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CAMERON–MARTIN THEOREM ON LOOP SPACES 1
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Dedicated to my grand father Li Xun-Cheng

We first prove theLp-convergence (p ≥ 1) and a Fernique-type expo-
nential integrability of divergence functionals for all Cameron–Martin vec-
tor fields with respect to the pinned Wiener measure on loop spaces over
a compact Riemannian manifold. We then prove that the Driver flow is a
smooth transform on path spaces in the sense of the Malliavin calculus and
has an∞-quasi-continuous modification which can be quasi-surely well de-
fined on path spaces. This leads us to construct the Driver flow on loop spaces
through the corresponding flow on path spaces. Combining these two results
with the Cruzeiro lemma [J. Funct. Anal.54 (1983) 206–227] we give an
alternative proof of the quasi-invariance of the pinned Wiener measure un-
der Driver’s flow on loop spaces which was established earlier by Driver
[Trans. Amer. Math. Soc.342(1994) 375–394] and Enchev and Stroock [Adv.
Math. 119 (1996) 127–154] by Doob’sh-processes approach together with
the short time estimates of the gradient and the Hessian of the logarith-
mic heat kernel on compact Riemannian manifolds. We also establish the
Lp-convergence (p ≥ 1) and a Fernique-type exponential integrability theo-
rem for the stochastic anti-development of pinned Brownian motions on com-
pact Riemannian manifold with an explicit exponential exponent. Our results
generalize and sharpen some earlier results due to Gross [J. Funct. Anal.102
(1991) 268–313] and Hsu [Math. Ann.309 (1997) 331–339]. Our method
does not need any heat kernel estimate and is based on quasi-sure analysis
and Sobolev estimates on path spaces.
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1. Introduction. Let M be a compact connected Riemannian manifold and
let m0 ∈ M be a fixed point. Let∇ be the Levi–Civita connection onM . The
orthonormal frame bundle overM is denoted byO(M). The path space (resp., the
loop space) overM is defined byPm0(M) = {γ ∈ C([0,1],M) :γ (0) = m0} (resp.,
Lm0(M) = {γ ∈ Pm0(M) :γ (1) = m0}). LetH be theRd -valued Cameron–Martin
space, that is, the set of absolutely continuous functionsh : [0,1] → Rd such that
h(0) = 0 andḣ ∈ L2([0,1]). LetH0 be its subspace with zero values at time 1, that
is, H0 = {h ∈ H :h(1) = 0}.

Let � be the Laplace–Beltrami operator onM . The Wiener measure on
Pm0(M), denoted byµ, is the law ofM-valued Brownian motion (with generator
�/2) starting atm0. The pinned Wiener measure onLm0(M), denoted byν, is
the law of the conditional Brownian motion{γ (s), s ∈ [0,1]} on M such that
γ (0) = γ (1) = m0. Intuitively, we have

ν(·) = µ
(·|γ (1) = m0

)
.

Rigorously, ifpt(x, y) denotes the heat kernel onM , then for anyα < 1,

dν

dµ

∣∣∣∣
Fα

(γ ) = p1−α(γ (α),m0)

p1(m0,m0)
,(1.1)

whereFα = σ(γ (s), s ∈ [0, α]). For details, see, for example, [2] and [7].
For µ-a.s.γ ∈ Pm0(M) [resp.,ν-a.s.γ ∈ Lm0(M)], one can use the Itô SDE

theory to define the stochastic parallel transportUs(γ ) :Tm0M → Tγ (s)M as the
uniqueO(M)-valued stochastic process satisfying the following covariant SDE:

∇◦dγ (s)Us(γ ) = 0,

with the initial conditionU0(γ ) = IdTm0M , whereIdTm0M is the identity transform
over Tm0M . See, for example, [2]. For allh ∈ H (resp.,h ∈ H0), the Cameron–
Martin vector fieldDh on Pm0(M) [resp., Lm0(M)] is defined by: forµ-a.s.
γ ∈ Pm0(M) [resp.,ν-a.s.γ ∈ Lm0(M)],

Dh(γ )(s) = Us(γ )h(s) ∀ s ∈ [0,1].(1.2)

In [6, 8, 14], the classical Cameron–Martin theorem has been generalized to
the path space(Pm0(M),µ). That is to say, for all fixedh ∈ H , the vector field
Dh generates a global flow{�t, t ∈ R} which can beµ-a.s. well defined on
Pm0(M) (see Section 6) under which the Wiener measure is quasi-invariant and an
integration by parts formula holds. Concerning the same issue on the loop space
(Lm0(M), ν), Driver [7] proved that for anyh ∈ C1 ∩ H0 (the set of Lipschitz
Cameron–Martin vectorsh ∈ H0), the vector fieldDh generates a global flow
{�̃t : t ∈ R} onLm0(M) such that, forν-a.s.γ ∈ Lm0(M),

˙̃�t(γ ) = Dh

(
�̃t (γ )

)
, �̃0(γ ) = γ,
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and the Wiener measureν is quasi-invariant under the flow̃�t ; that is, the measure
(�̃t )∗ν is equivalent toν. Moreover, an integration by parts formula holds on
(Lm0(M), ν): for two cylindrical functionalsF andG onLm0(M), we have

Eν(DhFG) = Eν

(
F

(−DhG + δ(h)G
))

and

d(�̃t )∗ν
dν

(γ ) = exp
(∫ t

0
δ(h)

(
�̃−s(γ )

)
ds

)
,(1.3)

where δ(h) is the so-called divergence functional on(Lm0(M), ν) defined as
follows: for ν-a.s.γ ∈ Lm0(M),

δ(h)(γ ) =
∫ 1

0

(
ḣ(s) + 1

2 RicUs(γ )(h(s)), dx(s)
)
.(1.4)

Here Ric denotes the Ricci curvature form overO(M) and{x(s), s ∈ [0,1]} is the
stochastic anti-development of{γ (s), s ∈ [0,1]}, denoted byx = I−1(γ ), and is
given by the following Stratonovich stochastic integral:

x(s) =
∫ s

0
U−1

r (γ ) ◦ dγr, s ∈ [0,1].(1.5)

The complete theory of integration by parts formula on the loop space
(Lm0(M), ν) for all the Cameron–Martin vector fieldsDh with h ∈ H0 was first
proved by Enchev and Stroock [9], where the authors have also proved the quasi-
invariance of the pinned Wiener measure under the flow generated byDh. In [15]
and [16], Hsu gave another approach to integration by parts formula on loop spaces
which avoids the problem of the quasi-invariance of the pinned Wiener measure on
the loop space. Let us mention that all the approaches appearing in [7, 9, 15, 16]
relied strongly on the short time upper bound estimates on the gradient and the
Hessian of the logarithmic of the heat kernel, and all these authors used the Doob
h-processes method for conditional Brownian motion on a compact Riemannian
manifold.

The purpose of this paper is to study the asymptotic behavior of divergence
functionals, Driver flow and Cameron–Martin theorem on loop spaces as well
as some related problems by a different approach. First, we will use the
Airault–Malliavin–Sugita–Watanabe inequality (see Section 2) and some Sobolev
estimates on the divergence functionals on the path space (see Section 3) to prove
the Lp-convergence (p ≥ 1) and the Fernique-type exponential integrability of
divergence functionals with respect to the pinned Wiener measure on loop spaces;
see Sections 4 and 5. Second, we will prove that the Driver flow{�t, t ∈ R} is a
smooth transform on path spaces in the sense of the Malliavin calculus and has
∞-quasi-continuous version denoted by{�̃t , t ∈ R} which can be quasi-surely
well defined up to a slim subset of the path spacePm0(M). Moreover, we prove
that if h ∈ H0, then {�̃t , t ∈ R} actually realizes the Driver flow generated by
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the vector fieldDh on the loop space(Lm0(M), ν); see Sections 6 and 7. Third,
we will combine these two results with the Cruzeiro lemma [4, 24] to give an
alternative approach to the complete Cameron–Martin theorem on the loop space
(Lm0(M), ν) avoiding use of any heat kernel estimate; see Section 7. Finally, we
use our method to establish theLp(ν)-convergence (p ≥ 1) and a Fernique-type
exponential integrability theorem for the stochastic anti-development of pinned
Brownian motions on a compact Riemannian manifold equipped with any torsion-
skew symmetric (TSS) connection; see Section 8. Our results generalize and
sharpen some earlier results due to [13, 15, 16]. Our method is inspired by [25],
where the authors first established the quasi-invariance of the pinned Wiener
measure on the loop group over a compact Lie group under the left or the right
action of a finite energy loop (which is nothing else than the Driver flow on the
loop group). In some sense, it leads us to getsharp or betterestimate than the
direct approach based on Doob’sh-theory and heat kernel estimates: see Section 8
and Section 9.

To state our main results, let us follow Hsu [15, 16] to introduce a sequence of
functionals as follows: for anyh ∈ H ands < 1, let

δs(h)(γ ) =
∫ s

0

(
ḣ(s) + 1

2 RicUs(γ )(h(s)), dx(s)
)
, x = I−1(γ ).

Note thatδs(h) is µ-a.s. well defined onPm0(M). Sinceν is equivalent toµ on
Fs , compare(1.1), we see thatδs(h) is also well defined forν-a.s.γ ∈ Lm0(M).

Now we are in a position to state our main results of this paper.

THEOREM 1.1. Let h ∈ H0. Then the divergence functionalδ(h) [formally
given by(1.4)] can be realized as theLp(ν)-limit of δs(h) ass → 1 for all p ≥ 1.
In fact, for all p ≥ 1, there is a constantCp such that, for all h ∈ H0,

‖δs(h) − δ(h)‖Lp(ν) ≤ Cp

(∫ 1

s
|ḣ(t)|2 dt

)1/2

and

‖δ(h)‖Lp(ν) ≤ Cp‖h‖H0.

Moreover, for all

λ < λ0 = 1

(2+ ‖Ric‖∞)‖h‖H

,

we have

Eν

[
exp

(
λ|δ(h)|2)] < +∞,

or, equivalently,

lim
t→∞

1

t2
logν

({
γ ∈ Lm0(M) : |δ(h)| > t

}) ≤ − 1

(2+ ‖Ric‖∞)‖h‖H

.
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COROLLARY 1.2. For all p > 1, the gradient operatorD on the loop space
Lm0(M) is closable fromLp(Lm0(M), ν) into Lp(Lm0(M),H0, ν).

COROLLARY 1.3. For all h ∈ H0 and allλ > 0, we have

Eν

[
exp

(
λ|δ(h)|)] < ∞.

THEOREM 1.4. For anyh ∈ H , there exists an∞-quasi-continuous version
of the Driver flow{�t, t ∈ R} which can be well defined up to a slim subset of
Pm0(M).

Let {�̃t , t ∈ R} be a fixed∞-quasi-continuous version of{�t, t ∈ R}. By the
disintegration principle of the Wiener measure,{�̃t , t ∈ R} can beν-a.s. well
defined onLm0(M).

THEOREM 1.5. Let h ∈ H0. Then{�̃t , t ∈ R} is the flow generated by the
vector fieldDh on Lm0(M). Moreover, the pinned Wiener measureν is quasi-
invariant under{�̃t , t ∈ R}. More precisely, if we let

Kt := d(�̃t )∗ν
dν

,

then

Kt = exp
(∫ t

0
δ(h)

(
�̃−s(γ )

)
ds

)
, ν-a.s. γ ∈ Lm0(M),

and for allp > 1 with the conjugate exponentq, that is, 1
p

+ 1
q

= 1, we have

‖Kt‖p
Lp(ν) ≤ Eν

[
epqt|δ(h)|].

REMARK 1.1. All the above results [as well as the Sobolev norms and
capacities comparison inequalities(6.17) and (6.18) in Section 6] remain true
if we replace the Levi–Civita connection by any torsion skew-symmetric (TSS)
connection. In this case, we need only to replace the Ricci curvature Ric of the
Levi–Civita connection by the Ricci curvaturêRic of the dual connection̂∇ given
by

∇̂XY = ∇XY − T (X,Y ), X,Y ∈ 	(T M),

whereT is the torsion of our given TSS connection∇. Indeed, we have announced
Theorem 1.1 in [20] (without giving the precise valueλ0) in this setting with
an equivalent expression of the divergence functionalδ(h) as used in [7]. In
particular, we recapture the Malliavin–Malliavin theorem on the quasi-invariance
of the pinned Wiener measure on loop group over a compact Lie group.
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The following result generalizes and sharpens some earlier results due to [13],
where the author established theLp(ν)-convergence and a Fernique-type exponen-
tial integrability theorem for the stochastic anti-development of pinned Brownian
motions on a compact Lie group.

THEOREM 1.6. Let M be a compact Riemannian manifold equipped with a
TSS connection, m ∈ N, m ≥ 2, α ∈ ( 1

2m
, 1

2). Then for any

λ < λ0 := 1
2 inf{‖w‖2

H :w ∈ X, ‖w‖2m,α = 1},
we have

Eν[exp(λ‖x‖2
2m,α)] < +∞,

where

‖x‖2m,α =
[∫ 1

0

∫ 1

0

‖x(t) − x(s)‖Rd

|t − s|1+2mα
dt ds

]1/2m

and

x(s) =
∫ 1

0
U−1

s (γ ) ◦ dγ (s), s ∈ [0,1], ν-a.s. γ ∈ Lm0(M).

Moreover, for anyλ < 1
2, we have

Eν

[
exp

(
λ sup

s∈[0,1]
‖x(s)‖2

)]
< +∞.

In addition, x(s) converges tox(1) in Lp(ν) for all p ≥ 1 ass tends to1 and there
exists a constantCp such that

‖x(s) − x(1)‖Lp(ν) ≤ Cp(1− s)1/2.

2. The Airault–Malliavin–Sugita–Watanabe inequality. Let X = {x ∈
C([0,1],Rd) :x(0) = 0} be the Wiener space, and letµ0 be the Wiener measure
on X. For anyr ∈ N andp > 1, we letWr,p(X) denote the(r,p)-Sobolev space
on the Wiener spaceX with the Sobolev norm‖ · ‖Wr,p(X). Let A1, . . . ,Ad be
the canonical horizontal vector fields onO(M), and letr0 ∈ O(M) be a fixed
orthonormal frame overm0. Consider the horizontal SDE onO(M):

drx(s) =
d∑

i=1

Ai

(
rx(s)

) ◦ dxi(s),

rx(0) = r0.

Let γx(s) := π(rx(s)), s ∈ [0,1]. Then it is well known that{γx(s), s ∈ [0,1]}
is a Brownian motion onM starting atm0. The Wiener measureµ on the path
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spacePm0(M) = {γ ∈ C([0,1],M) :γ (0) = m0} is given by the law of{γx(s), s ∈
[0,1]}, that is,µ = I∗µ0, whereI :X → Pm0(M) is the Itô map given by

I (x) = γx, µ0-a.s.x ∈ X.

Consider the followingM-valued Wiener functional�:

�(x) = γx(1).

By [1], � ∈ W∞,∞(X,M) and� is nondegenerated, that is,(
Det[�(x)])−1 ∈ W∞(X,M),

whereW∞,∞(X,M) is the set of all smoothM-valued Wiener functionals in the
sense of Malliavin calculus, and

Det[�(x)] = √
det[∇�(x) · ∇�(x)τ ],

where the determinant on the right-hand side is taken with respect to the
Riemannian metric onT�(x)M and∇�(x)τ denotes the adjoint of∇�(x) :H →
T�(x)M .

Recall that iff ∈ W∞,∞(X,M), thenf has an∞-quasi-continuous modifica-
tion which can be well defined outside a slim subset ofX. Moreover, iff1, f2 are
two ∞-quasi-continuous modifications off , thenf1 andf2 only differ on a slim
set. Let�∗ be any quasi-continuous modification of�. The following co-area for-
mula is well known (see, e.g., [1, 23, 24]): there exists a family of area measures
denoted by{day(·), y ∈ M} [where eachday(·) is supported on the submanifold
Sy = �∗−1(y)] such that, for anyu ∈ W∞(X) andv ∈ C∞(M),∫

X
u(x)v(�(x))[Det�](x) dµ0(x) =

∫
M

v(y)

∫
�∗−1(y)

u∗(x) day(x) dy,

whereu∗ denotes any∞-quasi-continuous modification ofu. Let

νy(dx) = (
Det[�](x)

)−1
day(x).

Then for all y ∈ M , νy is a Borel probability measure supported on the
submanifoldSy = �∗−1(y). Moreover,νy has no charge on any slim subset ofX.

By [22, 33], the Itô mapI :X → Pm0(M) is smooth in the sense of the Malliavin
calculus and has an∞-quasi-continuous modification. Throughout this paper, we
let Ĩ denote a fixed∞-quasi-continuous modification of the Itô mapI . Using
the dyadic polygonal approximation ofM-valued Brownian motion, and by a
similar argument used in Section 4 in [30], one can prove that the stochastic anti-
development map given by(1.5) has an∞-quasi-continuous version (denoted by
Ĩ−1) which can be quasi-surely well defined onPm0(M) and satisfies̃I ◦ I = IdX

quasi-surely (i.e., except on a slim set ofX). By this and using the capacity
comparison inequality due to the author [22], we can easily prove that, for
two different versions of∞-quasi-continuous modification ofI , sayI1 and I2,
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I1|Sm0
(Sm0) only differs from I2|Sm0

(Sm0) on a slim subset ofPm0(M). Indeed,
if we let S = {x : I1(x) = I2(x)}, thenS is a slim set ofX. Let O ⊂ X be an
open set containingS and with capacityCr,p(O) < ε for all r ∈ N andp > 1. By
the capacity comparison inequality between the path space and the Wiener space
(see [22]), we have

Ĉr,p

(
Ii(O)

) ≤ αC2r,p+1
(
I−1
i ◦ Ii(O)

)
, i = 1,2,

whereα = α(r,p) is a constant and̂Cr,p is the(r,p)-capacity on the path space
Pm0(M) (for its definition, see [22]). Note thatI−1

i ◦ Ii = IdX holds quasi-surely
on X, i = 1,2. HenceC2r,p+1(I

−1
i ◦ Ii(O)) = C2r,p+1(O) < ε, i = 1,2. Since

ε is arbitrary, we get̂Cr,p(Ii(S)) = 0, ∀ r ∈ N, p > 1, i = 1,2. Thus, Ĩ |Sm0
,

the restriction ofĨ on the submanifoldSm0 = {x ∈ X :γx(1) = m0}, is νm0-a.s.
well defined. Moreover,̃I |Sm0

: (Sm0, νm0) → (Lm0(M), ν) is a measure-theoretic

isomorphism. That is to say,̃I |Sm0
(S0) only differs fromLm0(M) on a slim set of

the path spacePm0(M) and

ν = (
Ĩ |Sm0

)
∗νm0.

The following result is due to [1, 33].

THEOREM 2.1. There exist a pair(p, r) ∈ (1,+∞)×N and a constantC > 0
such that, for anyf ∈ W∞(X,R+), we have∫

Sm0

f ∗(x)νm0(dx) ≤ C‖f ‖Wr,p(X),

wheref ∗ is any∞-quasi-continuous modification off .

In fact, using the Watanabe generalized distribution theory on Wiener space,
we can even specify the constantC and the value of the pair(r,p) appearing in
Theorem 2.1 as follows. To this end, using the Nash–Whitney embedding theorem,
we assume thatM is isometrically embedded intoRl with l ≥ d .

THEOREM 2.2 (Airault–Malliavin–Sugita–Watanabe inequality).For all
p > 1, k ∈ N andf ∈ W2[l/2]+2+2k,p(X), we have∣∣∣∣∫

Sm0

f ∗(x) dνm0(x)

∣∣∣∣ ≤ C
∥∥δm0 ◦ �

∥∥−2[l/2]−2−2k,p/(p−1)‖f ‖2[l/2]+2+2k,p,

where

C = [p1(m0,m0)]−1.



CAMERON–MARTIN ON LOOP SPACES 2417

PROOF. For anyy ∈ M ⊂ Rl , let δy be the Dirac delta function at pointy.
Then δ ∈ S−2r (R

l) for all r ≥ [ l
2] + 1, whereS−2r (R

l) is the topological dual
of S2r (R

l) (the completion of the Schwartz spaceS(Rl) of rapidly decreasing
C∞-functions onRl by the norm‖·‖2r defined by‖φ‖2r = ‖(1+|x|2−�)rφ‖∞).
See, for example, the proof of Theorem 4.2 in [32] and [34], Remark 2.2. Let
F ∈ W∞,∞(X,M) be a smooth nondegenerate Wiener functional. Then for allk =
0,1, . . . andp > 1, the mapy ∈ M → δy(F ) ∈ W−2[l/2]−2−2k,p(X) is 2k-times
continuous differentiable. Hence for anyf ∈ D2[l/2]+2+2k,p(X) we have∣∣∣∣∫

X
f (x)δy(F (x)) dµ0(x)

∣∣∣∣ ≤ ‖δy ◦ F‖−2[l/2]−2−2k,p/(p−1)‖f ‖2[l/2] + 2+ 2k,p.

In particular, takingF = � and using the fact that

νm0(dx) = δm0(�(x))∫
X δm0(�(x)) dµ0(x)

dµ0(x),

we deduce the Airault–Malliavin–Sugita–Watanabe inequality with the constantC

given by (cf. [34])

C =
[∫

X
δm0(�(x)) dµ0(x)

]−1

= [p1(m0,m0)]−1. �

3. Sobolev estimates of divergence functionals on path spaces.Follow-
ing [22], for anyr ∈ N andp > 1, we letDr,p(Pm0(M)) denote the(r,p)-Sobolev
space onPm0(M) with the Sobolev norm‖ · ‖Dr,p(Pm0(M)) defined by

‖F‖Dr,p(Pm0(M)) =
r∑

k=0

∥∥‖DkF‖H⊗k

∥∥
p.

For any fixed t ∈ [0,1], regardingx → rx(t) as anO(M)-valued Wiener
functional, we haver·(t) ∈ W∞,∞(X,O(M)). More precisely, for anyn ∈ N and
anyh,h1, . . . , hn ∈ H , the followingH -directional derivatives exist:

∇hrx(t) :=
{

d

dε
rx+εh(t)

}∣∣∣∣
ε=0

,

...

∇h1...hnrx(t) :=
{

Dn

∂ε1 · · · ∂εn

rx+∑n
i=1 εihi

(t)

}∣∣∣∣
ε1=···=εn=0

,

where D
∂εi

denotes the Levi–Civita covariant derivative along the smooth curve
εi �−→ rx+εihi

(t) onO(M). Moreover, we have the following proposition:

PROPOSITION 3.1 [22]. There existDj1,...,jn
s1,...,sn rx(t) ∈ L2([0,1]n, Trx(t)O(M))

such that:
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(i) D
j1,...,jn
s1,...,sn rx(t) is adapted with respect toFt = σ(x(s), s ∈ [0, t]) for any

fixeds1, . . . , sn ∈ [0,1] and0 ≤ j1, . . . , jn ≤ n. Moreover,

Dj1,...,jn
s1,...,sn

rx(t) = 0 if s1 ∨ · · · ∨ sn ∈ [t,1];
(ii) for anyh1, . . . , hn ∈ H ,

〈∇nrx(t), h1 ⊗ · · · ⊗ hn〉H⊗n

= ∑
j1,...,jn

∫ t

0
· · ·

∫ t

0
Dj1,...,jn

s1,...,sn
rx(t)ḣ

j1
1 (s1) · · · ḣjn

n (sn) ds1 · · ·dsn;

(iii) for anyp ≥ 1, we have

sup
s1,...,sn∈[0,1]

E

[
sup

s1∨···∨sn≤s≤1

∥∥Dj1,...,jn
s1,...,sn

rx(s)
∥∥p

]
< +∞,(3.1)

where ‖Dj1,...,jn
s1,...,sn rx(s)‖ denotes the Riemannian norm of the vector field

D
j1,...,jn
s1,...,sn rx(s) with respect to the Sasake Riemannian metric onO(M) ( for its

definition, see[22]).

Let e1, . . . , ed be the standard orthonormal basis ofRd , and let R be the
Riemannian curvature tensor onM . For anyr ∈ O(M), the Ricci curvature over
the framer is a real matrix given by

Ricr(a) =
d∑

i=1

r−1 ◦ R(rei, ra) ◦ rei ∀a ∈ Rd .

Let

J (x, t) = 1
2 Ricrx(t) .

By the chain rule and Proposition 3.1, we haveJ (x, t) ∈ W∞(X,M(d, d)), where
M(d,d) denotes the set of alld ×d real matrices. Moreover, we have the following
proposition:

PROPOSITION 3.2. The Malliavin derivativesD
j1,...,jn
s1,...,sn J (x, t) belong to

L2([0,1]n,M(d, d)) and are adapted with respect toFt = σ(x(s), s ∈ [0, t]) for
any fixeds1, . . . , sn ∈ [0,1] and any0≤ j1, . . . , jn ≤ n. For anyh1, . . . , hn ∈ H ,

〈∇nJ (x, t), h1 ⊗ · · · ⊗ hn〉
=

∫ t

0
· · ·

∫ t

0
Dj1,...,jn

s1,...,sn
J (x, t)ḣ

j1
1 (s1) · · · ḣjn

n (sn) ds1 · · ·dsn.

Moreover, for anyp ≥ 1,

sup
s1,...,sn∈[0,1]

E

[
sup

s1∨···∨sn≤t≤1

∥∥Dj1,...,jn
s1,...,sn

J (x, t)
∥∥p
H ·S

]
< +∞.(3.2)
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PROOF. The proof can be easily given by the chain rule and using Proposi-
tion 3.1. In particular,(3.1) yields(3.2). �

Let h ∈ H and Dh be the vector fields onPm0(M) defined by(1.2). By
integration by parts formula (see, e.g., [2, 6, 8, 10, 14]), theL2(µ) adjoint ofDh

is given byD∗
h = −Dh + δ(h), whereδ(h) is the divergence functional. Moreover,

for µ-a.s.γ ∈ Pm0(M), we have

δ(h)(γ ) =
∫ 1

0

(
ḣ(τ ) + 1

2 Ricrx(τ) h(τ ), dx(τ )
)
, x = I−1(γ ).

Now we state the main result in this section.

THEOREM 3.3. For anyr ∈ N,p > 1, there is a constantC > 0 such that, for
all h ∈ H , we have

‖δ(h)‖Dr,p(Pm0(M)) ≤ C‖h‖H .

PROOF. Let δ̂(h) = δ(h) ◦ I . By the Sobolev norm comparison theorem
(see [22]), we have

‖δ(h)‖Dr,p(Pm0(M)) ≤ αr,p‖δ̂(h)‖W 2r,p+1(X),

whereαr,p is a constant. Hence we need only to prove that, for anyr ∈ N,p ≥ 2,

‖δ̂(h)‖Wr,p(X) ≤ C‖h‖H .(3.3)

By induction and direct computation, it can be easily shown that, for anyn ≥ 2
andh,h1, . . . , hn ∈ H , we have

Dsδ̂(h)(x) = ḣ(s) + J (x, s)h(s) +
∫ 1

0
〈DsJ (x, t)h(t), dx(t)〉,

Dj1,...,jn
s1,...,sn

δ̂(h)(x) =
∫ 1

0

〈
Dj1,...,jn

s1,...,sn
J (x, t)h(t), dx(t)

〉
(3.4)

+
n∑

i=1

(
D

j1,...,ĵi ,...,jn

s1,...,ŝi ,...,sn
J (x, si)h(si)

)ji ,

where we use the notation(a1, . . . , ad)j := aj , j = 1, . . . , n.
By the Burkholder–Davis–Gundy inequality, we have‖δ̂(h)‖p ≤ C‖h‖H . It

remains to prove that, for anyn ≥ 1, p ≥ 2, there is a constantC > 0 such that∥∥‖∇nδ̂(h)‖H ·S
∥∥
Lp(µ0)

≤ C‖h‖H .(3.5)
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Below we only give a proof of(3.5) for n ≥ 2,p ≥ 2. The proof for the case of
n = 1,p ≥ 2 is analogous. By definition, we have

‖∇nδ̂(h)‖p
H ·S =

[ ∑
j1,...,jn

∫
[0,1]n

∣∣Dj1,...,jn
s1,...,sn

δ̂(h)
∣∣2 ds1 · · · dsn

]p/2

≤ 2p/2

[ ∑
j1,...,jn

∫
[0,1]n

∣∣∣∣∫ 1

0

〈
Dj1,...,jn

s1,...,sn
J (x, t)h(t), dx(t)

〉∣∣∣∣2ds

]p/2

+ 2p/2

[ ∑
j1,...,jn

n∑
i=1

∫
[0,1]n

∣∣(Dj1,...,ĵi ,...,jn

s1,...,ŝi ,...,sn
J (x, si)h(si)

)ji
∣∣2 ds

]p/2

≤ I1 + I2.

By the Hölder inequality and the Burkholder–Davis–Gundy inequality, we have

I1 = E

[∫
[0,1]n

∣∣∣∣∫ 1

0

〈
Dj1,...,jn

s1,...,sn
J (x, t)h(t), dx(t)

〉∣∣∣∣2 ds

]p/2

≤
∫
[0,1]n

E

∣∣∣∣∫ 1

0

〈
Dj1,...,jn

s1,...,sn
J (x, t)h(t), dx(t)

〉∣∣∣∣p ds

≤ C

∫
[0,1]n

E

[∫ 1

0

∣∣Dj1,...,jn
s1,...,sn

J (x, t)h(t)
∣∣2 dt

]p/2

ds

≤ C‖h‖p
H

∫
[0,1]n

E

(
sup

t∈[∨si ,1]
∣∣Dj1,...,jn

s1,...,sn
J (x, t)

∣∣p)
ds [by (3.2)]

≤ C‖h‖p
H .

Similarly, we have

I2 = E

[∫
[0,1]n

∣∣(Dj1,...,ĵi ,...,jn

s1,...,ŝi ,...,sn
J (x, si)h(si)

)ji
∣∣2ds

]p/2

≤ E

[∫ 1

0

(
sup

si∈[∨sj ,1]
∣∣Dj1,...,ĵi ,...,jn

s1,...,ŝi ,...,sn
J (x, si)

∣∣2)h(si) dsi

]p/2

≤ ‖h‖p
H sup

sj ∈[0,1]
E

[
sup

si∈[∨sj ,1]
∣∣Dj1,...,ĵi ,...,jn

s1,...,ŝi ,...,sn
J (x, si)

∣∣p]
[by (3.2)]

≤ C‖h‖p
H .

Combining the above inequalities forI1 andI2, we obtain(3.5) and hence(3.3).
�
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PROPOSITION3.4. For anyn ∈ N,p > 1, there is a constantC > 0 such that,
for all h ∈ H , we have∥∥∥∥∫ s2

s1

〈
ḣ(t) + 1

2 Ricrx(t)(h(t)), dx(t)
〉∥∥∥∥

Dr,p(Pm0(M))

(3.6)

≤ C

[(∫ s2

s1

|ḣ(t)|2 dt

)1/2

+
(∫ s2

s1

|h(t)|2 dt

)1/2]
.

PROOF. The proof is similar to the one of Theorem 3.3. �

COROLLARY 3.5. The functionalδ(h) has an∞-quasi-continuous modifica-
tion which can beν-a.s. well defined onLm0(M).

PROOF. By Theorem 3.3,δ(h)∈D∞,∞(Pm0(M))= ⋂
r∈N,p>1D

r,p(Pm0(M)).
Thus, δ(h) is a smooth functional onPm0(M). Hence, it has an∞-quasi-
continuous modification (see [22]) which can be well defined outside of a slim
set. Thus, we obtain aν-a.s. well-defined functional on the loop spaceLm0(M).

�

4. The Lp(ν)-convergence of divergence functionals.For anyh ∈ H0 and
s < 1, the following functionals are well defined forµ-a.s.γ ∈ Pm0(M):

δs(h)(γ ) =
∫ s

0

(
ḣ(τ ) + 1

2 Ricrx(τ) h(τ ), dx(τ )
)
, x = I−1(γ ).(4.1)

Sinceµ andν are equivalent onFs = σ(γx(τ ), τ ≤ s), δs(h) is alsoν-a.s. well
defined onLm0(M). The main technique part in Hsu’s proof of the integration by
parts formula on the loop space (see Proposition 4.1 in [15]) is to prove that, as
s → 1, the sequence{δs(h)} converges inL1(ν) to a limit which belongs toL2(ν).
In view of this, forν-a.s.γ ∈ Lm0(M), Hsu definedδ(h)(γ ) as theL1(ν)-limit of
δs(h)(γ ) and then proved thatδ(h) is nothing else than the divergence functional
appearing in an integration by parts formula onLm0(M).

The purpose of this section is to prove that, for allp ≥ 1, ass → 1 the sequence
{δs(h)} converges toδ̃(h) in Lp(ν), where δ̃(h) is an ∞-quasi-continuous
modification of δ(h) constructed by the quasi-sure analysis principle which is
ν-a.s. well defined onLm0(M) (see Corollary 3.5). Moreover, we prove that̃δ(h)

satisfies the Driver–Enchev–Stroock–Hsu integration by parts formula on the loop
space.

THEOREM 4.1. For anyp ≥ 1, there exists a constantCp > 0 such that, for
all h ∈ H , we have

‖δ̃(h)‖Lp(ν) ≤ Cp‖h‖H .(4.2)
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Moreover, for anyh ∈ H0,

‖δs(h) − δ̃(h)‖Wr,p(X) ≤ C

(∫ 1

s
|ḣ(t)|2 dt

)1/2

,(4.3)

‖δs(h) − δ̃(h)‖Lp(ν) ≤ C

(∫ 1

s
|ḣ(t)|2 dt

)1/2

.(4.4)

PROOF. By the Hölder inequality, we need only to prove Theorem 4.1 for
p = 2n, n ∈ N. By Theorem 2.1, there existr ∈ N andq > 1 such that

‖δ̃(h)‖p
Lp(ν) ≤ C

∥∥(
δ̂(h)

)p∥∥
Wr,q(X).

It remains to prove that, for anyr ∈ N andq > 1,∥∥∇r
(
δ̂(h)

)p∥∥
Lq(µ0)

≤ C‖h‖p
H .(4.5)

By the Burkholder–Davis–Gundy inequality, we have∥∥(
δ̂(h)

)p∥∥
Lq(µ) ≤ C‖h‖p

H .(4.6)

Thus(4.5) holds forr = 0 andq > 1. Now we prove(4.5) for r = 1. By the Hölder
inequality, we have∥∥∇(

δ̂(h)
)p∥∥

Lq(µ0)
= ∥∥p(

δ̂(h)
)p−1∇ δ̂(h)

∥∥
Lq(µ0)

≤ p
∥∥(

δ̂(h)
)p−1∥∥

L2q (µ0)
‖∇ δ̂(h)‖L2q (µ0)

≤ pC‖δ̂(h)‖p−1
L2(p−1)q (µ0)

‖h‖H [using (3.5) and (4.6)]

≤ pC‖h‖p
H .

In general, for anyk ∈ N, we have

∇k+1f 2n = 2n∇kf 2n−1 ⊗ ∇f + 2nf 2n−1∇k+1f

= 2n(2n − 1)∇k−1f 2n−2 ⊗ ∇f ⊗ ∇f

+ 2n(2n − 1)f 2n−2∇kf ⊗ ∇f + 2nf 2n−1∇k+1f.

Thus, by induction and using the Hölder inequality together with(3.5) and(4.6),
we can prove(4.5) for p = 2n and allr ∈ N.

For anys < 1, we can easily prove thatδs(h) ◦ I ∈ W∞,∞(X). Henceδs(h) ∈
D∞,∞(Pm0(M)). Let δs(h)∗ be any∞-quasi-continuous modification ofδs(h).
Thenδs(h)∗ is also well defined forν-a.s.γ ∈ Lm0(M) andδs(h) = δs(h)∗ holds
ν-a.s. onLm0(M). By Theorem 2.1 and by the same argument used in the proof
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of (4.2) together with Proposition 3.4, we can prove that∥∥δs2(h)∗ − δs1(h)∗
∥∥p
Lp(ν) = ∥∥(

δs2(h) − δs1(h)
)∗∥∥p

Lp(ν)

≤ C
∥∥∣∣δs2(h) − δs1(h)

∣∣p∥∥
Wr,q(X)

(4.7) = C

∥∥∥∥∣∣∣∣∫ s2

s1

(
ḣ(t) + J (x, t)h(t), dx(t)

)∣∣∣∣p∥∥∥∥
Wr,q

≤ C

[(∫ s2

s1

|ḣ(t)|2 dt

)p/2

+
(∫ s2

s1

|h(t)|2 dt

)p/2]
,

where C is a constant which only depends onp. Now for h ∈ H0, we have∫ 1
s |h(t)|2 dt ≤ ∫ 1

s |ḣ(t)|2 dt . Taking s2 = 1 in (4.7), we obtain(4.3) and (4.4).
�

Now we introduce the gradient operator onPm0(M) andLm0(M). Let F be a
cylindrical functional onPm0(M) [resp.,Lm0(M)] given by

F(γ ) = f
(
γs1, . . . , γsk

)
,

wheref ∈ C∞(Mk), 0 = s0 < s1 < · · · < sk < sk+1 = 1 is a finite partition of
[0,1], k ∈ N. For µ-a.s.γ ∈ Pm0(M) [resp.,ν-a.s.γ ∈ Lm0(M)], we define the
gradientDF(γ ) of F as the unique element ofH (resp.H0) such that, for any
h ∈ H (resp.h ∈ H0),

〈DF(γ ),h〉H = DhF(γ ).

Here

DhF(γ ) =
k∑

i=1

〈
grad(i) f

(
γ (si)

)
,Usi (γ )h(si)

〉
, ν-a.s.γ ∈ Lm0(M),

and grad(i) f (γ (si)) denotes the gradient off with respect to theith variable,
i = 1, . . . , k.

Below we prove that̃δ(h) satisfies the Driver–Enchev–Stroock–Hsu integration
by parts formula on the loop space.

THEOREM 4.2. LetF , G be two cylindrical functionals onLm0(M), h ∈ H0.
Then

〈DhF,G〉L2(ν) = 〈F,D∗
hG〉L2(ν),

where

D∗
h = −Dh + δ̃(h).
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PROOF. First, we supposeh ∈ H1 = {h ∈ H0 : supp(h) ⊂⊂ (0,1)}. Then there
exists someα ∈ [0,1) such thath(τ ) = 0, ∀ τ ∈ [α,1]. Without loss of generality,
we may suppose thatF andG areFα-measurable. To simplify the notation, let
pt(x) = pt(m0, x), x ∈ M . Note that

Dhp1−α(γ (α)) = gradp1−α(γ (α))Uα(γ )h(α) = 0.

By (1.1) and the integration by parts formula on the path space, we have∫
Lm0(M)

DhF (γ )G(γ ) dν(γ )

=
∫
Pm0(M)

DhF (γ )G(γ )
p1−α(γ (α))

p1(m0)
dµ(γ )

=
∫
Pm0(M)

F (γ )D∗
h

(
G(γ )

p1−α(γ (α))

p1(m0)

)
dµ(γ )

=
∫
Pm0(M)

F (γ )

[
−Dh

(
G(γ )

p1−α(γ (α))

p1(m0)

)

+ δ̃(h)

(
G(γ )

p1−α(γ (α))

p1(m0)

)]
dµ(γ )

=
∫
Pm0(M)

F (γ )
(−DhG(γ ) + δ̃(h)G(γ )

)p1−α(γ (α))

p1(m0)
dµ(γ )

−
∫
Pm0(M)

F (γ )G(γ )Dh

(
p1−α(γ (α))

p1(m0)

)
dµ

=
∫
Pm0(M)

F (γ )
(−DhG(γ ) + δ̃(h)G(γ )

)p1−α(γ (α))

p1(m0)
dµ(γ )

=
∫
Lm0(M)

F (γ )
(−DhG(γ ) + δ̃(h)G(γ )

)
dν(γ ).

Hence Theorem 4.2 holds forh ∈ H1.
Next, for anyh ∈ H0, sinceH1 is dense inH0, there existhn ∈ H1 such that

‖hn − h‖H0 → 0. By (4.2) in Theorem 4.1, and using the fact that̃δ(hn) − δ̃(h) =
˜δ(hn − h), for any p > 1, we have‖δ̃(hn) − δ̃(h)‖Lp(ν) ≤ C‖hn − h‖H0. In

particular, limn→∞ ‖δ̃(hn) − δ̃(h)‖L2(ν) = 0. Hence

〈F, δ̃(hn)G〉L2(ν) → 〈F, δ̃(h)G〉L2(ν), n → ∞.

On the other hand, by the definition ofDh and the Lebesgue dominated
convergence theorem, we have

〈DhnF,G〉L2(ν) → 〈DhF,G〉L2(ν), n → ∞,

〈DhnG,F 〉L2(ν) → 〈DhG,F 〉L2(ν), n → ∞.
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Note that〈DhnF,G〉L2(ν) + 〈DhnG,F 〉L2(ν) = 〈F, δ(hn)G〉L2(ν). Lettingn → ∞,
we prove that Theorem 4.2 holds for allh ∈ H0. �

REMARK 4.1. Combining Theorems 4.1 and 4.2 with Proposition 4.1 in [15]
concerning theL1(ν)-convergence ofδs(h) to δ(h), we conclude thatδ̃(h) is
nothing else than the divergence function defined in [7] (in the case whereh ∈
C1 ∩ H0) and [9, 15, 16]. In view of this and to simplify the notation, as we have
done in the statement of Theorem 1.1, in the rest of this paper, we will use the
notationδ(h) instead ofδ̃(h).

As a consequence of Theorem 4.2 and theLp(ν)-integrability of the divergence
functional δ(h) (see Theorem 4.1), by a standard argument as used in [10] or
[15, 16], we have the following result which allows us to introduce the first-order
Sobolev spaces over the loop space.

THEOREM 4.3. For all p > 1, D is closable fromLp(Lm0(M), ν) to
Lp(Lm0(M),H,ν).

5. Exponential integrability of divergence functionals. In this section
we prove a Fernique-type exponential integrability theorem for the divergence
functional on the loop space.

THEOREM 5.1. For all

λ < λ0 = 1

(2+ ‖Ric‖∞)‖h‖H

,

we have

Eν

[
exp

(
λ|δ(h)|2)] < +∞,(5.1)

or, equivalently,

lim
t→∞

1

t2
logν

({
γ ∈ Lm0(M) : |δ(h)| > t

}) ≤ − 1

(2+ ‖Ric‖∞)‖h‖H

,

where‖Ric‖∞ denotes the uniform bound of the Ricci curvature.

To prove Theorem 5.1, we shall use the following lemma which provides us
with a very useful tool to study the exponential integrability of some functionals
with the pinned Wiener measure on loop spaces.

LEMMA 5.2. Letf ∈ Wn,n2p(X), n ∈ N, p > 1. Then∥∥ef 2∥∥
Wn,p(X) ≤ C(n)

∥∥e(1+ε)f 2∥∥1/(1+ε)
p ‖f ‖n

Wn,n2pε/(1+ε)(X)
.(5.2)
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Let F ∈ D∞,∞(Pm0(M)). Then there exist a constantC > 0 and a pair(n,p) ∈
N × (1,+∞) such that

Eν

[
eF̃ 2] ≤ C

∥∥e(1+ε)F 2∥∥1/(1+ε)
Lp(µ) ‖F ◦ I‖n

Wn,n2pε/(1+ε)(X)
,(5.3)

whereF̃ denotes any∞-quasi-continuous modification ofF . Moreover, assuming
that M ⊂ Rl is a Nash–Whitney embedding, then we can taken = 2[ l

2] + 2 and
p > 1 which can be arbitrarily close to1.

PROOF. By the chain rule, we have

∇nef 2 = ef 2 ∑
r1+···+rn=n

cr1,...,rn∇r1f 2 ⊗ · · · ⊗ ∇rnf 2,

wherecr1,...,rn are some combinatorial constants which can be given explicitly, and
the summation is taken over all{(r1, . . . , rn) ∈ Nn : 0 ≤ r1, . . . , rn ≤ n, r1 + · · · +
rn = n}. Using the Hölder inequality, for anyε > 0, we have∥∥‖∇nef 2‖H⊗n

∥∥
p

≤ C(n)‖ef 2‖p(1+ε)

∑
r1+···+rn=n

‖∇r1f 2‖npε/(1+ε) · · · ‖∇rnf 2‖npε/(1+ε).

Moreover, for anyr ∈ N, there exist some constantsCj1...jr such that

∇rf 2 = ∑
j1+···+jr=r

Cj1,...,jr ∇j1f ⊗ · · · ⊗ ∇jr f.

Hence

‖∇rf 2‖p ≤ C(r)
∑

j1+···+jr=r

‖∇j1f ‖rp · · · ‖∇jr f ‖rp

≤ C(r)‖f ‖r
Wr,rp(X).

Thus, ∥∥∥∥∇nef 2∥∥
H⊗n

∥∥
p

≤ C(n)
∥∥e(1+ε)f 2∥∥1/(1+ε)

p

× ∑
r1+···+rn=n

‖f ‖r1

Wr1,r1npε/(1+ε)(X)
· · · ‖f ‖rn

Wrn,rnnpε/(1+ε)(X)

≤ C(n)
∥∥e(1+ε)f 2∥∥1/(1+ε)

p ‖f ‖n

Wn,n2pε/(1+ε)(X)
.

Inequality (5.2) follows. Combining(5.2) with Theorem 2.2, we obtain(5.3).
�
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PROPOSITION5.3. For all

λ < λ0 = 1

(2+ ‖Ric‖∞)‖h‖H

,

we have

Eµ

[
exp

(
λ|δ(h)|2)] < +∞.

PROOF. By random time changing, there exists a Brownian motion{Bt , t ∈
[0,∞)} which is adapted to the standard Brownian filtrationFs = σ(x(s), s ∈
[0, t]) [here we allowt ∈ [0,∞)] such that

δ(h) ◦ I (x) = BT ,

where

T =
[∫ 1

0

∣∣ḣ(τ ) + 1
2 Ricrx(τ) h(τ )

∣∣2dτ

]1/2

≤
(

1+ ‖Ric‖∞
2

)
‖h‖H .

By the refinement version of the well-known Fernique lemma ([11]; see also
Theorem 3.3 in [19]), we have

Eµ[exp(λδ(h))] = E[exp(λ‖BT ‖2)]

≤ E

[
exp

(
λ sup

s∈[0,(2+‖Ric‖∞)‖h‖H /2]
‖Bt‖2

)]
< +∞,

provided that

λ(2+ ‖Ric‖∞)
‖h‖H

2
<

1

2
,

that is,

λ < λ0 = 1

(2+ ‖Ric‖∞)‖h‖H

. �

PROOF OFTHEOREM 5.1. Applying Lemma 5.2 toF = δ(h), for anyp > 1
andε > 0, there exists a constantC > 0 such that

Eν

[
exp

(
λ|δ(h)|2)] ≤ C

∥∥exp
(
λ(1+ ε)|δ̂(h)|2)∥∥1/(1+ε)

Wn,p(X)‖δ̂(h)‖n

Wn,n2pε/(1+ε)(X)
,

wheren = 2[ l
2] + 2. By Proposition 5.3, we have∥∥eλ(1+ε)p|δ̂(h)|2∥∥

Wn,p(X) < +∞,

provided that

λ <
1

p(1+ ε)(2+ ‖Ric‖∞)‖h‖H

.
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On the other hand, Theorem 3.3 says

‖δ̂(h)‖
Wn,n2pε/(1+ε)(X)

< C‖h‖H .

Thus, for allλ < [p(1+ ε)(2+ ‖Ric‖∞)‖h‖H ]−1, we haveEν[exp(λ|δ(h)|2)] <

+∞. Since we can choosep arbitrarily close to 1 andε arbitrary close to 0, we
deduce the desired inequality(5.1) for all λ < λ0 = [(2+ ‖Ric‖∞)‖h‖H ]−1. �

As a consequence of Theorem 5.1, we have the following result.

THEOREM 5.4. For anyλ > 0 and anyh ∈ H0, we have

Eν

[
exp

(
λ|δ(h)|)] < +∞.

PROOF. By Theorem 5.1, we have

lim
t→∞

1

t2 logν
({

γ ∈ Lm0(M) : |δ(h)| > t
}) ≤ − 1

(2+ ‖Ric‖∞)‖h‖H

.

This yields that

lim
t→∞

1

t
logν

({
γ ∈ Lm0(M) : |δ(h)| > t

}) = −∞.

Theorem 5.4 follows. �

6. Smoothness of Driver’s flow on path spaces.Recall that by [6, 8, 14], for
all h ∈ H , the vector fieldDh generates a global flow{�t, t ∈ R}, the so-called
Driver flow onPm0(M), such that, forµ-a.s.γ ∈ Pm0(M),

�̇t (γ ) = Dh

(
�t(γ )

)
,

(6.1)
�0(γ ) = γ.

In the case whereh ∈ C1 ∩ H0 is a Lipschitz Cameron–Martin vector, Driver [7]
constructed the flow generated byDh on the loop spaceLm0(M) by using the
technique of enlargement of filtration. In [9], Enchev and Stroock gave another
approach to construct the flow corresponding toDh for all h ∈ H0. As we have
pointed out before, their approaches relied on the gradient estimate and the Hessian
estimate of the logarithm of the heat kernel on compact Riemannian manifold. See
also Section 9.

In this section, without using any heat kernel estimate, we construct the Driver
flow of Dh on the loop space for allh ∈ H0 through an∞-quasi-continuous
modification of the corresponding flow on the path space. To this end, we shall first
prove that, for anyh ∈ H0, the Driver flow generated byDh is a smooth transform
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on the path spaceP 2m,α
m0

(M) in the sense of the Malliavin calculus, where for any

m ∈ N, m ≥ 2, α ∈ ( 1
2m

, 1
2),

P 2m,α
m0

(M) =
{
γ ∈ Pm0(M) :

∫ 1

0

∫ 1

0

d(γ (t), γ (s))2m

|t − s|1+2mα
dt ds < ∞

}
.

By [22] and the references therein, the Wiener measureν is supported on
P 2m,α

m0
(M) and the Sobolev spaces theory onP 2m,α

m0
(M) is the same as (i.e., quasi-

homeomorphic to) the one onPm0(M). Moreover,P 2m,α
m0

(M) is an M-type 2
Banach manifold modeled onX2m,α whose norm‖ · ‖2m,α is smooth inX2m,α \
{0}, where

X2m,α :=
{
x ∈ X :

∫ 1

0

∫ 1

0

‖x(t) − x(s)‖2m
Rd

|t − s|1+2mα
dt ds < ∞

}
,

on which we consider the fractional Hölder norm‖ · ‖2m,α given by

‖x‖2m,α =
(∫ 1

0

∫ 1

0

‖x(t) − x(s)‖2m
Rd

|t − s|1+2mα
dt ds

)1/(2m)

.

THEOREM 6.1. For anyh ∈ H , Driver’s flow�t :P 2m,α
m0

(M) → P 2m,α
m0

(M) is
a smooth mapping in the sense of the Malliavin calculus, that is,

�t ∈ D∞,∞(
P 2m,α

m0
(M),P 2m,α

m0
(M)

)
.

To prove this theorem, let us first introduce the setSM(Rd) of all Rd -valued
semimartingales with the Doob–Meyer decompositionξ(s) = ∫ s

0 O(r) dx(r) +∫ s
0 A(r) dr , where{(O(s),A(s)), s ∈ [0,1]} is an adaptedM(d,d) × Rd -valued

process such that|||ξ |||22 := E[sups∈[0,1] ‖O(s)‖2
M(d,d)] + E[∫ 1

0 ‖A(s)‖2
Rd ds] is

finite. By definition, we have∥∥‖ξ(·)‖2m,α

∥∥
p =

∥∥∥∥∥∥∥∥∫ ·

0
O(r) dx(r) +

∫ ·

0
A(r) dr

∥∥∥∥
2m,α

∥∥∥∥
p

≤
∥∥∥∥∥∥∥∥∫ ·

0
O(r) dx(r)

∥∥∥∥
2m,α

∥∥∥∥
p

+
∥∥∥∥∥∥∥∥∫ ·

0
A(r) dr

∥∥∥∥
2m,α

∥∥∥∥
p

.

Using the Burkholder–Davis–Gundy inequality, we have

E

[∥∥∥∥∫ ·

0
O(r) dx(r)

∥∥∥∥p

2m,α

]
≤ CpE

[∥∥∥∥∫ ·

0
|O(r)|2 dr

∥∥∥∥p/2

2m,α

]

≤ CpE

[
sup

r∈[0,1]
‖O(r)‖2·p/2

∥∥∥∥∫ ·

0
dr

∥∥∥∥p/2

2m,α

]

≤ C(p,m,α)E

[
sup

r∈[0,1]
‖O(r)‖p

]
.
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Using the Cauchy–Schwarz inequality, we have∣∣∣∣∫ s2

s1

A(r) dr

∣∣∣∣2m

≤
[∫ 1

0
|A(r)|2 dr

]m

|s1 − s2|m.

Thus∫ 1

0

∫ 1

0

| ∫ s2
s1

A(r) dr|2m

|s1 − s2|1+2mα
ds1ds2 ≤

[∫ 1

0
|A(r)|2dr

]m ∫ 1

0

∫ 1

0

ds1ds2

|s1 − s2|1+2mα−m

≤ C(m,α)

[∫ 1

0
|A(r)|2dr

]m

.

This yields that∥∥∥∥∥∥∥∥∫ ·

0
A(r) dr

∥∥∥∥
2m,α

∥∥∥∥
p

≤ [C(m,α)]1/2m

{
E

[∫ 1

0
|A(r)|2dr

]pm×1/2m}1/p

≤ C(m,α)

{
E

[∫ 1

0
|A(r)|2 dr

]p/2}1/p

.

Therefore, ∥∥‖ξ‖2m,α

∥∥
p ≤ C(m,p,α)

{
E

[
sup

r∈[0,1]
|O(r)|p

]}1/p

+ C(m,p,α)

{
E

[∫ 1

0
|A(r)|2 dr

]p/2}1/p

.

Hence form ≥ 2, α ∈ ( 1
2m

, 1
2) andp ≥ 1, we have

E[‖ξ‖p
2m,α] ≤ C(m,p,α)E

[
sup

r∈[0,1]
‖O(r)‖p

]
+ C(m,p,α)E

[∫ 1

0
|A(r)|2dr

]p/2

.

For anyp ≥ 1, define the norm||| · |||p onSM(Rd) as

|||ξ |||pp := E

[
sup

r∈[0,1]
‖O(r)‖p

]
+ E

[∫ 1

0
|A(r)|2dr

]p/2

.

Then

E[‖ξ‖p
2m,α] ≤ C(m,p,α)|||ξ |||pp].(6.2)

PROOF OF THEOREM 6.1. Set ξt = I−1 ◦ �t ◦ I . By [22], we have
I ∈ D∞,∞(X2m,α,P 2m,α

m0
(M)) and I−1 ∈ D∞,∞(P 2m,α

m0
(M),X2m,α). Hence it

remains to proveξt ∈ W∞,∞(X2m,α,X2m,α). By [6, 14],ξt satisfies the following
ODE onX2m,α, where the stochastic integral is taken in the sense of Itô:

∂

∂t
ξt (s) = h(s) + 1

2

∫ s

0
RicUt (τ)(h(τ )) dτ +

∫ s

0
qh(t, τ ) dξt (τ ),

(6.3)
ξ0(x) = x.



CAMERON–MARTIN ON LOOP SPACES 2431

HereUt(s) is the stochastic parallel transport alongγt(s) = �t(γ )(s) andqh(t, s)

is given by the following Stratonovich stochastic integral:

qh(t, s) =
∫ s

0
�Ut (τ)

(
h(τ ) ◦ dξt(τ )

)
.

Using the Picard iteration and by a similar argument as used in [6] and [15], we can
prove that, for anyk ∈ H , Dkξt (s) exists for alls ∈ [0,1] and allt ∈ R. Moreover,
Dkξt satisfies the following equation:

∂

∂t
Dkξt (s) =

∫ s

0
qh(t, τ ) dDkξt (τ )

+ 1

2

∫ s

0
Dk RicUt (τ)(h(τ )) dτ +

∫ s

0
Dkqh(t, τ ) dξt (τ ),(6.4)

Dkξ0(s) = k(s).

For anyT > 0, p > 1, we can prove

sup
t∈[−T,T ]

E
[∥∥‖Dξt(·)‖H

∥∥p
2m,α

]
< ∞.(6.5)

Indeed, let{ξn
t (s), s ∈ [0,1], t ∈ [−T,T ]} be given as in [6] and [14]. Let

(On
t (s),An

t (s)) be the Doob–Meyer decomposition ofξn
t . Let γ n

t = I (ξn
t ), Un

t =
U(γ n

t ) and qn
h(t, s) = ∫ s

0 �Un
t (r)(h(r) ◦ dξn

t (r)), s ∈ [0,1], t ∈ [−T,T ]. Then
for any fixeds ∈ [0,1] and t ∈ [−T,T ], it is easy to see that(On

t (s),An
t (s)) ∈

W∞,∞(X,O(d) × Rd). Similarly to [14], we can easily prove that

sup
t∈[−T,T ]

E[|||ξn
t − ξn−1

t |||p] ≤ (CT )n

n! ,(6.6)

where

E[|||ξn
t − ξn−1

t |||p] := E

[
sup

s∈[0,1]
‖On

t (s) − On−1
t (s)‖p

M(d,d)

]

+ E

[∫ 1

0
‖An

t (s) − An−1
t (s)‖2 ds

]p/2

.

Moreover, for allk ∈ H , we can easily show that

DkO
n
t (s) = On

t (s)

∫ t

0
[On

u(s)]−1Dkq
n−1
h (u, s)On

u(s) du,

DkA
n
t (s) = On

t (s)

∫ t

0
[On

u(s)]−1Dkq
n−1
h (u, s)An

u(s) du

+ 1
2On

t (s)

∫ t

0
[On

u(s)]−1Dk Ric
Un−1

u (s)
(h(s)) du.



2432 X. D. LI

Puttingk ∈ H such thaṫk = 1[τ,1]eα into the above formulas, we obtain the explicit
expressions of the Malliavin derivativesDα

τ On
t (s) andDα

τ An
t (s). Set

E[|||Dα
τ ξn

t |||p] := E
[‖On

t (τ )‖p
M(d,d)

] + E

[
sup

s∈[0,1]
‖Dα

τ On
t (s)‖p

M(d,d)

]

+ E

[∫ 1

0
‖Dα

τ An
t (s)‖2

Rd ds

]p/2

.

By standard argument and the Burkholder–Davis–Gundy inequality, and using
the fact thatOn

t (s) ∈ O(d) and supn∈N ‖An
t (s)‖ ≤ C(1 + |ḣ(s)|) (see [14]), it is

straightforward to prove that

E

[
sup

s∈[0,1]
‖Dα

τ Un
t (s)‖p

]
≤ cE[|||Dα

τ ξn
t |||p],

E

[
sup

s∈[0,1]
‖Dα

τ qn
h(t, s)‖p

]
≤ cE[|||Dα

τ ξn
t |||p],

E

[
sup

s∈[0,1]
‖Dα

τ Un
t (s) − Dα

τ Un−1
t (s)‖p

]
≤ cE[|||Dα

τ ξn
t − Dα

τ ξn−1
t |||p]

+ c

{
E

[
sup

s∈[0,1]
‖Dα

τ Un
t (s)‖2p

]}1/2

{E[|||ξn
t − ξn−1

t |||2p]}1/2,

E

[
sup

s∈[0,1]
‖Dα

τ qn
h(t, s) − Dα

τ qn−1
h (t, s)‖p

]
≤ cE[|||Dα

τ ξn
t − Dα

τ ξn−1
t |||p]

+ c{E[|||Dα
τ ξn−1

t |||2p]}1/2{E[|||ξn−1
t − ξn−2

t |||2p]}1/2.

From the above inequalities, we can deduce that

sup
n∈N

sup
t∈[−T,T ]

sup
τ∈[0,1]

E[|||Dα
τ ξn

t |||p] < c1e
c2T ,(6.7)

E

[
sup

s∈[0,1]
‖Dα

τ On
t − Dα

τ On−1
t (s)‖p

]
(6.8)

≤ R1
τ,α(T ,n) + c

∫ t

0
E[|||Dα

τ ξn
u − Dα

τ ξn−1
u |||p]du,

E

[∣∣∣∣∫ 1

0
‖Dα

τ An
t − Dα

τ An−1
t (s)‖2 ds

∣∣∣∣p/2]
(6.9)

≤ R2
τ,α(T ,n) + c

∫ t

0
E[|||Dα

τ ξn
u − Dα

τ ξn−1
u |||p]du,
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where fori = 1,2, there exists a constantC(T,p) such that

Ri
τ,α(T ,n) ≤ C(T,p)

{
sup

t∈[−T,T ]
sup

τ∈[0,1]
E[|||Dα

τ ξn
t |||2p]

}1/2

(6.10)

×
{

sup
t∈[−T,T ]

E[|||ξn
t − ξn−1

t |||2p]
}1/2

.

From(6.6), (6.7) and(6.10), Rτ,α(T ,n) = R1
τ,α(T ,n) + R2

τ,α(T ,n) tends to zero
asn tends to infinity. hand, from(6.8), (6.9) and the Gronwall inequality, we have

sup
t∈[−T,T ]

sup
τ∈[0,1]

E[|||Dα
τ ξn

t − Dα
τ ξn−1

t |||p] ≤ Rτ,α(T ,n)ecT .(6.11)

This implies that{ξn
t , t ∈ [−T,T ]} converges uniformly inW1,∞(X, (SM(Rd),

||| · |||p)) and hence by(6.2) it converges uniformly inW1,∞(X, (X2m,α,

‖ · ‖2m,α)). Moreover, we deduce(6.4) [resp., the inequality(6.5)] from the
corresponding equation forDkξ

n
t [resp., the inequality(6.7)]. In general, by

induction and repeating the same argument as above, we can prove that, for all
k1, . . . , kr ∈ H , Dk1,...,kr ξt (s) exists for alls ∈ [0,1] and allt ∈ R. Moreover, for
anyT > 0, p > 1, using the Burkholder–Davis–Gundy inequality, we have

sup
t∈[−T,T ]

E
[∥∥‖Drξt (·)‖H⊗r

∥∥p
2m,α

]
< ∞.(6.12)

This completes the proof of Theorem 6.1 concerning the smoothness of the Driver
flow on the path spaceP 2m,α

m0
(M). To save the length of the paper, we omit the

details of the proofs of the four inequalities listed before(6.7). The reader who
is interested in the details of the proof is referred to [3] (for the case where
h ∈ C1 ∩ H is a Lipschitz Cameron–Martin vector) and [18] as well as [21] where
the author proved that the Driver flow�t is a smooth transform on the path space
Pm0(M). �

We will make use of the following Kolmogorov criterion for∞-quasi-
continuous modification of a family ofM-type 2 Banach spaceE-valued
functionals. WhenE = R, it is due to [28]. See also [26].

THEOREM 6.2. Let {X(t), t ∈ [−T,T ]} be a family ofM-type 2 Banach
spaceE-valued functional. Suppose that, for all p ≥ 2, r ∈ N, there exist constants
c, ε > 0 and an even numberβ such that:

(i) X(t) ∈ Wr,p(X,E);
(ii) for all (s, t) ∈ [−T,T ] × [−T,T ] ‖X(t) − X(s)‖β

E ∈ Wr,p(X);
(iii) for all (s, t) ∈ [−T,T ] × [−T,T ], we have∥∥‖X(t) − X(s)‖β

E

∥∥
Wr,p(X) ≤ c|t − s|1+ε.
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Then there exists a version of the process{X(t), t ∈ [−T,T ]} which is∞-quasi-
continuous for eacht ∈ [−T,T ] and which has continuous paths.

PROOF. SinceE is an M-type 2 Banach space, the normφ(x) = ‖x‖E is
smooth inE \ {0} and, for allk ∈ N, there existsMk such that sup‖x‖E=1 ‖∇k ×
φ‖(x) ≤ Mk < ∞. Thus, the Chebyshev-type inequality of(r,p)-capacity for
E-valued functionals holds; see, for example, [26]. Hence, for any givenr ∈ N,
p > 1, ε > 0, we have

Cr,p

({x ∈ X :‖X(t) − X(s)‖E > ε}) ≤ 1

εβ

∥∥‖X(t) − X(s)‖β
E

∥∥
r,p.

Therefore, Theorem 6.2 can be proved by the same argument as used in the proof
of Theorem 3.1 in [28]. �

THEOREM 6.3. For all p ≥ 2 and r ∈ N, there exist constantsc, ε > 0 such
that:

(i) ξt ∈ Wr,p(X2m,α,X2m,α);
(ii) ‖ξt − ξs‖β

2m,α ∈ Wr,p(X2m,α) for all (s, t) ∈ [−T,T ] × [−T,T ];
(iii) for all (s, t) ∈ [−T,T ] × [−T,T ], we have∥∥‖ξt (·) − ξs(·)‖β

2m,α

∥∥
r,p ≤ c|t − s|1+ε.(6.13)

PROOF. By Theorem 6.1, for allt ∈ [−T,T ], we haveξt ∈ Wr,p(X2m,α,

X2m,α). By the chain rule, for all even numberβ > 0 and (s, t) ∈ [−T,T ] ×
[−T,T ], we can prove‖ξt − ξs‖β

2m,α ∈ Wr,p(X2m,α). By Lemma 4.1 in [28], for
all (s, t) ∈ [−T,T ] × [−T,T ], we have∥∥‖ξt (·) − ξs(·)‖n

2m,α

∥∥
2r,p ≤ C(n,p, r)

∥∥‖ξt (·) − ξs(·)‖2m,α

∥∥2r
2r,4r2p

(6.14)
× max

0≤k≤n

[
E‖ξt (·) − ξs(·)‖(n−k)2rp

2m,α

]1/2rp
.

On the other hand, using(6.3), (6.4) and inequalities(6.5) and (6.12), by the
Hölder inequality and the Burkholder–Davis–Gundy inequality, we can verify that,
for all p ≥ 1 andr ∈ N,∥∥‖ξt (·) − ξs(·)‖2m,α

∥∥2p
2p ≤ C(p,T )|t − s|p,(6.15) ∥∥‖ξt (·) − ξs(·)‖2m,α

∥∥2p

r,2p ≤ C(p,T )|t − s|p.(6.16)

From(6.14), (6.15) and(6.16), we deduce that, forn(p, r) = n large enough and
for some constantε > 0, we have∥∥‖ξt (·) − ξs(·)‖n(p,r)

2m,α

∥∥
2r,p ≤ c|t − s|1+ε.

The proof of Theorem 6.3 is complete.�
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Combining Theorem 6.3 with the Kolmogorov criterion (Theorem 6.2), we have
the following:

THEOREM 6.4. For all T > 0, there exists a version of the Driver flow
{�t, t ∈ [−T,T ]} on the path spaceP 2m,α

m0
(M) which is∞-quasi-continuous for

eacht ∈ [−T,T ] and which has continuous trajectory ont ∈ [−T,T ].

PROOF OF THEOREM 1.4. By Theorem 6.3, for anyT > 0, there exists a
slim subsetST of the path spaceP 2m,α

m0
(M) such that an∞-quasi-continuous

modification (denoted by{�̃t , t ∈ [−T,T ]}) of {�t, t ∈ [−T,T ]} can be well
defined for allγ ∈ P 2m,α

m0
(M) \ ST . TakingTn = 2n, we deduce that there exists a

common slim setS∞ = ⋃
n∈N STn such that{�̃t , t ∈ R} can be well defined for all

γ ∈ P 2m,α
m0

(M)\S∞. Thus,{�̃t , t ∈ R} can beν-a.s. well defined on the loop space
L2m,α

m0
(M) = Lm0(M) ∩ P 2m,α

m0
(M) and hence isν-a.s. well defined onLm0(M).

�

In the rest of this paper, we fix such an∞-quasi-continuous version{�̃t , t ∈ R}
of {�t, t ∈ R}. To end this section, let us mention the following remark.

REMARK 6.1. Note that the Driver flow{�t, t ∈ R} is Fs/Fs-measurable for
all s ∈ [0,1]; see [6, 8, 9]. Thus, the Kolmogorov criterion yields that{�̃t , t ∈ R}
is againFs/Fs-measurable for alls ∈ [0,1]. Moreover, using the same argument
as used in the proof of the Sobolev norm and the capacity comparison theorems
between the Wiener space and the path space via the Itô map (see [22]), we can
prove that, for anyF ∈ Wr,p(X) and any subsetA ⊂ X, antr ∈ N andp > 1,

α1‖F ◦ ξt‖r/2,p−ε ≤ ‖F‖r,p ≤ α2‖F ◦ ξt‖2r,p+ε,(6.17)

α1Cr/2,p−ε

(̃
ξ−1
t (A)

) ≤ Cr,p(A) ≤ α2C2r,p+ε

(̃
ξ−1
t (A)

)
,(6.18)

where‖ · ‖r,p (resp.,Cr,p) denotes the(r,p)-Sobolev norm [resp.,(r,p)-capacity]
on the Wiener spaceX, {̃ξt , t ∈ R} denotes any∞-quasi-continuous modification
of the pull-back of the Driver flowξt = I−1◦�t ◦I andα1 andα2 are two constants
which depend only onr , p and the uniform bounds of the Riemannian curvature
and the Ricci curvature as well as their higher-order covariant derivatives. This
yields that the flow propertỹξs ◦ ξ̃t = ξ̃t+s holds quasi-surely onX. Since�̃t =
Ĩ ◦ ξ̃t ◦ Ĩ−1, we get the flow propertỹ�s ◦ �̃t = �̃t+s quasi-surely onPm0(M). As
explained in [22], the proof of the above inequalities(6.17) and(6.18) are based on
the Meyer inequality on the Wiener space. However, we still do not know whether
or not the Meyer inequality holds on the path space over a compact Riemannian
manifold. Thus, we do not know whether or not the corresponding Sobolev norms
(resp., capacities) comparison inequalities hold on path spaces if one replacesξt

by �t .
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7. Cameron–Martin theorem on loop spaces. In this section we will first
construct the Driver flow on the loop space through the corresponding flow on
the path space. Combining this and Theorem 5.4 together with the Cruzeiro
lemma, we will give an alternative proof to the Cameron–Martin theorem on loop
spaces established earlier by Driver [7] and Enchev and Stroock [9] by Doob’s
h-processes approach and the short time upper bound estimates of the gradient
and the Hessian of logarithm of the heat kernels.

Our first result in this section is the following theorem:

THEOREM 7.1. Let h ∈ H0. Then�̃t (Lm0(M)) ⊂ Lm0(M). Moreover, for ν-
a.s. γ ∈ Lm0(M), we have

˙̃�t(γ ) = Dh

(
�̃t (γ )

)
,

(7.1)
�̃t (γ ) = γ.

In view of Theorem 7.1, we regard̃�t as the flow onLm0(M) generated byDh.

PROOF OFTHEOREM 7.1. Sincẽ�t = �t holds quasi-surely onPm0(M), the
flow equation(6.1) is verified. It remains to show that̃�t(Lm0(M)) ⊂ Lm0(M),
that is,

�̃t (γ )(1) = m0.(7.2)

To this end, we use the same argument as in [7]. Indeed, forν-a.s.γ ∈ Lm0(M)

and anys < 1, by the flow propertỹ�t onLm0(M) we have

d
(
�̃t (γ )(s), �̃0(γ )(s)

) ≤
∫ t

0

∣∣∣∣ d

dτ
�̃τ (γ )(s)

∣∣∣∣dτ

=
∫ t

0

∣∣U (
�̃τ (γ )

)
(s)h(s)

∣∣dτ.

Now U(�̃τ (γ ))(s) is an isometry fromRd to T�̃τ (γ )(s)M . Thus forν-a.s.γ ∈
Lm0(M),

d
(
�̃t (γ )(s), �̃0(γ )(s)

) ≤ |h(s)|.(7.3)

Let

� = {
γ ∈ Lm0(M) :d

(
�̃t (γ )(s), �̃0(γ )(s)

) ≤ |h(s)| ∀ s < 1
}
.

Since both sides of the inequality in(7.3) are continuous, we have

ν(�) = 1.(7.4)

Takingγ ∈ � and lettings → 1, we have

lim
s→1

d
(
�̃t (γ )(s), γ (s)

) ≤ lim
s→1

|h(s)| = 0.
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By the continuity ofs → �̃t (s), we prove(7.2) for γ ∈ �, which differs from
Lm0(M) up to aν-negligible subset, compare(7.4). �

The following lemma is due to Cruzeiro [4] and is a very useful tool to study
the quasi-invariance of a probability measure under the action of certain flows.

LEMMA 7.2 ([4]). Let (�,F , {Fs},P ) be a complete filtered probability
space and let� = {φt} be a flow(i.e., a one-parameter group of measurable
transformations) on �. Suppose that there exists the divergencediv(�) ∈
L1(�,P ) such that, for all f ∈ C ⊂ L∞(�,P ), whereC is a dense subset of
L∞(�,P ), we have {

d

dt
E[f (φt )]

}∣∣∣∣
t=0

= E[f div(�)].(7.5)

Moreover, assume that there exists aλ > 0 such that

E
[
eλ|div(�)|] < +∞.(7.6)

Then(φt )∗P is absolutely continuous with respect toP . Denote

Kt = d(φt)∗P
dP

.

Then

Kt = exp
(∫ t

0
div(�)(φ−s) ds

)
,

and for allp > 1 with the conjugate exponentq, that is, 1
p

+ 1
q

= 1, we have

‖Kt‖p
Lp ≤ E

[
epqt|div(�)|].

PROOF. See [4] and [24]. �

Now we are ready to prove the Cameron–Martin theorem on the loop space.

THEOREM 7.3. For anyh ∈ H0, the pinned Wiener measureν on Lm0(M) is
quasi-invariant under Driver’s flow�̃t . Let

Kt = d(�̃t )∗ν
dν

.

Then

Kt(γ ) = exp
(∫ t

0
δ(h)

(
�̃−s(γ )

)
ds

)
, ν-a.s. γ ∈ Lm0(M),(7.7)

and for allp > 1 with the conjugate exponentq, that is, 1
p

+ 1
q

= 1, we have

‖Kt‖p
Lp(ν) ≤ Eν

[
epqt |̃δ(h)|].(7.8)
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PROOF. Set� = Lm0(M), P = ν, C = F C(Lm0(M)) [the collection of all
cylindrical functionals onLm0(M)], and letφt be Driver’s flow�̃t . Theorem 4.2
shows that the divergence div(�) in (7.5) associated to the flowφt is just δ(h).
By Theorem 5.4, theν-exponential integrability (7.6) holds for δ(h). Hence
Cruzeiro’s lemma applies to(Lm0(M), �̃t , ν). Thus,(�̃t )∗ν is absolutely con-
tinuous with respect toν, that is, the pinned Wiener measureν is quasi-invariant
on loop spaceLm0(M) under the flow�̃t . Moreover, we obtain(7.7) and the
Lp-inequality(7.8). �

According to Remark 1.1, our main results apply to the special case where
M = G is a compact connected Lie group equipped with anAd-invariant metric
and the left or the right Cartan connection. Theorem 1.5 recaptures the well-known
result due to Malliavin and Malliavin [25] on the quasi-invariance of the pinned
Wiener measure on the loop group. Indeed, our method is inspired by [25] where
the authors initiated the so-calledlocalization method from paths to loopsbased
on quasi-sure analysis.

8. Stochastic anti-development of pinned Brownian motions. Since [2], it
has been well known that the stochastic anti-development of the pinned Brownian
motion on any compact Riemannian manifold is a semimartingale up to time 1.
However, theLp(ν)-convergence (p ≥ 1) and the Fernique type exponential
integrability theorem for the stochastic anti-development of pinned Brownian
motions were first proved by Gross on a compact Lie group (see Lemma 4.8,
Remark 4.9 and Corollary 4.10 in [13]). More precisely, letLe(G) be the loop
group over a compact Lie groupG equipped with anAd-invariant metric and
the left Cartan (or the right Cartan) connection, withe its unit element. The anti-
development of the pinned Brownian motion{g(s), s ∈ [0,1]} is given by

b(s) =
∫ s

0
g−1(r) ◦ dg(r), s ∈ [0,1].

The Gross theorem says that there exists a smallλ0 such that, for allλ < λ0,
we haveEν[exp(λmaxs∈[0,1] ‖b(s)‖2)] < +∞. See also [12] for an alternative
proof. In this section we will use Lemma 5.2 to establish theLp(ν)-convergence
and a Fernique-type exponential integrability theorem for the stochastic anti-
development of pinned Brownian motion on any compact Riemannian manifold
with a TSS connection. Our result also sharpens the exponential exponentλ0
appearing in the Gross–Fernique theorem. We begin with the following theorem:

THEOREM 8.1. LetG be a compact Lie group equipped with anAd-invariant
metric and the left or the right Cartan connection. Then for all

λ < λ0 = 1
2 inf{‖w‖2

H :w ∈ X,‖w‖2m,α = 1},
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we have

Eν[exp(λ‖b‖2
2m,α)] < +∞.

Moreover, for anyλ < 1
2, we have

Eν

[
exp

(
λ max

s∈[0,1] ‖b(s)‖2
)]

< +∞.

PROOF. Forµ-a.s.x ∈ X, sincedgx(s) = gx(s) ◦ dx(s), we have

b(s)(x) =
∫ 1

0
[gx(r)]−1 ◦ dgx(r) = x(s) ∈ Wr,p(X,TeG), s ∈ [0,1].

By the Donsker–Varadhan [5] refinement version of the well-known Fernique
lemma, we have

Eµ[exp(λ‖b‖2
2m,α)] = Eµ[exp(λ‖x‖2

2m,α)] < +∞,

provided that

λ < λ0 = inf{I (w) :w ∈ X, ‖w‖2m,α = 1},
where

I (w) = 1
2‖w‖2

H 1[w∈H ] + ∞1[w/∈H ].

Note that the function‖ · ‖2
2m,α is smooth inX2m,α in the sense of Fréchet–

Gâteaux. Thus, the Wiener functionalx → ‖x‖2
2m,α belongs toW∞,∞(X2m,α).

Hence Lemma 5.2 applies toF(x) = ‖x‖2m,α . That is to say, for anyε > 0 and
anyp > 1, we have

Eν[exp(λ‖b‖2
2m,α)]

≤ {
Eµ

[
exp

(
(1+ ε)pλ‖b‖2

2m,α

)]}1/(p(1+ε))∥∥‖x‖2m,α

∥∥n

Wn,n2pε/(1+ε)(X)
,

wheren = 2[ l
2] + 2 if we assume thatG ⊂ Rl is a Nash–Whitney embedding.

Thus, for allλ <
λ0

(1+ε)p
, we haveEν[exp(λ‖b‖2

2m,α)] < +∞. Sinceε > 0 and

p > 1 are arbitrary, for allλ < λ0 we get Eν[exp(λ‖b‖2
2m,α)] < +∞. Now

‖w‖∞ := maxs∈[0,1] ‖w(s)‖∞ ≤ C‖w‖2m,α . Thus

Eν

[
exp

(
λ max

s∈[0,1] ‖b(s)‖2
)]

< +∞
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holds provided that

λsup
b =0

[ ‖b‖2∞
‖b‖2

2m,α

]
≤ λ sup

w∈X\{0}

[ ‖w‖2∞
‖w‖2

2m,α

]
< λ0.

SetX∗ = X \ {0}. Then, for all

λ <
1

2
inf

w∈X∗

[ ‖w‖2
H

‖w‖2
2m,α

]
inf

w∈X∗

[‖w‖2
2m,α

‖w‖2∞

]

≤ 1

2
inf

w∈X∗

[ ‖w‖2
H

‖w‖2m,α

· ‖w‖2
2m,α

‖w‖2∞

]

= 1

2
inf

w∈X∗

[ ‖w‖2
H

‖w‖2∞

]
= 1

2
,

that is, for allλ < 1
2, we have

Eν

[
exp

(
λ max

s∈[0,1] ‖x(s)‖2
)]

< +∞.

The proof of Theorem 8.1 is complete.�

Similarly to the proof of Theorem 8.1, if we replaceb(s) = ∫ s
0 g−1(r) ◦ dg(r)

by

x(s) =
∫ s

0
U−1

r (γ ) ◦ dγ (r), ν-a.s.γ ∈ Lm0(M),

then we can prove the following Fernique-type exponential integrability theorem
for the stochastic anti-development of pinned Brownian motions on a compact
Riemannian manifold.

THEOREM 8.2. Let M be a compact Riemannian manifold equipped with a
torsion-skew symmetric(TSS) connection. Then for all

λ < λ0 := 1
2 inf{‖w‖2

H :w ∈ X, ‖w‖2m,α = 1},
we have

Eν

[
exp

(
λ‖x‖2

2m,α

)]
< +∞.

Moreover, for all λ < 1
2, we have

Eν

[
exp

(
λ max

s∈[0,1] ‖x(s)‖2
)]

< +∞.

Finally, let us prove theLp(ν)-convergence of the stochastic anti-development
of pinned Brownian motion.
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THEOREM 8.3. Let M be a compact Riemannian manifold equipped with a
TSS connection. Then for anyp ≥ 1, x(s) converges tox(1) in Lp(ν) as s tends
to 1. Moreover, for anyp ≥ 1, there exists a constantCp such that

‖x(s) − x(1)‖Lp(ν) ≤ Cp(1− s)1/2.

PROOF. Similarly to the proof of Theorem 4.1, there exist a constantC and a
pair (r, q) ∈ N × (1,+∞) such that, forp = 2n, n ∈ N,

‖x(s) − x(1)‖p
Lp(ν) ≤ C

∥∥‖x(s) − x(1)‖p
∥∥
Wr,q(X).

With respect to the Wiener measure on the Wiener spaceX, x(s) − x(1) is a
centered Gaussian variable with variance 1− s. Thus, there exists a constant
C(n,q) such that

Eµ0[‖x(s) − x(1)‖2qn] ≤ C(n,q)(1− s)nq .

On the other hand, for allh1, . . . , hr ∈ H , i = 1, . . . , d , we have

∇h1 · · ·∇hr

(
xi(s) − xi(1)

)2n = 2n(2n − 1) · · · (2n − r)
(
xi(s) − xi(1)

)2n−r

× (
hi

1(s) − hi
1(1)

) · · · (hi
r (s) − hi

r(1)
)
,

from which one can easily verify that∥∥∇r‖x(s) − x(1)‖2n
∥∥
q ≤ C(n, r, q)(1− s)(2n−r)/2.

Therefore, we get

‖x(s) − x(1)‖L2n(ν) ≤ C(n, r, q)
[
(1− s)1/2 + (1− s)(2n−r)/4n]

.

Note thatr andq are independent ofn. Hence

‖x(s) − x(1)‖L2n(ν) ≤ Cn(1− s)1/2.

This yields that‖x(s) − x(1)‖Lp(ν) ≤ Cp(1− s)1/2 for all p ≥ 1. �

9. Two remarks on Doob’sh-processes approach. For the completeness of
the paper, we would like to give two remarks on the Doobh-processes approach
for studying the problems discussed in this paper.

Recall that with respect to the pinned Wiener measureν on loop spaceLm0(M),
the conditional Brownian motionγt is given by the following Stratonovich SDE:

dγs = Us ◦ dbs, γ0 = m0,

where{bs, s ∈ [0,1]} is the anti-development of{γs, s ∈ [0,1]} through the Itô map
I :X → Pm0(M) which can be well defined up to a slim subset ofX. Moreover,
{bs, s ∈ [0,1]} is a semimartingale with the following Doob-Meyer decomposition:

dbs = dβs + U−1
s ∇ logp1−s(γs,m0) ds,
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where{βs, s ∈ [0,1]} is aν-Brownian motion on(X,Fs ,F , ν). See, for example,
[2, 7, 9, 15, 16].

Let h ∈ H and letDh be the vector field onLm0(M). Let γ t be the Driver flow
on the loop spaceLm0(M) given by

γ̇ t = Dh(γ
t) = Ut

sh(s),

γ 0 = γ,

where{Ut
s , s ∈ [0,1]} is the horizontal lift of{γ t

s , s ∈ [0,1]}. Using the intertwin-
ing formula for the differential of the stochastic development mapI−1 :Pm0(M) →
X (see [6, 8, 10, 15, 22, 24]), the pull-back flowbt = I−1(γ t ) satisfies the follow-
ing equation:

∂

∂t
dsb

t
s = ḣ(s) ds − qh(γ

t , s) ◦ dsb
t
s,

b0
s = bs,

where

dsb
t
s = dsβ

t
s + [Ut

s ]−1∇ logp1−s(γ
t
s ,m0) ds.

Thus, we have [
∂

∂t
+ qh(γ

t , s)

]
dsb

t
s = ḣsds,

whence [
∂

∂t
+ qh(γ

t , s)

]
◦ dsβ

t
s

= ḣsds −
[

∂

∂t
+ qh(γ

t , s)

]([Ut
s ]−1∇ logp1−s(γ

t
s ,m0)

)
ds

= ḣsds − qh(γ
t , s)

([Ut
s ]−1∇ logp1−s(γ

t
s ,m0)

)
ds

+ [Ut
s ]−1

(
∂

∂t
Ut

s

)
[Ut

s ]−1∇ logp1−s(γ
t
s ,m0) ds

− [Ut
s ]−1∇2 logp1−s(γ

t
s ,m0)

(
∂

∂t
γ t
s

)
ds.

Moreover, by the Bismut formula (see, e.g., [2, 22]), we have

∂

∂t
Ut

s = Ut
sqh(γ

t , s).

Combining the above formulas, we can derive the pull-back Driver flow equation
as follows:[

∂

∂t
+ qh(γ

t , s)

]
◦ dsβ

t
s = ḣsds − [Ut

s ]−1∇2 logp1−s(γ
t
s ,m0)U

t
s h(s) ds.
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In order to use the standard Picard iteration or the Euler iteration method to solve
the above flow equation, it is clear that one has to use the Hessian estimate of the
logarithm of the heat kernel on compact Riemannian manifold. Moreover, in order
to use the usual approach based on the Girsanov theorem and Lévy’s invariance
of Brownian motion under adapted rotations to prove the quasi-invariance of the
pinned Wiener measure under the pull-back Driver flow, we need to verify the
Novikov exponential integrability condition of the drift term given in the right-
hand side of the flow equation forβt . Thus, we need to use again the Hessian
estimate of the logarithm of the heat kernel. See, for example, [7, 9, 15, 16]. See
also [17, 27, 29, 31] for the short time estimates of logarithmic derivatives of the
heat kernel.

To end this paper, let us mention that Gong has informed us that, by using
the gradient and the Hessian estimates of the logarithm of the heat kernel, Gong
and Ma can also prove theLp(ν)-convergence and theν-exponential integrability
of the divergence functionalδ(h) (for all λ < λ0 for some constantλ0 which
depends on‖h‖H and possibly on the constants appearing in the gradient and
the Hessian estimates of the logarithmic heat kernel) by the Doobh-processes
approach. Without using heat kernel estimate, our approach based on the Airault–
Malliavin–Sugita–Watanabe inequality (see Theorem 2.2 and Lemma 5.2) and
Sobolev estimates shows that we can get an explicit estimate forλ0 which only
depends on the uniform bound of the Ricci curvature‖Ric‖∞ and‖h‖H , that is,
λ0 = [(2+ ‖Ric‖∞)‖h‖H ]−1.
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