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IN MULTIDIMENSIONAL LIMIT THEOREMS
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The motivation of this work is the study of the error tegfiix, w) in the
averaging method for differential equations perturbed by a dynamical system.
Results of convergence in distribution f(oe#g\(}—s"))wo have been established
in Khas'minskii [Theory Probab. Appl. 11 (1966) 211-228], Kiferrgodic
Theory Dynamical Systems 15 (1995) 1143-1172] and PeneSAIM Probab.
Satist. 6 (2002) 33-88]. We are interested here in the question of the rate
of convergence in distribution of the family of random variamgéjg;))wo
whene goes to 0( > 0 andx € R? being fixed). We will make an assumption
of multiple decorrelation property (satisfied in several situations). We start
by establishing a simpler result: the rate of convergence in the central limit
theorem for regular multidimensional functions. In this context, we prove a
result of convergence in distribution with rate of convergena@ in—1/2+)
for all « > 0 (for the Prokhorov metric). This result can be seen as an
extension of the main result of Pér@jmm. Math. Phys. 225 (2002) 91-119]
to the case of/-dimensional functions. In a second time, we use the same

method to establish a result of convergence in distributior(fé\/(fg’—'))wo

with rate of convergence if (¢1/2=%) (for the Prokhorov metric). We close
this paper with a discussion (in the Appendix) about the behavior of the
quantity || Supy<; <7 lef (x, -)loollL» under less stringent hypotheses.

1. Introduction. We are interested in the asymptotic behavior of random
variables sequences defined by a probability dynamical system. Let us consider
a (discrete-time) probability dynamical systéf, &, v, T) [where (2, ¥,v) is
a probability space endowed withvgpreserving transformatiofi: @ — Q.

Let a function f defined onQ with values inR? be given. We can study the
stochastic properties of the sequence of random varialfles7"),>o defined
on (2, F,v). If (2,F,v,T) is ergodic, Birkhoff's ergodic theorem [6] gives a
strong law of large numbers f@if o 7"),>0 when the functionf is v-integrable.
Furthermore, central limit theorems (CLTs) have been establishéd o7 "), >0
in various situations (see [9, 31, 36, 38], etc.). Results of speed of convergence
in the CLT for (f o T"),>0 have been established in the one-dimensional case
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(i.e., whenf is a real-valued function) in [17], [19] and [32], for example. Here,
we are interested in the speed of convergence in the central limit theorem for
multidimensional random variabley o T"), (i.e., whend > 2). We estimate

the speed in the sense of the Prokhorov metric. When T"),, is a sequence

of independent random variables, Yurinskii established a speed of convergence in
% in the sense of the Prokhorov metric (cf. [39]). Let us point out the fact that
such an estimate gives directly an estimaten for the speed of convergence

of the expectation of any bounded Lipschitz continuous function. In Section 2
of the present paper we establish a speed of convergen@énin'/2+2) (for all

a > 0) for the multidimensional CLT fo¢f o T"),>0 When f is a regular function
(Theorem 2.2). This result holds under a hypothesis of multiple decorrelation (with
exponential rate) for regular functions. This hypothesis is satisfied in different
hyperbolic situations (systems studied in [38], billiard transformation studied
in [37], mostly contracting diffeomorphisms studied in [8]).

Our proof is based on the method developed by Jan to establish Theorem 7
of [19] (it uses characteristic functions) and on a result due to Yurinskii [39] which
plays here a similar role to the one played by the more classical Esseen lemma [12]
in the proof of Theorem 7 of [19]. (Let us mention the work of Jan who estimated,
in a slightly different context, the speed of convergence in the multidimensional
central limit theorem in the sense of the uniform convergence of the distribution
functions and then extended Rio’s result of [32]; cf. Theorem 9 of [19].)

In Section 3, a result of speed of convergence in terms of the Prokhorov
metric is established in a more sophisticated context. We study the averaging
method for differential equations perturbed by the probability dynamical system
(R, F,v,T). This problem has been studied in particular [11, 20, 21, 25, 26].
For a general reference about this method, we refer to Chapter 4 of [1] and to
Chapter 7 of [14] (see also Chapter 5 of [2]). The problem is the following one.
Let a functionF : R? x Q — R? smooth enough (measurable, uniformly bounded
and uniformly Lipschitz in the first parameter) be given. For any 0 and any
(x, w) € R? x ©, we consider the continuous solutiorf (x, w)), of the following
differential equation (with initial condition):

&

d
VieRL\N, ;t’ (x,a)):F(xf(x,a)),TL’/eJ(a))) and x§(x,w) =x.

Let us write (w;(x)); the solution of the differential equation (with initial
condition) obtained from the previous one by averaging:

VieR, %(x):/ F(w,(x), @) dv(@) and wo(x) = x.
Q

We are interested in the study of the asymptotic behavior (whgoes to 0) of the
error term(e; (x, w)); defined by

e (x, w) :=x! (x, w) — we (x).
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Results of convergence in distribution for the family of processes

((efj‘g")),e[o;n)»o have been established in [21] and in [28] (see Theorem 2.1.3

in [28]). Here, we establish a result of speed of convergence in distribution for the
family of random variablesses(x"))€>0, s andx being fixed (Theorem 3.4). The

NG
speed is estimated in the sense of the Prokhorov metric. The proof of this result is
based on the ideas of the proof of Theorem 2.2.

In the Appendix, we complete our study with estimates of the following form:

= 0(Ve).

Lp

sup
xeRd

SUp Jf (x|
1€[0; To]

for any real numbefp > 0 and for some real number> 1. With these results,
we improve a result of [11] in two particular cases: for a differential equation
perturbed by the billiard flow studied in [29, 37] and in the case of a differential
equation perturbed by a diagonal flow on a compact quotier8Lod, R) (see
Section A.2).

1.1. Context. Let us specify the context we consider here. Let us consider a
probability dynamical systen2, ,v, T). Let us suppose that the spaReis
endowed with a metrid and that¥ is the associated Borel-algebra. We denote
by E, [-] the expectation relative to the measure

El/]:= fQ fav.

For all complex-valued square integrable functigig, we denote by Cay f, g)
the covariance of the functionsandg with respect to the measure

Cov,(f,8) =E.[fgl —E.[fIE[g].

Let a real number €]0; 1] be fixed. For any uniformly bounded amaHolder
continuous functiory : @ — C, we defin€|| f || := SUR.cq | f (x)| and we denote

by C;”) the Holder coefficient of ordey of f:

C;") — sup'f(x) - f(Y)|.
’ xzy A, y)T

We write #, the set of complex-valued uniformly boundgeHolder continuous
functions defined of.

For any real number > 1, we introduce the multiple decorrelation Property
(P,) as follows:

PROPERTY (£,). Thereexist a polynomial function P, with real nonnegative
coefficients and a real number §, €]0; 1[ such that, for all integers m and m’,
for all bounded n-Hdlder continuous functions f1, ..., fiuem 2 — C, for all
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increasing finite sequences of nonnegative integers (k1, ..., k) and (I1, ..., Ly)
and for all nonnegative integer n, we have

m m’
’COVU(H fioTH, T finsjo T”‘HJ‘)‘

i=1 j=1

(1) , ,
m—+m m—+m ( ) ¢
< ( [T Ifile+ > C} 1‘[||fj||oo)Pr<lm/>6,"—r
i=1

i=1 i

Such results of decorrelation have been studied in [22] for Anosov diffeo-
morphisms. Let us make some commentaries about this property. Let us no-
tice that Theorems 2.2 and 3.4 are still true if we replace, in Property,

8 "km by h,(n — rky), where(h,(n)),>0 decreases rapidly (more precisely, if
lim,,_ o0 nPh,(n) = O for every real numbeg > 0).

Property(£,) is satisfied for any > 1 in the case of a billiard transformation
studied in [37] (cf. Corollary B.2. of [29]). This result can be proved in the same
way for any dynamical system to which Young's method of [38] can be applied.
Examples of dynamical systems satisfying this property are given in [23] where
a similar property is proved. In particular, this property is satisfied for ergodic
algebraic automorphisms of the torus (this can be proved by rewriting the proof of
Theorem 4.1.2 of [28]) and for diagonal transformation on a compact quotient of
3.(d, R) (see [23]) and for the dynamical systems studied by Dolgopyat in [9].

1.2. Prokhorov metric, definition and first results. We endowR¢ with the
supremum norny - |« defined by|(x1, ..., xg)|co := MaX%=1, . 4 |x;|. FOr real-
valued random variables, we estimate the speed of convergence in distribution in
terms of uniform convergence of distribution functions. Indhdimensional case,

a natural metric between two probability measure®8nis the Prokhorov metric
(cf. [10], e.g.). Let us recall now its definition and some of its properties.

DEFINITION 1.1 (Prokhorov metric). LetP and Q be two probability
measures orR?. The Prokhorov metricdl1(P, Q) betweenP and Q is the
following quantity:

(P, Q) = inf{s > 0:sup(P(B) — Q(B%)) < 8},
Be8B
where 8 is the Borelo-algebra orR? and where we denote b§* the e-open
neighborhood oB.

Let us recall the link beteen the Prokhorov metric féhe probabity measures
on R4 and the Ky Fan metric for thB“-valued random variables defined on the
same probability space.
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DEFINITION 1.2 (Ky Fan metric). LetX andY be two R?-valued random
variables defined on the same probability spé€e7, P). The Ky Fan metric
(associated td- |,) betweenX andY is given by

K(X,Y):=infle > 0:P(X — Y]oo > &) < &}.

PROPOSITION1.3. Let P and Q be two Borel probability measures on R?.
The Prokhorov metric TI(P, Q) between P and Q is the infimum of the Ky Fan
metric between X and Y, where (X, Y) describes the set of couples of random
variables defined on the same probability space such that the distribution of X is
P and such that the distribution of Y is Q.

Another classical metric between probability measureR®61s the BL metric
(BL for bounded Lipschitz) defined as follows:

DEFINITION 1.4. LetP andQ be two probability measures df. The BL
metric betweerP and Q is the following quantity:

Erlp] —Egld] d
BL(P, Q) := SUD{— ¢RI >R, [[§lloo + Ly < +oo},
¢lloc + Lo oo T S
where we denotéd|oo = SUR.cra |9 (x)| @andLy :=sup, ., \¢‘(§)_—)f‘f>oiy)\ _

These two metrics are metrics for the weak convergence for probability
measures (which corresponds to the convergence in distribution for random
variables). Moreover, we have the following (cf., e.g., [24], Proposition 1.2
and [10], Problem 11.3.5):

ProPOsSITION1.5 (Equivalence of these metrics)Let P and Q be two Borel
probability measureson R?. We have

1BL(P, 0) <TI(P, 0) =< (3BL(P, 0))"2.

In the following, we will essentially be interested in questions of speed of
convergence in terms of Prokhorov metric. But, we will also talk about BL metric.

1.3. Notation. Let A andB be any vectors ilR“. Let us denote byA the line
vector, transposed ta. Let us denote by ® B the squarel/-dimensional matrix
givenbyA ® B := A - 'B and we writeA®? := A ® A.

Let a probability spacég<2, ¥,v) and a real numbep > 1 be given. We
denote byL?(Q,R?) the set of measurable functions: 2 — R¢ such that
Jo | f15 dv < +oo. Foranyy in LP(Q, R?), we denoté| £ || .»r = (o | f 15 dv)¥/P.

For any probability spacé2, ¥, v), any measurable spac&, 7) and any
random variableX : @ — E, we denote by, (X) the image measure ofby X,
that is, the probability measure defined@n 7) by v.(X)(A) = v(X~1(A)) for
anyAeT .
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2. Ordinary central limit theorem.

2.1. Introduction and result in the i.i.d. case. We are interested here in the
guestion of the rate of convergence in the central limit theorem, that is, the question
of the rate of convergence in distribution for sequences of random variables of
the form (% ZZ;& X)n>1 to @ normal random variable. For amye R? and
anyd x d nonnegative symmetric matrik, we denote byV (A, C) the normal
distribution with meanA and with covariance matri (cf. [13], IlI-6, for the
notion of normal distributions).

For independent multidimensional variables, results of speed of convergence
have been established by many authors under moment hypotheses. Let us mention
the works of Bergstrém [3], Sazanov [34], Ranga Rao [30] and Bhattacharya [4]
(for uniform estimates) and of Rotar [33] (for a nonuniform estimate). Let us give
the following result coming from [39]. The proof of this result given by YurinsKii
is based on a result linking Prokhorov metric with characteristic functions (cf.
Proposition 2.6).

THEOREM 2.1. Let (X))o be a sequence of R?-random variables defined
on a probability space (2, £, P). If these random variables are independent and
identically distributed, P-centered and admitting moments of the third order, then
the sequence of randomvariables (—= 1 ZZ éXk)n>1 convergesin distribution to a
random variable with (eventually degenerate) normal distribution & (0, E[X1®2])
and we have

1" 1 5 1
n( (IZX/(),JV(O E[X1% ])) 0(%)‘

Moreover, this speed of convergence is optimal under these hypotheses [there
exists such a sequence of random varialgleg); for which the speed is exactly
n %].

Here we will consider random variablég which are maybe not independent
but are stationary. More precisely, we will suppose that the random variables
X are given byX; = f o T% with (Q, #,v, T) as described before and with
f: Q2 — R? any uniformly boundeg-Hélder continuous function.

2.2. A rate of convergence in the central limit theorem. For any function
f:Q — R? and any integer > 1, we define

n—1
Sp(f)=> foTk

k=0
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First of all, let us notice that, under hypothe&i?.), the following limit exists for
anyv-centered, boundegrHolder continous functiorf : Q@ — R¢:

o Su(f)\*?
b=, (&|(Z7) )
and that we have

2  DH=EIfQ@fI1+Y Elf®foT I+E[foT"® f).

k>1

THEOREM 2.2. We suppose that there exists some r > 1 for which Property
(P,) is satisfied. Let f:Q2 — R? be a v-centered, bounded n-Hoélder continous
function. If the matrix D(f) is nondegenerate, then the sequence of random
variables (%)nzo convergesin distribution to a d-dimensional randomvariable

with normal distribution & (0, D(f)) and we have

1
@) Va>0.  I(f):= H<v*<ﬁ5n(f)), N (O, D(f))) = 0(n Y/,

Let us make some comments about the case in which the asymptotic covariance
D(f) is degenerate. By a classical argument (cf., e.g., Lemma 2.2 of [7]), we have
the following result:

PROPOSITION2.3. Let us suppose that there exists a real number » > 1 for
which Property (£,) is satisfied. If g: 2 — R is a v-centered, bounded »-Holder
continuous function such that D(g) = 0, then g is a coboundary in L2, that is,
there exists a v-centered square integrable function 4 : 2 — R such that we have
g=h—hoT amost surely.

If f:Q— R? is a v-centered, bounded-Hdolder continuous function, then
there exists an orthogonal matrixe O, (R) such that the matribxD(A- f) = A -
D(f)-TA is diagonal with diagonal terms, > o > - - - > «y. Let us suppose now
that the matrixD(f) is degenerate. It is natural to ask if, in that case, estimate (3)
is still true. Because of thegelivalence of norms in fini dimension, estimate (3)
will be true for f if and only if it is true for the functiory defined byg := A- f. Let
r be the rank of the matri®(f) andgs, ..., gs be the coordinate functions gf
Coefficientss, ..., «, are nonnull positive and coefficierts, 1, ..., g are null.

We can therefore apply Theorem 2.2 to the functigp, ..., g,): Q2 — R” and,
consequently, to the functiot = (g1, ..., -,0,...,0): Q2 — R4, Hence, we have

g =G+ H with D(H) = 0. Then, according to the previous proposition applied to
the coordinate functions df, there exists a-centered square integrable function
h:Q — R? such that we have = G + h — h o T almost surely. Therefore, for any
integern > 1, we have

1 _ 5.(G) + B,

ﬁSn(g) DY
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where(B,, :=h — h o T"), is a sequence of random variables boundetirand
with

Va >0, H(v*<%5n(G)), N (0, D(g))) = 0(n V%),

REMARK 2.4. If the sequence of random variablgs,),, is bounded inL?
(for somep > 1), then we have (according to Markov’s inequality)

s 51(G) + By S:(G)\ _ sup, IBul7,"
NN np/@p+1)
and therefore, according to Theorem 2.2,
1

H(V*(ﬁsn(f))’ N (O, D(f))) = O(H—p/(Z(erl)))_
If (B,), is bounded inL” for all real numberp > 1, then we have

Sn(G) + By Sn(G)) —1/2+a
, =0 ,
NG N (n )

and therefore, according to Theorem 2.2,

Va > 0, JC(

Ve >0, n(v*(%snm), K (0.D(f)) = 02,

If (By), is bounded inL!, then for any bounded Lipschitz continuous function
#:R?Y > R, we have

Sn(G) + By ] [ <Sn(G)):H sup, I Bmll 1
E, —F— )|~ E <Ly———F——,
()] (MR N
and therefore, according to Theorem 2.2,
1
Jn
CONSEQUENCEZ2.5 (Case eventually degenerate). Let us suppose that there

exists a real number> 1 such that Propertyp,) is satisfied. Letf : @ — R? be
av-centered, boundegHolder continuous function. Then, we have

Va >0, BL(U*< Sn(f))’ N (O, D(f))) — O(n~ Y2ty

n(v*(%snm), N(O.D()) = 0

and

Va >0, BL(u*(%Sn(f)), N (0, D(f))) = O(n~ Y2+,
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2.3. Proof. In this section, we prove Theorem 2.2. This proof is inspired
by [29]. It uses a method developped by Jan in another context (cf. [18, 19]).
In order to estimate the speed of convergence in terms of the Prokhorov metric, we
will use the following result:

PROPOSITION2.6 ([39]). Let Q beanormal (nondegenerate) d-dimensional
distribution. There exist two real numberscg > 0 and I > 0 such that, for any real
number U > 0 and for any Borel probability measure P on R admitting moments
of order |d/2] + 1, we have

(P, Q)

[14—1“
<co

U

ld/2]+1

L, %

k=0 {j1,....jx}ell,....d}k

ak 2 1/2
— (pp— | dt ,
o 00)0) ) }

where we denote by ¢p and ¢ the characteristic functions of the distributions
P and Q, respectively:

VieR? pp(t) = EP[EW")] and ¢p(t) = EQ[ei<”')],

with (-, -) the usual scalar product on R¢.

This result links the speed of convergence in terms of the Prokhorov metric with
a problem of estimation of the characteristic functions. It will play the same role in
our proofs as the one played by the Esseen lemma in the proof of unidimensional
central limit theorems established in [19, 29].

Let us suppose that the hypotheses of Theorem 2.2 are satisfied. Let us consider
a real numberg > 1 such that Property?,,) is satisfied. Let us suppose that the
matrix D( f) is nondegenerate. For ang R¢ and any integer > 1, we define

i{t, $p(f)) ” _ exp{ (t, D(f)1) }

hy(f,t):= Ev[exp{ NG _

2

The remainder of this section is essentially devoted to the proof of the following
result. Let a real number €]0; %[ be given.

PROPOSITION 2.7. For any integer p > 0, there exist a real number
L, =L, >0 anda nonnegative functions sequence (a,, .« )»>1 Satisfying the

following:
1/2 1
2 [—
(/|;oo<nl/2_a (@n.pa(®) dt) B O"_)Jroo(nl/z_“)’
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and such that, for any integer n > 1 and any r € R? satisfying |f|o < nY/27%, we
have
ld/2]+1 k P
|5

ad
4) Z Z ﬁhn(f, 1) Eme +an,p.alt).
k=0 1<ji,...jk<d 1 Jk

PROOF OF PROPOSITION 2.7. Let us prove inductively orp that the
following Property(#,) is satisfied for all integep > 0. [

PROPERTY (#,). For any real number g > O, there exist a real number
L,qp >0 and a sequence (an, .« p(-))s Of nonnegative uniformly bounded
functions (a,, p,«,p)n>1 SAtisfying

1/2
imeupet e ([ @ g0 ) < e

and such that, for any integer n > 1 and any r € R? satisfying |f|o < nY/27%, we
have

Ld/ij:H 5 ok h( t)‘ <Lyup 1+ 115 ta 50)
% n ) = Do, T n,p,o, .
o A Py Atjy -+ 31}, np1/2—a)

Let us first notice that, under Property,), for any bounded Hoélder continuous
function f: 2 — R4, the sequence of random variabtegs%)nzl is uniformly

bounded inL? for any real numbep > 1 (see Lemma 2.3.4 of [28]). Conse-
quently, derivatives of order less thaéj + 1 of functionsh,, (f, -) are uniformly
bounded by some constafit> 0. Therefore Property#) is satisfied (by taking
Low.p =d%?T2C anda, 0,0.4(t) = 0).

Let us now consider an integer> 0. Let us suppose thdt¥,) is satisfied
and let us show that#,,1) is then also satisfied. Let us notice that, since matrix
D(f) is nondegenerate, there exist two real numbgrs 0 andc; > 0 such that,
for everyu € RY, we have

colul?, < (u, D(f)u) < cilul?,.

Let a real numbep > 0 be fixed. There exists an integeg > 1 such that, for
all u € RY satisfying |u|oo < no™%, we have(u, D(f)u) < 1 (e.g., any integer
satisfyingng > ¢1/@ is suitable). In the followingn will be a nonnegative
integer andr a point in R? satisfyingn > ng and |t|s. < n%/2-%. We will then
have 1 £BU00 . 15 0. The notatioro will only depend orp, o, g and f; for
example, the notatiog, ; = O (k, ) means that there exists a real numbes 0
such that, for any integer> 1 and any € R? satisfying|t|o, <nY/2~%, we have
lgn.t| < C - lky.¢|. We will split h,, (£, t) in pieces that we will estimate separately:

ha(f, 1) = Y01 Hi(t, ).
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Part 1. We start by estimating the following quantity:

(1_ (t, D(f)r) "_ _(t,D(f)t)
(5) H1(t,n):= (1 — ) exp{ — }
We will show that we have
ld/2]+1 k
(6) ,;, 15/1;/@ 0tjy -~ 01, fem
6
(4o 1 d+4

This term will contribute to the,, ,+1.4,5 termin (4) (forp + 1 instead ofp). Let
us notice that we have

2|f|§o 1 1
(Ha(t,m)| < e” 5> exp{—é(t, D(f)t)(l - ;> }

Let us now fix an integek € {1, ..., L%J + 1} andk indicesjy, .. ., ji belonging
to {1,...,d}. In the following, we will denote byQ; the set of partitionst =
{A1,..., Ay} of {1,...,k} in nonempty subsets. Let us notice that, for aﬂfy
regular functiorb : RY — R, we have

ﬁ((z}(ﬁ))")iz{mz 8 (A D)D),

with

t n—m
gn(A, D)) =n(n—1)---(n—m+ 1)(b(ﬁ)>

m a#a‘%pb ¢ 1
<11 (W (—f)—k/z,
]721 4/[(17) e /l(p) nj/n
1 #Ap

if A = (A1, ..., ) With A = (15", .. 1) ). In the following, we will con-

siderthab = 1—3(-, D(f)-) orb = exp(—3(-, D(f)-)}. LetA = {A1, ..., An} €
Q. We denote byng(4) the number of4; € A which contains only one point.
Then, we havei2 <mg(+4) + k. Indeed, we have

(7)

k=Y #A,>mo(A) + 2(m — mo(A)) = 2m — mo(A).
p=1
(i) Let us suppose thatn2 < mg(4) + k. Using the fact thata%b)(ﬁ) =

O(%) and that the derivatives of order at least 2»dbken inﬁ are bounded,
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we establish the following estimate:

L _nm (t, D(F)r) } 0((%>mow)n—wz

_ 0<nm—(mo(m+k>/2|t|@».?(m exp{_%g, D(f)t)(l— T)})
n

_ 0<n—1/2|t|@fg<=*‘) exp{—%(t, D(f)1) (1 - %) })

(i) Let us suppose now thati2= mq(4A) + k. Then eacha; contains at most
two points and we show that we have

o1 v Dz(f)'>)<r> ~ a4 exp{—%«, ()
1

|gn (A, b)) <n™ exp{—

mo(A)+4

S )

Effectively, let us notice that we have

iy (1= 55 sl 0} ()

émﬂ (expl—5- . D0} - 1)=0(',fl'j;),

(1- &quf)”)"_m —expl =" (|

n
o 2o ))

by using formulae|a” m_ ph=m| < (p — mymax(|al, |b))* " La — b| and
le ™ —1—u|< ” . Moreover, we have

atja;j/ (1_ (-, D2(f)~) _exp{—%(-, D(f”})(#)
= D15 (exp] ot D | 1)

_ Xd: D(f)/sz(f), mfexp{ lD(f)t} <%)

I,m=1

Moreover, we recall that, fob =1 — 1 5(» D(f)-) or b =exp{—(1/2)(-, D(f)-)},
we have(atj b)(ﬁ) = (':‘/%") and that the derivatives of order at least 2hof

and we have

=
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: t
taken mW are bounded.

Therefore, according to (7), the previous estimates and

ilnj)“i - ﬁbi = %(ﬁbk>(aj —bj)( ﬁ a1>,

i=0  j=0\k=0 I=j+1
we get
o1 %)(r) ~ (. exp{—%«, ()0
o)™
n
o (o ) )

4

1 |¢[rolAF 1 m+1\] 1

— m __ R N
~ oI el L o(3- )] 1)

and we have 2 = mg(A) + k.
Part 2. Hence, we have to study the quantity

D,(t):= E{exp{%” — (1— %;f)t))”

which we split as follows:

n—1 i .
(t, D(f)r) [ I p{l(t,Sn—(1+1)(f))} 1+1]
8) D= (1-"L)E |lvor!. o THL|,
(8) Du(1) g( o ) ex N

e 1) (1 L-DU0)

Part 3. Let us fix M := p + 3. Let us consider the nonnegative integers
ai(n), ...,ay () given by the formulae

. In(n)
“= [‘In(aro)]

aj:= ’V(ro— D@@+---+aj_1)—

with

|n(n(d+5+,3)/2Pr0(n))—‘
IN(3r,) ’
where P,, andé,, are, respectively, a polynomial function and a real number as

in Property(#,,). Let us writeAg:=0 andA; := Z,{Zlaj. We notice that there
exists a real number > 0 such that, for any integer> 1 and anyj =1,..., M,
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we havea; < K’j;/z. Therefore, we have; + --- + ay = 0(n?) for any real
numberd > 0.
Part 4. Letus define
(t, D(f)f))’
Ho(t,n) .= 1-—
2(t. ) > (-
(9) n—kn®/2<l<n—1

x EU[Y i exp{i<t’ S"_\(/I;l)(f)) } o T].

Let us prove that we have

ld/2]+1 .
o Ha(t,n)
kX:g) Jtseess ijZ:l ..... d 81‘4/']_"’82‘]',c
(d+4)/2
(10) - 0<na/2(1+ 1]/
N

copl RN (3 _xdv2y))

This term will contribute to the,, ,11.«,5 termin (4) (forp + 1 instead ofp). Let
us consider an integémsatisfyingn — kn®/2 <1 <n — 1 and an integet > 0 and
kindicesj1, ..., jr iIn{1,...,d}. First, let us notice that we have

ok xp{ i{t, Sp—a+1)(f)) }
dtjy -~ - 01, Vn

_ MMpmaSimasn (i) it Su—axn ()
- nk/2 N

since we have — (I + 1) <«n*?and O< «a < % Second, we have

ax 1+t
71/:0( + | |oo).
dtjy -+ 9 vn

Indeedy isin O(%) and derivatives of — exp{%} are inO(%). Moreover,

}= 0(1),

derivatives of first order of > 1— {20 are in 0(Il=), its derivatives of

order 2 are inO(%), its derivatives of order at least 3 are null. Now, let us show
that we have

(1) o (1_ {1, D(f)t>)’ B

= 0(b, (1)),
8t‘,-l---8tjk 2n ( n,l( ))
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with
min(|d/2|+1,1) .
1+t
b (1) := Z (1 ..... (l—m+1) n’|n|oo)
=0
(12) "

1
X exp{—E(t, D(fHrryd —m)},

[with the convention - --- - (I —m + 1) =1 if m = 0]. Estimation (11) holds for
k =0 (since|l — u| < e™* for any real numben € [0; 1]). Let us suppose now

k > 1. Since derivatives of order at least 3ref> 1 — -2 gre null, we have

ok (1_ (t, D<f>t>)’ )

8t‘,-l---8tjk 2n
{t, D(Hry\'™
= looo.. (l_m_i_l)(l_i)
A%_T;k 2n

f (A= DY/ ) L

ati,(p) T ati,(p)
1 HAp

where we denote byB; the set of partitionsA = {A1, ..., A,} of {1,...,k}
in subsets of at most two points. Let us consider such a partitiea {41, ..
A} € Bi. If m >1+ 1, then we have

{t, D(f)1) )l—m
2n

ML= (D)) /D\/ t ) 1

otj -0t
= J(p) J(p)
p=1 4" A

L)

14
Let us suppose now that < I. Since we haveid = mg(4) + k, we get

! (1, DN\ P (A= ¢ DY)\ (1 L
(l—m)!(l_ 2n ) H1< )(ﬁ)m

atjl(p) T atjl(p)
1 H#Ap

n (1_ (t, D(f)f))l""

<
—(—-m)!

2n
dsup; jr ID(f)).jr| - [tloo\ "0 m—mo(A) 1
< NG ) (ilj_plD(f) ) .
n ( (t, D(f)t))l‘m(|t|’;?(""))< /241
= 1= ) (1+asupncn, )
(I —m)! 2n n Iy Ji
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Hence, we have proved (11). Let us prove now that we have

(13) gbn,l(n - 0<min<n, é))

We have
min(ld/2)+1,0)
bn,l(t) = Z bn,l,m(t)7
m=0
with

m

B gm(t) =1+ (I—m+ 1)1J;|”°° exp{—%(t, D(HHt)(l — m)}.

We have
ld/2]4+1n—1

anza)— S D buim(@).

m=0 [=m
Let us consider an integer < L—J + 1. If |#]oo < 1, then we have

I’llm

anlmm <23 —exp{—— (. D)= m| <2n

If |t > 1, then we have

|15

n—1 n—1
Y bpgm@®) <2) L-e-e (l—m+1)—eXp{ 21n<t,D(f)t>(l—m)}
I=m I=m

|715 1
<2—X%"[..... (l—m+1)exp{—%co|t|§o(l—m)}

nm P
- |£]2% m!
™ (1—exp(—(1/2n)colr|3 )t
|£]% m!
n™ (expl—co/2}(1/2n)colt|3, )"+
|t m!(2n)"+1

n™ (exp{—co/2}colt|3,)" 1

=0( i) =0(5)
T\t A

Part 5. For each nonnegative integesatisfyingn — (I + 1) > [«kn%/?], we
use the following decomposition of,— 1) (f):

M
(14) Sn—a+1)(f) = (Z Saj(f) o TA.i—l) + SMn,l(f) o TAM,

j=1
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with M, ;:=n — (I +1) — Ay. Let us define

O o ] 14052, () O o [t Sh,, ()
Fj ._exp{ NG } and G ._exp{iﬁ }

We have

(t, Sp—+1)(f)) 1
EU[YoTl-eXp{l }oTl+]
Jn

M
—E, |:Y<H F;l) o Tl“rAjl)G(l) ° T1+AMi|'
j=1

We start by estimating the following quantity:

M
ha(t,n,l) :=E, |:Y Fo T(l_[ (F{P ottt - 1)>G<’> o T1+AMi|.
j=2

Let us show that we have
ld/2]+1

ok 14 |tloo /14 |t]oo \ M1
S X [t memn|=o( M ()T
— 1. 8ljl s aljk \/I_Z n

p+3
[e.@]

—0 1+ ]
I\ Vn n(@ 020+ )

Effectively, for allk =0,..., L%J + 1 and all indicesj, ..., jr €{1,...,d}, we
have

ak 1 t 8k
71/:0( al loo) and 7F1(1)=0(1)
317,91y Nz Aty 01,
and
k
O . s _ P g0 o L
F; 1—0<n(1—a)/2> and atjl---atjk(Ff =0 aar
and
ak
”70@ — o),
Atjy - Lt

Sn

by using|e’ — 1| < |u| anda; < kn®/? and the fact that \;;_lf))nzl is uniformly

bounded inL?, for all p € [1, +o0[. Let us define

n—|kn®2)—-1

{t, D(f)t)\!
Ha(t,n) := 1— ——"7) ha(t,n,l).
2 (1-"57)
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According to (11) and (13) we have

Yy ’ - +1-a(p+2))/2
k=0 j1,..., Jk=1,....d 81‘/1 at!k n(P a(p+2))/

_ o At
T T\ n@/2-a)(p+)) )
This term will contribute to the first term of estimate (4) (for 1 instead ofp).
Part 6. (Heart of the proof.) It remains to estimate the following term:

n—|kn%?|]—1

5 (1_ (t, szlm)l

=0

M
x Y E |:Y<H gjo T1+Af1)G<” o T1+AMi|,

e=(81,....6m) j=1

the second sum being taken over the set ef (e1,...,ey) € 1"[?4:1{—1; Ffl)},
with g1 := Fl(l) and with at least one; equal to—1. Let an integerl = O,

e N — rfcn“/z] — 1 and such a vectar = (e1,...,epn) be given. We define
Jo:=maxj > 2:e; = —1}. Then we define

jo—1
Djc(n,t):=Y ]_[ gjo Ti+Aj-1
j=1
and
i
El,e(f’l, t) = eXp{ EO‘, Sn_([+l)—Aj0 (f))}
Therefore, we have

M
E, |:Y(H gjo T1+A_i—l>G(1) o T1+AMi| = —Eu[Dz,e(n, 1)-Epe(n,t)o T1+Aj0]'
j=1

First step: control of Cov, (Dy ¢(n,1), Ej ¢(n,t) o T1+A-f0). Let us prove that,
forallk=0,..., 4] +1andallj,..., jx € {1,...,d}, we have
k 1+t
1+A | 00
‘mcovv(Dlvg(l’l,t),E[vg(l’l,l)OT jo) —0<7n(d+3+13)/2).

We will use Property(#,,). Let us notice that the function®; .(n,r) and
Ej ¢ (n,t) are of the following form:

(16)

AjO_l n—(l-‘rl)—Ajo—l

Dic(n,)=Y [] ajoT/ and Ej¢(n,1)= I1 exp{l<t’ f>}on
j=1 =0 vn
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for somea; € {1, -1, exp{M}} First, let us explain how we get (16) when

k = 0. Let us notice that is in O("‘°°) and isn-Holder continuous with Holder
constant in 0('1‘/@) Moreover, ||oe lo =1 and«; are n-Holder continuous

with Hélder constant uniformly bounded uj?("“’o) Therefore, according to
Property(#,,), we get

|COVU(D1 e(n, 1), E; c(n,t)o T1+Ajo)|
< O(|tloon/n) Py (n)8 144 jg=104 jo-1

= O(Itloov/'n) - Gzegya (d+4+/8)/2’

according to the fact that

1
1+Aj,—roAj—
Pro(n)dy, 077000t < e Ew R
(see the definition ofi;;)). Let us suppose now > 1. The partial derivatives

of Y relative tor are in 0(%) and aren-Holder continuous with Hoélder

constant inO(lJ“J"_‘w) Moreover, the partial derivatives of; relative tor are
uniformly bounded |n0(f) and aren-Hdlder contlnuous with Holder constant

in 0(1+"‘°°) Therefore, the derivative of ordé’r> 1 of [T; ’01 'ajoT/isasum

of (Aj— 1)" terms of the following formﬂ ﬁ, oT/, whereg; is equal too
or to some derivative of; and with at Ieast ong; equal to some derivative of
« ;. Therefore, according to Propert®;,,), for all integersc; > 1 andk, > 1 such
thatky + ko =k, and alliq, ..., ik, j1. ..., jk, IN {1,...,d}, we have

k1 k2

d
Covy| ————— Dy (n,t), —————E; (n,t) o T+ 4o
‘ 1)<8ti1"'8tik1 ’ atjy - 8th )

1+ ¢ 1+ ¢ 14 A —roA
«/ﬁoo o \/EOO)Pro(n)(Sro FAjo=roAjo-1

O((1+ [tloo) /1) A jo 12 Py ()8 Aio 70401,

= Ajo—lk 0 (

We conclude by using the facts thag, (n)s,," 4o "040-1 < -1 and that
Aj,—1isin O(In(n)) (see the definition of ;).
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We define

n—|kn®?)—-1

{t, D(f)t)\!
Ha(t, n) := 1— 21—
2 (1-"57)

17)

X Y. CoV(Dye(n 1), Epe(n 1) o T 0).

e=(€1,....EM)

According to the preceding and (11) and (13) we have

1
0<n(d+1+ﬁ)/2)'

This term will contribute to the, ;11,5 termin (4) (forp + 1 instead ofp). It
remains to estimate the derivatives of the following quantity:

ld/2]1+1 k

0
(18) ‘7&0, | =
Z Z d) 8tj1 T at]'k

n—lxn%?]—1

Hs(t,n) := Z (1_ L(f)z))l

2n
=0
(19) :

X Z Ev[De(n,1)]E, [E[,g(l’l, t)o T1+A.io].

e=(€1,....€M)

Second step: control of the expectation of D; .(n,t). Let us show that we have

14/2)+1 ok
sup sup Y > —————Eu[D1(n,1)]
1=0,....n—kn®/2]—1e=(e1,...6m) k=0 Jjy,...,jxell,....d)} Ojy -~ Oty

20(1+|r|§o)
Jn-nl—a )
Let us denote by} the following set:
. : : . 0]
J={i=1....jo—1lie;=F"}

Let us recall that 1 belongs tg. In the following, we denoteSs(g) :=
. A;
2 jeg Sa;(8) 0 T4 = 2jeg Z/;Aj_ﬁlg o T*. We have

e[y e =0 53001}
Ev[(exp{it}g)}—l-i- (t, D(f)r) ) p{[ . Sg(f»”‘

|Ev[Dye(n, 0] =
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Casek =0. With the use of Taylor’s formulae of order 2 and 1 &, we get
|Ev[Dl,e(na H]|

e [(* tﬁf + 5 (6. D00 — (101 ) (1+ ﬁv, 550 )
|t13,n”
+o(57)

3 «
(t, D(f)t) — (t, Y2 —2(t, ), Sg(f))]’ + 0(%)

[

’2,1 (D(f) — EJLF®2 — EoLf ® S3()] — Eu[Sq(f) ® f])t)‘

|t]3,n®
+ 0(73/2 )

It12, 130N 1+ 3
_o( 5 )+o( 5 )_0<ﬁnl_a).

Termin O("n‘—go) comes from (2) and from the fact th@t[ f;. f; o T*] converges

to 0 exponentially fast ag goes to infinity [this is a consequence of Property
(Pry)]. Effectively, since 1 is irgf, we have

(21) Sg(H=Y foT*+ X forTk,
k=1

k'>ar1+1,k'eL

for some set of integerg, and we havés, )t < %

Casek > 3. Letusrecall that we have:

— ) 1 — O(lxy.
Y—exp{Tj}—Hza,D(?r) ollz);
foranyje{l,...,d},a%Y_”exp{ ’f b+ e, D(f)- t_O([+"‘M),
wheree; is the jth vector of the canonlcal basis Bf’;
forall j. j € {1.....d}, 5 az,Y_ Lili expy L }+1D(f)],/—0( );

n

for any integerm > 3 and an)(Jl, ey Jm) N {1 L dym,

atjl---at‘,-m I’lm/2 ﬁ nm/z ’

for any integerm > 0 and any(j1, ..., j») In{1,...,d}",

o™ i
O S|
= (%) ..... (le»’(f/m

)exp{[ (t,Sq(f)) }



2498 F. PENE

isin O(W%_Q/S)), according to the fact that; = 0 (n*/3).

Hence, for any integetr > 3 and any(jy, . . ., J)in{l, ..., d}*, we have

ok 14 |t|oo
Ev[Dl,e(”l7 Hl= 0<ﬁn1—a>'

Casek=1. Letje{l,..., d} be given. We have

tjy -+ Ity

0
—E, [Dl,e(”l7 Nl

3t
= E[(%Y) exp{%(r, Sg(f))}:| + EU[Y . i eXp{%U, Sg(f))”

:EU[(%exp{ \/ﬁf } i D(f)- t)exp{fzsg(f) ”
+ Eu[(exp{i%ﬁf) } —1+ %(t, D(f)t))lsf/(y_{]

X exp{%(t,Sg(f))”
—e( m#)exp{\/_ . £+ 53]

+Eu[<—isgi%j L Tej - D(f) t)exp{fth(f) ”

ol
_E, [%(1+ﬁ<t,f+5g(f))ﬂ
- [iL (1+ﬁ<r,sg<f>>)]+W+0(¢gﬁ°_a)

1
=—EJ[(f; + SgUD)e. |+ 53]

1 Te; - D(f) -1 1112,
+ EuSg () SN+ . +0( ﬁnl_a)

1
==Te;(D(f) —E,[f®1 - EoLf ® S3()] — Eu[Sg(f) ® f1)t
n

ol )0l ol ) o(2AE)
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Term in 0("n‘—g°) comes from (2) and (21) and from the fact tia{ ;. f;: o TX]
converges to 0 exponentially fast/agoes to infinity.

Casek=2. Letjiandj,bein{l,...,d}. We have
2

E,[D !
51,91, v[Die(n, 1)]

- E[Y% expl = 1r.551)}

(") 20| G590

(") 20| gm0

Gy )osf s

= (B aS3()] ~ Bl Sy )] ~ Bl S + D))
e

=0(ia)+o(mis) = o)

Third step: control of the expectation of E; . (n,t). We define

n/
n=n,, . =n—(1+1)—Aj, and ¢ —tnle.—t‘/;.

We takep’ := g + d + 8. According to the inductive hypothesig¢,) applied
to (n’,t'), we have

+E

<

+E

<

+E

<

Ld/XZJ:—i-l Z ‘ 8k (
————(Eu[E:(n,1)]
k=0 j1,.jx=1,...d jy -~ 0L,

e B0 L1t
1+ 1¢1%

<Lpaﬁm+an paﬂ’(f)
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Hence, sincel j, < kn“, we have

ld/2]+1
_ Ev[El,s(n7 Nl

SR W

(22) s0((1+Itli.’éz”)exp{—(t’D(f)t) (1_l+1 - )})

2 n nl-a

k

14115
+ Lp’a’ﬁ/m +an/,p,0t,/3/(t/)'

Part 7. (Conclusion.) To finish the proof of Proposition 2.7, we deduce from
the preceding an estimate of the following quantity:
ld/2]+1

(23) > >

k=0 j1,....jx=1,....d

where we denote byis the quantity introduced in (19). According to (11), (20)
and (22), we have

ld/2]+1
Je=1

2.
k=0 j

k

’

——  Hs(¢,
tjy -~ 31 st

k

Hs(t,n)

- a0t

S ()

x((1+|t|géz+1)exp{—<t’D(f)t> (1—l+1— < )}

2 n nl-a

1+ 5%
“l_ Lp’avﬁ/m + anl,p,a,ﬂ/(t/))) .

Let us now estimate each term of the right-hand side part of this inequality. We
will use (13) in (b) and (c). In (a) and (d)—(f), we use the fact that(z) is in

O+ 1112 Y exp— £ (1, D(HHr) (L — & — 1)),
(a) We have
n—ien®?|—1 1+ |l‘|3
0

)3 bn,z(t)<m)(l+lf|gé2+l)

1=0
Xexp{_(t,D(f)t)(l_l—i—l_ K )}

2 n nl-a

14 2|45 (t, D(f)1) K d+4
=o( S e (1 - 50)))
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(b) We have

n—LKnOl/ZJ—l 1+|t|3 ) |t/|é7O
o0

> b"’l(t)<ﬁnl—a P/ 2—a)

=0

n—|kn%2]—1 +1
Len™ 1+13\  111% 4

1+ 1114
< X bw(”( ﬁnl—a>np(l/2—a) S0(n<p+1)<1/2—oz))'

=0

(c) Letus notice thatif < |5] — [kn*] — 1, then we have’ > 7, from which
we get

[n/2]—[kn*1-1 14+ |t|3 1
o0
> bu® ( Jnnta ) P 2—a)

=0

1+|z|§o) 1 _ ( 1 ))
o min{ 1, ——
<<ﬁn1—“ nr/z=a"" 112,

o (e 1 N ikt
- nl/2—a ) p1/2—a) | np+H(1/2-a) )°

(d) We have
"‘LK”X“EZH , (t)<1+|t|§o> 1
n.l - 12—
I=|n/2)—kn®] = Jp/p /2=
_ O(wa{_m(z R ———)
B N 2n 2 2

_ (s DLk d+6
B nl/2—a 2 2 nl 2n '

(e) We have

ln/2]—Tkn®]—1

2 1/2
B 1+ t13, / /
/n oo T H 1) > bu® Jnn an' p.a.p (1) | dt
co<n+/eT®

=0

- B
- 0((/t|oo§nl/2ot(1+ |t|oo)

n/2]—[kn1-1 ld/2]+4 2 \1/2
X ( Z (M)a , ﬁ’(t/) dt
Jnnte ) pe

=0
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1n/2)—Tken®1—1
—0 ( / 1+ ¢
( Y (e @R

ld/2]+4

1+ 1] 2 \Y?
(s
( 1 ln/2l—Tkn-1
=0

- 1 ¢ d+8+p
ﬁnl—a Z </t|g>o§nl/2"‘( +| |oo )

=0

) 1/2
X (an/,p,a’ﬂ/(t/)) dt) )

1 2= o
— o —— / 14 [|4+8+
(ﬁnl—a g ( \l"\oogn’l/Z—“( +| |oo )

9 1/2
X (an/,p,(x,ﬂ’(t/)) dt/) )

1 1
=0 <n2(1/2—a)) =0 <n1/2—a>’

sincel < | 5| — [kn*] — 1 impliesn’ > 5.
(f) Using the fact thata,,, , . g/)m is uniformly bounded, we have

n—|kn®2)—-1

1+ 7|3
Z bn,l(t) <ﬁ)an’,p,a,ﬁ’(t/)

I=In/2]—[kn*]

_ n—len®%)-1 exp{ DO (1« d+6}
- Z B 2 (5_111_“_ 2n )

I=|n/2]—[kn]

14 |r)d/2+4
_ &, D(H)) (1 &k d+6\]/1+|dAT
_0<exp{— 2 <§_n1—a_ on )}( 12« ))

Terms studied in (a) and (d)—(f) give contributions to #hg, 14,5 termin (4)
(for p + 1 instead ofp). Terms studied in (b) and (c) contribute to the first part of
estimate (4) (fop + 1 instead ofp).

Conclusion. Now we deduce Theorem 2.2 from Proposition 2.7. Let a
real numbera €]0; %1[ and an integerp > 2 be given. Let us takd/, , :=
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n(t/2-e)1=(+d/2)/(p+d/2)  From Proposition 2.7, we get

ld/2]+1 ak 5 1/2
(/ 2 2. ————h(f, 1) dt)
‘tlooSUn,p k=0 e, /kzl ..... d at/l e at]k

1
= 0n—>+oo (l’ll/Ta)

Finally, according to Yuriskii’s result (recalled in Poposition 26 of this paper),
we have

1 1
Vo e }O; Z[ Vpz2  Iu(f) = Onsioo (n(1/2-0:)(1—<1+d/2)/<p+d/2)))‘

3. Limit theorem with rate of convergencefor the averaging method. We
are interested in the asymptotic behavior of the error term between the solution
of a differential equation perturbed by a transformation and the solution of the
associated averaged differential equation. Results of convergence in distribution
have been established in [20, 21, 28], for example.

3.1. Averaging method for differential equation perturbed by a transformation.

In the following, we consider a (discrete-time) probability dynamical system
(R, F,v,T). Letaninteget/ > 1 be given. LefF : RY x 2 — R4 be a measurable
function uniformly bounded and uniformly Lipschitz continuous in the first
parameter. We denote lyr its Lipschitz constant in the first parameter.

For anye > 0 and any(x, w) in RY x 2, we consider the continuous solutions
(xf (x,w)); and (w;(x)); of the following differential equations (with initial
condition):

&

(24)VteR\ eZ, dz’ (x,0) = F(xf (x, ), T (w)) and x§(x,w) =x

and
(25) %(x) = F(w,(x)) = /Q F(w;(x),0)dv(@) and wo(x)=ux.

Let us define the error terii@’ (x, w)),; as follows:

(26) e; (x, ) 1= x} (x, w) — w;(x).

NOTATION 3.1. Let a functiong:R¢ x @ — R? and an integek > 1 be
given.

We denote byD’{g the kth differential ofg relative to the first parameter if it
exists. Let us writeD1g := Dig.

The functiong is said to beC'g’* if g is measurable, uniformly bounded,
Ck-regular in the first parameter and IDlg,...,D’{g are measurable and
uniformly bounded.
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For any functiom: : R? — R?, we denote byD*# the kth differential of#, if it
is well defined. We writeDh := D1h.

We will make the following assumptions.

HYPOTHESIS3.2. (i) The spac& is endowed with a metrid, v is a Borel
measure (for the topology induced kyon 2) and there exists a real number
ro > 1 such that the multiple decorrelation PropetB,) holds for(2, #,v, T).

(i) The function F:R? x @ — R? is uniformly »-Hélder continuous in the
second parameter.

(iii) The function F:RY x @ — R? is C2*.

We will denote byF the function given by
F(x,w):= F(x,») — F(x).

According to the proof of Theorem 2.1.3 of [28], we have the following result.

THEOREM 3.3. Letareal number Tp > 0 be given. Under Hypothesis 3.2, for
any integer L > 1, we have

e (x,-)

NG

Moreover, for any x € R, the family of processes ((e; (x, -))o<r<T,)s>0 CONVErges
in distribution [in (C([0, To]), || - llso) for measure v], when ¢ goes to 0, to the
Gaussian process (e2(x, -))o<<T, solution of

Sup sup sup
O<e<lxeRd 0<t<Ty

< +00.
L

eO(x, ) =v,(x,-) + /0, DF(wy(x)) - e9x, ) ds,

where v;(x, -) is a Gaussian process with independent increments, centered and
such that

El(wx. )%= [ " A (w, (), ) ds,

. . ®2
With A(g) = My 400 Es[(PE) T = Eulg ® 8] + Yio1(Evlg ® g 0 T +
E.[g o T* ® g), for any v-centered, bounded n-Hélder continuous function
g:Q — RY.

An analogous result has been established in [21] under hypotheses of mixing
for sube-algebras (cf. also [20]).
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3.2. Satement.

THEOREM 3.4. Let x € R? and a real number s > 0 be given. Under
Hypothesis3.2,if D1 F isuniformly n-Holder continuousin the second parameter,
then the following limit exists:

€ N\ ®2
$2 .= lim EU[<6S(X’ )) ]
e—0 \/E
If, moreover, the matrixes A(f (wy (x), -)) defined above are nondegenerate ( for

es(x,”)

all u € [0;s]), then the family of random variables ( G )e>0 CONverges in

distribution to a randomvariablewith normal distribution A (0, E%), and we have

e (x, ) 2 )_ 1/2-a
Ya > 0, H(U*< NG ),N(O,EF) =0(¢ ).

3.3. Proof. Letus suppose= 1 (this is not a restrictive hypothesis: it suffices
to replace the functioi by the functions - F). For any(x, w) € R? x Q and any
real numbee > 0, we define

1 7~
vf(x,a)):zﬁfo F(wy(x), TH (@) ds
and
yi(x, w) = % /ot exp{/st DF (w,(x)) a’r}ﬁ(ws(x), T5/¢ () ds.

y; (x, w) is solution of y7 (x, w) = v; (x, ) + fé DF (wy(x)) - yi(x,w)ds. Our
proof of Theorem 3.4 is based on the two following propositions (Propositions 3.5

and 3.7). The following result shows how the studyfgi/_@ comes down to the
study ofy] (x, -).

PROPOSITION3.5. Letareal number Tp > 0 be given. Under Hypothesis 3.2,
we have

ej(x,))
J— x’ .
NG vy (x, )
If, moreover, function D1 F is uniformly n-Holder continuous in the second
variable, then we have

= 0(Y%).
LP

Vpell, +ool, sup sup
0<t<Tp xeRd

e;(x,-)

0<t=<To xeR4 \/E Lr
COROLLARY 3.6. Under hypotheses of Theorem 3.4, we have
e (x,-)

Va >0, J<< e (x, -)) = 0(sY/%7).

NG
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PrRoOOF This is a consequence of tteecond point ofProposition 3.5.
Effectively, if X andY are two R4-valued random variables defined the a same

probability space, then we ha®¥|X — Y|y > &) < ”X Y”" and soK(X,Y) <
Ix =i/ o

PrRoOF oFPROPOSITION3.5. The first point is a consequence of computa-
tions detailed in [28], Section 2.4, proof of Theorem 2.1.3 (cf. also [20], pages
220 and 221), these computations done in néfbeing still true in normL? for
any integerp > 1.

We only give the end of the proof of the second point which follows the scheme
of the proof of the first point.

According to the computations done in [28], Section 2.4, identification of the
cluster values, it is enough to show that we have

— 0(V),

LP

t ~
sup sup| [ DaF(uw (). TV () 33 Gx. ) ds

0<t<Tp xeR?

for any integerp > 1. Let an integer = ., d be given. We have

(/0 Dlﬁ(ws<x),TW”<-))-yf(x,-)ds)_= > Lijue(t,x),

i jk=1,...d

with
Lijset, x)-ef/ (DLF (wes ), TV ),

X ( A (eXp{/e:S Dl?(w,(x))dr})j’k

X Fi(wey (x), T () du) ds.
Let p be an even integer. We have

ILi,j ket )Y,

p
P_.p LS/J
ele EU|:/BE <|_| D1 F( Wes, (), TH (), )

X (ﬁ (exp{/eIij'f,Dl?(w,(x))dr})j’k

J'=1

X ﬁk(wsuj/ (x), TLM]/J ())) dsy-- -dsp duq

..dup}



MULTIPLE DECORRELATION AND CONVERGENCE RATE 2507

_ e ng< (exp{/ DFw,(x))dr})]l)
<E, [( [T (D17 (w0, 0, 7157 <->)),-,<,-)
i=1

p
(1"[ Fi(weu,, (), T ’Jo)ﬂdsl---ds,,dul...du,,
'=1

< ﬁpgpepTollDFllw

[To/e]

X
Z /k/<u/<k/+l

with By := {(s1,...,5p u1,...,up) € R¥:0 < u; <s5; <L} and by taking
Goir_1(x',-) = (D1F (¥, )i and Goi(x',-) = Fi(x’, ) for anyi’ =1,...,p
According to Property#,,) and to the proof of Lemma 2.3.4 of [28], we know
that, for any integef > 1 and any real numbe > 0, we have

2p
u[ l_[ Gi/(weu[, (x), Tk,/())} ‘ dul. . 'dMva

i'=1

1 N1 L
sup 7 > sup Ev[ [TH o T”’} < 400,
LN —oH=(H® _ HW)ee, | Lr=1

whereé; y isthe setof = (H®, ..., HD) where the functiongf ¥ : Q@ — R

are boundedy-Hélder continuousy-centered and satisfyH | + C'7) < M
We get

” /Ot D1F(wy(x), TY/€ () yE (x, ) ds ’

LP

= 0(e"/?). 0

In the following, we study the behavior of the family of random variables
(] (x,-))e=0 Whene goes to 0 (asymptotic behavior of the covariance matrices,
convergence in distribution with rate of convergence). Let us notice that the study
of the family of random variable§] (x, -)).~0 Whene goes to 0 comes down to

the study of the sequence of random variabjééN (x, )y whenN goes tot+oo.
Effectively, we have

(27) sup Sup|yf(x,a))—ysl/Ll/SJ(x,a))|oo=O(\/E).

0<s<Tp we

ProOPOSITION3.7. Under Hypothesis 3.2, the following limit exists:

2f = im E[(7" ()2,
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If, moreover, the matrixes A(f(w(x), -)) are nondegenerate (for all u € [0; 1)),

then we have
Ya >0, T(u(y"(x,)), N0 53) = 0N"Y2He),

According to Proposition 3.5 and to (27), we have
e;(x,) 111/
\/E yl‘ (

Hence, definitions oEJ,Zv in Theorem 3.4 and in Proposition 3.7 coincide. Let us
recall that, for any-centered, boundegHdlder continuous functiog : 2 — RY,
we have defined

A(g) =Ey[g%%]1+ Y (Elg®go T +E[go TF ® g)).
k>1

lim

e—0

X,-) =0.

L2

LEMMA 3.8. Under Hypothesis 3.2, the following limit exists:
2. g 1/N ®2
$hi= im B0 ()]

and satisfies

N 1 I N 2
22 Z <A, FZN(wl/N(x) )) (Og](\/ ) >’

l 0
with
N— l
Fin(x, o) _/ exp{ / w,/N(x))dr} (ws/n(x), w)ds.

PROOE We have

1/N(x w) = «/7/ exp{ / DF( wr/N(x))dr}

(28) x F(ws/n(x), T (w)) ds

f Z Fie v (wi/n (1), TH ().

Hence we have

1 V-
E [0V &, )%?) _N Z o[ Fien (wiyn (), TFO) ® Fin (wiyn (x), T' ()]
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We define
log(N—2)
log(5,,)

We also definéBy := {0, ..., N — 1}2\ Ay. According to the multiple decorrela-
tion Property(#,,) and to our choice oy, we have
1
N

my = and Ay:={(k,)e{0,....N —1}%: |k —1| <my).

Y Eu[Fen(win ), TO) ® Fiy (wyn ), T'())]
(k,[)eBy

1
= 0<—N2N—2> = 0<i).
N N
On the other hand, sincedy = O(Nmy) = O(N log(N)), we have

1
5 2 [BFon(wyn@), T40)

(k,)eAn

® (Finv (wiyn (), T'()) — Fen (wiyn (x), T ()]

=0(1 (N)%) 0('°g§vN)2>.

Therefore, we have
Eu[(yy" (x.)®?]

1
=N > Ey[Fen(wiyn ), TF())
(k.D)eAy

log(N)?2
® Fin (we/n (), T'())] + 0( ng(v ) )

1
== Y. Eu[Fn(wign@), T0)

k=my k—mpy<I<k+my

Iog<N>2>

® Fio (wiyn (0). T ()] + 0( o

log(N)?
V)

A(Fka(wk/N(x), )) + 0(

1= log(V)*
_NXZ: (Fie, v (wiywv (x), ))+0<091(\7) ) -

PrROOF OF PROPOSITION 3.7. The proof being analogous to the proof of
Theorem 2.2 of the present paper, we do not give all its details. We only give
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the scheme of theth iterative step. We will just detail computations which differ
from the proof of Theorem 2.2. In the following] will be any integer and any
point in R? satisfying|f|o < N1/2-.
Let us writeX% , \ := A(F], N(wl/N(x) ).
1. We defineHo(t, N) = exp{—“5 £} — expl— 5 Yot B2, yi)}. Ac-
cording to Lemma 3.8, there exists an inteder> 0 such that we have
ld/2)+1

tEFt

k

> > 7Ho(t,N)‘
k=0 j1,....jk=1,....d atjl T 8”"
(29) te(| 2 [ 2
1 2 C'(log(N)*) )} Koy 109(V)) )
=0 —— |, 25t) - ——— 1+ 7] 0)————|.
(exp| 5 (6 230 - =Xz Y a ity 221
We define
Hi(t,N) := exp{—— > oA, EFJ,Nz)} -T] (1— —{t, ZFJ,Nn).
2N = o 2N
We have
sup.(t, £2 ,, yt)?
oo - 4 (g5 257
Il N
and, more generally, there exists a nonnegative int&gesuch that
ld/2]+1 k
> Y. |m———HiG, N)’
k=0 j1,....jx=1,...d 8t‘/'1"'atjk
1+ (1|52
(30) =0 M
VN

ol ()] omrr)

We prove this estimate as we proved (6) in the proof of Theorem 2.2 by
replacing (7) by the following formula which holds for any integér> 1 and
all C*-regular functiongy, ..., gy : R — C:

ak N t
(1)
8?/’1"'8% (i:l l \/ﬁ

X v (1)

m=1{kq,...km}€En N A€Lpm k \jFk1,...,
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whereE,, y is the set of subsetd., ..., N} with cardinalm and where£,, x is
the set of partitionsA = (A1,..., Ay) of {1,...,k} in nonempty subsets (i.e.,
ApC{l,... .k} Ap# 9, U,Ap=1{1,....k} andA, N A; = @ if p#q) with

2 Th|s Ieads us to the study of

Ev[exp{} (t, yi/NW‘))” _Iﬁj<1— %(;, E%J’Nt))
=l

N-1/1-1 (t, E% vt
— 1— s Js
% (0e-"2)

j=0

i N-1
x E, [zm(x >exp[ 7N > <r,Fk,N(wk/mx),Tk(-)))”,
k=I+1

with

2
(ta ZF’[’Nt>

Z[,N(-xa') =ex N

i I
—t, Fi y(w x), T (- -1+
p{ﬁ( 1,v (wi/n (x) ()))}
3. We consider the quantitie® := p 4+ 3 anday, ..., ay introduced in the
proof of Theorem 2.2. We still defindo := 0 and A, := >_7"_;a; for every

m=1,..., M. There exists a real number> 0 such thatz; < K« N2 for any
j=1....M

4. We estimate the following quantity as we have estimaigdn the proof of
Theorem 2.2 [cf. estimate (10)]:

N-1 -1 22
Ny = Y (1‘[(1_7“’ ZF;’N”))

I=N—|kN®/2) \qg=0

. N-1
XEV[ZZ,N(X,')eXp[ﬁ S Fk,N(wkmx),Tk(-)))”.
k=I+1

5.Foranyl < N — LKN“/ZJ —landanyj=1,..., M, we define

I+A;

f(’)_exp{f ) (tka,N(wk/N(x)’Tk(')»}

k=I+A;_1+1

and

2

. N—
g —exp{— Z (: Fk,N(wk/N<x>,Tk<->)>}~
+Ap
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We have

;N1
E, |:ZIN(X )exp{ > Fk,N(wk/N(X),Tk(-)))H

VN S
T
j=1
Moreover, as in the proof of Theorem 2.2, we can show that we have
% N)’ - 0<—>’
Joojimdend | 0L O, N@/2=a)(p+D)
with
N—xN“/2]-1 1-1 fv2
= o (=557
1=0 j=0
l v l
x Ev|:Z, N (x, )?()(H(fj() 1)>g(l)i|
j=2

6. It remains to estimate
M
> Ev|:ZI,N(x,‘)<H5i)g(l)i|7
EM) i=1
where the sum is taken over the= (¢1,...,ey) € ﬂ L ¥F 7 )} with g1 =

(l) , thee; being not all equal tF . For any such vectar = (81,...,ep+3),
we deflnejo =maxj > 2:¢; = —1}. We write
Jjo—1
Dio(N,1):=Zin(x, ) [] &
j=1
and
M ; i N-1
E1o(N,1) ::< I1 f,”)g@ exp{ Vi Y Fn(wyn ), T O) T
Jj=Jjo+1 k=I+1+A4j,

In this study, we will use the following estimate instead of (11) (used in the proof
of Theorem 2.2):

ok = (1,55 vi)
31 _— 1—7"”):019 1)),
3D atjl...atjkjl:[( 2N (w1 (6))
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with

min(|d/2|+1,]) |t|m
by )= Y l-----(z—m+1)N—;j
(32) =0

We will see that we have
N-1 ' N
> bya) = 0<m|n<N, —2))
=0 LES
First, let us notice that there exists a real numbgr- 0 such that, for all
integersN, L > 1 and allx € R4, we have
0<(x,2%, yx) <Zolx|%.

On the other hand, since the symmetric matridgs (w, (x), -)) are nondegener-
ate, there exist an integah > 1 and a real numbeé¥ > 0 such that, for all integer
L > N7 and allx € R?, we have

=
<x, 7 Z E%,I’Nx> > 51|x|§o.
1=0

If 1 > max(Ny, %ﬁ*”c‘)) then we have

min(ld/2]+1,1)

byi(t) < Z [....-(l—m+1)|t|ggexp{—&|l‘|2}
NI = L Nm AN
m=0
Hence, we get
N-1

> by.(t) = 0<min<N, %))

I=max(N1,[(2(ld/2|+1)co)/c1])
On the other hand, we have

> by(1)=0(1).

ey, 226,

First step: estimate for the covariance. We use Property#,,) as in the proof
of Theorem 2.2 to estimate Co\D; (N, 1), E; (N, 1)).
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Second step: estimate for the first expectation. We show that we have

|d/2]+1 k 3
0 1
(33) Y Z Eu[DL. (N, t)]‘ - 0<&).

k=0 j1,ojr=l,... g 0tj 0ty VN - N1
Let us denote b)gl the following set:
. : : . O
g.:{;:l,...,]o—l.ej:fj ).
Let us recall that 1 belongs . We have
|Ev[Dl,e(N7 t)]|

I+4;

= Eu[zl,m,-)exp{ fZ > Fk,N(wk/mx),T%))r)”‘.

jedk=I+A;_1+1

By noticing that we have
I+Aj

YooY (Fen(wiyn @), TRO) = Fion (wyn ). TFO)) o

jeFk=l+A;_1+1
2
o[ty
N
we are led to the study 9E, [D; . (N, 1)]|, with
vy

Dys(N,1) :=ZI,N<x,->exp{ fZ Yoo (t Fv(wyn (), TFO))E-

jedk=I+A;_1+1

We can estimate this quantity as we have estimated the B, .(n,1)]
appearing in the proof of Theorem 2.2. We will not rewrite all the computations.
We will just detail the casé = 0.

According to Taylor's formula, we get

Zin(x, ) = J—N“’ Fiy (wiyy (), T ()
1 113
s (5 = (v, 7'0)%9) + 0 (152
and

I+4;

exp \/_Z > Fl,N(wl/N(x)’Tk(')»}

jedk=I+A;_1+1

I+4;

113
—14 J—_ Yo > nFEa(eyn @), TRO)) + 0<N1—a>'

JE€Fk=I+A;_1+1




MULTIPLE DECORRELATION AND CONVERGENCE RATE 2515

Therefore, we have
Eu[Dye(N,1)]
1

=N [<t (22, v — (Fonv (wyn ), T () ®?

— Fin(wyn(x), T ()

I+A;

®), D Fl,N(wl/N(x)ka('))>t>:|

JjEFk=I+A;_1+1
113,
+0 (le—a)

~o(%) ol ) =o(Jas )

Third step: estimate for the second expectation. We write N' = Ny, , =

—(+1—Ajandt' =1, , =t /5 et p/:= B +d + 8. We estimate
E [E1«(N,1)] Wlth the use of the mductlve hypothesis as we have done in the
proof of Theorem 2.2. Hence, we get

ld/2]+1 k

0
——EJ[E; (N, t
X_: . 2_: ‘8[}1 T atjk v[ l,e( )]’

~ 2
< 0((1-1— 112 )exp{ 2°° 1 " g

1+111%
+Lpap N PA2=a) +tay, paﬂ’(t)

Therefore, we got estimates analogous to those established in the proof of
Theorem 2.2. We conclude in the same way with the use of (31) and (8R).

APPENDIX

Optimal and suboptimal estimates in norm L?. Let us consider a time-
continuous dynamical syste@(, 7, i, (Y;):cr), Where(M, T, u) is a probabil-
ity space and wher@;);cr is a family of u-preserving transformations 81 such
that(z, y) — Y,(y) is measurable and satisfiés=id andY;,; = Y; o Y;. Let us
fix an integerd > 1.

Let us consider a measurable functisnR? x M — R bounded, uniformly
Lipschitz continuous in the first parameter such that, for @any) € R? x M,
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the functionsr — f(x, Y;(y)) are continuous on the right-hand side and limited
on the left-hand side (i.e., they are cadlag functions), the set of discontinuity
points being contained in a numerable €&t independent ofc. For alle > 0

and all (x,y) € R? x .M, we consider the continuous piecewi€é function,

t — X7 (x,y), solution of the following differential equation with initial condition:

dX;(x,
% = f(X7(x, ), Yie()).

We are interested in the behavior(@f; (x, y)); whene goes to 0. We approximate
(X7 (x,y)): by the solution(W;(x)), of the differential equation with initial
condition obtained from (34) by averaging

(34) Xg(x,y)=x and VreR\eD,,

dW;(x)

(35) Wo(x)=x and V:eR, T

= f(W,(x)),

with f(x") == [y f(X', y)du(y).

This leads us to the study of the behavior of the error tefii(x, y)), between
the solution of the perturbed equation (34) and the solution of the equation (35)
obtained by averaging

(36) Ef (x,y):=X;(x,y) — W;(x).

In [21] and [28], the question of convergence in distributior(@?\(;‘g;y))t whene
goes to 0 has been studied. The aim of this part is to establish estimates as optimal
as possible of sUpga || SUR<, <7, | E7 (%, )loollLr, With p € [1; 4-00].

In the following, we denote (x, y) := f(x, y) — f(x).

If M is a compact manifold, if the flowt;), is C* and if f is C1 with compact
support and satisfies the followingmrdition of uniformly bounded variance:
(37) supsup

1 gt .
il v, (.
xeRd 1>0 ‘\/Z/O flx,Ye())ds N

Dumas and Golse established the following estimate (cf. [11]):

< 400,
L2

(38) VTp>0, / SUp |ES(x, Yoo dxdu(y) = O(eY3).
R4 x M 0<t<Ty

Let us notice that their proof is still valid in the general context described at the

beginning of this appendix, whefi:R? x M — R? is a continuous function

with compact supporng’* (i.e., measurable, uniformly bounde@? in the first

variable with D, f measurable and uniformly bounded) satisfying the following

integrally bounded variance property:

Y
l_‘\’dz‘>0 ‘\/_/ x ()ds

(cf. [27]). Let us notice thatf having a compact support, condition (39) is weaker
than condition (37).

(39) dx < 400

L2

o0
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In this appendix, we will make stronger hypotheses than conditions
(39) and (37), which will enable us to establish estimatesDiz/?) or in
O(|In(e)|1/2) according to results due to Billingsley [5] and Serfling [35].

In Section A.1 we give optimal and suboptimal estimates for
SURcrd [l SUR<, <7, l€f (X, )loollLr N the case of averaging method perturbed by
a transformation (cf. Section 3.1). In Section A.2, we deduce from Section A.1
estimates for SURRd || SURy<; <7, | E (x, -)lecllL» When the flow is associated (in
some sense) to a transformation satisfying hypotheses of Section A.1.

A.l. Perturbation by a transformation. In the following, we are in the
general context described at the beginning of Section 3.1 (before Hypothesis 3.2).
We will suppose that this dynamical system is invertible, that is, Th& one-
to-one from a sef2 \ Np onto a set2 \ Ny with v(Ng) = v(N1) = 0 and that
the inverse transformatiofi—! is measurable. Such a hypothesis is not restrictive.
Effectively, any dynamical system is a factor of an invertible dynamical system
(its natural extension). We consider a real numes 0. We are interested in the
study of the asymptotic behavior (agjoes to 0) of the following quantities:

(40) sup

xeRd

Sup |ef(xa)|00” ’
te[0; Tp] Lr

with p > 1. For any(x, ) € R? x , we defineF (x, ») := F(x,w) — F(x).
According to Gronwall's lemma, we have

PROPOSITIONA.1.1. Foranye > 0andany (x,w) € R? x Q, we have

t/e _
sup lef (x,®)|oo < (14 Lpe"F ™) sup |e /o F(wes (x), TH (w)) ds

te[0; Tp] te[0; Tp] 0
and
t/e
sup e/ F(wes(x), TS (w))ds| <1+ LrTo) sup lef(x,®)|co.
te[0; Tol 0 00 te[0; To)

According to this result, the study of (40) brings us to the study of the following
quantity:

t/e _
sup sf F(wes (x), T (@) ds
0

xeRd

sup
t€[0; To]

oollLP

A.1.1. Estimatein norm L2: asuboptimal result. A first result is the following
one.

THEOREMA.1.2. If wehave

(41) sup Y sup [Eu[Fi(x, ) Fi(y, T*()]| < +oo,
i=1,....dc7 x,yeR4
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then we have

(42) sup

xeRd

SUp [¢f(x. )| | = O(INGIVE).

t€[0; Tol

Let us notice that the condition (41) is close to the condition (37), the main
difference being the fact that in (41) we study covariances of funciidgs -) and
F;(y,-), with x andy maybe distinct. Condition (41) is not extremely restrictive;
in particular, we can verify it for the examples studied in [11] without making more
computations than those done to show that the condition (37) is satisfied.

Let us recall the following result.

THEOREM A.1.3 ([5], page 102). Let two real numbersa > 1 and 8 > 1 be
given. Let (X,), be a sequence of real-valued random variables defined on the
same probability space and a sequence of nonnegative real numbers (u,,), such
that, for all integer ng > 0 and n > 1, we have

no+n—1 o no+n—1 B
k=ng k=ng

then, for all integersng > 0and n > 1, we have

no+m—1 o no+n—1 B
[ sup YoXx } (log,(4n))* ( > u,-) .
m=1,.. k=ng k=ng

SCHEME OF THEPROOF OFTHEOREMA.1.2. Letus apply Theorem A.1.3
to Xy == [T Fy(wes (x), THI () ds, @ = 2,u; = C and B = 1. We get

sup supE, [ sup ’/ (wes (x), TSI () ds

xeRde>0 Ln=0,...,

] = O(Nlog(N)).
o0
We conclude with the use of the fact thatis uniformly bounded. O

The result of Theorem A.1.2 is suboptimal. Effectively, under hypotheses of
Theorem A.1.2, we have
t/e
‘/ F(wss(x)7 Tl ('))ds
0

sup sup = 0 Y?).

xeRd 1€[0;To]

oollL2

If, moreover, we have sup", .7 |n| SUR, yeRrd IEL[Fj(x, ") fi(y, T" ()]l < 400,
then a direct computation (cf. [20] and [28], Proposition 2.2.3) enables us to
show that the covariance matrix (relative itp of f[’/e F(wes (x), T () ds
converges, as goes to O, to[O A(F(wu(x) ) du, with A(g) =D 1z Evlg ®
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go T*]. In that case, if somd~"~(x, -) are not coboundaries [i.e., if some ma-
trices A(F (wy(x),-)) are not null], then supga SURY<, <1, Ev[lfé/e F(wgs (x),
T1()) ds|%, 12 is exactly in%.

Therefore, according to Proposition A.1.1, s SUR¢(o; 7, Evllef (x,
(2 11/2 in-L
5174 Is exactly |nﬁ. ~

Let us mention that the case when functidnée, -) are all coboundaries has
been studied in [28].

Let us notice that we can get an estimatedit,/z ) in L2 when we can apply

the martingale method (see Gordin’s method [15]; cf., e.g., Theorem 5.3.6 of [27])
with the use of Doob’s inequality for martingales [16].

A.1.2. Moment of larger order: optimal results. We use the following result
established in [35].

THEOREM A.1.4 (cf. Theorem B in [35]). Let two real numbers « > 2 and
C > 0 begiven. There exists a real number K > 0 such that, for any sequence of
real randomvariables (X,,), satisfying the following:

no+n—1 o
SUpsupE, > Xk
no>0n>1 k=ng

we have
no+k—1

> x

l=ng

]

A consequence of this theorem is the following result.

1
SUpSUpE, [—2 sup

no>0n>1 ne'e =1, ., n

THEOREM A.1.5. Let an integer p > 2 be given. If the family of functions
F:={Fi(x,);xeR% i=1,...,d} satisfies the following condition:

N-1 2p
Ev[l'[g,- oT“H = O(NP),
i=1

> sup

I1,...,12,=0 (815 g2p)€$2p

then we have

sup
xeRd

— 0(V).

L2p

sup e (x, )loo
1€[0; 7]

PROOE We have

N-1 ll+1 Io,+1
P
sup Z / / dsy---dszp
xeRYy, I l2p

|:1_p[ wes (x), Tl ())i|
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We conclude with Theorem A.1.4 fot; := [f™ F;(we, (x), T1 () ds and for
a=2p. O

Examples of systems satisfying the hypotheses of Theorem A.1.5 fprall
[1, +oo[ have been studied in [28]. In particular, we have the following result.

PROPOSITIONA.1.6. Under the two first points of Hypothesis 3.2, we have

Vpell, 4ol sup

xeRd

SUp [¢f (.| | = O(VE)

t€[0; To]

PROOF By a combinatorial argument (cf., e.g., the proof of Lemma 2.3.4
of [28]), we can show that, in this situation, hypotheses of Theorem A.1.5 are
satisfied. O

A.2. Perturbation by a flow. We study here quantities suga
| SURe[o. 7 | Ef (*, )l llr for the averaging method for differential equations
perturbed by a flow in the context described at the beginning of the Appen-
dix. We will see how we can be brought to the question of the study of
SUR.crd || SUR¢(0; 751 1€7 (%, )loollLr, Whereey (x, w) is the error term in the av-
eraging method for a differential equation perturbed by a transformation. We will
consider the transformatich = Y, (in the case of diagonal flows) or we will use
a representation of the flow as a special flow (in the case of the billiard flow). We
will conclude with the help of the results of Section A.1.

A.2.1. Flow stopped at time 1. In this section, we tak€Q, #,v,T) =
(M, T, i, Y1). We consider the functiofi : R? x 2 — R4 defined byF (x, w) :=
folf(x, Ys(w))ds. We consider the processes (x, w)), (w;(x)) and (e (x, w))
given by (24), (25) and (26) for this choice @2, #, v, T) and of F. Then we can
show that, for any real numbé&p > 0, we have

sup sup |E; (x, w) — e/ (x, ®)|oc = O(8).
(x,w)eRI xQ t€[0,Tp]

According to results established in [23] about diagonal flows, Propge@rty is
satisfied in this context. This enables us to show the following result, according to
Proposition A.1.6.

ExampLE A.2.1 (Diagonal flow on a homogeneous space). det 2 be
an integer and lel” be a cocompact subgroup 6f := S.(d, R). We consider
the quotient space( := S.(d, R)/T" endowed with the probability measure left-
translation-invarianf induced onm by the Haar measure d@&. Let (7;)¢_; be a
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decreasing sequence éfpositive real numbers not all equal to 1, the product of
which is 1. For any real number R, we denote by'* the matrix
T{ t
T! = .
T
We consider thg-preserving flow(Y;), defined onG/T" by Y,;(xI") = T'xT. Let

us fix a riemannian metriég on G invariant by right-translation and let us define
a metricd onG/ T by

d(xT, yT) := inf do(x, yy).
yell
If f:R? x M — R? is a measurable function, which is uniformly bounded and

uniformly Lipschitz continuous in the first variable and uniformly Hélder in the
second variable (for the metrif), then we have

Vp e[l +ool, sup | sup |E;(x, -)IOOH =0(Ve),
xeR4 Il t€[0; Tp] L2p

where(X; (x, )), (W;(x)) and(E; (x, w)) are defined by (34), (35) and (36) for

this choice of(M, 7, u, (Y;),) and of f.

A.2.2. Case of a special flow. Let us suppose now that the time-continuous
dynamical systemiM, 7, u, (Y;);) is the special flow associated to a dynamical
system(2, v, T) and to a roof functiorr : 2 — [0; +oo[ satisfying infr > 0 and
supr < 400, which means:

(i) Misthese{(w,s):we 2,s €[0; t(w)]} with identificationgw, t(w)) =
(T (w), 0);
(i) 7 istheo-algebrainduced om( by the product -algebra2 x R4 ;
(i) the probability measure is given byd u(w, s) A idv dv(w)ds;
(iv) the flow (Y;); is given byY;(w,s) = (w,s + t) with the identifications
(0, 7(@)) = (T (@), 0).

We make the following hypothesis on the functignR? x M — R¥:

HYPOTHESISA.2.2. The functionf is measurable, uniformly bounded and
uniformly Lipschitz continuous in the first variable.

For every(x, ) € R? x €, the functions — f(x, (w,s)) is continuous on
[0, T(w)[ and the following limit exists: lim_, ; ()— f(x, (@, s)).

We then consider the functiol :R¢ x Q — RY defined by F(x, w) :=
[g(‘“)f(x,(w,s))ds. We consider also the processes (x, »)), (w;(x)) and
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(e (x, w)) defined by the (24), (25) and (26) foR2, ¥, v, T) and for this choice
of F. We consider the procesy; (x, w)) defined as the process; (x, w)) by

replacingF by the functionG given by G (x, w) = t(w) f(x). According to [21]
(see also [28], Section 3.2), we have:

REMARK A.2.3. Under Hypothesis A.2.2, for any real numtfgr> 0, we
have:

SUPSUP SUP |E; (X, ®) = (€51 /e.0)¥> @) = fent/e.c) X )| oo = O(8),
xeRd e>01€[0,Tp]

with n (7, w) := max{n > 0: Y13 o (T (w)) <1}
Hence, for anylpy > 0 and anyp € [1; +o0o[, we have:

<

Lp

sup |E7 (x, oo
te€[0; Tol

sup |ef<x,->—ff<x,->|ooH + 0.
te[0;Ty/ info 7] Lp

On the other hand, asf@roposition A.11, we can show that we have:

REMARK A.2.4. Under Hypothesis A.2.2, there exists a real nuntber 0
such that, for any real number> 0 and any(x, w) € R? x Q, we have

t/e
SUP ¢} (,0) = f (5, @)low =€ SUP e [ H (s (), T4 () ds
0

t€[0; Tol te[0; Tpl

with H (x, w) := F(x, w) — T(w) f (x).

’

o0

According to the results on the billiard flow established in [28] (cf. also
[37] and [38]), Property(?,) is satisfied for every real number> 1. Therefore,
according to the proof of Theorem A.1.5, we have:

ExAamMPLE A.2.5 (Billiard flow with finite horizon). LetQ be a compact
subset of the toru$? = 5—5, the complement of which is a finite union of strictly
convex open sets (open disks, e.g.) with closure pairwise disjoint and the boundary
of which is €2 with curvature never null. We are interested in the behavior of
a point particle moving inQ with unitary speed and elastic reflections 6D.

We consider the time-continuous dynamical systev, 7, i, (Y;),) defined as
follows:

(@) we denote by 1Q the set of position-speed couplgs v) with g € Q and
|9]| = 1; we defineM :={(q,0) e T1Q:q ¢ 90 or (ii(g), V) > 0}, whereii(g) is
the unitary normal vector t8Q in ¢ (oriented to the inside of)) if ¢ € 0Q0. We
endowM with the metricd given by

d((g.v), (¢, V")) =do(q.q") +dr(¥, V"),
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wheredp is the metric induced off 2 by the usual euclidean metric d®¢ and
whered; (v, V') is the absolute value of the angular measure takégn-ior ; 7] of
the angle(f,ﬁ\/);

(b) w is the normalized Lebesgue measurefn

(c) (Y;), is the billiard flow defined om\( by Y, (¢, v) = (¢, V') is the position-
speed couple at timeof a particle that was at positianwith speed at time 0.

For every(q, v) € M, we definert (g, v) :=inf{s > 0:g + s € Q). Let us
suppose that function™ is bounded (we say that the billiard has finite horizon).
If f:R? x M — R? is a measurable function, uniformly bounded, uniformly
Lipschitz in the first variable and uniformly Holder in the second variable, then
we have

Vpell, +ool, sup
xeR4

where the processeX; (x, w)), (W;(x)) and (E; (x,w)) have been defined by
(34), (35) and (36) for this choice oM, 7, u, (Y;),) and of f.

sup |E(x, ->|OOH — 0(Je),
L2r

t€[0; Tol
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