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We prove that if(X, 2, P) is an arbitrary probability space with count-
ably generate@ -algebra2, (¥, B, Q) is an arbitrary complete probability
space with a litingo and R is a complete probability measure 8r® z B
determined by a regular conditional probabl[t% yey} on®A with respect
to B, then there exist a lifting: on (X x 7, ARx B, R) and litingsoy on
(X, %y, 8y), y € ¥, such that, for everf e A&x B and everyy € Y,

[T(E)) = oy([n(E)P).

Assuming the absolute continuity & with respect toP ® Q, we prove the
existence of a regular conditional probablllt‘yy y € Y} and liftings= on

(X x Y, ARr B, R), o’ on (¥,B, Q) andoy on (X, Ql‘ S}) y €Y, such
that, for everyE € 2A®g B and everyy € Y,

[ (E))Y =0y ([w (E)])
and

o(AxB)= ] oy(A) x{y} if Ax BeAxB.
y€p'(B)
Both results are generalizations of Musial, Strauss and Maché&rasd|
Math. 166 (2000) 281-303] to the case of measures which are not necessarily
products of marginal measures. We prove also that liftings obtained in
this paper always converR-measurable stochastic processes into their
R-measurable modifications.

1. Preliminaries. If (Z, 3, S) is a probability space, then we denote By
the completion of3 with respect toS and by S the completion ofS. We
write L°(S) := L°(Z, 3, S) for the space of boundegtmeasurable real-valued
functions. Functions equal a.e. are not identified.

We use the notion abwer densityandlifting in the sense of [7]. It is known
(cf. [7]) that there is a 1-1 correspondence among lifting$ avith respect taS
and liftings on.L%°(S). Saying that is a lifting on(Z, 3, S), we mean that is a
lifting on 3 and onL%°(S). A(S) denotes the system of all liftings d&, 3, S).
Similarly, #(S) is the collection of all lower densities diz, 3, S).
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Throughout what follows,(X, %, P) and (Y, B, Q) are probability spaces.
2 x B is the product algebra generated ¥yand®B in X x Y, and ® 9B :=
o (2 x B) is the product-algebra generated B¥ x B. P ® Q is the product
measure ol ® B, AR® B is the completion o @ B with respect toP ® Q
and P® Q is the completion ofP ® Q. We write g = {A € 2A: P(A) = 0},
Bo={B cB:0(B) =0} andBy = {B C Y: Q*(B) =0}, whereQ* is the outer
measure generated Ig.

R is always a probability measure ot ® 9B, such thatP and Q are
the marginals ofR. By (X x ¥, A&z B, R) we denote the completion of the
probability spac&X x Y, ® B, R). E¢(f) denotes a version of the conditional
expectation of a functiorf € L% (P) with respect to ther-algebra¢ c %B. An
elementC # @ of an algebra is an atom of if it cannot be decomposed into two
disjoint nonempty elements @f It follows from the context whether we consider
the atoms of an algebra or the atoms of a measure defined on that algebra.

DEFINITION 1.1. Assume that for every e Y there is a probabilitys, on 2
such that:

(D1) for everyA e 2, the mapy — S, (A) is B-measurable;
(D2) R(Ax B)= [ S,(A)dQ(y) forall Ac2andallB € B.

Then the family(S,:y e Y} is called aproduct regular onditional probability
(product r.c.p. for short) ofA for R with respect toQ. One can easily see that the
existence of such a productr.c.p. is equivalent to the existence of the classical r.c.p.
onthes-algebral x Y := o ({A x Y : A € 2A}) of cylinders based il with respect
to theo-algebraX x B := o ({X x B: B € B}) of cylinders based i3, on the
measure spad&X x Y, 2A® B, R). We could use the name of disintegration instead,
but it seems that it is better to reserve that term to the general casedvisarot
necessarily countably generated afids may be defined on different domains
(cf. [11]). Throughout, we assume that a product regular conditional probability
{S,:y € Y} on2 with respect tdB exists. But if2 is countably generated arrl
is perfect (cf. [12] for definition), then such an assumption is superfluous since a
productr.c.p. always exists (cf. [1], [5] or [11]). A productr.c{§,:y € Y} on®l
with respect td5 is said to beabsolutely continuousith respect taP, if S, < P
for everyy € Y. One can easily see th& <« P ® Q if and only if there exists a
productr.c.p{Sy:y € Y} of R with respect toQ such thatS, < P forall y e Y.

The completion of2l with respect toS, is denoted by2,. The collection
of all members ofl satisfying the relationS,(A) = 0 is denoted by2lo. If
feLX(Sy) =LOX, A, Sy), thenEQy:(f) denotes a version of the conditional
expectation off with respect to the -algebra® c 2.

The whole paper consists of two independent parts. The first one is a
continuation of [10]. We have proven in [10] for complete probability spaces
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(X,2, P) and (Y, B, Q) that, for given lifting p € A(Q), there exist liftings
o € A(P) andr € A(P & Q) such that

Q) 7(A X B)y=0(A) x p(B) if Ax Be2AxB
and
(2) [7(E)) =o([x(E)]) if EcARB andy Y.

In fact, we have proven more. Namely, the following result holds trueRLieé¢
ameasure o ® B with marginalsP andQ and let{S, : y € Y} be a productr.c.p.
of R on2 with respectta). If every S, is equivalenttaP (in the sense of absolute
continuity), then for given liftingp € A(Q) there exist liftingsoe € A(P) and
7 € A(R) such that (1) and (2) hold true. These are in fact the same liftings which
were chosen for the product meas#® Q, as equivalent measures have the same
liftings. (Notice that the properties of the product r.c.p. yield the equivalen&e of
andP ® Q.)

Looking at the above result, one may ask immediately what happép's iare
not equivalent. Clearly, (1) and (2) may be then senseless, as nonequiidtent
have different liftings. So one may ask if for somg € A(S ), y €Y, and
7 € A(R), the equations can have the following form:

(RF) m(AxB)= ] oy(A) x{y} if Ax BeAxB
yep(B)

and

(SP) [ (E)) =oy([7(E)]) if EcARrB andy €Y.

One can, however, easily conclude that satisfying the rectangle formula (RF) for
all A e A andB =Y yields the absolute continuity of evesy with respect toP.

Even more, (RF) forces the following condition (IT) to be satisfied by the product
r.c.p.{S,:y e Y} and by the liftingp € A(Q):

(ITY RAxB)=0 = QB)=0 or S,(A)=0 forall y € p(B).

Clearly, (IT) also yields the absolute continuity {&, : y € Y} with respect toP.
Moreover, we will see in Proposition 2.7 that the conditions (RF) and (IT) are
equivalent.

The main result of the first part (Theorem 2.3) shows that if condition (IT) holds
true, then (RF) and (SP) are satisfied with properly chosen liftings. If the weaker
assumptionR <« P ® Q is satisfied, then one can always modify the liftipg
and the product r.c.dS, :y € Y} to enforce conditions (IT), (RF) and (SP) (see
Theorem 2.6).

The second part of the paper deals with quite arbitrary measturésit we
assume that the-algebral is separable in the Frechet—Nikodym pseudometric
[i.e., there is a countable collection of setg € 2 such that, givere > 0 and
A € 2, there isA, with P(AAA,) < ¢]. We show that in this case one can
achieve (SP) (see Theorem 3.6). The proof is completely independent of [10].
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2. Absolutely continuous measures. Throughout this seiin, probability
spaces(X, %, P) and (Y, B, Q) are arbitrary but(Y, 8, Q) is assumed to be
complete. According to [10], Theorem 2.9, for given dengity ¥ (Q), there exist
densitiess € ¥ (P) andg € ¥ (P ® Q) such that, for alE € A® B, we have:

(@) P([p(E)P Ulp(ES)))=1forallyeY;
(b) [p(E)P =o(lp(E))) forally e Y;

(©) [¢p(E)]x e Bforall x € X;

(d) (A x B) D0(A) x p(B) wheneverd € 2 andB € 8.

LEMMA 2.1. Let (IT) be satisfied by a productcp. {S,: Y€ Y} on¥%
for R with respect toQ and the density € ¥(Q). If 7, A(Sy) foryey
is chosenthen there exists a Boolean homomorphigmA®x B — 7,(2,)
satisfyingp, (A x Y) =1,(A) for all y e Y and ¢, (X x B) = X if y € p(B)
e}\nd<py(X x B) = @ otherwisgand such thap, (E) = < forall E € A g B with
R(E) =

PROOF  Foreachy € Y, setp, (A x Y) :=1,(A), p,(X x B) := X if y € p(B)
andg, (X x B) := @ otherwise. Then set)(A x B) :=¢,(A x ¥) N ¢y (X x B)
for Ac A andB e ‘5. Then<py A x B — 7,(2,) is a Boolean homomorphism.
(IT) simply says that ifR(A x B) =0, thenp%(A x B)y=@z forallye Y, A e
andB € ‘B.

Writing y : 2 x B — (2l x B) /R for the canonical surjection, we find a Boolean
homomorphismig, : (A x B)/R — 7,(2) such thaty? = @, o y. Note that
ry(ﬁy) is a complete Boolean algebra due to Maharam’s theorem (see, e.g., [7],
Theorem 3, page 40, or [15], Theorem 3.9, page 1146). For this reason we can
extendp, to a Boolean homomorphis@, onto (2 ®r B)/R, the measure algebra
of A®x B modulo R by [14], Theorem 33.1, page 141. Pyt := ¢, o 7 if
7 AR B — (A®r B)/R is the canonical surjection satisfying2A x B = y.
Theng, extendsp?. [

THEOREM 2.2. Assume that a productcp. {Sy:y € Y} on 2 for R with
respect toQ and a density € ¥ (Q) satisfy(IT). Then there exisy € #(R) and
vy € z?(S}) such that the following conditions are satisfied for Ble A ® B:

i) S,(¥(E)) Uy (E)) =1forall yeY;
(i) Yy (E))) =[y¥(E)) forall ye Y,
(i) [V (E)lx € B forall x € X;
(V) ¥ (A x B) 2 Uyepp)(¥y(A) x {y}) forall A e and all B € B.

PrRoOF.  First recall that (IT) impliesS, « P for all y € Y. From S, < P
for all y € Y, we get, obviouslyR <« P ® Q (see Section 1). Iff is a Radon—
Nikodym derivative of R with respect toP ® Q, put Eg := o({f > 0}). It
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follows that Eg € A® B and ¢(Eg) = Eg. Moreover, (P ® Q)(E N Eg) =0
implies R(E) =0 andR(Eg) = 1; that is, Eg is the "“measurable support” of
the measur®. Moreover,Ey € % ando (E) = E, for all y € Y by condition (b)
above. For alE € A® 3, deflne

Xx7Y, if E=X xY a.e.(R),

Vi(E) = { :

¢(ENER), otherwise.
By [8] we gety € ¥ (R).

Next put N := {y € Y:S,(E}) < 1}. Then N € %B,. Notice thatE,ye is a
measurable support of, for all y ¢ N since, for all suchy, we haveS, (Ey) =1
and P(A N E) = 0 implies Sy(A) = 0 because§, < P. If, for all A € 2 and
y ¢ N,we deflne

X, if A=X a.e.(S)),
(AN E, ®)s otherwise

then againy, € ¥(S,) forall y ¢ N by [8]. We denote the unique extensiompf
tle also byy,.

For y € N, take somer, € A(S,) and let 9, be defined according to
Lemma 2.1. Then defing, := 17, for y e N andy/(E) := [Y1(E) N (X x N)]U
Uyen (03 (E) x {y}) forall E € QI®R%

First Y (E) = y1(E) = E a.e. (R) implies ¥/ (E) = E a.e. (1?) andy(E) €
ARJRB. For E,F € ARV with E = F a.e. (R) we gety(E N ER) =
Y1(F N ER) and<p} (E) = ¢y (F), the latter by Lemma 2.1. This implies(E) =
w(F). ¢ is stable with respect to intersections sm,tzg and all theg, are for
all y e Y. Since clearlyy (@) = @, we getyr z?(R) So we are left with the
verification of (i)—(iv).

(i) For y e N, we haveg,(E) U ¢,(E) = X since ¢, is a Boolean
homomorphism: hence (i) is fullfilled in that case.

Fory ¢ N, we getS,([y(E)I* U [Y(E)P) = Sy(([9(E) U [p(E)P) N
E;e) =1, the latter since ([p(E)]” U [p(ES)]Y)=1forallyeY.

(i) If y e N, then[y(E)] = ¢, (A) for someA € A, so ¥, ([Y(E)]) =
Uy (s (A) =Yy (A) = [V (E)].

If y e N¢ then[y(E)])Y =[¥1(E)]’. Hence ifR(X x YAE) > 0, then

Yy (W (E)) = ¥y ([Y1(E))) = o ([Y1(E)) N Ey)
=o([Y1(E))NEx =0 (lp(E)]’ NEy) N Ey
=0 ([p(E)))NEx =[@(E)) NEx=[p(E)* N[p(ER)]
=[p(ENER) =[y1(E)’ = [y (E)

Assertion (iii) immediately follavs from the corresponding property @f
(iv) For A e 2 and allB € B, we gety (A x B) =[((c(A) x p(B)) NEg) N
(X x N9 UUyeN((py(A X B) x {y}).

Uy(A) = {
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Fory € p(B) N N¢, we get[((c(A) x p(B)) NER) N (X x N9 =0 (A) N
flyi =¥y (A), thatis,[((o0 (A) x p(B)) NER)N(X X N)] = Uyepynne (¥y(A) X
.

Fory e N, we getg,(A x B) = ¥, (A) if y € p(B) andg,(A x B) = @ if
v ¢ p(B). Both cases taken together give the assertian.

THEOREM 2.3. Assume thaflT) is satisfied by a productap. {S, : ye Y}

on 2l for R with respect toQ and byp € A(Q). Then there existy € A(S ) for
all yeY aswell asr € A(R) such that the following conditions hoId true

() [7(E))Y =0,(n(E)])”) forall yeY andE € ARr B;
(i) (A x B) =Uyepp(0oy(A) x {y}) forall AeAandall B € B.

PROOF. Lety, andy be given as in Theorem 2.2. Next choaesec A(S )
satisfyingy, (A) € ay(A) forall Ae2 and ally € Y, and definer e 9 (R) by
setting, for eactE € A®x B and eachy € Y,

3 [ (E)IY = oy ([ (E)T).

Sincey (E) Cn(E) forall E € ARDr B, we getﬁ-measurability oft(E), and it
follows easily thatr € ¥ (R). In order to prove that is a lifting, it suffices to show
that we have always (E€) = [7(E)]¢. But this is a consequence of Theorem 2.2
and (3), as we get for eaghthe equality

[T (EN =0y ([W (EN) =0y (¥ (E)P)°) = (oy (¥ (E)))) = ([w(E)]Y)".
This proves that € A(R). O

LEMMA 2.4. If R« P® Q,then foranyp € A(Q) and for any product.c.p.
{Sy:yeY}onAfor R with respect toQ, there exist a producte.p. {7y :y € Y}
on%A for R with respecttaQ, ¢’ € 9(R) andp’ € A(Q) such that{7, # S,} € Bo
and (IT) is satisfied by the productrp. {7, :y € Y} and the liftingp’. Moreover
o' andg’ satisfy conditionga)—(d)from the beginning of this sectiptoo.

PROOF PUutN :={y € Y:S,(E%) < 1} and noteN € Bo. Chooseyg € N¢
and definep’(B) := [p(B) N N°JU N if yp € p(B) and p’(B) := p(B) N N¢
otherwise. Pup/(E) :=[¢(E) N (X x N)JU{(x,y) € X x N : (x, y0) € ¢(E)}
for all E e A® B. It is now straightforward to verify that’ € A(Q).

To verify that ¢’ € 9(R), let E, F € A®xB. The equalityy’(E N F) =
¢'(E)N¢'(F) is perhaps most easily verified by checking all equalities of sections
[¢ (E N F)) =[¢(E)) N[¢'(F)] for all y € Y. The other density properties
of ¢’ are straightforward to verify.

It is also easy to see that and ¢’ have all the properties (a)—(d) (with the
sameo as before). Next pufy := S, for y e N¢ andT, := Sy, if y € N. Clearly,
{Ty:y eY}isaproductr.c.p. ol for R with respect toQ such thafT, # S,} €
Bo. ForA e A andB € B, thenR(A x B) =0 implies¢’(A x B) = @, saying
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o(A)= or p'(B) = @. But p/(B) = @ implies Q(B) = 0. If Q(B) > 0, then
o(A) =g, implying T, (A) =0 for all y e N°. But T, (A) = S,,(A) =0 for all
y € N sinceyg € N¢. So (IT) is satisfied fo{T, :y € Y} andp’. O

THEOREM 2.5. If R < P ® Q, then there exist a productcrp. {7, :y € Y}
on %l for R with respect toQ and a Iiftingp € A(Q) suchthaf{7,:y € Y} and
p’ satisfy(IT), and there exist, € z?(T yforall y e Y as well asy € #(R) such
that the following conditions hold true for all € AR B:

() Ty(LW(E) Uy (E9)))=1forall y e ¥;
(i) [W(E) =y¢y(y(E)]) forall y e Y;
(i) [Y(E)]x €eBforall x € X;
(V) ¥(A X B) 2Uye, ) (Wy(A) x {y}) forall A e and all B € B.

PROOF We choose a product r.c.pS,:y € Y} satisfying S, «< P for all
y € Y. Now applying Lemma 2.4, we modify the product r.c{§,:y € Y},
obtaining a product r.c.d7,:y € Y}, and findp’, ¢’ satisfying all the conditions
of Lemma 2.4. The product r.c.fT) : y € Y} and the liftingp’ satisfy (IT). Now
apply Theorem 2.2 for the product r.c{f,:y € Y} and for p’, instead of the
productr.c.p{Sy :y € Y} andp, and withe' instead ofy in the proof. Theorem 2.2
produces now the requirefd B (R) andy, € z‘}(T ),yeY. O

THEOREM 2.6. If R < P ® Q, then there exist a productcrp. {7, :y € Y}
on 2 for R with respect toQ and a lifting p’ € A(Q) such that{T, :y €Y}and
p’ satisfy(IT), and there exist, € A(T,) forall y € Y as well aso € A(R) such
that the following conditions hold true

() [@(E)) =oy(w(E)]) forall y e Y and all E € AR B;
(i) @ (A x B) =Uyep ) (0y(A) x {y}) forall A e and all B € B.

PROOF Let Ty, ¥y, p’ andy be given as in Theorem 2.5. Next choose
oy € A(T ) satisfyingv,(A) € o,(A) for all A e and ally € Y and define
w € ¥ (R) exactly as we have definedin the proof of Theorem 2.3. The required
result follows in the same way as in the proof of Theorem 2[3.

For given product r.c.p{Sy :y € Y} on 2 for R with respect toQ, put B4 :=
{yeY:5,(A) >0} for all A €. DefineBs :={Bs:A e 2}. It follows that
Y € B85 and&Bg is directed upwards sind@s U B¢ € Bayc for A, C € . Denote
by 75 the topology generated bgs on Y and letr, :={B € B : B C p(B)} be
one of the lifting topologies o considered in [7], Chapter V. We do not assume
in the next proposition thak is absolutely continuous with respectfo® Q.

PROPOSITION2.7. For a product rc.p. {Sy:y € Y} on® for R with respect
to 0, {oy € A(Sy) yveY},pe A(Q)andr € A(R), the following conditions are
all equivalent
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(i) {Sy:yeY}andp e A(Q) satisfy the conditioiT);
(i) Bs <1,
(i) p is Tg-strong
(iv) p,{o,:y €Y} andn satisfy the rectangle formuldgF).

PROOF (i) « (ii) AssumethatB4 C p(B4) forall A € 2 and takeA € A and
B € B suchthatR(A x B) =0. Thenf; S,(A)d Q(y) =0. This yieldsS,(A) =
for Q-almost ally € B. Hencep(B) € p(BY). But by the assumption, we have

p(BY) € B and so ifQ(B) > 0, thenS,(A) = 0 providedy € p(B).

Now the reverse implication. Assume that (IT) is satisfied and take ar(.
ThenR(A x B§) =0.1f Q(B4) =0, thenQ(By) =1 and soY = p(Ba) 2 Ba.
If Q(BY) >0, then (IT) yieldsS,(A) =0 for all y € p(B%). That means that
p(BY) € B, or equivalently,B4 € p(Bjy).

(i) < (iii) is obvious since if7” is an arbitrary topology o', thenp € A(Q)
is 7 -strong for the topology™ if and only if 7~ C 7,,.

The implication (iv)= (i) is clear, while the implication (i} (iv) follows from
Theorem 2.3. OJ

3. Arbitrary probability measures. In this section we assume that we are
given a lifting p on (Y, 9B, Q). We start with the following well-known result.

LEMMA 3.1. Let f be a bounded real-valug@ ® 9%5)-measurable function
onX x Y. Thenthe functioy e Y — [y f¥(x)dS,(x) is B-measurable and the
equality

fXXyﬂx,y)dR(x,y)=/Y/Xfy<x>dsy<x)dQ<y>

holds true
If £ is abounded real-value@ ® ; B)-measurable function oX x Y, then

(i) the functionf” |sQl -measurable foQ-a.a. y € Y;
(i) the functiony — /[y fy(x)dS} (x) is B-measurable
(i) the equality

fXXyﬂx,y)dR(x,y)=/Y/Xf>’<x>dsy<x>dQ<y>

holds true

In particular, if E € A®g B, then
R(E) = /y S, (E¥)dO ().

The next result corresponds to Lemma 2.1 of [10] and plays an essential role in
the proof of Poposition 34.
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PrRopPoOsSITION 3.2. If € is a finite subalgebra ofl, then for everyf e
LP(R) := LP(X x V,2A® B, R), we have the following section property of the
conditional expectatian

Y\{yeY:[Eegn(f)I' = Eg(f) a.e (Sy|®)} € Bo.
PROOF BylLemma 3.1, iff € L®(R), C € &, B € B, then

/ / [Econ(f)I (x)dSy(x)dO(y)
BJC
_ / Ecan(f)(x, ) dR(x, y)
CxB
=/ £ ) dR(x, y)
CxB
- /B /C FY @) dS, (0 dO()

=/B/Cng)(x)dSy(x)dQ(y).

This implies that, for eaclC e ¢, there existsN¢c € Bg such that, for any
y € Y\ Nc we have

/C[E¢®%(f)]y(X)dSy(X)=/CEé(fy)(X)dSy(X)-

If Np:=Ucee Nc,thenNy € Bg, and forally e Y \ Ny and allC € ¢, we have

/C[Em%(f)]y(X)dSy(X) = /C Eg(f*)(x)dSy(x).
It follows that we have, foralh € Y \ Ny,
[Ecam (NP = Eg(f*)  ae(s,|o). 0

LEMMA 3.3. Let € be a finite subalgebra ol and let H € 2 \ €. Let
D =o0(CU{H}). Assume that for each € Y, there existsr, € A(S,|¢) and
¢ € A(R|€ ® *B) such that

(4) [¢p(A x B)] =1y(A) forall A e ¢, B e®B andQ-almost ally € B,
(5) [¢p(AxB)] =2 forall A € ¢, B €8 andQ-almost ally € B“.
Then there exis e A(R|D ® B) and&, € A(S,|D) for y € Y such that

(6) [E(Ax B) =&,(A) forall A€ ®, B €8 and Q-almost ally € B,
(7) E(AxB)) =9 forall A€ ®, BB andQ-almostally € B¢.
Moreoveré|€ ® B =¢ andé,|C =1, forall yeY.
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PROOF By induction, one can always assume tltatis contained in some
atom (call itA g) of €. We set then

@, if Sy(H)=0,
§y(H) = 7y(An), if Sy(Am \ H) =0,
H, otherwise
and
Ty (An), if S,(H)=0,
§y(Ag\ H) =12, if Sy(Au \ H) =0,
,(Ag) \ H, otherwise.

If D=(ANH)U (BN HC") with A, B € € given, then we set
£y(D) = (§,(H) N1y(A) U (5y(A \ H) N Ty(B)) Uty (BNAY).

We may write it also in a more symmetric way, if we notice ti§atH¢) =
&,(Ag \ HYUE&,(A%). Then we have

Ey(D) = (§,(H) N7y (A) U (§y(H) N7y (B)).
Similarly, if B4 :={y € Y:§,(A) > 0}, then we set
E(HxY):=[(HxY)N¢(Ag X By)]
U[(H < Y)No(An x (Y \ Bay\n))],
E(An\H)xY):=[(H xY)N@(An x By)]
U[(H  xY)N@(An x Ba\H)]
andifE=[FN(H xY)]JUGN[(H® x Y)]with F, G € € ® B, then
E(E) = (p(F)NEH x Y)) U (p(G)NE((An \ H) x Y)) Up((G N (A, x 1))
or
E(E) = (p(F)NEH x Y)) U (p(G) NE(HC x Y)).
We are now going to check the section properties.df y € Y, then
[E(H x V)I = (HN[p(Ay x Bi)I) U (H N [p(An x (Y \ Bagu))]')-
Now
Ty (ARH), for Q-a.e.y € By,
lo(An x Bp)) = {
& for Q-a.ey ¢ By,
and
Ty(Ap), for Q-a.e.y ¢ Ba,\u.,

Ay x (Y \ B Y=
[qp( H X ( \ AH\H))] [@’ for Q-aeye BAH\H'
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The above relations givig (H x Y)]” =&,(H) for Q-almostally € Y.
In a similar way, we get
[E(H x V)" =&,(H")

for Q-almostally e Y. o
Consider now arbitrarA € ©, B € 8. Then there exisfi1, A € € such that

A=(A1NH)U (AN H)
and so
AxB=[(A1x B)N(H x Y)]U[(A2 x B)N (H x Y)].
Then, applying (4) and (5), we have, foralmost ally € B,
[£(A x B)) = (lp(A1 x B)) N[E(H x Y)])
U ([p(A2 x B)P N[EH x Y)TY)

= ([p(A1 x B)P N & (H)) U ([p(A2 x B)) N&,(H))

= ([ry (ADY NE(H)) U ([t (A NEy(H))

=&y(A)
and[é(A x B)]” = @ for Q-almost ally € B¢. That proves (6) and (7).[J

PROPOSITION3.4. Assume tha®l contains a countably generatedalgebra

which is dense il (in the Fréchet—Nikodym pseudome}ngith respect toP.
Then there exist € ¥ (R) and{r, € ¥#(Sy) .y € Y} such thatfor eachF € A® ‘B,

[@(F)) =1,(Ig(F))’)  foralmostally €Y.
There exists alsg e #(R) such thatfor eachF € ARz B,
() =1,([p(F)) forallyeY
and
[p(F)], €B forall x € X.

PROOE Let (€,),en be a sequence of finite algebrdg such that€; =
{@,X}, €, C¢y1forneNand® :=o(J,eny€n) is P-dense in. It is easily
seen tha® ® B = o (J,en(Er @ B)).

Then, we construct, € A(R|¢, ® B) and t,, € A(S,|¢,) according to
Lemma 3.3, taking ag; € A(R|€1 ® B) the lifting determined by € A(Q) and
by 71, € A(S,|€1) the only existing lifting on(X, €1, S,|¢1). Following [6], we
defineg € ¥ (R|D ® B) and7), € ¥ (S,]|D) with ¢|(¢,, ®B) = ¢, and7y|¢, = 1,
for all y € Y and alln € N by means of

P =M U N en({Ec,on(xF) > 1—1/k})

keNneNm=n
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if Fe®®%B and
7AW = U N m{Ee, (xa)>1—1/k})

keNneNm=n

if Ae®.Then,forF e ® ® B, let N, r € Bo be such that (see Proposition 3.2)
{y ey: [E¢m®%(XF)]y = Eév;m (XFy) a-e(Sy|¢m)}c C Nu,F.

If Nr:=U,.en Nm.F, thenNg € Bg and it follows from Proposition 3.2 that, for
allyeY\ Np,

@AY= U NIen({Ee,em(xr) > 1—1/k})]

keNneNm=n

= U N my({Ee,o8(xr) > 1—1/k}])

keNneNm=n

= U N wm[Ee,0m(xm)]” >1—-1/k})

keNneNm=n

= U N wm(Ee, (xr) >1—1/k}) =7, (F).
keNneNm=n
It follows that7, ([¢(F)]") =[@(F)]* forall y ¢ Np.

Notice that according to Lemma 3.3, the sgiS{E¢, o8 (xr) > 1—1/k}) are
members of,, ® B and so the sets,, ([{E¢,,o3(xr) > 1—1/k}]”) are properly
defined. Then, we sép(F)]” =7,([¢(F)]”) for everyye Y andF € ® ® B.
Notice that sinces(F) € ©® ® 9B, we have[g(F)]’ € ® and[@(F)], € B, for
everyy € Y andx € X. This proves the correctness of the definitiongofit is
clear thatp(F) € A®5 B. But as® ® B is R-dense ikl ® B, we can exteng
in the unique way to the wholt @z B. We denote this extension also by

At the moment, each density is defined on the -algebra®. For everyy e Y,
denote again by, the obvious extension df, to ©, := o (D U ,0). Itis well
known (cf. [6]) that each density onsasubalgebra containing all sets of measure
zero can be extended to a density on the wholalgebra without changing its
values on the smaller-algebra. Letr, € ¥(S,) be an arbitrary extension af,
from ©, to /. One can easily see thatand {z,:y € Y} satisfy the required
properties. [

THEOREM 3.5. Assume tha®l contains a countably generatetg-algebra
which is dense il (in the Fréchet—Nikodym pseudomel}nigith respect toP.
Then there exist, € #(S,) for all y € Y and ¥ € #(R) satisfying for all
E € A®pg B, the following conditions

0] §y([1//(E)]y Uy (E)]))=1forall y e Y;
(i) [Y(BE) = fAy([lﬁ(E)]y) forally e Y;
(i) [¥(E)]x is Q-measurable for alk € X.
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PROOF There existy € 9(R) and 7, € (S, forall yeY satisfyingAthe
thesis of Proposition 3.4. We denote againrbyhe unique extension af, to 2.
Let

O:={ged(R):VyeYVE AR DB [G(E) C 1, ([B(E)T)
andVE e A®r B ¢(E) C9(E)}.

Notice first thatd # & sinceg € .
We considerd with inclusion as the partial ordegi; < 9, if 91(E) € 9,(E)
for eachE € A® B.

CLAIM 1. There exists a maximal elementdn

PrROOE The only fact we have to prove is that each chgif},c4 € ® has a
dominating element ib. The obvious candidategsgiven, for eactE € A®x B,

by
(8) @(E)= | ¢u(E).

a€EA

It can be easily seen thatis a density dominating the chain apd .
Indeed, let us prove first the measurability@fE ). To do it notice first that

9) P(E) = | ¢0a(E).

€A

and that (8) and (9) together yield immediately
P(E)NP(E) = 2.
Henceg(E) C [¢(E€)]¢ and so if anx € A is fixed, then
@ (E) SP(E) C[P(EN] C [po (E)]°

for eachE € A®gB. Since R is complete andp, € #(R), this proves the

measurability ofg(E) and the relatiorp(E) X E. Consider now the section
properties ofg(E). For fixedy € Y,

[@E) = Jlea(E) € | 7y([ga(E)T),
acA acA
and so, by virtue of [7], Chapter Ill, Section 3, the §g(E)]” is §y-measurable.

Setting in the above inclusiorg E) instead ofy, (E), we see that the inclusion
[(E)] € 1y([@(E)]) is satisfied also.
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We have to prove yet thatis a density. To do it, tak&, F € A ®r B. We have
P(E)Ng(F) = | ¢a(E) N | ¢a(F)

aEA a€A

=JleE)N mF)}
acAL BeA

= U ¢a(E) Nop(F)
acALBeA

= qua(Emw,s(F)}g [U wﬂ(E)ﬂwﬂ(F)}
acALa<p cALa=<p

=U| UwsEn F)} CPENF).

acALa<p

The reverse inclusion and other properties are clear arﬁdesﬂ(l?). This proves
thaty dominates the whole chain. According to the Zorn—Kuratowski lemma the
set® possesses a maximal elemegnt [

CLAIM 2. Foreachy e Y andE € A®r B,
Sy(W(E)P ULy (E)P) =1.
PrOOFE Notice first that as) € @, all sectiongy (E)]” are§y-measurable.

Suppose now that there exiEte A ® B andyg € Y such tha@yo([x//(H)]yO U
[W(H)]?) < 1. Let

W =1y [([¥ (H)° U [y (H)°) ]
and let
[V (E)), if y # yo,
[V (E))°U(WN[y(HUE)]), if y = yo.

It is clear thaty (E) € ¥ (E) for eachE € A& B. In particular, (X x Y) =
X x Y. Also the other density properties are fulfilled.
It follows directly from the definition that/ and ¢ are different densities.
In order to get a contradiction with our hypothesis, it is enough to show that
[¥ (E)I° C 1,0 ([¥ (E)I*°), but this is immediate. IE € 24 & B, then

Tyo ([ (E)1°) 2 7y (¥ (E)°) U 7y (W N [W (H U E)]’°)
2 [ (E))° U [1y,(W) N ([¥ (H U E))°)]
D [Y(E)PU(WN[Y(HUE)P)
= [V (E)]".

[V (E) =
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This completes the proof of the claim

CLAIM 3. ForeachyeY andE € A®z B,
[V (E)) =1,([¥ (E)]).
PROOFE  Set, for eachy € Y andE € ARz B,
[V (E) =1, (¥ (E)P).

Clearly, ¥ (F) C ¥ (F) for eachF. Moreover, the equalityy (E) N Y (E€) = o
yields for eacty the relationr, ([v (E)]Y) Nz, ([¥ (E€)]”) = @. As a consequence,

we gety (E) N (E€) = @, and then) (E€) C (¥ (E)). Hence

Y (E®) S Y(EY) S [W(E)° S [y (E).
Sincey € 9 (R), we haveR ([ (E)]) = R[y (E)] and soy (E) is R-measurable.
It follows thaty € ® and soy = ¥, due to the maximality ofy. [

CLAIM 4. X-sections of) are O-measurable

PROOF In order to prove the measurability of ti&-sections ofy,, notice
that sincep and v are densities in the same measure space, the equalities
R(@(E)AW(E)) =0 andR(go(E) U@(E°)) =1 hold true for eveng e ARg B.
It follows then from Lemma 3.1 that there Mz € B¢ such that, for ally ¢ Mg,

§y([90(E)]yA[1//(E)]y) =0 and §y([90(E)]y Ulp(E)P) =1
It follows thatif y ¢ Mg, then
[V (E)) =1, ([¥(E)) = 1y ([p(E))Y) = [p(E)T.
Hence,
P(E)N (X x Mp) =y (E) N (X x M),
and consequently, we have for ale X,
[o(E)lx " Mg = [¥(E)]x N M.
Since all sectiongp(E)], are Q—measurable, it follows that the sectidns(E)],
are Q-measurable. O

This completes the proof of Theorem 3.5

THEOREM 3.6. Assume tha®l contains a countably generated-algebra
which is dense it (in the Fréchet-Nikodym pseudomelnigith respect toP.
Then there exist, € A(Sy) forall yeY andx € A(R) such that the following
condition is SatISerﬂ

(10) [T(E)) =oy([m(E))) forallyeY andE e AR B.
Equivalentlyfor eachf € £°(R) and eachy € Y,
[ ()T =oy([m(H]).
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PROOF  According to Theorem 3.5, there exist € 9 (S,) forall y e Y and
Y€ 9 (R) such that, for allE € 2 @z B,

(11) [y (E) =1,([y(E)P)  forallyey
and
(12) S,(W(E)Y UIW(ESHP)=1  forallye?Y.

We take now, for eacly € Y, a lifting o, € A(Sy) such thatr, € o, and define
7 € 9(R) by setting, for eactf € A®z B and eachy € Y,

(13) [ (E) = oy ([¥ (E)T).
Sincez/(E) Cn(E) forall E € ARr B, we getﬁ-measurability ofr (E) and

w(E) X E. In order to prove that is a lifting, it suffices to show that we have
alwaysr (E€) = [ (E)]°. But this is a consequence of (12) and (13) as we get for
eachy the equality{z (E€)]” = ([z(E)]Y)¢. This proves that € A(R). [

REMARK 3.7. There is an obvious question: Can liftimg (or @w from
Theorem 2.6) be chosen in such a way that all the secfio(&)], would be
Q-measurable? Such a property holds true for the dewisityTheorem 3.5. As it
has been observed in [10], an improvement of this type is in general impossible in
case of product measur@&s

4. Examples. In case of the regular conditional probabilities defined on the
same basic space whe¥ c 2, the following result holds true (see [2] or [9],
page 358):

Let(X, 2, P) be a probability space and |& be a subs -algebra of. Assume
that{P, : x € X} isar.c.p. orRl with respecttds. Then, if there exists a probability
measureP on 2l such that every measurg is absolutely continuous with respect
to P, thenP |5 is atomic and, for eacl € 2, there existsV,4 € B such that

Px(A)=Z%2£")xgn(x) for everyx € X \ Na,

n
whereBy, By, ... are all the atoms of? |*B.
If 2 is countably generated, then one can replace theXEgtby one selv € Bg
satisfying the above equality for adl € 2.

One may ask if a similar simplification takes place also in case of our
investigations. The following example shows that this is not the case. When the
algebrag( and®3 are “independent,” then there are nice examples with absolutely
continuous product regular conditional probabilities. The product r.c.p. in the first
example is even uniformly absolutely continuous, that is,

Ve>03§>0VA e, |:P(A)<8 — SupSy(A)<e].
yeY
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ExAMPLE 4.1. Let(X,%) = (¥,B) = ((—o00, +00), £), where £ denotes
the Lebesgue measurable sets, and. Ibe the Lebesgue measure. Moreover, let
C C [0, 1] be a set of positive measure<Or(C) < 1. For eachy € Y, let S, be
the measure defined @by

_ Javcty) EXR—( — y)?/2}dt
B Jr\c €Xp{—12/2} dt

Sy(A) =

if A e 2. Then set

Q(B) = exp(—r?/2)dt,

1
=)
R(A x B) = /B Sy(A)dQ(y)

and
P(A)=R(A x Y).

R is obviously additive o2l x 9B, and sinceP and Q are perfectr is countably
additive on2l x 9% and so it can be uniquely extended to a measur@ @ %3
(see [13]). We denote the extension alsory

CLAIM 1. For every bounded € 2, the functionsS.(A) is continuous and
Q<K P.

CLAM 2. If p is a strong lifting forQ, then{S, :y € Y} satisfieqIT).

PrROOF If R(A x B) =0andQ(B) > 0, thenS,(A) =0forally € By, where
B1 C B and Q(B1) = Q(B). SinceS.(A) is continuous, we ges§, (A) = 0 for
all y € By. Sincep is strong, we have thef,(A) =0 for all y € p(B1). But
B12 p(B1) D p(B1) =p(B). U

CLAaM 3. P ® Q is not absolutely continuous with respectRo

PROOF  Let H :=J,ey(C + y) x {y}. We claim thatH € A ® B. In fact,
notice that(x, y) e H < x — y € C. HenceH = g~1(C), whereg(x, y) = x — y.
SinceS,(H”) = S§,(C +y) =0 for everyy € Y, we haveR(H) = 0. On the other
hand,Q(H,) = Q(—C +x) > 0 for everyx € X, which givesP® Q(H) > 0. O

A good example when the property (RF) does not take place is the following:
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EXAMPLE 4.2. Letx be the Lebesgue measure on the real lin& £ Y =
[0, 1] are endowed with Lebesgue measurable setswisdhe diagonal of0, 112,
then setR(E) = A(E N A)/+/2 and Sy = 8, (the measure concentrated {in})
for all y € [0, 1]. We have thenR([0, 1/2] x [1/2, 1]) = 0 but S1,2[0, 1/2] = 1.
According to Theorem 3.6 (or directly, by a simple calculation), there is a lifting
7 € A(R) and there are liftings (uniquely determined in this casgk A(S,)
such that the equality (10) is satisfied:

[7(E) =o,(7(E)Y) forallyeY andE e A®g B.

As the measureS, are mutually singular, no rectangle formula holds true.

5. An application to stochastic processes. Let {£,},cy be an arbitrary
real-valued stochastic process oK, P). If {¢,},cy is another stochastic
process, then it is callef-equivalentto {£,},cy if, for eachy e Y, the equality
&y = ¢y holds true a.e(Sy). {{y}yey is then called anodificationof {&,}yey,
and vice versafé,},cy is said to beR-measurablaf the map (x, y) — &,(x)
is I'e\—measurable.{gy}yey is bounded if sup.y [[§yllg=(s,) < oo. There are
several papers concerning the existencePo®(Q)-measurable processes that are
equivalent to a given process (cf. [3, 4, 16, 17]). If the initial process is already
(P ® Q)-measurable, then one looks for it® ® Q)-measurable modification
behaving better than the original process. In general, a measurable process
equivalentto a bound€d, } <y is defined by setting, = o (§,), whereo ¢ A(P)
and the initial proces$t,},cy or the measure spaces satisfy some additional
conditions. It is shown, however, in [3] that if the continuum hypothesis holds,
then there exist nonpathological measure spékeg(, P) and(Y, B, Q), a lifting
o € A(P) and an 9l ® B)-measurable stochastic process such that the lifting
converts it into a non# ® Q)-measurable process (being a modification of the
initial one). Thus, not always and not every lifting converts a measurable process
into its measurable modification.

In the next theorem, we examine the problem of the existence of a measurable
lifting modification of a measurable process in caseRobeing not necessarily
a product probaility. We have not got any characterization of liftings converting
measurable processes into their measurable modifications; we just show that if
20 is not too large, then there exist liftings which always produc& aneasurable
modification of an arbitrarR-measurable stochastic process. In fact, as the proof
of Theorem 3.6 shows, in general there are a lot of such liftings. Since we assume
only the existence of a product r.c.p., the measRrenay be quite far from
the product measur® ® Q and so the theorem describes a more general case
than previously known results (when the separability?ofs assumed and no
separability of the final process is needed).

THEOREM 5.1. Assume thafl contains a countable algebra which is dense
in A with respect toP. Then for each bounded measurable stochastic process
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{&y}yey on (X, 2, P), there is a collection = {¢ylyey Of §y—measurable
functionsz, on X and a collection of liftingsr, € A(S)), y € Y, such that

() & =¢yae (S foralyey;
(i) ¢y =0,y forallyey;
(i) the map; : X x ¥ — (—o0, +00) is R-measurable

PROOE In view of Theorem 3.6, there exist A(R) and a family{o, €
A(S)):y € Y} such that, given procegs= {¢,},cy, we have

[T@) =oy([7r(E))) forallyey.
By Lemma 3.1, there exisﬂyg € B such that

=@ ae(s)foraly¢N;.

We define now a collectiog := {¢,},cy Of S,-measurable functions oX by
setting

Ly =0y(§y) foreachy e Y.

Sincer () is R-measurable, one can easily see ga},cy satisfies the required
conditions. [
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