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We first prove thel.”-convergence > 1) and a Fernique-type expo-
nential integrability of diergence functionals for all Cameron—Martin vec-
tor fields with respect to the pinned Wiener measure on loop spaces over
a compact Riemannian manifold. We then prove that the Driver flow is a
smooth transform on path spaces in the sense of the Malliavin calculus and
has amo-quasi-continuous modification which can be quasi-surely well de-
fined on path spaces. This leads us to construct the Driver flow on loop spaces
through the corresponding flow on path spaces. Combining these two results
with the Cruzeiro lemmaJ] Funct. Anal.54 (1983) 206—-227] we give an
alternative proof of the quasi-invariance of the pinned Wiener measure un-
der Driver's flow on loop spaces which was established earlier by Driver
[Trans. Amer. Math. So842(1994) 375-394] and Enchev and Stroogkly.

Math. 119 (1996) 127-154] by Doob’&-processes approach together with

the short time estimates of the gradient and the Hessian of the logarith-
mic heat kernel on compact Riemannian manifolds. We also establish the
LP-convergencey > 1) and a Fernique-type expant@l integraility theo-

rem for the stochastic anti-development of pinned Brownian motions on com-
pact Riemannian manifold with an explicit exponential exponent. Our results
generalize and sharpen some earlier results due to Grdssrjct. Anal102

(1991) 268-313] and HsuMath. Ann.309 (1997) 331-339]. Our method

does not need any heat kernel estimate and is based on quasi-sure analysis
and Sobolev estimates on path spaces.

Contents

. Introduction
. The Airault—Malliavin—Sugita—Watanabe inequality
. Sobolev estimates of divergence functionals on path spaces

TheL?” (v)-convergence of divergence functionals

. Exponential integrability of divergence functionals
. Smoothness of Driver’s flow on path spaces
. Cameron-Martin theorem on loop spaces

Received August 2002; revised October 2003.

1supported in part by a Post-doctoral Research Fellowship of the University of Oxford.
AMS 2000 subject classificatior@OH07, 58G32.
Key words and phraseBivergence, Driver's flow, exponéal integrability, pinned Wiener

measure, quasi-invariance.

2409



2410 X.D. LI
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1. Introduction. Let M be a compact connected Riemannian manifold and
let mg € M be a fixed point. Letv be the Levi—Civita connection oi. The
orthonormal frame bundle ové{ is denoted byO (M). The path space (resp., the
loop space) oved is defined byP,,,(M) = {y € C([0, 1], M) : y (0) = mo} (resp.,
Lig(M) ={y € Ppy(M):y (1) = mg}). Let H be theR“-valued Cameron—Martin
space, that is, the set of absolutely continuous functiarig, 1] — R¢ such that
h(0) =0 andh € L%([0, 1]). Let Hp be its subspace with zero values at time 1, that
is, Ho=1{h € H:h(1) =0}.

Let A be the Laplace—Beltrami operator a. The Wiener measure on
P, (M), denoted by, is the law of M -valued Brownian motion (with generator
A /2) starting atmg. The pinned Wiener measure dn,, (M), denoted by, is
the law of the conditional Brownian motiofy (s),s € [0, 1]} on M such that
y(0) = y (1) = mo. Intuitively, we have

() = u(-ly (1) = mo).
Rigorously, if p;(x, y) denotes the heat kernel @, then for anyx < 1,

dv _ P1-a(y (@), mo)
dulg, p1(mo, mo)
wherefF, = o (y(s), s € [0, «]). For details, see, for example, [2] and [7].

For u-a.s.y € Py (M) [resp.,v-a.s.y € L,,(M)], one can use the Itd SDE
theory to define the stochastic parallel transgarty ) : 7,,,M — T, ()M as the
uniqueO (M)-valued stochastic process satisfying the following covariant SDE:

Vody(s)Us()/) =0,

with the intial conditionUp(y) = IdTmOM, whereldr,_u is the identity transform
over T,,,M. See, for example, [2]. For all € H (resp.,h € Hp), the Cameron—
Martin vector field D, on P,,(M) [resp., L,,(M)] is defined by: foru-a.s.
Y € Ppo(M) [resp.,v-a.s.y € L,,o(M)],

1.2) Dy (y)(s) =Us(y)h(s) Vsel0,1].

In [6, 8, 14], the classical Cameron—Martin theorem has been generalized to
the path spacéP,,(M), n). That is to say, for all fixedk € H, the vector field
Dy, generates a global floyd,,r € R} which can beu-a.s. well defined on
P, (M) (see Section 6) under which the Wiener measure is quasi-invariant and an
integration by parts formula holds. Concerning the same issue on the loop space
(Lmo(M),v), Driver [7] proved that for any: € el N Hy (the set of Lipschitz
Cameron—Martin vectors € Hp), the vector fieldD, generates a global flow
{®,:1 € R} On L,y (M) such that, fon-a.s.y € Ly (M),

O,(y)=Dy(®()),  Do(y) =y,

(1.1)
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agd the Wiener measupds quasi-invariant under the flofiv,; that is, the measure
(®;).v Iis equivalent tov. Moreover, an integration by parts formula holds on
(Lmo(M), v): for two cylindrical functionals” andG on L,,,(M), we have

E,(DhFG)=E,(F(—DyG +8(h)G))

and
d(®,)4v
(1.3) ( ’) (v )—exp(/ 3(h)( _s(y))ds)

where §(h) is the so-called divergence functional @h,,,(M),v) defined as
follows: for v-a.s.y € L,,,(M),

1,
(1.4) S(h)(y) = /O (7i(s) + 3 Ricy, ) (h(5)), dx(s)).

Here Ric denotes the Ricci curvature form oe®iM) and{x(s), s € [0, 1]} is the
stochastic anti-development &f (s), s € [0, 1]}, denoted by = I—l(y), and is
given by the following Stratonovich stochastic integral:

(1.5) x(s) =/OS Ul ody,  sel01].

The complete theory of integration by parts formula on the loop space
(Lmo(M), v) for all the Cameron—Martin vector fields,, with h € Hg was first
proved by Enchev and Stroock [9], where the authors have also proved the quasi-
invariance of the pinned Wiener measure under the flow generaté&y biy1 [15]
and [16], Hsu gave another approach to integration by parts formula on loop spaces
which avoids the problem of the quasi-invariance of the pinned Wiener measure on
the loop space. Let us mention that all the approaches appearing in [7, 9, 15, 16]
relied strongly on the short time upper bound estimates on the gradient and the
Hessian of the logarithmic of the heat kernel, and all these authors used the Doob
h-processes method for conditional Brownian motion on a compact Riemannian
manifold.

The purpose of this paper is to study the asymptotic behavior of divergence
functionals, Driver flow and Cameron—Martin theorem on loop spaces as well
as some related problems by a different approach. First, we will use the
Airault—Malliavin—Sugita—Watanabe inequality (see Section 2) and some Sobolev
estimates on the divergence functionals on the path space (see Section 3) to prove
the LP-convergence > 1) and the Fernique-type exponential integrability of
divergence functionals with respect to the pinned Wiener measure on loop spaces;
see Sections 4 and 5. Second, we will prove that the Driver flbwr € R} is a
smooth transform on path spaces in the sense of the Malliavin calculus and has
oo-quasi-continuous version denoted b¥,, + € R} which can be quasi-surely
well defined up to a slim subset of the path sp&gg(M). Moreover, we prove
that if » € Ho, then{®,, r € R} actually realizes the Driver flow generated by
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the vector fieldD;, on the loop spacéL,,,(M), v); see Sections 6 and 7. Third,
we will combine these two results with the Cruzeiro lemma [4, 24] to give an
alternative approach to the complete Cameron—Martin theorem on the loop space
(Lmy(M), v) avoiding use of any heat kernel estimate; see Section 7. Finally, we
use our method to establish tiie’ (v)-convergencey{ > 1) and a Fernique-type
exponential integrality theorem for the stochastic anti-development of pinned
Brownian motions on a compact Riemannian manifold equipped with any torsion-
skew symmetric (TSS) connection; see Section 8. Our results generalize and
sharpen some earlier results due to [13, 15, 16]. Our method is inspired by [25],
where the authors first established the quasi-invariance of the pinned Wiener
measure on the loop group over a compact Lie group under the left or the right
action of a finite energy loop (which is nothing else than the Driver flow on the
loop group). In some sense, it leads us to gfedrp or betterestimate than the
direct approach based on Doob'gheory and heat kernel estimates: see Section 8
and Section 9.

To state our main results, let us follow Hsu [15, 16] to introduce a sequence of
functionals as follows: for ang € H ands < 1, let

8s(h)(y) =/0 (h(s) + 3 Ricy, () (h(5)), dx(s)), x=1"4).

Note thatss () is n-a.s. well defined orP,,,(M). Sincev is equivalent tou on
F5, compareg(1.1), we see thad, (h) is also well defined fov-a.s.y € L,,,(M).
Now we are in a position to state our main results of this paper.

THEOREM 1.1. Leth € Hp. Then the divergence function&{) [formally
given by(1.4)] can be realized as the? (v)-limit of (k) ass — 1forall p > 1.
In fact, for all p > 1, there is a constant’, such thatfor all » € Ho,

L2
||as<h>—8<h>||mv>sc,,( [ i dr)
N
and
18)ILr vy < Cpllhll Hy-
Moreoverfor all

1
2+ IRiclloo) IAlls”

A<Aio=

we have
E,[exp(A|8(h)|?)] < 400,
or, equivalently

1

im o ({y € Lng(M):18(h)| > 1}) <
- v m . > =~ — . .
vty € Lmo 2+ | RiC[loo) 1211 1

t—o00 t2
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COROLLARY 1.2. Forall p > 1, the gradient operatoiD on the loop space
Ly, (M) is closable fromL? (L,,,(M), v) into L?(L,,,(M), Hop, v).

COROLLARY 1.3. Forall h € Hy and all » > 0, we have

E,[exp(r|8(h)])] < oo.

THEOREM 1.4. For anyh € H, there exists amo-quasi-continuous version
of the Driver flow{®;, r € R} which can be well defined up to a slim subset of
Pro(M).

Let {®,, t € R} be a fixedoo-quasi-continuous version dfb,, r € R}. By the
disintegration principle of the Wiener measufé;, r € R} can bev-a.s. well
defined onL,,,(M).

THEOREM 1.5. Leth € Hy. Then{®,, r € R} is the flow generated by the
vector field Dy, oN Lyy(M). Moreover the pinned Wiener measuteis quasi-
invariant under{®,, ¢+ € R}. More preciselyif we let

_d(@)y
= d]) )
then

t ~
K, = exp(/o (S(h)(q)—s()/))dS), v-asS. y € Lmo(M),
and for all p > 1 with the conjugate exponeqt that is, % + % — 1, we have
KAy < Eu[eP? PN,

REMARK 1.1. All the above results [as well as the Sobolev norms and
capacities comparison inequaliti€és.17) and (6.18) in Section 6] remain true
if we replace the Levi—Civita connection by any torsion skew-symmetric (TSS)
connection. In this case, we need only to replace the Ricci curvature Ric of the
Levi—Civita connection by the Ricci curvatuRic of the dual connectioW given

by
VxY =VxY —T(X,Y), X, Y eI(TM),

whereT is the torsion of our given TSS connecti®nindeed, we have announced
Theorem 1.1 in [20] (without giving the precise valig) in this setting with
an equivalent expression of the divergence functiot{@) as used in [7]. In
particular, we recapture the &iavin—Malliavin theorem on the qs&invariance
of the pinned Wiener measure on loop group over a compact Lie group.
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The following result generalizes and sharpens some eatrlier results due to [13],
where the author established th&(v)-convergence and a Fernique-type exponen-
tial integrability theorem for the stochastic anti-development of pinned Brownian
motions on a compact Lie group.

THEOREM 1.6. Let M be a compact Riemannian manifold equipped with a
TSS connectigm: € N, m > 2,a € (5=, 3). Then for any

A <rgi=3inf{lwl? w e X, |wlama =1},

we have
E, [expA||x][3,,.4)] < +o0,
where
L rLx(t) — x(5)llga 1/2m
_ dtd
1 l2m.a [/0/0 PR s}
and

1
x(s):/o U () ody(s),  s€l0,1], v-as. y € Luy(M).

Moreoverfor any\ < % we have

E, [exp(k sup ||x(s)||2>] < +o0.
s€[0,1]

In addition, x (s) convergesta (1) in L?(v) forall p > 1 ass tends tol and there

exists a constant, such that

lx(s) = x(D) I Lrwy < Cp(L—5)Y2.

2. The Airault—Malliavin—Sugita—Watanabe inequality. Let X = {x €
C([0, 1], R%): x(0) = 0} be the Wiener space, and |ey be the Wiener measure
onX. Foranyr e Nandp > 1, we letW””(X) denote ther, p)-Sobolev space
on the Wiener spac& with the Sobolev norm| - ||w-r(x). Let Ay, ..., Az be
the canonical horizontal vector fields an(M), and letrg € O(M) be a fixed
orthonormal frame overg. Consider the horizontal SDE an(M):

d
dry(s) =Y Ai(rx(s)) o dx'(s),

i=1
ry(0) = ro.

Let y,(s) := w(re(s)), s € [0,1]. Then it is well known thafy,(s), s € [0, 1]}
is a Brownian motion onV starting atmg. The Wiener measurg on the path
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spacepP,,,(M) = {y € C([0, 1], M) : y (0) = mo} is given by the law ofy,(s), s €
[0, 1]}, that is,u = Lo, Wherel : X — Py,,(M) is the It map given by

1(x) = yy, no-a.s.x € X.
Consider the followingV/-valued Wiener functionab:
@ (x) =yx(D).
By [1], ® € W**°(X, M) and® is nondegenerated, that is,
(Detfd (x)]) * € WX (X, M),

whereW>->° (X, M) is the set of all smootiM-valued Wiener functionals in the
sense of Malliavin calculus, and

Detf®(x)] = V/de{Vd (x) - VP (x)7],

where the determinant on the right-hand side is taken with respect to the
Riemannian metric offy ()M andV® (x)* denotes the adjoint W& (x): H —
qu(X)M.

Recall that if f € W (X, M), then f has amc-quasi-continuous modifica-
tion which can be well defined outside a slim subseXoMoreover, if f1, f> are
two co-quasi-continuous modifications ¢f, then f1 and f, only differ on a slim
set. Let®* be any quasi-continuous modification®f The following co-area for-
mula is well known (see, e.qg., [1, 23, 24]): there exists a family of area measures
denoted by{da’(-), y € M} [where eachia”(-) is supported on the submanifold
S, = ®*~1(y)] such that, for any: € W>(X) andv € C*(M),

| wtr@@etelw duow = [ v [ w0 da’ ) dy,
X M *7(y)
whereu™® denotes ango-quasi-continuous modification af Let

vy (dx) = (Def®](x)) *da’ (x).

Then for all y € M, v, is a Borel probability measure supported on the
submanifoldS, = ®*~*(y). Moreover,v, has no charge on any slim subsetaf

By [22, 33], the Itd maf : X — P,,,(M) is smooth in the sense of the Malliavin
calculus and has ato-quasi-continuous modification. Throughout this paper, we
let 7 denote a fixedbo-quasi-continuous modification of the It6 mdp Using
the dyadic polygonal approximation @f-valued Brownian motion, and by a
similar argument used in Section 4 in [30], one can prove that the stochastic anti-
development map given bil.5) has amo-quasi-continuous version (denoted by
I~1) which can be quasi-surely well defined 8p, (M) and satisfieg o I = Idy
quasi-surely (i.e., except on a slim set ¥). By this and using the capacity
comparison inequality due to the author [22], we can easily prove that, for
two different versions obo-quasi-continuous modification df, say I; and I,
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11|Sm0 (Sme) only differs from 12|5m0(Sm0) on a slim subset of,,,(M). Indeed,

if we let § = {x:I1(x) # I>(x)}, thenS is a slim set ofX. Let O C X be an

open set containing and with capacityC, ,(0) < ¢ forallr e Nandp > 1. By

the capacity comparison inequality between the path space and the Wiener space
(see [22]), we have

Crp(1:(0)) <aCopi1(I7r 0 ;(0)), i=1,2,

wherea = a(r, p) is a constant and,,p is the(r, p)-capacity on the path space
Py (M) (for its definition, see [22]) Note thd;‘ o I; = Idy holds quasi-surely

onX,i=12. HenceCZ, p+1(1_ 01;(0)) = Co,p+1(0) < &, i =1,2. Since
¢ is arbitrary, we getC,p(I S$)=0,vreN, p>1,i=12. Thus, I|SmO

the restriction of7 on trle submanifold,,, = {x € Xy, (1) = mg}, IS vy,-a.s.
well defined. Moreover1|5m0 - (Smgs Vmg) = (Limo(M), v) is a measure-theoretic

isomorphism. That is to Saﬂsmo(So) only differs fromL,,,(M) on a slim set of
the path spacé,,,(M) and

V= (7| Smo)*vmo‘

The following result is due to [1, 33].

THEOREM2.1. Thereexistapaitp,r) € (1, +00) x Nand aconstanf > 0
such thatfor any f € W (X, R™"), we have

[ g < lwerc.
I’I?O
where f* is anyoco-quasi-continuous modification gf.
In fact, using the Watanabe generalized distribution theory on Wiener space,
we can even specify the constantand the value of the pair, p) appearing in
Theorem 2.1 as follows. To this end, using the Nash—Whitney embedding theorem,

we assume tha¥ is isometrically embedded inf&’ with 7 > d.

THEOREM 2.2 (Airault—Malliavin—Sugita—Watanabe inequality)ror all
p>1keNandf e wal/2+2+2k.p(x) we have

‘/S S @) dvmg(x)] < C |8 o q)||—2[l/2]—2—2k,p/(p—l)||f||2[1/2]+2+2k,l7’
mo

where

= [p1(mo, mo)] %
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PROOF For anyy e M c R/, let 8, be the Dirac delta function at point
Thens € 8_5(R!) for all r > [5] + 1, where$_5,(R') is the topological dual

of 85, (R!) (the completion of the Schwartz spad€R’) of rapidly decreasing
C*-functions orR! by the norm| - || defined byl|@ |2 = |(1+ x]2 — A) ¢ |l00)-
See, for example, the proof of Theoren24n [32] and [34], Remark 2.2. Let
F € Wo° (X, M) be a smooth nondegenerate Wiener functional. Then far=all
0,1,...andp > 1, the mapy € M — §,(F) € W—2/2=2=2k.p(X) is 2k-times
continuous differentiable. Hence for agfye DAL/2+2+2k.p (X) we have

\ fX F 08y (F(x)) dpo()| < 118y o Fll—ai1/21-2-2k.p/ -0 f 121/2] + 2+ 2k, p.

In particular, takingF’ = ® and using the fact that
Smo (P (x))
Jx mo(®(x)) dpro(x)

we deduce the Airault—Malliavin—Sugita—Watanabe inequality with the conStant
given by (cf. [34])

Umo(dx) =

mo(x),

-1

C=[/X 5mo(d>(x))duo(x)] = [p1(mo, mo)] . .

3. Sobolev estimates of divergence functionals on path space&ollow-
ing [22], for anyr e Nandp > 1, we letD"? (P,,(M)) denote the&r, p)-Sobolev
space onP,,,(M) with the Sobolev norn - ||Dr,p(PmO(M)) defined by

p
IF | o (pugayy = D NI D*Fll x|,
k=0
For any fixeds € [0, 1], regardingx — r,(¢) as anO(M)-valued Wiener
functional, we have.(r) € W-°(X, O(M)). More precisely, for any € N and
anyh, ha, ..., h, € H, the following H -directional derivatives exist:

d
Vire(t) = _"x+8h(t)} ’
de e=0
D"
% 1= iy ’
hl...han( ) 91 Do, FX+Z,«:15,h,( )} e1m,=0

where— denotes the Levi—Civita covariant derivative along the smooth curve
& —> rx+8,h (r) on O(M). Moreover, we have the following proposition:

PROPOSITION3.1 [22]. There eX|s'rD§l1 """ Inr (1) € L2([0, 17", Ty 1y O(M))
such that
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fixedsq, .. s,, €[0,1]and0< j1,..., j» <n.Moreover
DJL Sf;’l’rx(t)=0 ifsiv---vs, elt,1];
(i) foranyhi,...,h, € H,
(V're(),h1 ® - ® hy) pon

.....

.....

(iii) foranyp > 1,we have

(3.1) sup E[ sup HDS’.ll”:."':g;;’rx(s)||p]<+oo,
1

$1,...,5,€[0,1] S1V- Vs, <s<

D‘S"lljjjjjs’,;’rx(s) with respect to the Sasake Riemannian metricaxid/) (for its
definition see[22]).

where ||D!ll""’§;:’rx(s)|| denotes the Riemannian norm of the vector field

Let e1,...,e; be the standard orthonormal basis ®f, and let R be the
Riemannian curvature tensor @fi. For anyr € O(M), the Ricci curvature over
the framer is a real matrix given by

d
Ric,(a) :Zr‘loR(rei,ra) ore; VaeRY.
i=1
Let
J(x,0) = 3Ric, () -

By the chain rule and Proposition 3.1, we hale, 1) € W® (X, M(d, d)), where
M(d, d) denotes the set of all x d real matrices. Moreover, we have the following
proposition:

PropPOsSITION 3.2. The Malliavin derivativesD‘S"ll"”g’;fJ(x,t) belong to

L2([0, 1]", M(d, d)) and are adapted with respect 5 ;.’o(x(s), s €[0,1]) for
any fixeds1,...,s, €[0,1]andany0 < ji,..., j, <n.Foranyhy,..., h, € H,

(VU (x, ), h1® - ® hy)
Moreoverfor anyp > 1,

(3.2) sup E[ sup | Dgllslgj(x 1) ||ZS} < +00.

$1,...,5,€[0,1] SV Vs, <t<1
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PrROOF The proof can be easily given by the chain rule and using Proposi-
tion 3.1. In particular,(3.1) yields(3.2). O

Let h € H and D, be the vector fields orP,,(M) defined by(1.2). By
integration by parts formula (see, e.g., [2, 6, 8, 10, 14]),tRe.) adjoint of D;,
is given byD; = —Dj, +(h), wheres (h) is the divergence functional. Moreover,
for p-a.s.y € P, (M), we have

1.
s(h)(y) =/o (h(v) + % RiC,, (r) h(1), dx(1)), x=1"y).

Now we state the main result in this section.

THEOREM3.3. Foranyr e N, p > 1,there is a constanf' > 0 such thatfor
all h € H, we have

I8 | Drr (P vy < CllRIIH-

PROOF Let §(h) = 8(h) o I. By the Sobolev norm comparison theorem
(see [22]), we have

18| D72 P11y < et p I8 [y s1x)-
wherea,. , is a constant. Hence we need only to prove that, forraay, p > 2,
(3.3) I8 llwrrxy < Cllkll 1.

By induction and direct computation, it can be easily shown that, forrany?
andh, hq,...,h, € H, we have

— . 1
D5 (h)(x) =h(s) + J(x, s)h(s) +/0 (DsJ (x, t)h(t),dx (1)),

n -~
JLseees Jiseres i Ji
+ Y (DIl g (e, si)h(s)
i=1

where we use the notatidny, ..., aqs)’ :==aj, j=1,...,n.
By the Burkholder—Davis—Gundy inequality, we haj&h)|l, < Cllhllx. It
remains to prove that, for any> 1, p > 2, there is a constaiit > 0 such that

(3.5) IV 8 1 11-5] 1oy < CllBN -
(o)
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Below we only give a proof of3.5) for n > 2, p > 2. The proof for the case of
n =1, p > 2 is analogous. By definition, we have

.....

.....

o ' r/2
+2P/2[ ) Z |(D{ 5:.":.'::s’,;“J<x,s,->h<s,->)f"|2ds}

..... jni=1 01]"

<I1+ 1.

By the Holder inequality and the Burkholder—Davis—Gundy inequality, we have

et
[0,1)

i
| [0, axo)

o 2 qp/2
fo (D3 (e, DR(D), dx (1)) ]

p

(0,1

<cinlly [ E( sup D)) ds by (32)
[0,1] relvsi, 1] Lot

< C|hl|%,.

Similarly, we have

I =E/ Dfl
2 [[O’l]n|( o

1 . 5 p/2
§E[/( sup |D "S]"J(x,s,-)| )h(s,-)ds,-]
0 o

sielvs;,1]

>>.~>

J iz, 17
Lo daceson(sn) s |

i’?

<|hll% sup E[ sup [DJbrdidng(x, s,>|”] [by (3.2)]
sjel0,1] sie[vs;,1]

< C|h|%.

Combining the above inequalities fér and 1>, we obtain(3.5) and henceg3.3).
a
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ProPOSITION3.4. Foranyn € N, p > 1,thereis a constant > 0 such that
forall h € H, we have

f *lh (@) + 3 Ric,, ) (h(1), dx<r>>‘

1

D"P (P (M)

<cl([7 o) ([ woea)]

PROOF The proof is similar to the one of Theoren83 O

(3.6)

COROLLARY 3.5. The functionals (k) has anoco-quasi-continuous modifica-
tion which can bev-a.s. well defined orL,,,,(M).

PROOF. By Theorem 38,8 (h) € D™ (Ppuy(M))= e, p=1D"F (Pmg(M)).
Thus, §(h) is a smooth functional onP,,,(M). Hence, it has amo-quasi-
continuous modification (see [22]) which can be well defined outside of a slim
set. Thus, we obtain a-a.s. well-defined functional on the loop spacg,(M).

O

4. The L?(v)-convergence of divergence functionals.For anyk € Hy and
s < 1, the following functionals are well defined fora.s.y € P, ,(M):

@.1) 8,(h)(y) = /O (h(2) + 3Ric, o h(D). dx(D),  x=1"p).

Sinceu andv are equivalent or¥; = o (y, (1), T <), és(h) is alsov-a.s. well
defined onL,,,(M). The main technique part in Hsu’s proof of the integration by
parts formula on the loop space (see Propositidnid [15]) is to prove that, as

s — 1, the sequenc; (k)} converges irL1(v) to a limit which belongs td.2(v).

In view of this, forv-a.s.y € L,,,(M), Hsu defined (h)(y) as theL1(v)-limit of

8, (h)(y) and then proved thalt(h) is nothing else than the divergence functional
appearing in an integration by parts formulabg,(M).

The purpose of this section is to prove that, foralt 1, ass — 1 the sequence
{8,(h)} converges tos(k) in LP(v), where §(h) is an co-quasi-continuous
modification of§(#) constructed by the quasi-sure analysis principle which is
v-a.s. well defined otk ,,,, (M) (see Corollary 3). Moreover, we prove that(/)
satisfies the Driver—Enchev—Stroock—Hsu integration by parts formula on the loop
space.

THEOREM4.1. For any p > 1, there exists a constait, > 0 such thatfor
all h € H, we have

(4.2) IS | Lrwy < Cplltll g
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Moreoverfor anyh € Hp,
~ L. \12
4.3) ||8s<h>—6<h>||wr,p<X)sc(f ()| dr) ,
S
~ L. \12
(4.4) ||6s<h>—6<h>||mu)sc(/ ()] dr) .
S

PrROOF By the Hoélder inequality, we need only to prove Theorem 4.1 for
p =2n,n € N. By Theorem 2.1, there existe N andg > 1 such that

18Ty < ClEW)” [ynaxy-
It remains to prove that, for anye N andg > 1,
(4.5) [V" (5" [ L4y < ClIRIIY-
By the Burkholder-Davis—Gundy inequality, we have

(4.6) [T Loy < ClIRIG-
Thus(4.5) holds forr = 0 andg > 1. Now we prove4.5) for » = 1. By the Holder
inequality, we have

— — -1 —
VW) Lauy = 1P EE) VB 14,10
< 1) 20 1 IV N 121 1)
< PCUSI)] 21y g Il [using (3.5) and (4.6)]

< pCllnlly;.
In general, for any € N, we have

Vk+1f2n — znkaZI'l—l ® Vf + an2n—1vk+lf
=2n2n — YV 22V VS
+2n(2n — 1)f2n—zka ® Vf + 2nf2”_1Vk+1f.

Thus, by induction and using the Hélder inequality together \i#th) and (4.6),
we can proveé4.5) for p = 2n and allr € N.

For anys < 1, we can easily prove thdf(h) o I € W°°(X). Henceds(h) €
D% (P,,,(M)). Let §;(h)* be anyoco-quasi-continuous modification &f (7).
Thend, (h)* is also well defined fov-a.s.y € L,,,(M) andés(h) = 8,(h)* holds
v-a.S. onL,,,(M). By Theorem 2.1 and by the same argument used in the proof
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of (4.2) together with Proposition.3, we can prove that
”(Ssz(h)* - 8S1(h)*||€p(u) = ” (‘Ssz(h) - 851(h))*||€p(u)
= C|l[85,(h) = 85y I [y )

4.7) _ c‘ P

f Sz(h(t) + J (x, Oh(2), dx (1))

1

< c[(f |h<t>|2dr)p/2 + (/ |h<r>|2dr)p/2},
51 51

where C is a constant which only depends gn Now for & € Hp, we have
JHh@)2dr < [MA(1))2de. Taking s, = 1 in (4.7), we obtain(4.3) and (4.4).
O

Wra

Now we introduce the gradient operator 8p,(M) andL,,,(M). Let F be a
cylindrical functional onp,,,(M) [resp.,L,,,(M)] given by

F(y)= f()/sl, ceey ysk),

where f € C®(M¥), 0=s9 < 51 < --- < 5§ < sp41 = 1 is a finite partition of
[0, 1], k e N. For u-a.s.y € Py,o(M) [resp.,v-a.s.y € L,,,(M)], we define the
gradientD F (y) of F as the unigue element & (resp.Hp) such that, for any
h € H (resp.h € Hp),

(DF(y),h)u = DpF(y).

Here

k

DyF(y) =Y (grad” f(y(s)), Uy ()h(s),  v-a.S.y € Lyg(M),
i=1

and grad’ 7(y(s;)) denotes the gradient of with respect to theth variable,
i=1,...,k.

Below we prove tha (k) satisfies the Driver—Enchev—Stroock—Hsu integration
by parts formula on the loop space.

THEOREM4.2. LetF, G be two cylindrical functionals od.,,,(M), h € Ho.
Then

(DhF, G>L2(v) = (F, DZG>L2(U)’
where

D =—Dy, +5(h).
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PROOF  First, we supposk € H1 = {h € Hp:supgh) CcC (0, 1)}. Then there
exists somex < [0, 1) such thati(t) =0, V1 € [«, 1]. Without loss of generality,
we may suppose that and G are F,-measurable. To simplify the notation, let
p:(x) = p;(mo, x), x € M. Note that

Dpp1—o(y (@) = gradpi—o (y (@) Ug () () = 0.
By (1.1) and the integration by parts formula on the path space, we have

f DUF()GG) V()

-/ DhF ()G 2= @) 4oy
Ping (M) p1(mo)

pl_a(y(a))> duy)
p1(mo)

_ F(y)[_ D, (G(y)pl_a(wa)))

Ping (M) p1(mo)

~ Pla(y(a))
+6<h>(G<y>7p1(mo) )]du()/)

= F() (= DhG(y) + 8T G () Pme V@)
Fmo(40) p1(mo)

[ FnGcop (P ) gy
P (M) p1(mo)

- F(y)Dii(G(y)
Prg(M)

du(y)

= FON(=DuG ) + 50 G (yy) eV @)
Fing () p1(mo)

du(y)

= F(y)(=DyG(y) +8h)G(y)) dv(y).

Ling(M

Hence Theorem 4.2 holds fare Hi.
Next, for anyh € Hp, since Hy is dense inHp, there exist:,, € Hl such that

A, — h||H0 — 0. By (4.2) in Theorem 4.1, and using the fact tlmh,,) — B(h) =
5(h —h), for any p > 1, we have||8(h ) — 8(h)||Lp(v) < Cllh, — hllgy- |
particular, lim,_ ||8(hn) 3(/’1)||L2(v) =0. Hence

(F,8(hn)G) 20y = (F,8(W)G) 2y, 1 —> 00.

On the other hand, by the definition d?, and the Lebesgue dominated
convergence theorem, we have

<DhnF’G>L2(V) — <DhF’G>L2(V)7 n— oQ,
(DhnG, F>L2(U) — (DhG, F)LZ(U)’ n — Q.
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Note that{(Dp, F, G) 12(,) + (Dn, G, F) 2,y = (F, 8(hn)G) 12, Lettingn — oo,
we prove that Theorem 4.2 holds for ale Hy. O

REMARK 4.1. Combining Theorems 4.1 and 4.2 with Propositidnid [15]
concerning theL(v)-convergence of,(h) to §(h), we conclude thaﬁ?ﬁ) is
nothing else than the divergence function defined in [7] (in the case where
el N Hp) and [9, 15, 16]. In view of this and to simplify the notation, as we have
done in the statement QtTheorenilin the rest of this paper, we will use the
notationé (k) instead ofs (h).

As a consequence of Theorem 4.2 andiiév)-integrability of the divergence
functional 5 (k) (see Theorem 4.1), by a standard argument as used in [10] or
[15, 16], we have the following result which allows us to introduce the first-order
Sobolev spaces over the loop space.

THEOREM 4.3. For all p > 1, D is closable fromL?(L,,,(M),v) to
Lp(Lmo(M)7 H,v).

5. Exponential integrability of divergence functionals. In this section
we prove a Fernique-type exponential integrability theorem for the divergence
functional on the loop space.

THEOREM5.1. Forall

1
ro= - ,
2+ [IRicllco) 2]l
we have
(5.1) E,[exp(x|8(h)[?)] < 400,

or, equivalently

1
@+ IIRiClo)AlE
where|| Ric|| o denotes the uniform bound of the Ricci curvature

.1
lim y logv({y € Ling(M):18(h)| > t}) <

1—>00

To prove Theorem 5.1, we shall use the following lemma which provides us
with a very useful tool to study the exponential integrability of some functionals
with the pinned Wiener measure on loop spaces.

LEMMA 5.2. Letfe W""°P(X),neN, p>1.Then

2 2.1/(1
(5.2) Hef “ wn.p(X) = C(”)He(l—’_s)f “ p/( +8)”f”’:Vn,nzps/(lﬂ)(x)'
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Let F € D**°(P,,,(M)). Then there exist a constaat> 0 and a pair(n, p) €
N x (1, +00) such that

72 2 1/(14¢)
(53) EU[eF ] S CHe(l_H;)F HL/p(pL)e ||F © I”:ﬁvn.nzps/(l-&—s)(x)’

whereF denotes anyo-quasi-continuous modification &f. Moreoverassuming
that M c R! is a Nash-Whitney embeddirthen we can take = 2[%] + 2 and
p > 1 which can be arbitrarily close ta.

PrROOF By the chain rule, we have
V’lefzzef2 Z Crp. rnvrlf2®"'®vr"f2,
ri+-+rp=n

wherec,, . ,, are some combinatorial constants which can be given explicitly, and
the summation is taken over dllr1, ...,r,) e N":0<rq,...,r, <n,r1+---+
r, =n}. Using the Holder inequality, for any> 0, we have

2
[IV"e Nl gen],

2
<Cle lpare D MV lnpesarer - V™ f2llnpesaie)-
ri+--+rp=n

Moreover, for any- € N, there exist some constardg, . ;. such that

Vifi= Y Cp.,,Vif®---®Vif

JiteAjr=r
Hence
IV F2lp <C@) D UV fllp - IV fllrp
Jitetjr=r
< CONfWwrerx)-
Thus,

2
[19"e” [ gonl,,
< Cmlle |/

ri T,
X Z ||f || er,rlnps/(1+g)(x) N ” f” v{l/rn,rnnps/(lﬁ—s)(x)
R

(A+e) f2) 1/ (1+e) n
= C(n)||e ”p ||f||wn,n2p5/(1+£)(x)'

Inequality (5.2) follows. Combining(5.2) with Theorem 2.2, we obtaiii5.3).
O
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PropoOSITION5.3. Forall
1
2+ | Ricllo)Alla’

A<Ap=

we have
E,[exp(r18(h)[?)] < +o0.
PROOF By random time changing, there exists a Brownian mofiBn ¢ €

[0, o0)} which is adapted to the standard Brownian filtrati®h= o (x(s), s €
[0, t]) [here we allow € [0, co)] such that

8(h) o I(x) = Br,

where

1, _ 1/2 Ric
T:UO |h(r)+%R|c,X(T)h(r)|2dr] §<1+” 2”°°>||h||H.

By the refinement version of the well-known Fernique lemma ([11]; see also
Theorem 33 in [19]), we have

E,lexpA8(h))] = E[expA| Br|?)]

< E[exp(k sup ||B,||2>}
s€[0,(2+[IRiclloo) 1211 /2]

< +00,
provided that
A2+ || Ric]lso) ”hgﬂ < %
that is,
A<Ao= - ! .
2+ | Riclloo) 2] 2 .

PROOF OFTHEOREM5.1. Applying Lemma 5.2 t& = §(h), foranyp > 1
ande > 0, there exists a consta@it> 0 such that

E,[exp(1I8(n)[?)] = C|lexpla.(L+ )8 ) s 0y IS, 2 1o

wheren = 2[5] + 2. By Proposition 5.3, we have

.
”ex(1+e)p|8(h)\ || Wb (x) < +00,
provided that

1
A< - .
p(L+e)2+ |IRiCllco) IRl
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On the other hand, Theorem 3.3 says
18T lynzpessor g, < Cllallzr-

Thus, for allx < [p(1+£)(2+ | RiC||lso) 12| 7171, we haveE, [exp(r|8(h)|?)] <
+o00. Since we can choose arbitrarily close to 1 and arbitrary close to 0, we
deduce the desired inequalit§.1) for all A < 1o = [(2+ || RiC|loo) |2 ]|xz]17L. O

As a consequence of Theorem 5.1, we have the following result.

THEOREM5.4. Foranya > 0and anyh € Hp, we have

E,[exp(r|8(h)])] < +o0.

PROOF By Theorem 5.1, we have

1

im = o ({y € Lmg(M):18(h)] > t}) <
— v m . > < - " .
vty € Lmo 2+ | Ric[loo) 1211 1

t—o00 t2

This yields that

lim %Iogv({y € Lyo(M):18(h)| > t}) = —o0.

—00

Theorem 5.4 follows. OJ

6. Smoothness of Driver’s flow on path spaces.Recall that by [6, 8, 14], for
all h € H, the vector fieldD; generates a global flojd,, r € R}, the so-called
Driver flow on P,,,(M), such that, fop-a.s.y € Py,,(M),

Cb,(y) = Dh(q)t(y)),

Do(y) =y.

(6.1)

In the case wheré € C1 N Hy is a Lipschitz Cameron—Martin vector, Driver [7]
constructed the flow generated By, on the loop spacé.,,,(M) by using the
technique of enlargement of filtration. In [9], Enchev and Stroock gave another
approach to construct the flow correspondingitp for all # € Hp. As we have
pointed out before, their approaches relied on the gradient estimate and the Hessian
estimate of the logarithm of the heat kernel on compact Riemannian manifold. See
also Section 9.

In this section, without using any heat kernel estimate, we construct the Driver
flow of D, on the loop space for alt € Hp through anco-quasi-continuous
modification of the corresponding flow on the path space. To this end, we shall first
prove that, for any: € Hp, the Driver flow generated b®,, is a smooth transform



CAMERON-MARTIN ON LOOP SPACES 2429

on the path spacen%’v"‘(M) in the sense of the Malliavin calculus, where for any
meN,m>2,a¢€(z,3),

14 2m
Pnf'(?“(M) {yero(M) / / %drds<oo}.

By [22] and the references therein, the Wiener measuns supported on
Pn%'gv“(M) and the Sobolev spaces theoryﬂ,ﬁg’v“(M) is the same as (i.e., quasi-

homeomorphic to) the one oR,,,(M). Moreover P2m2 (7 is an M-type 2

' mo

Banach manifold modeled aki?™® whose norm| - [|2,,.¢ is sSmooth inX2™¢ \

{0}, where
1lx() — X(S)II
2m,o .
X : { X// e a’tds<oo},

on which we consider the fractional Holder nofim||2,.« given by

1x() — x(s)||2m 1/(2m)
||x||2moc—(/ / |l+2ma dtds) ]

THEOREM6.1. Foranyh € H, Driver's flow®, : P2™%(M) — P2"%(M) is
a smooth mapping in the sense of the Malliavin calcutat is,

®, € D™ (PImY(M), P2 (M)).

To prove this theorem, let us first introduce the gat (R?) of all R?-valued
semimartingales with the Doob—Meyer decompositigs) = [5 O(r) dx(r) +
Jo A(r)dr, where{(O(s), A(s)), s € [0,1]} is an adapted! (d, d) x R4-valued
process such thaié |3 := E[suRcpo.qy 101340 + ELJo A1, ds] is
finite. By definition, we have

HEOznel, = H H/O 0¢)dx(r)+ [ Ay dr

2m,allp

+ ” H/O'A(r)dr

Using the Burkholder—Davis—Gundy inequality, we have

1 oo ]

§CPE[ sup ||0(r)||2'P/2H/ dr
rel0,1]

|| oo

2m,allp 2m,allp

" e[ [0

p/2 ]

sC(p,m,ooE[ sup ||0<r>||P].
rel0,1]
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Using the Cauchy—Schwarz inequality, we have

52 2m 1 m
[*acrar s[f |A<r>|2dr] Is1 — 52",
51 0

Thus

1 1|f‘2A<r>dr|2md o < Ty dsyds>
/(;_/ |S1_s2|1+2moz 51452 = /l (r)| r //(; |sl_S2|1+2ma—m

§C(m,a)[/ |A(r)| a’r} .

This yields that
. 1 pmx1/2my1/p
HH/ Andr S[C<m,a>]1/2m{EU |A(r)|2dr} !
0 2m,allp 0
! p/2y1/p
SCW“){E[/ |A(r)|2dr] } .
0
Therefore,

1/p
li€znal, < Con p.o|E| sup j0r? ]

re[0,1]

roprl p/2y1/p
+C(m,p,a){E/o|A(r)|2dr] } .

Hence form > 2, € (5, 3) andp > 1, we have

. 1 p/2
EL£15,,,) < COn. p.o)E| sup 101 +Con pak| [C1a0Rar]
rel0,1] .

For anyp > 1, define the nornij| - |||, on SMRY) as

1 ) p/2
el = [ sup 10w |+ | [C1acar|

rel0,1]
Then

(6.2) E[l§1l5, 4] < Cm, p,e)lIENIS].

PROOF OF THEOREM 6.1. Set& = 171 o &, o I. By [22], we have
I € Do(x2me pane(p)) and I71 € D(P2m* (M), X?"*). Hence it

remains to prove, € Woo®°(x2me x2mey By [6, 14],, satisfies the following
ODE onX?2™“_ where the stochastic integral is taken in the sense of It6:

g =h L SR' h d ' d
6= (S”E/o icy, (o) (h(7)) r+/o an(t, 1) dE (D),

6.3
©3 §o(x) = x.
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HereU;(s) is the stochastic parallel transport algp@s) = ®;(y)(s) andgy(¢, s)
is given by the following Stratonovich stochastic integral:

an(t.s) = /o Q) (h(2) 0 dE, (7).

Using the Picard iteration and by a similar argument as used in [6] and [15], we can
prove that, for anyk € H, D& (s) exists for alls € [0, 1] and allz € R. Moreover,
D.&; satisfies the following equation:

8 N
o Diki(s) = /o gn(t, T)d Dié (7)

1 s . s
(6.4) - fo Dy Ricy, oy (h(1)) dT + fo Diqn(t, 7) d& (0),
Diols) = k(s).

ForanyT > 0, p > 1, we can prove

(6.5) sup E[[I1D& )15, o] < 00
te[-T,T]

Indeed, let{£'(s), s € [0,1], ¢ € [-T,T]} be given as in [6] and [14]. Let
(O] (s), A7 (s)) be the Doob—Meyer decompositiongf. Lety," = 1(§"), U' =
Uy and g (t,s) = [o Qun(y(h(r) o d&['(r)), s € [0,1], t € [-T,T]. Then
for any fixeds € [0, 1] and? € [T, T], it is easy to see thatO} (s), A} (s)) €
W (X, 0(d) x RY). Similarly to [14], we can easily prove that

(CT)"

(6.6) sup E[lllg" —& I < —

te[-T,T]

where

E[|Ig — & HI1P1 = E[ sup [|Of' (s) — Ozn_l(s)”ixl(d,d)}
s€[0,1]

1 p/2
[ [ - A toas|

Moreover, for allk € H, we can easily show that
t
DO (s) = O!'(s) fo [0 ()1 Drg) L (u, 5)O! (5) du,
t
DiA™(s) = O!'(s) / [0 ()] Drg 2 (u, )AL (s) du
0

t
+307s) /0 [0 ()] Dy RiCy-1,, (h(s)) du.
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Puttingk € H such thak = 1 1je, into the above formulas, we obtain the explicit
expressions of the Malliavin derivativé®’ O;' (s) and D A} (s). Set

E[IDZEM "1 := E[10] (Ol q.a)] + E[ sup. 1Dz Oz'“(s)llﬁ’m,d)}
sely,

1 ) p/2
+ E[fo 1D% A7 ()12 ds} .

By standard argument and the Burkholder-Davis—Gundy inequality, and using
the fact thatO} (s) € O(d) and supcy |AY ()|l < C(A + |h(s)]) (see [14]), it is
straightforward to prove that

E[ sup ||D$’Ul’<s)||"] < cE[II D& "]
s€[0,1]

[ sup 1% (r,s)n"] < cE[|| DZE 171,

s€[0,
E[ sup ||DYUM(s) — D?U,”_l(s)llp}
s€[0,1]
< cE[|ID%E" — D¥EM 1|17

12
+c{E[ sup ||D$’U;’<s>||2"“ (ELIgr — &2 )Y2,
s€[0,1]

[ sup | Dql(t, s) — D¢, s>||"}
s€[0,1]

< cE[||D2g!" — DX Y)17]
+ c{E[|| D&~ |||2"]}1/2{E[|||s;l—1— n=2)12ryyt2,
From the above inequalities, we can deduce that

(6.7) sup sup sup E[||D2E"I”] < c1e?"
neNte[-T,T]te[0,1]

E[ sup [De 0" — D o,"—l<s>||f’]
s€[0,1]
6.8)

t
R (T.n)+c /O ETIIDYE" — D*E")|P]du,

P/Z]

t
R2 (T,n)+c /O E[|D%€" — D*£"2||P] du,

1
EH | 1pgaz - peayiizas
0

(6.9)
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where fori = 1, 2, there exists a constafi{ T, p) such that

) 1/2
R;,Q<T,n>sc<T,p>{ sup  sup E[|||D$s,"|||2f’]}
te[-T,T]t€[0,1]
(6.10)

1/2

x { sup EI|lE" - ,"—1|||2"]} |
te[-T,T)

From(6.6), (6.7) and(6.10), R. (T, n) = R% (T, n) + R? (T, n) tends to zero

asn tends to infinity. hand, frong6.8), (6.9) and the Gronwall inequality, we have

(6.11) sup  sup E[[IDSE" — DYEHIP] < Re o (T, n)e .

te[-T,T17€[0,1]
This implies that{&/*,+ € [T, T]} converges uniformly i1 (X, (8M(RY),
Il - ll,)) and hence by(6.2) it converges uniformly inWlo°(x, (x2me,
Il - ll2m.«)). Moreover, we deduce€6.4) [resp., the inequality6.5)] from the
corresponding equation fob. & [resp., the inequality6.7)]. In general, by
induction and repeating the same argument as above, we can prove that, for all
ki,....kr € H, Dy, k. & (s) exists for alls € [0, 1] and allr € R. Moreover, for
anyT > 0, p > 1, using the Burkholder—Davis—Gundy inequality, we have

(6.12) sup E[|ID"& O ger |5, o] < oo

te[-T,T]
This completes the proof of Theorem 6.1 concerning the smoothness of the Driver
flow on the path spacé’,fl’;”“(M). To save the length of the paper, we omit the
details of the proofs of the four inequalities listed bef@8er). The reader who
is interested in the details of the proof is referred to [3] (for the case where
h € @' N H is a Lipschitz Cameron—Martin vector) and [18] as well as [21] where
the author proved that the Driver flo®; is a smooth transform on the path space

Ppo(M). O

We will make use of the following Kolmogorov criterion foso-quasi-
continuous modification of a family of\/-type 2 Banach spacé-valued
functionals. WherE =R, it is due to [28]. See also [26].

THEOREM 6.2. Let {X(¢),t € [-T,T]} be a family of M-type 2 Banach
spacekE-valued functionalSuppose thator all p > 2,r € N, there exist constants
¢, ¢ > 0and an even numbet such that

(i) X(@) e WP(X,E),

(iiy forall (s,1)e[-T,T]
(i) forall (s,t) e [T, T]

TTIX @) — X&) e wrr(x);

x [T
x [-T, T], we have

X (@) = XUl < el — s
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Then there exists a version of the procé®s:), r € [T, T']} which isco-quasi-
continuous for eache [T, T'] and which has continuous paths

PROOF SinceE is an M-type 2 Banach space, the nokhix) = ||x]| g is
smooth inE \ {0} and, for allk € N, there existsW; such that sup., -1 | VK x
oll(x) < M < oo. Thus, the Chebyshev-type inequality @f p)-capacity for
E-valued functionals holds; see, for example, [26]. Hence, for any givem,
p>1¢>0,wehave

1 B
Crp(lx € XX (@0 = X@)lle > ) = Z[IX () = X, -

Therefore, Theorem 6.2 can be proved by the same argument as used in the proof
of Theorem 31 in[28]. O

THEOREM 6.3. For all p > 2 andr € N, there exist constanis ¢ > 0 such
that

(i) & e Wnrxame, x2me);
(i) 116 — &5, , € WHP(X?m) forall (s, 1) € [T, T] x [T, T};
(i) forall (s,t) e[-T,T]x [-T,T], we have

(6.13) 11E ) = & Ol ol < el — s

PrROOF By Theorem 6.1, for alk € [T, T], we haveé; € W”I’(Xz’”v"‘,
x2m.ay, By the chain rule, for all even numbeg > 0 and(s,t) € [-T,T] x

[—T,T], we can provd|&, — §S||§m,a € WP (X?m), By Lemma 41 in [28], for
all s,7) e [-T,T] x [-T, T], we have

[1E ) = & O3 ol 2. = Cry po O [1EC) = E O llom a||2,4, 2,

—k)2rp11/2
x max[E|& () — &O)lg, DP M2,
O<k=<n

2m,a

(6.14)

On the other hand, using.3), (6.4) and inequalitieg6.5) and (6.12), by the
Holder inequality and the Burkholder—Davis—Gundy inequality, we can verify that,
forall p>1andr e N,

(6.15) 118 ) = &Ollznalzh < Cp. Dl =517,

(6.16) Hllfr()—és()llzmaH,zpSC(P,T)It—SIP

From (6.14), (6.15) and(6.16), we deduce that, foi(p, r) = n large enough and
for some constant > 0, we have

118 () — & gers |, < clt — s+
The proof of Theorem 6.3 is completel]
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Combining Theorem 6.3 with the Kolmogorov criterion (Theorem 6.2), we have
the following:

THEOREM 6.4. For all T > 0, there exists a version of the Driver flow
{®,,t € [T, T]} on the path spac@,,%’;““(M) which isoco-quasi-continuous for
eachr € [-T, T] and which has continuous trajectory o [—T, T].

PROOF OF THEOREM 1.4. By Theorem 6.3, for an§ > 0, there exists a
slim subsetSy of the path spacd’,ﬁ’;”“(M) such that amo-quasi-continuous
modification (denoted by®,,tr € [T, T1}) of {®;,r € [-T,T]} can be well
defined for ally € Pnzl’g’“(M) \ S7. Taking7,, = 2", we deduce that there exists a
common slim sefs, = U, ey S7;, such thaf®,, r € R} can be well defined for all
y € Pn%gl*“(M) \ Sso. Thus,{®;, r € R} can bev-a.s. well defined on the loop space
L2"*(M) = Lyy(M) N P3"*(M) and hence is-a.s. well defined orL,,(M).

[l

In the rest of this paper, we fix such as-quasi-continuous versid®;, t € R}
of {®,, r € R}. To end this section, let us mention the following remark.

REMARK 6.1. Note that the Driver floWd®;, t € R} is £,/ F;-measurable for
all s € [0, 1]; see [6, 8, 9]. Thus, the Kolmogorov criterion yields tl{@t,,t e R}
is again¥y/¥s,-measurable for alt € [0, 1]. Moreover, using the same argument
as used in the proof of the Sobolev norm and the capacity comparison theorems
between the Wiener space and the path space via the 1td map (see [22]), we can
prove that, for any¥ € W"?(X) and any subset C X, antr e Nandp > 1,

(6.17) ai||F Ogt”r/Z,p—s = ”F”r,p <a2llF Ogt”Zr,p-i—s,
(6.18) @1Cr/2.p—e(E71(A)) < Cr p(A) < @2Cor i (£71(A)),

where| - ||,,, (resp.,C,,,) denotes thé&r, p)-Sobolev norm [resp(r, p)-capacity]

on the Wiener spac¥, {&,t € R} denotes anyo-quasi-continuous modification

of the pull-back of the Driver flo; = I 1o ®, o I anda1 andas are two constants
which depend only om, p and the uniform bounds of the Riemannian curvature
and the Ricci curvature as well as their higher-order covariant derivatives. This
yields that the flow property; o & = &, holds quasi-surely oX. Since®, =

To oI, we get the flow propertsp, o &, = &, , quasi-surely orP,,,(M). As
explained in [22], the proof of the above inequalitigsl7) and(6.18) are based on

the Meyer inequality on the Wiener space. However, we still do not know whether
or not the Meyer inequality holds on the path space over a compact Riemannian
manifold. Thus, we do not know whether or not the corresponding Sobolev norms
(resp., capacities) comparison inequalities hold on path spaces if one refplaces
by @,.
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7. Cameron—Martin theorem on loop spaces. In this section we will first
construct the Driver flow on the loop space through the corresponding flow on
the path space. Combining this and Theorem 5.4 together with the Cruzeiro
lemma, we will give an alternative proof to the Cameron—Martin theorem on loop
spaces established earlier by Driver [7] and Enchev and Stroock [9] by Doob’s
h-processes approach and the short time upper bound estimates of the gradient
and the Hessian of logarithm of the heat kernels.

Our first result in this section is the following theorem:

THEOREM7.1. Leth € Ho. Then®,(L,,o(M)) C Ly,,(M). Moreoverfor v-
as.y € L,,,(M), we have

O, (y) = Dy(®:(y)),

(7.2) _
Di(y)=7y.

In view of Theorem 7.1, we regaﬁd, as the flow orL,,,,(M) generated byDy,.

PROOF OFTHEOREM7.1. Sinced, = @, holds quasi-surely o, (M), the
flow equation(6.1) is verified. It remains to show tha,(L,,,(M)) C L,,,,(M),
that is,

(7.2) @, (y)(1) = mo.

To this end, we use the same argument as in [7]. Indeed;-t08.y € L,(M)
and anys < 1, by the flow propertyd; on L,,,(M) we have

~ ~ N d ~
d(®,()(s). Bo(y)(5)) < / L&) dr

oldr

t ~
= /0 U (D (y))(s)h(s)|dr.

Now U(E),(y))(s) is an isometry fromR? to Ts, () M- Thus forv-a.s.y €
Lyo(M),
(7.3) d(®:(y)(5), Do(y) () < h(s)].
Let

E ={y € Luo(M):d(®:(y)(s), Po(y)(5)) < |h(s)| Vs < 1}.
Since both sides of the inequality {id.3) are continuous, we have
(7.4) (E) =1
Takingy € X and lettings — 1, we have

lim d(®(y)(s), 7 () < lim A(s)] =0.
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By the continuity ofs — ®;(s), we prove(7.2) for y € =, which differs from
L,.,(M) up to av-negligible subset, comparé&.4). [

The following lemma is due to Cruzeiro [4] and is a very useful tool to study
the quasi-invariance of a probability measure under the action of certain flows.

LEMMA 7.2 ([4]). Let (2, F,{F;}, P) be a complete filtered probability
space and letd = {¢,} be a flow(i.e.,, a one-parameter group of measurable
transformationy on 2. Suppose that there exists the divergemtie(d) e
L, P) such thatfor all f € € C L*®(R2, P), whereC is a dense subset of
L°°(Q2, P), we have

d
7.5 —FE
(7.5) e
Moreoverassume that there exists\a> 0 such that
(7.6) E[eM V] < 4o0.

Then(¢,). P is absolutely continuous with respect®o Denote

d(¢r)«P
Kt = (it; .

t
K; = exp(/o div(®)(¢_s) ds),

and for all p > 1 with the conjugate exponent that is, & + % =1, we have

— E[f div(d)].

t=0

Then

1K1y < E[eP?1M@N],

PROOF See[4] and [24]. O
Now we are ready to prove the Cameron—Martin theorem on the loop space.

THEOREM7.3. Foranyh € Hy, the pinned Wiener measureon L, (M) is
guasi-invariant under Drivers flow®;. Let
_d(@)w

K; = .
dv

Then
t ~
(7.7) K:(y)= exp(/o S(h)(CD_S(y))ds), v-aS. y € Lyy(M),
and for all p > 1 with the conjugate exponeat that is, % + % =1, we have

(7.8) IK: N7 5y < Ev[e?d 1PN,
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PROOE SetQ =L, (M), P =v, C =FC(Ly,(M)) [the collection of all
cylindrical functionals on,,,(M)], and let¢; be Driver’s flow®,. Theorem 4.2
shows that the divergence d#) in (7.5) associated to the flow, is justé§(h).
By Theorem 5.4, thev-exponential mtegrablllty (7. 6) holds for §(h). Hence
Cruzeiro’s lemma applies toL,,,(M), ®,,v). Thus, (d),)*v is absolutely con-
tinuous with respect to, that is, the pinned Wiener measurés quasi-invariant
on loop spacel.,,,(M) under the flowd,. Moreover, we obtain7.7) and the
LP-inequality(7.8). O

According to Remark 1.1, our main results apply to the special case where
M = G is a compact connected Lie group equipped withdahinvariant metric
and the left or the right Cartan connection. Theorem 1.5 recaptures the well-known
result due to Malliavin and Malliavin [25] on the quasi-invariance of the pinned
Wiener measure on the loop group. Indeed, our method is inspired by [25] where
the authors initiated the so-callémtcalization method from paths to loopased
on quasi-sure analysis.

8. Stochastic anti-development of pinned Brownian motions. Since [2], it
has been well known that the stochastic anti-development of the pinned Brownian
motion on any compact Riemannian manifold is a semimartingale up to time 1.
However, theL”(v)-convergence £ > 1) and the Fernique type exponential
integrability theorem for the stochastic anti-development of pinned Brownian
motions were first proved by Gross on a compact Lie group (see Lem&ja 4
Remark 49 and Corollary 410 in [13]). More precisely, leL..(G) be the loop
group over a compact Lie grou@ equipped with anAd-invariant metric and
the left Cartan (or the right Cartan) connection, waithis unit element. The anti-
development of the pinned Brownian motigg(s), s € [0, 1]} is given by

b(s) = /Osg_l(r) o dg(r), s €[0,1].

The Gross theorem says that there exists a sigauch that, for allx < Ao,

we haveE,[exp(A maxe(o,1 1b(s)]1?)] < +oo. See also [12] for an alternative
proof. In this section we will use Lemma 5.2 to establish iifgv)-convergence

and a Fernique-type exponential integrability theorem for the stochastic anti-
development of pinned Brownian motion on any compact Riemannian manifold
with a TSS connection. Our result also sharpens the exponential expofnent
appearing in the Gross—Fernique theorem. We begin with the following theorem:

THEOREMS8.1. LetG be acompactLie group equipped with Ad-invariant
metric and the left or the right Cartan connectidrhen for all

r<ro=sinf{lwl?:we X, |wlome =1},
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we have
E,[exp(A[1b]15,, 4)] < +o00.

Moreoverfor any A < % we have

E, [exp(A max ||b(s)||2)] < +o00.
s€[0,1]

PROOFE Foru-a.s.x € X, sincedg, (s) = g+ (s) odx(s), we have

1
b(s)(x) :/o [2:(N] o dgy(r) =x(s) € WP(X, T.G), s €[0,1].

By the Donsker—Varadhan [5] refinement version of the well-known Fernique
lemma, we have

E,[expA1b113,, )] = E.[expi]x]13,, ,)] < +00,
provided that
r<ro=inf{I(w):weX, |wlome=1},
where
I(w) = 3wl Lpwen + 00lpuwgn)-

Note that the functiori| - |3, , is smooth inX?" in the sense of Fréchet—

Gateaux. Thus, the Wiener functional~ |x[|3,, , belongs toW o> (X2m.«),
Hence Lemma 5.2 applies ®(x) = ||x|/2n.o. That is to say, for any > 0 and
anyp > 1, we have

E,[exp(h[b]5, 4)]
1/(p(1
< {Eu[exp(L+ ) palb 15, )1} " N1k 12 [z
wheren = 2[%] + 2 if we assume tha6 c R/ is a Nash—-Whitney embedding.

Thus, for allA < (HA-—g)p’ we haveEv[exp(k||b||§m,a)] < +0o0. Sincee > 0 and

p>1 are arbitrary, for allx < 1o we get Ev[exp()»||b||%m’a)] < +o00. Now
[wlloo := MaXefo,11 lw(s)lloo < Cllwlizm,q- Thus

E, [exp(k max ||b(s)||2)] < 400
s€[0,1]
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holds provided that
b 2 2
Asu ” !OO }5)» sup [ ”w!” }<A
b20L 10112, o wex\(oLllwll3, 4
SetX* = X\ {0}. Then, for all
1 T w3 7. 1wl
A< i [elE !H ] inf [72"2“"}
2wex+| w5, o4 wex L llwls
_ 2 w 2
<~ inf ||w||H ” ||2;121,oc:|
weX*L|wllamae  llwll
_1 '||w||%,]_}
wex*| w2, 1~ 2’

that is, for allx < 3, we have

2
E, [exp(k Srerggﬁ lx ()]l )} < +o00.
The proof of Theorem 8.1 is completel]

Similarly to the proof of Theorem 8.1, if we replabés) = [y g Y(r)odg(r)
by

x(s) = /0 Uty ody (),

then we can prove the following Fernique-type exponential integrability theorem
for the stochastic anti-development of pinned Brownian motions on a compact
Riemannian manifold.

V-a.8.y € Ly (M),

THEOREM 8.2. Let M be a compact Riemannian manifold equipped with a
torsion-skew symmetr{d@S$ connectionThen for all

A <noi=sinf{lwl? we X, [wloma =1},

E, [exp(,\nxngm,a)} < 400.

Moreoverfor all » < 3, we have

E, [exp(k max ||x(s)||2>] < +o0.
s€[0,1]

Finally, let us prove thé.” (v)-convergence of the stochastic anti-development
of pinned Brownian motion.

we have
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THEOREM 8.3. Let M be a compact Riemannian manifold equipped with a
TSS connectiarThen for anyp > 1, x(s) converges tac(1) in L?(v) ass tends
to 1. Moreoverfor any p > 1, there exists a constaut, such that

l(s) = x(DllLr) < Cpl =)
PROOF  Similarly to the proof of Theorem 4.1, there exist a constamind a
pair (r, g) € N x (1, 4+00) such that, forp =2n, n € N,
x(s) = x (D17 50y < Cl1x ) = XN [ yra xy-

With respect to the Wiener measure on the Wiener space(s) — x(1) is a
centered Gaussian variable with variance- X. Thus, there exists a constant
C(n, g) such that

Epolllx(s) = x(D]%" < C(n, )L = 5)™.
On the other hand, forally,...,h, € H,i =1,...,d, we have
)" =2n(2n — 1)+ (2n — 1) (xi(s) — x: ()2
x (hy(s) = hy(D) -+~ (hy.(s) = hy (D)),
from which one can easily verify that

[V llx () =x@1"],, < Cln. )L — )@ 77/2,

Vi - Vi, (xi(s) — xi (1)

Therefore, we get
1x () = x (D)l 20y < Cn, 7, )[(L— )2+ (L= 5)@=7/],
Note thatr andg are independent of. Hence
1 (s) = x (D)l 21y < Ca(L— )M,

This yields that|x(s) — x(D)[|lLrw) < Cp(L—s)Y2forall p>1. O

9. Two remarks on Doob’sh-processes approach. For the completeness of
the paper, we would like to give two remarks on the Ddsprocesses approach
for studying the problems discussed in this paper.

Recall that with respect to the pinned Wiener measwe loop spacé ., (M),
the conditional Brownian motiogy is given by the following Stratonovich SDE:

dys = Us o dby, Yo = myo,

where{by, s € [0, 1]} is the anti-development ¢f;, s € [0, 1]} through the It map
I:X — Py,(M) which can be well defined up to a slim subsetxfMoreover,
{bs, s € [0, 1]} is a semimartingale with the following Doob-Meyer decomposition:

dby = dBs + U1V log p1_s (v, mo) ds,
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where{gs, s € [0, 1]} is av-Brownian motion on X, ¥, ¥, v). See, for example,
[2,7,9, 15, 16].

Leth € H and letD;, be the vector field od,,,(M). Let y’ be the Driver flow
on the loop spacé,,,(M) given by

y' = Di(y") = Uih(s),

yO=y,
where{U!, s € [0, 1]} is the horizontal lift of{y/, s € [0, 1]}. Using the intertwin-
ing formula for the differential of the stochastic development daf: Ppo(M) —

X (see[6, 8, 10, 15, 22, 24]), the pull-back flév= 1 ~1(y") satisfies the follow-
ing equation:

idbf—h(s)ds— (y',s)odb"
atss_ QthVOss,

p = by,
where
dsb = dy B} + [U{17*V log p1—(yy, mo) ds.
Thus, we have

0 .
|57+ a0 |dobl = hds

whence

0
[E +q}z(yt7 S):| Odsl3£

. d
= hyds — [E +aqn (v, s)}([Uf]_1V log p1—s (y!, mo)) ds
= hyds — qu(y", $)([U171V log p1_s (y!, mo)) ds

0
+ [U;]—l(aug)w; 171 l0g p1_s (v mo) ds

d
— [U;171V?log p1- (¥ mo)(g)’f) ds.
Moreover, by the Bismut formula (see, e.g., [2, 22]), we have

8 t t t
EUS = quh(y s S).

Combining the above formulas, we can derive the pull-back Driver flow equation
as follows:

d .
[5 ' s)] o dyBl = hyds — [U'T29210g py_y (y! . mo)U'h(s) ds.
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In order to use the standard Picard iteration or the Euler iteration method to solve
the above flow equation, it is clear that one has to use the Hessian estimate of the
logarithm of the heat kernel on compact Riemannian manifold. Moreover, in order
to use the usual approach based on the Girsanov theorem and Lévy’s invariance
of Brownian motion under adapted rotations to prove the quasi-invariance of the
pinned Wiener measure under the pull-back Driver flow, we need to verify the
Novikov exponential integrability condition of the drift term given in the right-
hand side of the flow equation fg'. Thus, we need to use again the Hessian
estimate of the logarithm of the heat kernel. See, for example, [7, 9, 15, 16]. See
also [17, 27, 29, 31] for the short time estimates of logarithmic derivatives of the
heat kernel.

To end this paper, let us mention that Gong has informed us that, by using
the gradient and the Hessian estimates of the logarithm of the heat kernel, Gong
and Ma can also prove the” (v)-convergence and theexponential inégrability
of the divergence functional(#) (for all A < Ao for some constankty which
depends onk||y and possibly on the constants appearing in the gradient and
the Hessian estimates of the logarithmic heat kernel) by the Dwpitocesses
approach. Without using heat kernel estimate, our approach based on the Airault—
Malliavin—Sugita—Watanabe inequality (see Theorem 2.2 and Lemma 5.2) and
Sobolev estimates shows that we can get an explicit estimatey fathich only
depends on the uniform bound of the Ricci curvatyRic ||, and||&] g, that is,
ro =2+ | Ric|lco) 1l m]71,
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