified in the paper.
We will also establish the probabilistic counterpart of the latter analytical result:

THEOREM (PHP). Suppose that Assumptiqi#) is in force and that the
additional hypothesié#.8) holds Then

1. For every e > 0, for every (t,x) € [0,T] x R, there exists a unique
progressively measurable solution to the FBSBE, ¢, x), which is denoted
by (Xs(e,t,x), Ys(e, t,x), Zs(e, t, X)) 1<s<T-

2. Let (t,x) € [0,T] x R? and set for alle > 0 and s € [t, T], Zs(¢, t,x) =
Zs(e,1,x) — Vyeé(e X (e, 1, x), Y, (e, t, x)). Then the following convergence
holds ass — 0:

lim E sup |Y(e, 1, x) —Q(S,Xs(e,t,x))|2

e—0 t<s<T
T A
+E/ | Zs (e, 1, x)
t
— V(5. Xs (e, t,3)) (I + Vib) (e X, (e, 1, x), Yy (e, 1, x)) P ds
=0.

3. For every(z, x) € [0, T] x R?, we associate to the systefilim) and to the
initial condition (¢, x) the following FBSDE

Vselt, T],

S S
Xs:x+/ IZ(Y,,Z,)a’r+/ aY2(v,)dB,,
t t
E(t, x) T T
Y, = H(X7) + / 3(Y,. Z,)dr — / 7,aY2(v,)dB,.
S S

T
E/ (X 12+ 1Y%+ 12, %) dr < oo,
t
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It admits a unique progressively measurable solution denote¢Xbyr, x),
Y,(t,x), Zs(t, x));<s<r. Then, for a given bounded functiop,: [0, T] x T? x
RP x R2 x R2*P — RN satisfying

VR>0, VueT?,

Y(t,x,y,2), ', x",y,7)€[0,T]1 x Bp(0, R) x Bo(0, R) x Bpxp(0, R),
lo(' u,x",y', ) — ot u, x,y,2)|

< wr(lt' =]+ |x" = x|+ [y = y[+ 12 = zD),

where, for everyR > 0, lim,_owgr(n) = 0, we claim that for everyr, x)
[0, T] x R?,

s A
<XS(87 [’ x)’ YS (8’ t! x)v / Z}’(ev [’ X)O"(E_IX,-(S’ t’ x)’ Yi’(ev [’ x)) dBi"v
t

s A
/ 90(7, e_lXi’(gv t’ x)’ XI’(E’ t! x)v YF(E’ t! x)v Zi’(g’ t! x)) dr)
t

t<s<T

= (%00 %00, [ 2006420 0,0) B
t

N
/ @(r,xru,x),Yr(r,xxzr(r,x))dr) ,
t t<s<T
where=—> stands for the convergence in law on the space, 7], R” x RQ x
R2 x R") endowed with the topology of the uniform convergence and where we
have set

Y (t,x,v,z) €[0,T] x RP x R x RZ*P,

o(t,x,y,2) = ./11"’ ot rox,y,z(I + V.b(r, ¥))p(r, y)dr.

2. Preliminary results. This section aims to present basic materials needed
to solve the homogenization problem. As most of the tools introduced in the
following lines are quite well known, we have decided to summarize the main
results without detailing their proofs. Nevertheless, for the sake of completeness,
the reader can find the demonstrations (or at least sketches of them) at the end of
the paper.

This section is organized in the following way:

1. We first give basic solvability results of equatiof®(e)).-o and (E(e, ¢,
x))e0.rc[0.7].0cr?- WE then show that it is sufficient to investigate the con-
vergence, as tends toward 0, of the procesge&(e, 0, xp), Y (¢, 0, xp), Z (¢, 0,
xo)) for a givenxg € R”.

2. We solve the so-called “auxiliary problems” and give useful estimates of the
associated solutions.
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3. In order to get rid of the highly oscillating terms, we modify the forward and
backward processes involved in the representation of the nonlinear systems of
PDEs. As a by-product, we obtain basic estimates of these processes.

4. Thanks to the estimates of the solutions of the auxiliary problems, we
successfully adapt the usual “ergodic theorem” to our nonlinear framework.

5. We finally give estimates of the solution of the limit system that are crucial to
establish the homogenization property.

2.1. Solvability results and choioef the initial condition ofX (¢). According
to Delarue (2002b), we know that, for al> 0 and (¢, x) € [0, T] x R, the
FBSDE He, ¢, x) admits a uniqud ¥;};<;<7-progressively measurable solution.
It is denoted by(X; (e, 1, x), Y5 (e, t, x), Zs (e, t, X)) <s<T . We then define

(2.1) 6::(t,x) €[0,T] x R > Y, (e, 1, x).

According to Delarue (200209, is bounded, 12-Hdlderian ins (uniformly in x)
and Lipschtizan inc (uniformly in ). Moreover, for everyt, x) € [0, T] x R?,

(2.2) Vselt, T], Ys(e,t,x) =0q (s, Xs(&, 1, x)).

In fact, we will prove in Appendix D that, for every > 0, 6, is the unique
solution in the spac&® of the system of PDES€ (¢). In particular, relationships
(2.1) and (2.2) will be crucial to pass from Theorem (PHP) to Theorem (HP).

Since we aim to establish the pointwise convergence of the functihs.o
as ¢ — 0, note that we just have to prove the convergence of the sequence
(65 (0, x0))¢=0 for a givenxg € RP.

Hence, our strategy is clear: fix once for &4 in R” and denote for the sake
of simplificity, for every e > 0, the procesgX; (e, O, xg), Y, (g, 0, x0), Z; (¢, O,
x0))o<s<T DY (X;(8), Ys(¢), Zs(¢))o<s<r. We then aim to establish, in the sequel
of the paper, the convergence, in a suitable sense, of the faiily), Y (¢),
Z(€))e>0 ase tends toward 0.

2.2. Auxiliary problems. In this section we state the main solvability results of
Inv(y)) yere and(Aux(y))yeRQ that we establish in Appendix A. We also detall
the regularity properties of the solutions with respect.to

THEOREM 2.1 (Estimates of the invariant measures).

1. For everyy e R2, the T”-valued Markov process associated to the operator
L, admits a unique invariant probability measuvehich is denoted by: (-, y).
m(-, y) is absolutely continuous with respect to the Lebesgue measure on the
torusT?, and its densitydenoted by (-, y), is the unique solution dinv(y) in
wl2(TP)y.
Moreoverthere exists a constadb ; > 0,only depending ok, A, A and P,
such that

1
V(X,y)ETPXRQ, —SP(XJ’)SCZl
C21
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2. The functionp:y € R — p(-,y) € L3(T?) is twice continuously differen-
tiable [the partial derivatives are denoted b%)lgigg and(%)lﬁ’jEQ].
Moreoverthere exists a constanb 2, only depending ok, K, A, A, P and Q,
such that

ap 82p
8—(-,y)H +H (-,y)H < Cao.
Yi 2 2

Vi j)ell.... 0% VyeR?, H 330y
L=

THEOREM 2.2 (Auxiliary problems). Suppose that the functioris and e
satisfy the additional assumpti@t¢.8). Then

1. For everyy € R2, we can define the vector valued functiohs, y) and
e(,y) as the unique solutions of the equatioptux(y) in the spaces
(Ny=2 W24 (T))P and (N2 W24(T"))2.

2. For everyq > 2, the functionsy € R2 > b(-, y) € (W24(T*))? and y €
RE > é(-, y) € (W24 (T?))€2 are twice continuously differentiablsloreover
there exists a constamgg, only depending o, K, A, A, P, g and Q, such
that for everyy e R2,

16C, Wl2.g + 16C, Iz, + V5D, ¥)l2,
F1V5eC, M ll2g + V2,66, Dllag + V2 ,6C. )l < Coa-

3. In particular, from the Sobolev imbedding theorentise functions(x, y) €
T? x R? — b(x,y) € R and (x,y) € TP x R2 > &(x,y) € RC are
continuously differentiable with respect toand twice continuously differen-
tiable with respect toy [note that for everyg > 2, the usual partial deriv-
atives iny of b and é coincide with the derivatives in of 5 and é seen as
functions with values ifW24(T?))” and (W24(T?))9]. In the same way
(x,y) e TP > V. b(x, y) e RP*P and(x, y) e TP > V, é(x, y) e R€*F are
twice continuously differentiable with respectyoAll the associated deriva-
tives are uniformly bounded 6i* x R€.

2.3. Modification of the processeX(¢), Y () and Z(¢). Suppose that the
additional assumption#(.8) holds. Then, thanks to the definitions iofand ¢,
we are able to get rid of the highly oscillating termis's(s X (¢), Y (¢)) and
e le(e71X (¢), Y (¢)) by setting for alle > 0 andr € [0, T'],

X (e) =61 X,(e),

Xi(e) = X (e) + eb( X, (e). Yi(2)),
(2.3) R o
Yi(e) = Yi(e) — ee( X, (e), Y1 (e)),

Zi(&) = Zi(e) — Vié(X,((e), Yi(e)).
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Referring to the notation introduced in point 4 of Theorem (HP) and according to
the 1t6—Krylov formula [see Krylov (1980), Theorem 1, Paragraph 10, Chapter I,
as well as Pardoux and Veretennikov (2002)] and to Theorem 2.2, we then have
that for alle > 0 andr € [0, T'],

A A t —_— A
Ki(e) = Role) + /0 (X (e). Ys(e). Zs(e)) ds
t ~ _
—e fo (Vyb 1)(Xs(e). Ys(e), Zy()) ds
t A _
(2.4) +1e /o V2 b(Xs(8), Yy(0)[Zs(@)a( X (), Y (e)) Z5 ()] ds
+[ 1+ Vib)o1(Xy(6), Yy () d B,
t nA _
+8/0 Vyb(Xs(e),YS(E))ZS(E)U(XS(S),YS(E))dBS,
A A T —_— A
Pi(e) = Pr(e) + / o(Xs(e), Ye(e), Zy(e)) ds
T _
iy /t (Vye ) (X, (&), Yy (). Zs(e)) ds
1 r 2 Ay v *
(2.5) + 58_/; Vy,ye(Xs(e), Ys(8))[Zs(e)a( Xs(e), Ys(8)) Zi(e)] ds
T
- / 24(e)0 (X, (). Yy(e)) d By
t

T _ _
e [ 9,8(T), V(@) Z0)0(Ree), Ys(e) dB.
t

Using Itd’s calculus, we can establish basic estimates of procésggs), Y;(¢),
Z:(€))o<t<T1)e=0- In particular, the following theorem is proved in Appendix B.

THEOREM 2.3 (Estimates of representation processe$here exists a con-
stantC» 4, only depending ok, K, A, A, P, Q andT, such that

Ves0, P{ sup [¥i(e)] < 62.4} —1,
te[0,T]

T 2
E sup |X,(e)|2+E(/ |Zs<e>|2ds) < Cou
te[0,T] 0

2.4. Ergodic theorem. Suppose that the additional assumpticii.8) holds
and consider, for a givesh € N*, the following family of R?-valued semimartin-
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gales:

Ve>0, Vre][0,T],
(2.6) , ,
G1(e) = Gole) + /O g (L e)ds + /O 2:(2,€)dB,

where, for every > 0, Go(¢) is Fo-measurable angd(1, ¢) andg(2, ¢) are two
progressively measurable processes satisfying

T
(2.7) sup <E|Go(8)| + E/O (lg: (1, )| + |g: (2, 8)|2) dt) < 00.

O<e<1

Then, we will establish in Appendix C the following ergodic property.

THEOREM 2.4 (Ergodic theorem).

1. Letg:[0,T] x T? x R2 x R — R be a bounded and measurable function
such that for every compact setc [0, T'] x R2 x R4, the family of functions
((t,y,8) ek = @(t,x,y,8)),crp IS €QuicontinuousThen

lim E sup

e—0 0<t<T

/Ot [o(r, e 71X, (e), Y, (8), G, (£)) — @(r, Yr(e), G,(8))]dr| =0,
with
V3@ O TIxRE xR G y.0) = [ ox . optdx.
2. Letp:[0,T] x T? x R2 x R? — R satisfy
VR>1 V(,t)el0,(1— R HTP,
¥ (3.y) € (Bg(0.R))*.V (g.8) € (Ba(0. R))*:
o,y g") — o, y, 1 < vr(it — 1]+ 1y = y| +1g" — gD,
where for everyR > 0, lims_,qvg(8) =0.If, forevery0<§ < T,
E/TT—S lo(s, Xy (&), Ys(e), Gy(e)) — @(s, Y5 (), Gs(e))|ds < w(s),
with lims_.ow(8) =0, then

V>0, lim P{ sup

e—0 0<t<T

t p—
NS ACRACNNE)

— @(s, Y5(), Gs(e))] ds

2n}=0-
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2.5. Limit system. Suppose that the additional assumpt{@.8) holds. We
then claim that the limit system of PDES(lim) is uniquely solvable in the
spaceV, and that the solution satisfies relevant estimates.

We first note that limit coefficients, as defined in Section 1.3, satisfy usual
assumptions: there exist three constahisi and A and a nondecreasing
function K from R, into itself, only depending on, A, k, K, P and Q, such
that

(2.5.i) For everyx € R?, u(x,-,-) and v(x,-,-) satisfy with respect to
A and K the same properties asand f in (#.1)—(#.4).

(2.5.ii) @, v, H and&/? satisfy(#.1)—(#.5) with respect tok, 1, A and K
(i1, v andal/? playing the role of:, f ando).

PROOF OF(2.5.i) AND (2.5.i(). Let us first prove nondegeneracy @f For
(5.y) eR” xR?,

(2.8) (&, a(y)E) (&, (I + Vib)(I 4+ V,b)*(x, y)&) dx.

Z -
Cp1JTP
From the relation

(2.9) |, (6. (Vb + (9,5 . y)8) dx =

we deduce that satisfies £¢.5) with respectto./C2 .
The other properties are easily proved from Assumptigt) @nd Theorems
21and2.2. [

Referring to Delarue (2002b), we then claim that, for every) € [0, T] x R?,
the limit FBSDE K¢, x) admits a unique solution, denoted bY (¢, x), Y (¢, x),
Z(t,x)). Hence, we can define

(2.10) 0:(t,x) € [0, T] x R > Y,(z, x).

Thanks to Delarue (2002b) [see also Ladyzenskaja, Solonnikov and Ural’ceva
(1968) and Delarue (2003)], there exist a constaps, only depending on

A andT, and a constanfy, only depending o, K, A, A, P, Q andT, such

that

(2.11) V(t,x) €[0,T] x R?, 10(t, x)| < Cas,

V(t,t) [0, T V(x,x) e (RF)?,

2.12
(2.12) 101", x") — 0(1, x)| < Cap(lt’ — 1]Y2 + |x" — x]).

Actually, we will prove in Appendix D tha® is the unique solution of the
limit system of PDESE (lim) in the spaceéV. Moreover, we will also show (see
Appendix D) that is continuously differentiable of®, 7[ xR? with respect tox,
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and that there exists a constank( < 1, only depending o, A and P, such
thatforeveryO<n < T,

(2.13) V561l 06725 (0.7 —n xrP 2O) < Cols

whereCS?) only depends oR, , A, P, Q, T andn.
Note that estimates (2.11)—(2.13) will be crucial to establish the homogenization
property.

3. Strategy to prove the homogenization property. In this section we wish
to expose our strategy to prove the homogenization property. This strategy is then
applied in Section 4. In the whole section, the additional hypothe&is8) is
assumed to be in force.

3.1. A few words on modified processe®feferring to the notation introduced
in (2.3) and according to (2.4) and (2.5), for every 0, the forward and backward
equations of FBSDE &, 0, xg) can be put into the following form:

Viel0, T, Xi(e) = X:(e) + eb( X, (e), Yi(e))
— xo+ eE(?, Yo(e))

(3.1) Ty 7

t A —
+ /O (1 + VD)o |( X, (6), Y(e)) d By + Rie),
vVt el0,T], YA}(S)=Yt(8)—8§()_(t(8),Yt(8))

= H(X7(8)) — eé(X1(e), Y1 (o))
3.2)

T — A
+/ o(Xs(8), Ys(8), Zy(e)) ds
t

- /ZT 2,(e)0 (X, (e), Yy (e)) dBy + Sr(e) — 5,(e),
where, for every > 0 and every € [0, T],
R(e) = ¢ [ (90 P (Ke(e), Yu(e), Zy(e)) ds
+ 3¢ fot V2 b(X(e). Y, (e))[ Zs(e)a( X (). Ys(£) ZE (e)] ds
&3 +e /Ot Vyb(X(e), Ys(e)) Zs(e)o (X5 (e), Yy(e)) d By

t t
=f Rs<1,s>ds+f Ry(2, ) dB,,
0 0
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1 _
5i0) == [ (¥,2N)(Xs(e). Ys(e). Zy(e) s
28/ V e(Xs(e), Y(2))[Zs(e)a( Xy (e), Ys(8)) ZE (e)] ds
(3.4) N
+e fo V,2(X; (), Ys(0)) Zy (e)o ( Xy (), Y (6)) d By

t t
:/0 Ss(l,s)ds—l—/o Ss(2, ) d By.

Thanks to Theorem 2.2 (which gives bounds of the solutions of the auxiliary prob-
lems) and to Theorem 2.3 [which provides estimate€Xak), Y (), Z(¢))e>0], it
is readily seen that extra termig(s)).-o and(S(e)).-o are negligible ag tends

to O:
T 2 T
JTOE[(/O |Rs<1,e>|ds) +(/O |Ss<1,s>|ds)

+ (/OT IR (2, 8)|2ds)2 + (/OT 15,(2, s)|2ds)2} —0.

In particular,E supy-,<7 (| R (¢)|? +1S;(¢)|?) — 0 ase — 0.

2

(3.5)

3.2. A few words on the stability property approachAs mentioned in the
Introduction, we wish to apply the approach due to Buckdahn, Hu and Peng (1999).
Roughly speaking, this method aims to comp@(reX (¢)) with Y.(e). To reach
such an objective, the authors apply the 1td formula to the quaitityX.(e)) in
order to write, thanks to the system of PD&@im), this process as the solution
of a BSDE. Usmg stability properties of BSDES, they are then able to compare
(-, X.(¢)) with Y.(¢).

Of course, this strategy fails if the mapis not regular enough. As written
in Section 2.5¢ belongs to the spac¥. Unfortunately, since we do not know
if (I + V.b)o is elliptic, we cannot apply the so-called It6—Krylov formula [see
Krylov (1980), Chapter 2, Paragraph 10, Theorem 1] to the ®fimX.(s)). In
fact, to get round this difficulty, we still follow the paper of Buckdahn, Hu and
Peng (1999) and introduce a regularization sequenée of

3.3. Regularization of and related systems of PDEsWe first introduce the
following regularization sequences &f andv. Using the notation given in the
Introduction, we set for eveny € N*,

VxeRP,  H,(x) :nP/H(x/)pp(n(x —x"))dx’'
(3.6) V(y,2) eRC x RO*7,
ﬁn()’,Z)=nQ+QP/17(y/,Z/),0Q+QP(”(y_y/’Z_Z/))dy/dZ/-

It is readily seen that for every € N*, H, anduv, are infinitely differentiable.
Moreover, for every; € N*, the derivatives of ordey of H,, are bounded.
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Following the proof of Proposition 2.2 in Delarue (2002b) and modifying
A and K if necessary, we can assume without loss of generality that, for every
n e N*, i1, v,, H, andal/2 satisfy (2.5.ii) with respect té, », A andK . Hence,
thanks to Appendix D, we claim that, for every= N*, the system of quasilinear
PDEs.

For (¢, x) € [0, T[XRP and¢ e(1,..., 0},

a(;m 92(Cn)e
0x; 0x;

(t, )+ Z al] gn(t ))

l]l

(r, %)

8reg(n)

P
Zﬁ G, %), Vala(t, 3) (ai’c’”

— (1, x)
+ (Vn)e ({n(tv x), Vyn(t, x)) =0,
&n(T, x) = Hp(x),

admits a unique bounded classical solutipnv0 < n < 1, ¢, € 1+1/22+n ([0,
T]x RP,R?).
Referring to Delarue (2002b) [see also Ladyzenskaja, Solonnikov and Ural'ceva
(1968) and Delarue (2003)], there exists a constant, only depending o, A,
A, P, Q andT, such that

(3.7) VneN* V(,x)e[0,T]xR", 16, (2, X)| + |Viln(t, x)| < C31.

According to Appendix D, for every € N*, there exists a constafk 2(n) such
that

(3.8) V(t,x) [0, T] x R”, V2 &n(t, x)| < C32(n).

Finally, thanks again to Appendix D¢,),en+ uniformly converges on every
compact subset d, 7] x R toward@ and (V,¢,).en+ uniformly converges
on every compact subset@f, 7[ x R” towardV,6.

3.4. Regularized solutions and modified processéllowing our strategy, we
apply, for everyn € N*, 1té’s formula to the quantity, (-, X.(¢)). We then obtain
for everyr € [0, T],

&t Xi(8)) = Ho (X1 (e)) +/ B (En (5, X5(2)), Vilu(s, Xs(2))) ds

+/; ngn(& Xs(g))

x [ (5 (s, X5 (&), Viln(s, Xs(&)))
—u(Xs(e), Ys(e), Zs(e))] ds

T . . _
(3.9) +%/¢ V2 (s, Xy (@) [@(8n (s, Xs(8))) — (X, (e), Yy(e))]ds
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T ~ ~ _
_/t Vx{n(S, XS(E))[(I+be)U](Xs(8)vYs(e))st

- /t V2 (s Rate))
x ([(I + Vib)o1R? (2, €)
+ Ry (2, &)[(I + Vyb)oT*
+ Rs(2, &) R¥(2,8))( X;(e), Ys(e)) ds
+ Vilu(s, X5(2)) dRy (e)].

Therefore, from (3.2), we deduce that for every[O, T],

Ca(t, X (&) — Vi (e)
= H,(X7()) — Yr(e)

T N N
+ ft [5n (2 (5. X5(8)). Vil (s. R (e)))
— (X (e), Ys(e), Zs(e))] ds
T A A A
+[ vx(n(sa Xs(S))[ﬁ(in(S, XS(S)), ngn(S, Xs(g)))
—u(X;(e), Ys(e), Zy(e))] ds
T A
+1 / V2 55, X, (e)
(3.10) ) . _
x [@(gn(s, Xs(8))) — a( Xs(e), Ys(e))]ds
T A A —_— A
—/t [Visn(s, X () 4+ Vib)(Xs(8), Ys(e)) — Zs ()]
x o (X;s(e), Yy(e)) d By
T A
- ft (392 0 (s. X, (e)
x ([(I + VD)o R} (2, &)

+ Ry (2, &)[(I + Vib)oT*
+ Ry(2,&)R¥(2,8))( X (2), Ys()) ds
+ Vila(s, Xs(e)) dRy(e) + dSs(e)].
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Hence, we can write (with obvious notation)
&n(t, X1 () = Yi(e)
=[H,(X1(e)) — H(X7()) + eé( X7 (2), Y7(£))]
+ Aga(t, &,n) + Aga(t, &,n) + Aza(t, &, n)
+ Az4l(t, e,n) 4+ Aszs(t, &, n).

(3.11)

Recall at this step that we aim to estimate the distance betw,e(en)?.(e))
andY.(¢). Recall also that the usual strategy to achieve such an objective consists
in writing the processz, (-, X.(e)) — Y.(¢)|2 as a semimartingale. Note, for the
sake of simplicity, that we won't detail this operation right now, but keep in mind
that we should actually perform it. In particular, pay attention to the fact that this
operation usually permits one to apply so-called “monotonicity assumption” [as
written in (#.2)].

Note now from ergodic Theorem 2.4 that the right-hand side in (3.11) can be
approximated in the following way. For alle N* andr € [0, T'],

A31(t, e, n)

T A ~
~ [ [ﬁn(fn(S,Xs(S)), vx(n(& Xs(e)))

e—0

— 5(Ys(e), Vilu(s, Xs(e)))] ds

(3.12) ,
—/t [v(X, (). Yy (e).
Vitn(s, Xs(e))(I 4 Vib) (X (e), Yi(e)))
—v(Xs(e), Y5 (e), Zs ()] ds,
A3go(t,e,n)
T A
820[ dsVi& (s, Xs(¢))
(3.13) X [’/_‘(;n (57 Xs(e))7 Viin (s, Xs(g))) - ﬁ(Ys(5)7 Vxé'n(s, Xs(g)))

+u(Xy(e), Ys(e), Vla(s, X5 () + Vib)(Xs(e), Ys(e)))

— u(Xs(8), Y (&), Z()]-
The sense given to the symbok " will be clearly detailed in Section 4.

e—
Recall now from Section 2.5 thatandiu are locally Lipschitzian iny andz,
and thatv and v are locally monotonous iry and locally Lipschitzian inz.
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Recall also from Section 3.3 that the functio(®,¢,),cn+ are bounded on
[0, T] x R?, uniformly in n. We are then able to estimat®s (-, e,n) and
A32(-, &,n) byg negligible term, the distarlce betwagnandv and the dAistance
between(¢, (-, X.(¢)), Vi & (-, X.(e) + Vi b)(X.(¢), Y.(¢))) and(Y.(g), Z.(¢)).
A34(-,e,n) can be also estimated by the distance between, (-, X.(e))(I +
Vxl;)()_(.(é?), Y.(¢)) and Z.(s). Thanks to Section 3.1A35(-, ¢, n) is a negligible
term.

Note, however, that the latter approximations are not uniform.iffo face
this point, recall the conclusion of the former sectigny, X, (&) — Y, (¢) can be
estimated byA3 3(-, €, n), atermd(e, n) that tends to Oas—0 for everyn € N*,
and the distance between the trlp(éfn(XT(e)) & (G, X.(¢)), Vy &y X.(e)U +
\Y b)(X (¢),Y.(¢))) and (H (X7 (¢)), Y.(¢), Z. (¢)). Hence, if we manage to treat
A33 asAsz1, Az2 and Az4, we can apply a Gronwall argument as often done
in BSDEs theory:z, (1, X;(¢)) — Y;(¢) can be then estimated by(s,n) and
the distance betweeH, (X7 (¢)) and H(X7(¢)). Recall finally that(H,),cn+
uniformly converges oiR” toward H and that(¢,),cn+ uniformly converges on
every compact subset §9, 7] x Rf towardé: fixing first a large enough e N*,
we then deduce that(z, X; (¢)) — Y,(¢) tends to 0 as — 0. Choosing = 0, the
homogenization property is then established.

In fact, we are not able to treatss(-, ¢, n) as the other terms. Indeed, we
deduce from Theorem 2.4 that

A3z3(t,&,n)

(3.14)
b VRl K@@l K@) — @ty ds

Here, the situation is rather different from (3.12) and (3.1@)is locally
Lipschitzian with respect tg, but we do not control the supremum nornﬁﬁxgn

over [0, T] x R? uniformly in n. Actually, referring once again to Gronwall’s
lemma, we can see that we should then be able to control such a quantity as
foT SUP, crP |V3’x{n(s,x)|ds in order to estimate in a good waXs3(-, &, n).
Unfortunately, our assumptions seem too weak to let us establish such an estimate
[at the opposite, such an estimate holds in the case treated by Buckdahn and Hu
(1998)]. Note, moreover, that such a difficulty does not appear in the semilinear
case.

3.5. Rough definition of auxiliary SDEsWe now explain how to face the latter
difficulty—this part seems to be completely new in the probabilistic literature
devoted to homogenization. In fact, instead of estimating the distance between
& (-, X.(e)) andY.(¢), we study the distance betweep-, U.(¢,n)) and Y.(¢),
whereU (¢, n) denotes the solution of a “well-chosen” auxiliary SDE. Roughly
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speaking, this SDE is given by

Vie[0,T],  Ufe.n)=xo+ /Ot u( X (e), Yy(e), Zs(e)) ds

1 pY2( Xy (e), (s, Us(e, n)))
3.15 .
(3:19) +/o PY2(X,(e), Ys(e))

< [(I + Vib)o (X (&), tn(s. Us(e. n))) d Bs.
In order to explain the interest of this SDE, we assume for the moment that (3.15)

is solvable. Then, applying Ité’s formula to the quantity-, U.(e, n)), we obtain
for everyr € [0, T],

(1, Ur(e, ) — Yy (e)

= H,(Ur(e,n)) — H(X7(e)) + e¢( X7 (e), Y7 (¢))
+ /, 50 (60 (5, Us (s ), Vot (s, Us (e )
— (X (e), Ys(e), Zs ()] ds
+ [ Vi, Vst m)a (65, Uit ). Vi Ustem)
—u(X;(e), Ys(e), Zy(e))] ds
(3.16) + % /t ' V2 (s Us(e,n)

_ P(Xs(#), Lu(s, Us(e,m))
P(Xs(2), Ys (e)

x [&(g“n(s, Us(e, n)))

x a(X;(8), &u(s, Us(e, n)))] ds

_ /T [pl/zo‘fs(e), 4n(s, Us(e, )
t PY2(X, (), Yy ()
X [(I + Vib)o1(Xs(e), Lu(s, Us(e, n)))

ngn (S7 US(S’ I’l))

— Zs(e)a (X(e), Ys<e>)} d By

—/ZT dS;(e).
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Assume that we can apply Theorem 2.4 to the second-order term appearing
in (3.16). Then, for every € N* and for every € [0, T],

T
/ V,g,x{n(s’ US(S,}'Z))
t

p(Xs(e), &uls, Us(e, n)))
p()_(s(e)a Ys(¢e))

(3.17)  x [&(in(s, Us(e, n))) —

x a( Xy (&), &u(s, Us(e, n)))] ds ~ 0.

Hence, (3.17) is a negligible term. Applying the strategy given in Section 3.4, we
are finally able to face the explosion of the second-order tceﬁﬁ§§,,)neN*.

3.6. Remaining difficulties. In fact, there remain three main difficulties:

1. First, due to the tern#,,(Ur(e,n)) — H(Xr(¢)) in (3.16), we also have to
estimate the distance between the proce&sesn) andX (g).

2. Second, as usual when dealing with FBSDEs, we have to prove first a local
version of the global property given in Point 2 of Theorem (PHP) and then
complete the proof by induction.

3. The third difficulty comes from the regularity ¢f since we just know that
y +— p(-,y) € L3T?) is Lipschitzian, we cannot solve the SDE (3.15) and
cannot apply ergodic Theorem 2.4 in (3.17).

Let us explain how to face the second and third difficulties.

3.6.1. Localization. As explained above, we have to prove first a local version
of the homogenization property. To this end, we will first establish the following:

THEOREM 3.1. There exists a constaft< c31 < T, only depending ok,
K,x, A, P, QandT, such that

Iim0 [E sup  |Y,(e) — 6(t, X, (e))[?

T—c31=<t=<T
(3.18) T

+ E/ | Z:(e) — V.0(t, X, () (I + Vieb)( X, (&), Y,(e))|2dt] =0.

T—c31

To this end, we fixg € [0, T]. We will then prove that (3.18) holds dm, 7] as
soon agy is close enough t@'. As a consequence, we have to defing, n) on
the interval[z, T'], and therefore, to choose its new initial condition. It is quite
natural to seU;,(e, n) = X, (¢).
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3.6.2. Regularization ofp and related auxiliary SDEs.To face the third
difficulty, we have to regularize the functign Hence, we set for everny € N*,

(3.19) V(x,») eRP xR2,  p,(x,y)=m? / px, y)po(m(y —y))dy'.

Thanks to Theorem 2.1, the sequence of functionse RC — ||p, (-, y) —
PG, M2)men+ tends to 0 asn — +o0, uniformly on every compact set. Note
also that, for allm € N*, p,, is infinitely differentiable with respect te, with
bounded derivatives of every order, and also satisfies Theorem 2.1.

Recall that for every: € N*, ¢, is Lipschitzian with respect te@ [see (3.7)].
Hence, following the definition of the auxiliary SDE givenin (3.15), we now claim:

PROPOSITION3.2. Let (m(n)),en+ € NNV, Then for all n € N* and & > 0,
the SDE
t

Vielo,Tl,  Ule.n) =Xy + [ u(X,(e), Ys(e), Zs(e)) ds,

0
.\ / Pl (X(€). tus. Usle, n)))
o pel (Xs(e), Ys(e)

X [(I + Vib)a (X (e), Lu(s, Us(e, n))) d By,

admits a unique solutiofWVe still denote by/ (¢, n) the solution of this SDEvhich
is different from(3.15)]. Note that the choice of the sequer(ggn)),<n+ Will be
described in a few lines

(3.20)

Following the definition of the homogenized coefficients given in Section 1.3,
we set for alln € N* and(x, y, y') € TY x R€ x R,

(x,y)
an(x,y,y) = Ma(x,y),
Pm(n)(x,y)
(3.21) a3 = [ anr vy pr. ) d

p(x,y)
Pm(n) (X, ")
Let us now choosdém(n)),cn+: When applying 1td’'s formula to the quantity

¢n(t, Ui (g,n)), we obtain formula (3.16) witlp replaced byp,,,,. The second-
order term is then given by

/T V,g,x{n(sv US(E’ n))
t
(3.22) X [&(g“n (s, Us(e, m))) —

=f]rPa(x,y)Pm(n)(x,y)

Py (X (8), uls, Us(e,m))
Pm(n) (Xs(e), Ys(e))

X ox()_(s(e), Cn(s, Us(e, n)))] ds.
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From ergodic Theorem 2.4, this term looks like

T
Vf’xg'n(s, Us (e, n))
(3.23) _ ~
x[a(Lu (s, Us(e,n))) — @ (L (s, Us(e, n)), Ys(e))] ds.

It is then clear that(m(n)),en+ has to be chosen to make (3.23) tend to-
ward 0 asn — +o0o. We let the reader see that the following choice implies
that ((¢, x, y, y') — Vf’x;n (t, x)(@(y) — a,(y, y)))nen+ uniformly converges on
[0, T] x R” x Bg(0, C31) x B (0, C2.4) toward 0 as — +oo:

VneN* m(n) = inf {mZn,

(3.24) sup V2,5, (t,x)|
[0, T1xR?

1
x  sup ||pm<-,y)—p<-,y>||2§—}.
[y|<C24+C31 n

Note that (3.8) is crucial to defin@: (n)),en+ as done above.

4. Proof of the homogenization property. We now apply our strategy to
prove the homogenization result [recall th&.8) is in force]. To this end, we
setfor alle > 0,n € N* andr € [1g, T],

Vl‘(87 n) = gn(ta UZ(87 n))a
(41) Wl‘(87 n) = Vxé-n (tv Ul‘(ga I’l)),
Wi (e, n) = Vil (t, U (e, ) (I + Vib) (X, (e), Vi(e, n)).

We then proceed in five steps: 1. We estimate the distance betiéenand
U(s,n). 2. We estimate the distance betwdég) andV (g, n). 3. We establish
Theorem 3.1 (recall that it is a local version of the homogenization property). 4. We
establish point 2 of Theorem (PHP) and then deduce point 3 of Theorem (HP).
5. We establish point 3 of Theorem (PHP).

Before, we give a preliminary estimate of the processes involved in our strategy.

LEMMA 4.1. SUR.g e ESUR < <7 [1X: ()% + |X:(e) 2 + |Us(e, n)|?] <
Q.

PROOF From Theorems 2.2 and 2.3, §99Esupost§T[|X,(e)|2 +
|)?t(e)|2] < 0o. Thanks to (3.20), to the properties @f,,)en+ (Which satisfy
Theorem 2.1), to Section 2.5 (in which we have estimatednd again to Theo-
rem 2.2, sup. g e ESUR, <, <7 [1Ui (e, n)?] < 00. O
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4.1. Estimate of the distance betwe&tie) and U (e, n). In this section we
first compareX (¢) with U (e, n).

PrROPOSITION4.2. There exists a constadty 1, only depending o, K, A,
A, P, Q andT, such that for allz € N*, ¢ > 0andr € [ro, T],

t
(4.2) E sup |Us(e,n) — X,(e)|? < 84.1(e.n) + Ca1E / |Vs(e.n) — Yy(e)|?ds,
to<s<t to
where for everyn € N*, lim,_,g84.1(e,n) =0.
PrRooF From (3.1) and (3.20), we deduce that for alt- 0, n € N* and
s € [10, T,
d|Us(e,n) — X(e)|?

_ d[ / (p;/(i)w?r(e), Vi (e.n))
fo

P2 (X (), Y, (e))

x [(I + V,:b)a1(X, (), Vi (e, n))

— [ + VD)o l( X, (e), Y,(s))) dB, — 'R,(z, e)dB,]

Io

(4.3) + 2<Us (e.n) — X, (e),
172 , <
Doty (X (&), Vi(e.m)) .
[ 7 [(I + Vib)o I X, (e). Vi(e.n))

Pty (Xs(8), Ys(8))
LT+ Vih)o1(K (e), Ys<e>)} st>

— 2(Uy(e,n) — X, (), dRy (e)).
According to Section 3.1 and to Lemma 4.1, the influence of the teRi@a3
and R(2,¢) is negligible. In particular, from the Burkholder-Davis—Gundy
inequalities, we obtain for alle [g, T,
E sup |Us(e,n) — X,(e)|?
fp<s<t V2 <
! pm(n)(XS(g)v VS(Svn))
Pl (X(e). Yo(e))
x [(I + Vib)ol(X(e), Vy(e,n))
2
—[(I + Vib)o1( X (), Ys(e))| ds

=041(e,n) +ca1041(, ¢, n),

<és1(e,n) +ca1E
fo

(4.4)
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wherecy 1 is a universal constant, anda 1(e, n))s~0.nen+ IS @ family of reals
whose values may change from one inequality to another and that satisfies, for
all n € N*, lim,_084.1(e,n) = 0 [in fact, §4.1(¢,n) could be chosen in (4.4)
independently of:, but this notation will be used next]. Applying Theorem 2.4
with G = U (¢, n) [recall thatV.(e, n) = ¢, (-, U.(e, n))], we have for alls > 0 and

n € N*,
t
Ll

2 (Xs(e). Vi(e,n)

172

E sup —
Py (Xs5(€), Ys(8))

to<t<T

[(I + VD)o 1(Xs(e), Vs(e,n))

2
— [(I 4 Vib)o1( Xs(e), Yy (&)

1/2

Py X5 Vs (g, 1)) N
(4.5) - |7 [(I + V.B)o)(x. Vi(e. n)
T Pm(n)(x, Ys(¢))
2
— [ + Vib)ol(x, Ys<e>)‘
x p(x, Ys(e))dx] ds
<és1(e,n).

From Theorems 2.1 and 2.2,,.,) and (1 + Vxé)a are bounded ang,,,) is
bounded from below by a positive constant. Moreover, again from Theorems
2.1and 2.2, the functionse R2 > ((I + Vyb)o)(-, y) € L3(TF) andy e RC >
Pmn) (-, y) € L2(T?) are Lipschitzian. Hence, for all> 0,n € N* andr € [1o, T,

t
(4.6) Aga(t,e,n) <8a1(e,n) + C4,1E/ Vs (e, n) — Y (e)|?ds.
fo

We deduce that (4.2) holds witki(¢) replaced byX (¢). SinceX (¢) = X (¢) + b,
we complete the proof.d

4.2. Estimate of the distance betwe®ric) and V(e,n). We now compare
Y (¢) with V (g, n).

ProPOSITION4.3. There exists a constanj; 2, only depending o®, K, A,
A, P, QandT, suchthatforallfg € [T — ca2, T], ¢ > 0andn € N*,
E sup |Ui(e,n) — Xi(e)|?
to<t<T
2 T s 5 2
@7)  +E sup Viem — Vi@ P +E [ Wit — Zi(e)Rds
to<t<T Io

< 84.2(e,n) + 843(n),
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wherelim,,_, .« 84.3(n) = 0, and for every: € N*, lim,_,gé84.2(¢,n) =0.

ProOF Following (3.16), we claim that for al € N*, ¢ > 0 andr € [1g, T'],
[Vi(e,n) — Y (e)[?
= |Vr(e,n) — Y1 (e)|?

+2ftT<Vs<e,n> ~ Ve,

U0 (Vs (e, ), Wy(e,n)) — v( Xs(e), Ys(e), Zy(e)))ds
+2ftT<Vs<e,n> — (o),

Wi (e, n)[@(Vs (e, n), Wy(e, n)) — u( Xy (e), Ys(e), Zs(e))]) ds

T A
+ / Ve, n) — Py(e), V2 25, Us(e. m)
t

(4.8) x [@(Vy(e,n)) — an( X (e), Vs(e, n), Ys(e))])ds
Py (X (@), Vs(e.n)
- (s

Pm(n)()_(s (), Ys(e))

x Wy (e, n)a (Xs(e), Vy(e, n)) — Zy(e)a (X, (e), Ys(s))) d B,
+/t Se(2, s)a’BS]T

T A
- th <Vs(e, n) — (o),

pa2 (Xs(e), Vile,n)) _
( = Wi (e, n)o (X (e), Vi(e, n)
Pm(n)(Xs(S), Ys(¢))

— Zs(e)o (X (o), Ys(e))> dBS>

T A
- 2[ (Vs(e,n) — B (&), dSy ().
t

Thanks to the uniform boundedness of the proces{:?e(s))wo and (V (e,
n))e=0.neN+, t0 the uniform boundedness of the quantitiléqtg(|Z,(es)|2 +

|W,(e, n)|?) dr and to Section 3.1, the influence of the terfi{s) and S(2, ¢) is
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negligible. Therefore, for at > 0,n € N* andr € [#, T,
E|Vi(e,n) — ¥ (e)[?
12 <
+ E/T pn1(n)(XS(8)’ VS(87 n)) A
t

— WS(S,H)O'()_(S(S), VS(S’n))
Pl (Xs(e). Y(e))

2
— Zy(e)o (Xs(e), Yy(e))| ds

< 842(e, 1) + E|H, (Ur (e)) — Y1 (e)|?
T A
1 ZE/ (Vi(e,n) — Yy (),
t
(4.9) U0 (Vs (e, ), Wy(e,n)) — v( Xs(e), Ys(e), Zy(e)))ds
T
1 ZE/ (Vs(e,n) — Yy (&), W(e, m)[i(Vs (e, n), Ws(e, n))
t
—u(X;(e), Ys(e), Zy(e))])ds
E ! 1% Y
+ /, (Vi(e.n) — By (&),

V2 Cu(s, Us(e,n))
x [@(Vi(e,n)) — an(Xs(8), Vi(e, n), Yy (e))])ds
= 84.2(e,n) + E|H,(Ur (e, n)) — Y7(e)|?
+ 2A421(t,&,n) +2A422(t,6,n) + Ag23(2, &, 1),

where (84.2(¢, n))s~0.nen+ Satisfies, for every € N*, lim._,0d84.2(¢,n) = 0 (the
values of this family may change from one inequality to another). Note that for all
e>0,neN*andr €[, T,

Ag21(t, &, n)
T ~

<E[ (Ve —Tico).

[0 (Vs (e, n), Wy(e, n)) — 5(Vs (e, n), Ws(e, n))]

+ [0(Vy (e, n), Wy(e, n)) — 5(Ys (), Wy(e, n))]

+ [0(Ys(e), Wy(e, n))

—v(X;(e), Yy (&), Wy(e, n)(I 4 V.b)(X,(e), Ys(£)))]
+ [v( X (e). Y (e), Wyle. n)(I + Vib) (X, (e), Yy (e)))
— (X, (e), Ys(e), Zs(e)) ] ds,

(4.10)
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Ag22(t, &,n)
T A
SE/<%@m%JMﬂ
t
Wi (e, n){[ﬁ(Vs(e, n), Ws(e, n)) — IZ(YS(e), Wi (e, n))]
+ [ﬁ(Ys(e), Wi (e, n))
(4.11) —u(X,(e), Yy (o),
Wi(e, n)(I + Vib) (X (e), Ys(£)))]
+ [u(Xs(e), Ys (o),
Wi(e, n)(I + Vib) (X5 (e), Ys(e)))
—u(X,(e), Ys(e), Zs(e))]}) ds,
Aa23(t, €,n)
T A
<E [ (Vi) = %u(e). V2 & (5. Use )
t
(4.12) x {[a(Vs(e,n)) — an(Vy(e, n), Yy(e))]
+ [&n(Vs(e, n), Ys(e))
— an (X (2), Vs(e,n), Ys(e))]}) ds.
Recall the following

1. (v, — v)nen+ uniformly converges on every compact set toward 0 and
V2 .¢u(@ — &) uniformly converges ofi0, 7] x R” x By (0, Cz1) x Bo(0,
C2.4) toward O [see (3.24)].

2. V.b is Lipschitzian with respect tg (see Theorem 2.2), andi are locally
Lipschitzian iny andz, andv andv are locally bounded, locally monotonous
in y and locally Lipschitzian iy (see Section 2.5).

3. From Theorem 2.3 and Section 3.&(¢)):-~0, (V(e,n))esonen+ (Wi(e,

n))e>0,ncN* and(W (e, n))e=0.ncN+ are bounded, uniformly ia andn.
4.Ve>0,Y(e)=Y(e) — cé.

Hence, applying Theorem 2.4 [with = U (¢, n)], there exists a constatil, »
(whose value may change from one inequality to another), only dependikhg on
K, A, A, P, Q andT, such that for alk > 0,n € N* andr € [rg, T,

Ag21(t,6,n) + Ag22(t,e,n) + Ag23(t,&,n)
<842(e,n) +843(n)
T
+CME/|wwmw4um
t
x [|Vs(e,n) — Ys(o)|
(4.13) + | Wi (e, n)(I 4 Vib)(Xs(e), Ys(e)) — Zy(e)|] ds
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< Sa2(e.n)
T A
+843(n) + CaE / Ve, n) — V(&)
t

x [|Vs(e,n) — Ys(e)| + |Ws(e,n) — Zs(e)1ds,

where lim,_, 1o 843(n) = 0. Note that the values af4.3(n)),en+ may change
from one line to another. Moreover, thanks to the ellipticityyoinote that for all
e>0,neN*andr €[, T],

T ~ A
E/ |W (e, n) — Zs(e)|%ds
' 1/2

n(n (X,(e), Vi(g,n)) .
<cazk [ [P Wa(e, mo (X (e). Vale,m)
! Pm(n)(Xs(S), Ys(¢)) 5
(4.14) — Zy(e)o (X (e), Ys<e>)‘
T\ Pyl (X (®), Vi(em)
+CazE | 7 )W (e,m)0 (X, (e), Vy(e, n))

Pm(n)(Xs(5)7 YS(S)) )
— Wy(e, m)o (Xs(e), Ys(e>)‘

Following (4.4)—(4.6), we deduce from the boundednessiot:, n))e=0.neN+ (S€E
Section 3.3) that for ad > 0,n € N* andr € [1g, T],

E_/ Pm(n)(X (&), Vs(e,n)) .
t
2

1/2
(4.15) — Wy(e, n)o (Xy(e), Yy (&)

W (e, n)o (X (e), Vs(e, n))
Pm(n)(Xs(E), Ys(e))

T
< 842(e.n) + Ca2E / IV (e.n) — Yi ()2 ds.
t

Hence, from (4.14) and (4.15), we deduce that foe all0,n € N* andr € [, T'],
T A A
E [ Woe.m) - Zuo)Rds
t

TPyl (Xs(e), Vi(e,n)
Pyle) (Xs(e). Ys(e))

(4.16) x Wy(e, n)a (Xs(e), Vi(e, n))

<éa2(e,n) + C4.2[Ef
t

2
— Zy(e)o (Xs(e), Ys(e))

T
+ Ef |Vy (e, n) — Ys<e>|2ds].
t
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Finally, we deduce from (4.9), (4.13) and (4.16), that forsa# 0, n € N* and
t€lto, T],

T ~ A
E|V;(e.n) — Yi(e) ]2+ E/ Wy(e,n) — Z4(e)2ds
t
(4.17) < 84.2(e.1) + 843(n) + E|H,(Ur (e, 1)) — H(X1(&))|?
T
+ C4.2E/ Ve, n) — Y (&) ds.
t

Recall thatH is Lipschitzian [se€#.3)] and that(H,),en+ uniformly converges
toward H. Hence, from Proposition 4.2,

T ~ ~
sup E[V(e,n) — (&) + E/t Wi(e, ) — 2, ()2
0

to<t<T

(4.18) i
< 8a2(e, 1) + 843(n) + CasE f Vi (e, n) — Y, () 2.
0

In fact, applying the Burkholder-Davis—Gundy inequalities, the same scheme
leads to [note that we had to estimate first the tcEr[)f,]g |W; (e, n) — Z;(e)|%dt
to apply the Burkholder—Davis—Gundy inequalities]

T ~ A
E sup |Vi(e,n) = Y, (&)?+E | |W,(e,n) — Z,(e)|?dr
10

to<t<T

(4.19) )
< 84.2(6,1) + 843(n) + Ca2E /t Vi (e, n) — Y, () 2.
0

Thanks to Proposition 4.2, we complete the proail

4.3. Proof of Theoren8.1. We now establish Theorem 3.1. From the defini-
tions of (V (e, n))e=0.nen+ and(W (e, n))s~0.nen+, We deduce from Proposition 4.3
that forT — g < ca2 and for alle > 0 andn € N*,

E sup |[U(e.n) — X, (e)>+E sup |¢,(t. Us(e.n)) — Yi(e)|?

to<t<T to<t=<T
T aA A
(4.20) + E/t (Viln(t, Us(e,n)) (I + Vib)(X:(€), &n(t, Ui (e, n))) — Zt(8)|2dt
0

<d42(e,n) 4 843(n).

Recall from Section 2.5 th& is C» g-Lipschitzian with respect to the variabte
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Hence, we claim that for all > 0,n € N* andM > 0,
E sup |0(t. X, (e)) — Yi(e)|?

to<t<T

<3E sup [|0(t. X,(e)) — 6(t. Us(e. ) |?
to<t<T
+10(t. Un(e.m) = &a(t, Us(e.m) [

12 (1, Us () = Yi(e) ]
<3C3¢E sup |X,(e) — Us(e, n)|?

to<t<T

+3  sup (0 — &), 0))?
[t0,T1xBp(0,M)

(4.21)

+3||9—;n||§oP{ sup |Us(e, n)| >M}+a4.z<s,n>+64.3<n>
to<t<T
<3  sup (0 — &)t X))

[70,T1xBp(0,M)

+310 — G ZP{ sup Uem| = M|+ 8426 m + 4500,
to<t<T

Thanks to Section 3.3(¢,)nen+ iS uniformly bounded on0, 7] x R? and
uniformly converges on every compact subsef{@f7'] x R toward 6. From
Lemma 4.1, sup g ,en+ ESURy <, <7 [U: (e, n)|? is finite. Therefore,

(4.22) lim E sup |0(t, X;(e)) — Y;(e)|* = 0.
e—0 to<t<T

Let us now deal with the gradient term appearing in (3.18). Far all0, n € N*
andO<n < T — 1o,

T AN ~
E f IV,0(t, X, () (I + Vib)(Xi(e), Yy () — Zi(e)[2dt
0

T— -
<3E nIVXG(t, X, (&) + Vib)(X,(e), Y ()
fo

— V. 0(t, Uy(e. n)) (I + Vib) (X, (e). 0(t, Up(e, m))) P dt

T_ ~ J—
+ 3E/t 19,60t Us(e. m)) (I + Vib)(Xi(e). 8(1, Uy (e, m)))
0

(423) - Vxé‘n(l, Ui (e, n))(l + Vx[;)()_(t(g)’ é‘n(t, U, (e, n)))|2dl
T_ A —
+3E/t Vet Unte, m) U+ Vieb)(Xi(e), a(t, Use, m))
0
— Zu(e)Pdt

T n~ ~
+ E/T IV,0(1, X, () (I + Vib) (X, (e), Yi(e)) — Z,(e)|Pdt
—n

= Ag431(6,n,n) + Asz2(e,n,n) + Asz3(e, n,n) + Aszale, n,n).
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Thanks to Theorem 2.%7,.5 is bounded and Lipschitzian with respecttoFrom
Section 2.5V,6 is bounded orf0, T[ x R¥ and Hélderian orirg, T — n] x R”
forevery O< n < T — 9. Hence, thanks to (4.3.1),

(4.24)Ve>0,VneN* Vn=>0, Aa3z1(e,n,m) <8a4(n,n)+8as5(e,n,n),

where for all O< n < T — 19, liM;— +00844(n,n) = 0, and for alln € N*,
lim,_0d45(e,n,n)=0.

Recall now from Section 3.3 that the sequences of functi@gps,cn+ and
(Vil)nen+ are bounded o0, 7] x R by C31 and uniformly converge on
every compact subset i3, 7[ x R? towardd andV, 6. Hence, using Lemma 4.1
[follow (4.21)],

(4.25) Ve>0, VneN* Vnp>0, Ag32(e,n,1m) <844(n,n).

Note now thath4 3 4(e, n, n) < da.6(n), With lim,_,084.6(n) = 0. Therefore, thanks
to (4.20), (4.23)—(4.25),

T A N
E—/t |Vx9(t, Xt(e))(l + be)(X,(E), Q(I, X,(e))) — Zt(8)|2dt
0

4.26

( ) <és4(e,n,n)+845(n,n)+a6(n).

Thanks to (4.22) and (4.26), we deduce that Theorem 3.1 holds:witk: c4.0.

4.4. Proof of the homogenization propertyWe first establish point 2 of
Theorem (PHP). To this end, we wish to extend our local convergence result to
the whole interval0, T']. For this purpose, we apply the scheme developed on
the interval(zg, T] to a new intervalzy — §, rg] with § > 0, and then conclude by
induction. Actually, the main difference between these two cases comes from the
new final conditiord (1o, -).

Indeed, in the former sections, the final conditioFs(¢)).-0 were given by the
relationshipsve > 0, Yr(e) = H(Xr(g)), whereH is k-Lipschitzian, but, from
Theorem 3.1, we just know that the new final conditiohg(¢)).~o satisfy

(4.27) E|Y,y(e) — 0(t0. Xo(e))° >0 ase — 0,

wheref (1, -) is, thanks to (2.12)2 s-Lipschitzian.

Actually, property (4.27) is sufficient to apply the strategy developed in Sections
4.2 and 4.3. In particular, modifyingy » if necessary, we can prove that (3.18)
holds on the intervalrg — ca o, 19], and therefore, on the intervidy — ca2, T'1.
Following the induction method introduced in Delarue (2002b), we then prove
that it holds on[0, T']. In particular, since we control the Lipschitz constantof
with respect to the variable [see again (2.12)], we know that the “lengtly,” is
bounded from below by a nonnegative real during the induction. This completes
the proof of point 2 of Theorem (PHP).

We directly deduce lim.g6,(0,xg) = 6(0,xp). This proves point 3 of
Theorem (HP).
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4.5. Proof of point3 of Theoren{PHP) In this final section we prove point 3
of Theorem (PHP). Basically, it can be seen as a direct consequence of point 2. We
first set for alle > 0 andr € [0, T'],

t N _
Ni(e) = fo (I + VD)o 1( X (). Ys(e)) d By,
(4.28) . ~
Mi(e) = fo 2,(e)0 (X, (e), Ys(e)) d Bs.

Note that for every > 0 and for every € [0, T],

o
[N ()], = /0 (X, (e), Y, (e)) d By,
[N _ ~
(4.29) [M(e)], = /0 Zy(e)a( X, (e). Ys(£)) 22 () ds,

t A —_— A R
[M(e), N(e)], = /0 Zo(e)a( X, (e). Yo(e)) (I + Vib)* (X, (e), Yy (e)) ds.

Note from Theorem 2.2 thdf + Vxé)a is bounded and, therefore, that

SUPE sup [N,(g)]? < .
e>0 0<t<T

Moreover, note from Theorem 2.3 that

SUpE sup [M;(s)|? < oo.
>0 0O<t<T

Thanks to this notation, recall from Section 3.1 that foral 0 andr € [0, T'],
X,(e) + eb(X, (¢), Yi(e))

~ (X0
=xo+ 8b<—, Yo(e))
&

+/(:u()7s<s>,Ys<s>,2s<e>)ds+N,<s>+R,<s>,
(4.30) Y,(e) — (X, (e), Yy (2))
= H(X1(e)) — eé(Xr(e), Y1 (o))
T —_— A
+/ v(Xs(e), Yy(e), Zs(e)) ds
t

— (M7 (e) — My(e)) + St () — Si (e).
We now claim:

LEMMA 4.4. The processeasX (¢), M(e)).-0 are tight in the spacéc ([0, T],
R” x R9), || - lloo)-
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PrROOFE From (4.30), Section 3.1 [which permits us to estim@és)).-o],
Theorem 2.3 [which provides estimates @X(¢)).-o and (2(8))8>0] and
Kolmogorov’s criterium, there exists a family of continuous aRd-valued
processesr(g)).~o satisfying sug_, 7 |r:(¢)| — 0 in probability ass — 0 such
that the family(X (¢) + r(¢)).~o0 is tight in the spacéC ([0, 71, R”), || - [|oo0)-

Moreover, it is readily seen that for every > 0, the family of processes
(X (e))e=s Is tight in the same space as above. We easily deducéXiaj),-o
is tight.

In particular, the family(8(-, X.(¢)))s=0 is tight in the spac&C ([0, T'], R9),
| - llc). Moreover, referring to Delarue (2002b), for evexy > 0, the family
(Y (e))e¢, Is tight in the same space as above (roughly speaking, we know that
for everye > g, for everyr € [0, T], Y:(e) = 0.(¢, X;(¢)), where the family
B :(t,x) €0, T] x R > Y, (e, 1, x))esso IS €quicontinuous). Hence, we deduce
from point 2 of Theorem (PHP) that the family (¢)).-0 is tight.

Finally, using again the same argument, we deduce from (4.30), Section 3.1
[which permits estimat&S(e)).-o0], Theorem 2.3 [which permits to estimate
(Z(e)),»o] and Kolmogorov’s citerium [which permits us to prove that the family
of processeg/ V(X4(), Ys(£), Zs(€)) ds)e=0iS tight] that the family of processes
(M (¢))=0 is tight in the spaceC ([0, T1, R2), || - |l«). This completes the proof.

O

Let us now complete the proof of point 3 of Theorem (PHP).

PROOF OF POINT3 OF THEOREM (PHP). Thanksto Lemma4.5, there exista
subsequence still indexed by- 0 and a continuous arigl” x R€ valued process,
denoted by(X;, M;)o<;<7, such that,

(431) (Xl‘ (8), M[ (8))OSIST — (X[, MI)OSIST ase — O,

where = denotes the convergence in law on the sp&ci, 7], R” x R2)
endowed with the topology of the uniform convergence.

Applying estimates given in Sections 2.3 and 2.5 and using point 2 of
Theorem (PHP), note that

o;ung /Ot u( Xy (), Ys(e), Zs(e)) ds

—/Otu(Ys@),Ys(e),

Vi0(s. X, () (I + Vib)(Xy(e). Yy (e))) ds| = O

(4.32)

ase — 0.

Hence, from point 2 of Theorem 2.4 [to treat the te¥iyo (-, X.(¢))], recall that
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V.0 is bounded and locally Holder continuous, approxiniate) by X(e) and set
G = X(¢) in Theorem 2.4. We deduce that

sup
O<t<T

/tu()_(s(e), Ys(e), Zy(e)) ds

(4.33) o
-0 ase — 0.

- (Y (e), Vib(s. X, () ds

Therefore, using once again estimates given in Sections 2.3 and 2.5 and applying
point 2 of Theorem (PHP), we claim that

su /O WX (e, Yole), 2 (e)) ds

(4.34) 5
-0 ase — 0.

_ /O’ﬁ(e(s, X, (6)), Vo0(s, X (e))) ds

In the same way, we deduce that

sup /, v(Xs(e), Ys(€), Zs(e)) ds

0<t<T71J0

(4.35)

—/Otﬁ(e(s,Xs(e)),VXQ(S,XS(E)))ds L0  ase—0

and from Theorem 2.3 [in particular, from the estimategfb(e))e>o] that

sup |[N(&)]; —/I&(Q(S,XS(E)))ds L0  ase—0
0<t<T 0
t
sup (M), ~ || vi60s.X,00)
(4.36) x @(0(s, X5 ())) (V4 (s, Xs(2)))*ds| >0 ase — 0,
sup |[M(e), N ()], —/Ot V,O(s, Xs(&)&(0(s, Xs(e)))ds| > 0 ase — 0.
0<t<T

For the sake of simplicity, we set for every [0, T], Y; = 6(¢, X,) and for every
1 €[0,T[, Z; =V, 0(t, X,).
From (4.34)—(4.36), we deduce that

t —_— A
((Xt<e>,Yt<e>,Mt(e),/0 u(Xy (), Yy (6), Zs(e) ds.
/Ot o(X (), (), Zy(e) ds,

(4.37) [N ()], [M (). [M(e). N(e)],)o T)
<t<

e>0
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t

t
- (Xl‘vyl‘le"/ ﬁ(YS7ZS)d57/ E(YS’ZS)ds’
0 0

t t t

/ &(Ys)ds,/ zs&(Ys)z;‘ds,/ Zso’z(Ys)ds) ,

0 0 0 0<t<T
where=> denotes the convergence in law @x[0, 71, R”), | - ls) (D denotes
an appropriate integer). Referring to Jacod and Shiryaev (1987), Chapter IX,
Theorem 2.4, we deduce from Section 3.1, (4.29) [from which we know that
sup.- o E supy, <7 (IN:(e)|? + |M;(¢)|?) < o<, (4.30) and (4.37) that for every
0<t<T,

t
Xz=xo+/ (Y, Z,) ds + N,
(4.38) °
Y, = H(X7) +/t (Y, Z,)ds — (Mg — My),

where(N;)o</<r IS an{?‘,X}OS,ST-continuous square integrable martingale (recall
that {F*}o<,<r denotes the usual augmentation of the natural filtratiorX pf
whose quadratic variation is given by

(4.39) Vie[0,T], [Nl = /Ot&(Ys)ds.

Moreover,(M;)o</<r IS also ar{?‘,x}ostg-continuous square integrable martin-
gale [note from (4.38) thatM,)o<,<r is clearly{F,*}o<,<r-adapted] such that

VtelO,T], [M]; :/Ot ZS&(YS)Z;kds,
(4.40) t
(M, N], = / 7.6(Y,) ds.

In particular,YO<t < T, [M — [y Z;dN;], = 0. Therefore, for every € [0, T1],
= [§ Z;dN,;. We now sev' r € [0, T], B, = [} &-Y2(v,) dN,.
It is clear that(B,)ogET is an{f }o<r<r-Brownian motion. Moreover, we
deduce from (4.38) thaiX, Y, Z) satisfies the FBSDE

t t _
X,:xo—{—/ ﬁ(YS,ZS)ds+/ a?(v,)dB;,
0 0
(4.41) T T B
Y, = H(X7) + / 3(Y,, Z,)ds — / Z,aY2(v,) dB,.
t t

Thanks to Delarue (2002b) (see Remarks 1.6 and 2X7)Y, Z) and (X (0, xo),
Y (0, x0), Z(0, xg)) have the same law @ ([0, T'1, R”), || - |loo) X (C([0, T, R9),
I lloo) X (LZ([0, T1,RE*P), - |12).
Note now that for every functiog satisfying the assumptions of point 3 of The-
orem (PHP), the functiom € C([0, T],R”) = (t € [0, T1 [§ @(s, x5, 0(s, x5),
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V,0(s, x5)) ds) is continuous for the topology of the uniform convergence (recall
that v,.6 is bounded and locally Holder continuous). Thanks to Theorem 2.4 and
to point 2 of Theorem (PHP), we easily deduce the asymptotic behavior of the
processe$fd<p(s,Ys(s),Xs(s), Y. (¢), 2S(£))ds)g>o. This completes the proof.

O

APPENDIX A: PROOFS OF THEOREMS 2.1 AND 2.2

Here is our strategy to prove Theorems 2.1 and 2.2:

1. Concerning point 1 of Theorem 2.1, we refer the reader to Paragraphs
3.2 and 3.3 of Chapter Il of Bensoussan, Lions and Papanicolaou (1978) and
to Pardoux (1999b) for detailed proofs.

. We detail the sketch of the proof of Theorem 2.2.

. We finally prove point 2 of Theorem 2.1.

w N

A.1l. Proof of Theorem2.2. In order to solve the auxiliary problems
(AUx(y))yere, We study in this section the following kind of Poisson equations

onT?”:
(Al) Ly@(%%”)"“ﬂ(',y,u):(), with /Epfp(xd””)l’(x’)’)dx:()’

whereu is a parameter lying ifR¢, d € N*. In particular, we aim to study the
regularity of the functiorp with respect to the variablgsandu [see also Pardoux
and Veretennikov (2003) for similar results].

Actually, such equations are also involved in the proof of the ergodic theorem
given in Section 2.4. This is the reason why we treat the case wheds® depends
on a second parameter(note by the way thai, at the opposite o, does not
appear in the definition af ;).

Here is the main proposition of this section. [We refer the reader to Paragraphs
3.2 and 3.3 of Chapter Il of Bensoussan, Lions and Papanicolaou (1978) for a
detailed proof of this result and to Chapters VIII and IX of Gilbarg and Trudinger
(1983) for usual estimates of the solutions of elliptic PDEs. Related results are also
given in Pardoux and Veretennikov (2002)]:

PROPOSITIONA.1. Let us considey > 2 and a functiong: T x R x
R? — R such that

V(y,u) e R x RY,
(A.2)
loC. vl <o and [ gy wpx.y)dx =0,

then vV (y, u) € RZ x R¢, the Poisson equation i’

(A3) Ly@(" y’u)+§0(" y’u)ZOv /’IVFP @(X, y, M)dx:O,
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admits a unique solution iiw27(T*). Moreoverthere exists a constaﬁ’tfﬁ)l, only
depending ort, A, A, P andg, such that

(A4) VO, eRC xR 66,y g < CE oGy, w)ll,.
(q)

In particular, for g > %, there exists a constaut,’5, only depending og, A, A,
P andg, such that

(A5) V(,uweRZ xR,  suplgx,y,u)| < CloC, y, u)ly.

xeT?

In the following corollarieswe investigate the regularity @f(-, y, u) with respect
to the parameters andu.

COROLLARY A.2. Letgp:T? x R2 x R — R be such thatfor everyg > 2,
the function(y, u) — ¢(-, y,u) is continuous fronR2 x R¢ into L4(T*) and
satisfies

(A.6) V(y,u) eRC x RY, /TP¢<x,y,u>p<x,y>dx=o.

Then for everyg > 2,the function(y, u) — @(-, y, u) is continuous fronR< x R4
into W24(T?), and, in particular, the functiong is continuous and continuously
differentiable with respectto on T x R¢ x R?.

PROOF  Let us considety, 81) € (R2)? and(u, 8,) € (R?)2. We just have to
note that

Ly((ﬁ(W y + 81’ u—+ 82) - @(’ Y, M)) + [90(’ y + 81’ u—+ 82) - 90(’ Y, M)]
+[(Lyts; — Ly)@(-,y +61,u+82)] =0.

Using Proposition A.1, as well as the assumptions on the coefficients, we complete
the proof (note that continuity anc-continuous differentiability of» on T? x
R x R4 follow from the Sobolev imbedding theorems)]

(A7)

The following corollary deals with the differentiability of the solution of the
Poisson equations with respect to the parametensdu. The proof relies on the
estimates given in Proposition A.1 and on the formula (A.7) given in the proof of
Corollary A.2. It is left to the reader.

COROLLARY A.3. Letg:T? x R2 x R — R be such thatfor everyg > 2,
the function(y, u) — ¢(-, y,u) is continuously differentiable fronR¢ x R?
into L4(T?) [the partial derivatives are denoted mg}—‘{;)liiEQ and(fT“;)lijd]
and satisfieqA.6). Then for everyq > 2, the function(y, u) — @(-, y,u) is
continuously differentiable fro®€ x R? into W24 (T¥). In particular, from the
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Sobolev imbedding theorentise function) belongs taetL1(T? x R2 x R?, R)
and the functionv,¢ to C%HH(T? x RC x RY, R”). Moreover for all g > 2,
(v, u) eRC xRY and (i, j) € (L. @) x (L,....d}, §2(, v, w) and 52, y,u)
are the unique solutions iw24(T*) of the following equations ofi”:

A

¢

‘p Y o~
L _(.7 b .7 b b u) :07
y3Y' ; dyi
[, oty 0p( v dx =0,
(A.8) R
L _(p(.’y’u)_i_a_qo(.’y’u):
y8u~ ou j

¢
/P a—(x .y, u)p(x,y)dx =0.

PROOF OF THEOREM 2.2. Let us now turn to the proof of Theorem 2.2.
From Proposition A.1, we are able to sol@fst(y))yeRQ. Therefore, point 1 of
Theorem 2.2 is easily established. Moreover, thanks to Assumptidnwe also
deduce from Ryposition A.1 thatfor everyg > 2, there exists a constamff,)3
(whose value may change from one inequality to another), only dependikhg on
K, X A, P,q andQ, such that

(A.9) 16C, Mli2.q + 116G, Mllzg < %

Hence, we just have to study the regularity iofand é with respect to the
variable y. Sinceb ande satisfy the same kind of assumptions, it is sufficient
to focus on the case di. In particular, thanks to#.6) and ¢#¢.7), we know
that, for every 1< ¢ < P , the function(x, y) € T? x R2 — by(x, y) satisfies
the hypotheses of Corollary A.3. Therefore, we deduce that, for eyery2,

the functiony € R > by(-, y) € w24(T?) is continuously differentiable. In
particular, the functior(x, y) — b¢(x, y) belongs toc1(T? x R2,R) and the
function (x, y) — Vibe(x, y) to C%L(T? x R2, RP). Moreover, for ally € R?,
the functionV,b(-, y), which belongs t¢),>2 WZQ(TP) satisfies orT”

V,i)e{l,...,P} x{1,..., 0},
(A.10)
dby 0Ly ~
g ——be(-,y) =
dyi dyi
In particular, we deduce from Assumptio®§ and Proposition A.1 that, for every
q=2,

. aée( )
—_— -’y
Y9y

(A11) IV,6¢, ) ll2.q < C¥.
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Repeating the same argument for the second-order derivatives, we finally establish
point 2 of Theorem 2.2. From the Sobolev imbedding theorems, we then deduce
point 3 of Theorem 2.2.

A.2. Proof of point2 of Theoren2.1 In this second section we investigate the
regularity of the densitieg(-, y) upon the paramater.

LEMMA A.4. There exists a constanf, 4 only depending ork, K, A,
A and P, such that

(A12)  Y(y,h)eR9? IpC,y+h)—pC, 2= Caalhl|
PROOF  Let us considep € L2(T?). We first define

(A.13) YyeRY 0= [ e@pery)dx.

Let us now fix(y, k) € (R2)2. From the equality

|, pendr= [ ptey+mydr=1,
TP TP
we deduce

(A14) o(y+h)—o(y) =/TP(</>(X) — o) (px,y+h) — p(x,y))dx.

Moreover, thanks to Proposition A.1, there exigts— ¢)(-, y) € W22(T*) such
that

(A.15) Ly(@ — @) y) + (9() — §(3))=0.
Hence,
GO +h) —d(y)

(A.16) == [, L@ =D 0oty + ) = pr. ) dx

= [ @~ L)@ =) »p(x,y + ) dx.

Therefore, thanks to Assumption#), to point 1 of Theorem 2.1 and to
Theorem 2.2, there exists a constaht 4 (whose value may change from one
inequality to another), only depending dnK, A, A, P, Q andT, such that

lp(y +h) — o) < Caallg — @ll2.2|h]
(A.17) )
< Caallg —@li2|h| < Caalel2lhl.

This completes the proof.[]
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LEMMA A.5. The functionp:y € R€ — p(., y) € L3(T?) is continuously
differentiable[the partial derivatives are denoted b%’,’—j)ls j<ol. Moreoverthere
exist two constant§' 4 5 and C 4 g, only depending o, K, A, A, P and Q, such
thatforall j e {1,..., 0} and(y, h) € (R2)?,

0
(A.18) H Ly H <Cus,
dy;j 2
0 0
(A.19) H—P<-, y+my = 2P y)H < Caelhl.
dy; ay; 2

PROOF We considerp € L2(T?), j € {1,..., 0} and (y,h) € RZ x R*,
and we sety + h =y + he;. Thanks to Lemma A.4 [from which we deduce
that y — p(-,y) € L4T?) is continuous] and to (A.16), we deduce thais
differentiable with respect tp; and that

a D 8L )y — ——
(A.20) L= [, G P e v dx.
dy; T 9y;
Let us now prove that — p(-, y) is continuously differentiable. For this purpose,
set
(A.21) Hy = {v/ e LX(T"), /Px/f(x>p(x,y>dx=0}.
T

Thanks to point 1 of Theorem 2.1 and to Theorem 2.2, it is readily seen that there
exists a constant 4 5, only depending o, K, A, A, P andQ, such that

oL, ~
(A22)  VycH, ‘f Oy G e, ypx, v dx|< Casliv
TP 8y‘,-
Hence, there exists; (-, y) € H, such that
oL, ~
(A23) VyeH, [ wuende= [ S20p s
TP TP 8yj

Set
Vi, y)=u;(,y) — (/TP uj(x,y) dX>p(-, y).
Hence, for everyy € L(T?),

/ ¥ () (x, y) dx
TP

0
e e

w24 = [ 0 =)y A+ FO) [ vtyds
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= [, @ = S x.

0

_/w ujCe)dx [ (0@ = b 0)pie.y)ds

oL,

= e By, 22 (P x ) p(x, y) d.

Modifying C4 5 if necessary, we deduce that (A.18) is satisfied \@ihreplaced
by v;.

Let us prove that (A.19) holds wﬂl% replaced byv;. To this end, fix once
againg € L%(T*) and(y, h) € (R9)2.

Following the proof of Corollary A.2we deduce from Proposition A.1 and
Lemma A.4 that there exists a constant ¢ only depending ork, K, A, A,
P andQ, such that

(A.25) l¢ —@C.y+h) =9 — 9.5 < Caslhllela

Hence, thanks to Lemma A.4, to (A.24) and to Assumptigf),(we deduce
(modifying C 4 ¢ If necessary)

’/TP @) (vj(x,y+h)—vj(x,y))dx

oL
f IZ0th (T8 ey + W) p(e, y + by dox
T Jy;

(A.26)

oL,
/P 5y, L9 =) (x, y)p(x, y) dx

= CA.sllfpllzlhl-

Therefore, (A.19) holds withf}—’,’j replaced byv;. Moreover, thanks to (A.20),
(A.24) and (A.26), we deduce from the mean value theorem that

1
’Z /;rp ¢()(pCx,y+h) — p(x,y))dx

(A.27)
— [, 06, (x ) dx| < Casliplalhl.

Thereforep:y € R — p(-, y) € L3T") is continuously differentiable, and, for
everyjel{l,..., 0}, ;T{’i =vj. O

PROOF OF THEOREM 2.1. We already know that point 1 of Theorem 2.1
holds. According to Lemmas A.4 and A.5, we know that the functiGcnR?
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p(-,y) € L%(T?) is continuously differentiable with respect toand that there
exists a constan@ 4 5, given by Lemma A.5, such that

(A.28) Vief{l,...,0}, VyeRZ, Hi—f_(-,y)

<Cas.
2

Actually, repeating the arguments of Lemma A.5 [and using in particular (A.18)
and (A.19)], we can study in the same way the differentiability of order 2, @nd
then achieve the proof of Theorem 2.2

APPENDIX B: PROOF OF THEOREM 2.3

This section is devoted to the proof of Theorem 2.3. Following Pardoux (1999a,
b), we start with the following:

LEMMA B.1. There exists a nondecreasing functiép 1: R, — R, only
depending on. and A, such that

Ve>0, Vi €][0, T],

T
(B.1) E/f (1+ 1Y, (e)))1Zs () 2 ds

T
<cpam1+e7E [ @+ v@P as)
t

PROOF Consider the function¥:y € R — [1 + |y|2]¥2. From It&’s
formula,vVe > 0,

d¥(Y,(e)) = =31+ Y, (&) 1YY, (&), (¢ te + )(Xi(e), Yile), Zi(e)))dt
+ 31+ 1) A1Y?| Z(e)o (X (), Yi(e)) | dt

B.2 _
(B:2) + 31+ Y () P1Y Y, (e), Zi(e)o (X, (e), Yi(e)) dBy)

+ 3L+ 1Y, 1YY () Zi () (X (), Yi(e)) [P 1.

Recall from Section 2.1 that, for every> 0, 6, is bounded. In particular, for
alle > 0,3 (e) > 0 s.t.P{sup,<7 |Yi(e)] <T'(e)} = 1. HenceV¥e > 0, Vt €
[0, T1],

T _
EV(Y(e)) + 3E / [1+ Y, (e)21Y2| Zs (e)o (X (2), Yy (&) ds
t
T _
+3E [ 1+IN @R O Z @0 (Ro). V@) ds

(B.3) .
— EW (Y7 () +3Ef [1+1Y(2) P12
t

x (Yy(e), (e re + f)(Xs(e), Yy(e), Zs(e)))ds.
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Therefore, from the boundednessif[and then ofYr (¢)] and the properties of
e, f ando, there exists a constang 1, only depending o and A, such that

T
EW(Y(e)) +Ef [+ Y, (&) P1Y2| Zy (2) |2 ds
t
T
(B.4) +E / (14 1Y ()P Y2 )Y (e) Zy (e) [ ds
t

T T
SCB.1+€_1CB.1E/ [1+ Y (e)|]ds +CB.1E/ U(Y,(e))ds.
t t

In particular, from Gronwall's lemma, there exists a nondecreasing function
Cp1:Ry — R4, only depending on andA, such that

Ve>0, Vte][0,T],
(B.5)

T
EW(Yi(e)) < CB,l(T>[1+ e 'E / [1+Ys(e)°] ds]
t

Therefore, modifyingCp 1 if necessary, we deduce from (B.4) and (B.5) that for
alle >0andr €0, T],

T
E/ [1+4 1Y, (e)1?1Y21Z, ()| ds
t
(B.6) ;
< CB.1<T>[1+8—1E / (1417, ()] ds],
t

from which the desired result follows easilyl]

PrROPOSITIONB.2. There exists a hondecreasing functiépg2>: R, — R,
only depending ok, K, A, A, P and Q, such that

T
(B.7) Ve>0, sup E|Y:(e)?+E | 1Zs(e)?ds < Cpo(T).
0<r<T 0

PrROOFE From (2.5), we deduce

d|Yi(e)]? = =2(Y;(e), v( X, (), Yi(e), Z(e)))dr
+1Zi(e)a (X (e), Yi(e)) — eV,6(X,(e), Yi (&)

x Zi(e)o (X, (), Y, (e)) [P dt
(B.8) — e(Yi(e), V2 ,6( X (e). Y1 (e))[Zi (e)a(Xi (e), Yy (2)) Z} (e)]) dt

+28(Y,(8), (Vye f)(Xi(e), Yile), Zi(e)))dt
+2(Y,(e), Z(e)a (X (e), Y, (£)) d B,)
— 2¢6(Y,(e), Vyé( X1 (), Yi(e)) Zi(e)a (X1 (€), Y, (¢)) d By).
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We obtain
A 2 T A —_
EF, @2 +E [ |Z.@0(Xe). V(o)
— eV, 8(X,(e), Y5(2)) Zs (6)a (X (e), Yy (e))|* ds

A T A —_— A
= EIYT(8)|2+2E/ (Ys(e), v(Xs(e), Ys(e), Zs(e)))ds
t
(B.9) r B
+8E/ (Yo(e). V2 o(Xs(e). Yy (o))
t

x [Zs(e)a(Xs(e), Yy(£)) ZE(e)])ds
T —
_2E /t (Ps(e). (Vye £)( Xy (). Ys(e), Zs () ds.

Recall thatZ.(s) = Z.(s) — Vié(X.(¢), Y.(¢)). Therefore, thanks to Assump-
tion (#), to (2.5.i) and to Theorem 2.2, there exists a nondecreasing function
cp2:Ry — R4, only depending o, K, A, A, P andQ, suchthatv0 < ¢ < 1,
VtelO0,T],

T
E|Yf<e>|2+Ef 1Z, ()2 ds
t
T
(B.10) SCB~2(T)[”E/, 1Y@ (L4 1Y ()] + 1Zs (e)]) ds

T T
~|—eE/ |Ys(e)||Zs(8)|2a’s+82E/ |Zs(8)|2a’s]
t t

Therefore, from Lemma B.1, there exist a nondecreasing fundigp: R —
R4, only depending ork, K, A, A, P and Q, and a nonincreasing function
np.1:Ry — R4, only depending otk, K, A, A, P and Q, such thatv0 < ¢ <
nga(T), ¥Vt €[0,T],

T T
B11) EN@P+E [ IZs(8)|2dSSCB.2(T)[1+E/ |Ys<s>|2ds]
t t

Hence, applying Gronwall's lemma, and modifyidg; » if necessary, we have
VO <e<npa(T),

T
(B.12) sup E|Y;(e)]? +E | 1Zs(e)]?ds < Cpa(T).
0<t<T 0
Foreverys > np 1(T), we can apply usual estimates of solutions of FBSDES to the
system(E(e, 0, xp)) [see, e.g., Theorem 3.2 in Delarue (2002b)]. This completes
the proof of Proposition B.2. [
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PROPOSITIONB.3. There exists a constantz 3, only depending o, K, A,
A, P, Q andT, such that

(B.13) Ve >0, P{ sup |Y:(e)| < CB,3} =1
1€[0,T]

PROOF Recall that for alk > 0,7 € [0, T] andx € R?, (X, (e, t,x), Ys (e, 1,
x), Zs(e, t, x))i<s<r denotes the solution of the FBSDEeE?, x). From Proposi-
tion B.2, we then deduce

VvxeRP, Ve>0, Vtel0,T],

(B.14) 5
sup E|Y,(e,t,x)|” < Cp2(T —1t) < CpoT).

t<s<T

Hence, from Theorems 3.1 and 3.2 of Delarue (2002b), we complete the proof of
Proposition B.3. [

COROLLARY B.4. There exists a constaiip 4, only depending o, K, A,
A, P, Q andT, such that

T 2
(B.15) ) E(/ |ZS(£)|2ds) <Cpa
0
PrROOF We know from (B.8) tha¥e > 0,Vt € [0, T,
A T A —_—
|Yf<s>|2+/z 12:()0 (X, (), Yy (e)
— eV, (X, (e), Ys(2)) Zs ()a ( Xy (e), Yy (e))|* ds

A T A —_ A
:|YT(5)|2+2/t (Ys(e), v(Xs(e), Ys(e), Zs(e)))ds

T . 2 _
+e [ {fu(e). V2 2(X0). Vo (0)
(B.16) _
x [Zs(e)a( Xs(e), Ys(e)) Zi (e)])ds

T A —_—

=2 [ (@), (9,60) (Xo(0). 1), Zs (@) ds
T A A —_—

—Z/t (Ys(e), Zs(e)o (X (e), Ys(e)) d By)

T _ _
+ 28ft (Ys(e), Vye(Xs(e), Ys(e)) Zs(e)o (X (e), Ys(e)) d By).

Hence, from Proposition B.3 and (2.5.i), there exists a consiagfwhose value
may change from one inequality to another), only depending, @, A, A, P, O
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andT, suchtha¥O0O < ¢ < 1,

T
/ 1Z, ()2 ds
0

T T
<cpa+cpa /O 1Z,(e)\ ds + cp.3e fo 1Z, ()2 ds

(B.17) .
2 /O (Fs(e), Zs(e)o (X (&), Yy (e)) d By)

T _ _
+ 28/0 (Ys(e), Vye(Xs(e), Ys(8)) Zs(e)o ( Xs(€), Ys(€)) d By).

Therefore, thanks to Theorem 2.2 (which provides an estimaté &f, we have
VO0<e <1,

T ) )2
E(fo 1Z, ()2 ds

(B.18) 563.3[14— E</OTIZS(8)IdS)2

2 4 2 )2 T 2 ]
p E(/O 1Z,(e) 2 ds +E/O 1Z,(e) P ds |.

In particular, from Proposition B.2, we havé® < ¢ < 1,
2

2
(B.19) E(/()T|zs<e>|2ds) 5c3.3+cB.352E(fOT|Zs<s>|2ds).

Moreover [see, e.g., Delarue (2002b)],

T 2
Ve >0, E(/ |Zs(e)|2a’s) < 0.
0

We deduce that there exist two constafijss andnp 2, only depending o,
K, X, A, P, Q andT, such that

T 2
(B.20) sup E(/ |ZS(8)|2dS> <Cpa.
O<e<np.2 0
For everye > np .2, we can apply usual estimates of solutions of FBSDES to the
system(E(e, 0, xg)) [see once again Delarue (2002b)]. This completes the proof.
O

From Propositions B.2 and B.3, Comaly B.4 and (2.4), we deduce the
following:
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COROLLARY B.5. There exists a constaiip 5, only depending o, K, A,
A, P, Q andT, such that
(B.21) Ve >0, E sup |X,(¢)]° <Cgs.
t€[0,7T]
Note that Theoren2.3 easily follows from PropositiorB.3 and Corollaries
B.4andB.5.

APPENDIX C: PROOF OF THEOREM 2.4

Let us now turn to the proof of Theorem 2.4. To this end, keep the notation
introduced in Section 2.4 and set

T
(C.1) cca= sup (E|GO(5)|+E/O (Ig: (L, &) + 18/ (2, 8)|2)dt)< 0.

O<e<1
The strategy is quite clear: if the functigris regular with respect tq y andu and

null outside a compact set, the solution, denoteg bgf the family of equations
onT?

V(r,y,8)€[0,T] x RZ x RY,
(C.2) Lyp(t,-,y,8) +e(t,-,y,8) —¢(t,y, g =0,

|, ¢tz 3.9 dx =0,

is also regular with respect 19 y andu and null outside a compact set. Hence,
thanks to It6’s formula, we have for all> 0 andr € [0, T'],

e29(t, X, (¢), Yi(e), G(e))

(C3) _ 82@(0, % Yoo Go<s>)

t _
+/0 [6 — ¢1(s, X (e), Ys(e), Gy (&) ds + er (),

where(r(¢))e~0 is a family of semi-martingales satisfyirigsup. o 7/ (e)| <
0o. The result follows then easily.

Sincegy is not regular, we apply this strategy to a regularization sequenge of
To this end, we first exteng to the whole seR x R” x RZ x R? by setting
for every (¢,x,y,8), o, x,y,8) = 90, x,y,¢) if t <0 andp(t,x,y,g) =
o(T,x,y,g) if t > T. Following the notation given in the Introduction, we define
foralln e N*and(r, x, y, g) e R x RP x RZ x R,

Q+d+1

@n(t,x,y,8)=n /w(/, x,y', 8N potdr1

(C.49)
x(n@t—t,y—y,g—g))di'dy dg'.
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Note from the assumptions made@that(¢,),<n+ Uniformly converges on every
compact subset @& x R” x R2 x R? towardyp. We set

VneN', V(,y g e RxRZ xRY,
(C.5)
35,90 = [ oatx. 3. pCr ) dx.

Thanks to Theorem 2.1, is twice continuously differentiable with respectsto
y andg. Moreover,(@,),en+ Uniformly converges on every compact set toward
asn — 400.

Thanks to Proposition A, we can find a sequence of functia@s), <n+, such
that for everyn € N*,

V(r,y,8) eRxRE xRY,
(C6) Ly@n(t”y’g)‘i‘[(pn_@n](t,7)’78):0,

f[rP On(t,x,y,8)dx=0.

Hence, thanks to Propitign A.1, for everyqg > 2, there exists a consta q)l
only depending offi¢||oo, k, A, A, P andg, such that

(C7) VneN., V(,y,9) eRxRZxRY, 4.ty 8)llag <C).

Thanks to Corollary A.3, we know that for all € N* andg > 2, the function
(t,y,8) — @u(t,-, v, g) is twice continuously differentiable froR x R x R?
into W24(T?) (in particular,¢, andV,¢, are twice continuously differentiable
with respect ta, y andg). Moreover, for ally > 2 andn € N*,

sup [IVi@n(t, -y, Dl2,g + IVy@u(t, -, ¥, ©)ll2,g
(t,y,8)eERxREZ xRd

(C.8) F1Ve@n(t, - 3. ©)ll2g + 1V @ut, -y, @)ll2g

1V @n(t 3. )2 + IVE o @nlt. . ¥, @)ll2.q] < 00

Hence, from the 1t6—Krylov formula [we refer once again to Krylov (1980) and to
Pardoux and Veretennikov (2002)] we have forrat N*, ¢ > 0 andr € [0, T,

ddn(t, X (8), Yi(e), G (e))

1 — 1
(C.9) = ;[LY,(e)fﬁn](f, X:(e),Yi(e), G (e))dt + - dri(n,€)

1 _ 1
= ;[wn — onl(t, Xi(e), Yi(e), Gi(e)) dt + gdrt(n, e),

where(r(n, €)),en+ ¢~0 IS, thanks to Theorem 2.3, to (C.1) and to (C.8), a family
of semimartingales satisfying

(C.10) VneN¥, ccai(n)= sup E sup |r;(n,e)| < oo.

O<e<1l O0=<t<T
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Hence, from (C.7) and (C.10), there existsRn valued sequence, denoted by
(Yn)nen+, such that

(C.11) VO<e <1, E sup

O<r<T
Therefore, from Theorem 2.3, there exists a cons@ng, only depending on
l¢lleo @andT', such that for alln, N) € (N*)2 and O< ¢ < 1,

t _
/O [0 — @nl(s. Xs(e), Ys(£), Gy (&) ds| < evn.

t _
E sup f[w—@](s,xs@),Ys<s>,Gs<s>)ds
0<t<T /0
(C.12) <eyn+ Cc,2<P{ sup |G(e)| = N}
0<t<T

+SU(lg = o] + 15 = GuDt. .. g)}),

whereAy =[0, T]1 x T x {y e R?, |y| < C24} x {g € RY, |g| < N}.
From (C.1), there exists a constant 3, only depending orc 1, ||¢]lco @andT,
such that for alln, N) € (N*)2and O< ¢ < 1,

t —
E sup /O [0 — @15, Xy (€), Yy (e), Gy (e)) ds

O<t<T

(C.13) .
<eyn+ Cc.s(ﬁ + SUH(¢ — @ul + 16 — Gal) (1. x, y,g>}).
AN

Point 1 of Theorem 2.4 easily follows. Point 2 is a direct consequence of point 1.
APPENDIX D: PROOF OF SOLVABILITY PROPERTIES

We now establish the solvability results mentioned in point 1 of Theorem (HP),
in Section 2.5 and in Section 3.3. In particular, we aim to do the following:

1. To prove that the systems of PD&(¢)).~0, €(lim) and(&reg(n))nen+ [recall
that systemséreq(n)),en+ are given in Section 3.3] are uniquely solvable in the
spaceV and to establish that the solutions @f(¢)).-o and & (lim) coincide
with (6;).-0 andé [refer to Sections 2.1 and 2.5 for the definitions(@f).-o
ando].

2. To estimate the solutions of these systems and, in particular, to establish (2.13)
and (3.8).

Solvability of (€(e))e>0, €(lim) and (Ereg(n))nen+. Since other cases are
similar, we just expose the proof of the unique solvability@t). To this end, set
for the sake of simplicity,

V(x,y,2) eRE xR xREF C(x,y,2) = +0)(x,y,2),

(D.1)
F(x,y,2)=(e+ f)(x,y,2).
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We first prove that (1) admits a solution in the spade. For this purpose, we
consider a sequence of functions, denoted(8y,, F,,, o, hm)men, Satisfying
[see, e.g., Delarue (2002b) for the construction of such a sequence].

(#.m1). There exist three constaris . and A and a nonincreasing function
K, only depending ork, K, A and A, such thatC,,, F,,, h,, ando,,
are smooth, with bounded derivatives of any order and satisfy properties
(F¢.1)—(7¢.5) with respect t&, K, » andA.

(#H.m2). (Cpy, F, 0m, hin)men Uniformly converges on every compact set toward
(C,F,o0,H).

Then, we know from Ma, Protter and Yong (1994) [see also Corollary B.7 given
in Delarue (2002b)] that, for every € N, the system of PDESs:

For(¢,x) € [0, T[ xR and¢ e {1, ..., O},

3 (¢m)e 1 02(¢m)e
3 (r,x) + E(am)l,‘/ (x7 om (2, x)) ox; 8x‘,- (t, x)
9 (om
/3(1’”) +(Cm)i(xa(pm(t7x)7 vx(pm(t7x)) ((p )g (tvx)

+ (Fm)é((pm(t, x)’ Vx(/)m (t7 x))= 07
Pm (T, x) = hy(x),

with a,, = 0,,(0,,)*, admits a unique bounded classical solutign e (o,
T1 x RP,R2). Moreover, thanks to Lemma 2.1 of Delarue (2002b), we know that

(D2) Sup”@m”@(1/2,1)([0’T]XRP’RQ) < Q.
meN
Thanks to Theorem 5.1 of Chapter VIl of Ladyzenskaja, Solonnikov and Ural’ceva
(1968), we deduce that there exists @ < 1, only depending o, A andP, such
that

(D3) VO < 8 < T, SUIE]”VX(pm ”@(V/Z’V)([O,T—S]XRP,RQ) < OQ.

me
Finally, thanks to Theorem 9.1 of Chapter IV of Ladyzenskaja, Solonnikov and
Ural’ceva (1968), we prove that

Vg>2,V0<§<T, YR >0,
(D.4)

SUPll@mllwi24 o, 7—s1x Bp(0,R),RQ) < OO
meN

Hence, using a compactness argument, we deduce the existence of a gototion
the systen€ (1) in the spacéy.

Let us now prove thaty = 6, (see Section 2.1 for the definition @k).
For this purpose, fix(r,x) € [0, T[ xRf. Since ¢ and V,¢ are bounded,
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there exists, thanks to Theorem 6.5.1 of Stroock and Varadhan (1979), a triple
(U, W), (2, £,P)), which is a weak solution of the SDE

S
Vselt, T], U, =U; +/ C(Uyr, @(r,Uy), Vyo(r,Uy,)) dr
t
(D.5) s
+/ O'(Ur’ o(r, Ur))dWr
t

Let us define for every € N,
(D.6) t(n)=inf{t <s <T, | X, —x|>n}, (infa=T).

Thanks to the 1t6—Krylov formula [Theorem 1, Section 10, Chapter Il of Krylov
(1980)] and to the system of PDES1), we know that for alk € N and 0< § <
T —1,

Vselt, t(n) A(T —6)],
@(s, Ug) = p(t(n) A (T —8), Ur(myn(T—5))

t(m)A(T—9)
(D.7) +/ F(Un o, Uy), Vxo(r, Ur))dr
s

T(m)A(T—9)
— / Vio(r,Up)o (U, @(r, Uy)) dW,.
S

Lettings — 0 andn — +o0, we deduce from the boundednesgadndV, ¢ and
the continuity ofy that

T
Vselt,T], @(s,Us) = H(Ur) +/ F(Uy, @(r,Uy), Veo(r,Uy))dr
(D.8) .
—/ Vio(r,Up)o (Uy, (r, Uy)) dW,.

Hence, (Uy, ¢(s, Us), Vio(s, Ug))i<s<r 1S @ “weak solution” of the FBSDE
E(1, ¢, x). From Delarue [(2002b), Remark 2.7] we deduce that 6.

Regularity of (V,60:)e~0 and V,0. We first investigate the regularity of
V,61: thanks to (D.3), we deduce thatis continuously differentiable with respect
to x on [0, T[ x R?, and thatV,6; is Holderian on every sdD, T — 5] x R?,
with 0 < n < T. Actually, this is also true for the function®(s)).-o ando: in
particular, there exists a constank(®@ < 1, only depending on, A andP, such
thatV,0 satisfies (2.13) for every > 0.

Regularity of (¢&,)nen+. Let us finally investigate the special caseggpffor
a givenn € N* (see Section 3.3 for the definition @f,): keep the notation
introduced in the section “Solvability @€ (¢)).~0, €(lim) and(&reg(n)),en+" and
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assume in addition to#.1)—(#.5) that the coefficient’ satisfiesv (x, y, y’, z) €
R? x RZ x RC x RE*P,

(D.9) |F(x,y,2) — F(x,y, 2| <Kyl + y'| + 1lzDly — ¥l

and thatH is smooth, with bounded derivatives of every order. Then, from
Theorem 5.1, Chapter VII of Ladyzenskaja, Solonnikov and Ural’ceva (1968), we
can assume without loss of generality that

(DlO) V0 < n< 1, SuNp”(pm”@(1‘*'”/2’2‘*'”)([O,T]XRP,RQ) < Q.
me

Applying this regularization procedure teq(n), we deduce that, for every
0<n<1,¢ e /22tn (0, 7] x RP, R?) and that (3.8) holds.

Convergence of (&n)nen+. It is readily seen that (D.2)—(D.4) hold with
om replaced bycg,,. Hence, from a compactness argume,),cn+ uniformly
converges on every compact subset[@f7] x R” toward 8 and (V,&,)nen+
uniformly converges on every compact subsefilof'[ x R towardV, 6.
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