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SPLITTING OF LIFTINGS IN PRODUCTS OF
PROBABILITY SPACES1
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Universität Stuttgart, University of Piraeus and Wrocław University

We prove that if(X,A,P ) is an arbitrary probability space with count-
ably generatedσ -algebraA, (Y,B,Q) is an arbitrary complete probability
space with a liftingρ andR̂ is a complete probability measure onA ⊗̂R B

determined by a regular conditional probability{Sy :y ∈ Y } onA with respect
to B, then there exist a liftingπ on (X × Y,A ⊗̂R B, R̂) and liftingsσy on
(X, Ây, Ŝy ), y ∈ Y , such that, for everyE ∈ A ⊗̂R B and everyy ∈ Y ,

[π(E)]y = σy
([π(E)]y)

.

Assuming the absolute continuity ofR with respect toP ⊗ Q, we prove the
existence of a regular conditional probability{Ty :y ∈ Y } and liftings� on
(X × Y,A ⊗̂R B, R̂), ρ′ on (Y,B, Q̂) andσy on (X, Ây, Ŝy ), y ∈ Y , such
that, for everyE ∈ A ⊗̂R B and everyy ∈ Y ,

[�(E)]y = σy
([�(E)]y)

and

�(A × B) = ⋃
y∈ρ′(B)

σy(A) × {y} if A × B ∈ A × B.

Both results are generalizations of Musiał, Strauss and Macheras [Fund.
Math.166 (2000) 281–303] to the case of measures which are not necessarily
products of marginal measures. We prove also that liftings obtained in
this paper always convert̂R-measurable stochastic processes into their
R̂-measurable modifications.

1. Preliminaries. If (Z,Z, S) is a probability space, then we denote byẐ

the completion ofZ with respect toS and by Ŝ the completion ofS. We
write L∞(S) := L∞(Z,Z, S) for the space of boundedZ-measurable real-valued
functions. Functions equal a.e. are not identified.

We use the notion oflower densityand lifting in the sense of [7]. It is known
(cf. [7]) that there is a 1–1 correspondence among liftings onZ with respect toS
and liftings onL∞(S). Saying thatτ is a lifting on(Z,Z, S), we mean thatτ is a
lifting on Z and onL∞(S). �(S) denotes the system of all liftings on(Z,Z, S).
Similarly, ϑ(S) is the collection of all lower densities on(Z,Z, S).
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Throughout what follows,(X,A,P ) and (Y,B,Q) are probability spaces.
A × B is the product algebra generated byA andB in X × Y , andA ⊗ B :=
σ(A × B) is the productσ -algebra generated byA × B. P ⊗ Q is the product
measure onA ⊗ B, A ⊗̂B is the completion ofA ⊗ B with respect toP ⊗ Q

and P ⊗̂Q is the completion ofP ⊗ Q. We write A0 = {A ∈ A :P (A) = 0},
B0 = {B ∈ B :Q(B) = 0} andB̂0 = {B ⊂ Y :Q∗(B) = 0}, whereQ∗ is the outer
measure generated byQ.

R is always a probability measure onA ⊗ B, such thatP and Q are
the marginals ofR. By (X × Y,A ⊗̂R B, R̂) we denote the completion of the
probability space(X × Y,A ⊗ B,R). EC(f ) denotes a version of the conditional
expectation of a functionf ∈ L∞(P ) with respect to theσ -algebraC ⊂ B. An
elementC �= ∅ of an algebraC is an atom ofC if it cannot be decomposed into two
disjoint nonempty elements ofC. It follows from the context whether we consider
the atoms of an algebra or the atoms of a measure defined on that algebra.

DEFINITION 1.1. Assume that for everyy ∈ Y there is a probabilitySy on A

such that:

(D1) for everyA ∈ A, the mapy → Sy(A) is B-measurable;
(D2) R(A × B) = ∫

B Sy(A)dQ(y) for all A ∈ A and allB ∈ B.

Then the family{Sy :y ∈ Y } is called aproduct regular conditional probability
(product r.c.p. for short) onA for R with respect toQ. One can easily see that the
existence of such a product r.c.p. is equivalent to the existence of the classical r.c.p.
on theσ -algebraA×Y := σ({A×Y :A ∈ A}) of cylinders based inA with respect
to theσ -algebraX × B := σ({X × B :B ∈ B}) of cylinders based inB, on the
measure space(X×Y,A⊗B,R). We could use the name of disintegration instead,
but it seems that it is better to reserve that term to the general case whenA is not
necessarily countably generated andSy ’s may be defined on different domains
(cf. [11]). Throughout, we assume that a product regular conditional probability
{Sy :y ∈ Y } on A with respect toB exists. But ifA is countably generated andP
is perfect (cf. [12] for definition), then such an assumption is superfluous since a
product r.c.p. always exists (cf. [1], [5] or [11]). A product r.c.p.{Sy :y ∈ Y } onA

with respect toB is said to beabsolutely continuouswith respect toP , if Sy 	 P

for everyy ∈ Y . One can easily see thatR 	 P ⊗ Q if and only if there exists a
product r.c.p.{Sy :y ∈ Y } of R with respect toQ such thatSy 	 P for all y ∈ Y .

The completion ofA with respect toSy is denoted bŷAy . The collection
of all members ofA satisfying the relationSy(A) = 0 is denoted byAy0. If
f ∈ L∞(Sy) := L∞(X,A, Sy), thenE

y
C
(f ) denotes a version of the conditional

expectation off with respect to theσ -algebraC ⊂ A.

The whole paper consists of two independent parts. The first one is a
continuation of [10]. We have proven in [10] for complete probability spaces
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(X,A,P ) and (Y,B,Q) that, for given lifting ρ ∈ �(Q), there exist liftings
σ ∈ �(P ) andπ ∈ �(P ⊗̂Q) such that

π(A × B) = σ(A) × ρ(B) if A × B ∈ A × B(1)

and

[π(E)]y = σ
(
[π(E)]y

)
if E ∈ A ⊗̂B andy ∈ Y.(2)

In fact, we have proven more. Namely, the following result holds true: LetR be
a measure onA⊗B with marginalsP andQ and let{Sy :y ∈ Y } be a product r.c.p.
of R onA with respect toQ. If everySy is equivalent toP (in the sense of absolute
continuity), then for given liftingρ ∈ �(Q) there exist liftingsσ ∈ �(P ) and
π ∈ �(R̂) such that (1) and (2) hold true. These are in fact the same liftings which
were chosen for the product measureP ⊗Q, as equivalent measures have the same
liftings. (Notice that the properties of the product r.c.p. yield the equivalence ofR

andP ⊗ Q.)
Looking at the above result, one may ask immediately what happens ifSy ’s are

not equivalent. Clearly, (1) and (2) may be then senseless, as nonequivalentSy ’s
have different liftings. So one may ask if for someσy ∈ �(Ŝy), y ∈ Y , and
π ∈ �(R̂), the equations can have the following form:

π(A × B) = ⋃
y∈ρ(B)

σy(A) × {y} if A × B ∈ A × B(RF)

and

[π(E)]y = σy

(
[π(E)]y

)
if E ∈ A ⊗̂R B andy ∈ Y.(SP)

One can, however, easily conclude that satisfying the rectangle formula (RF) for
all A ∈ A andB = Y yields the absolute continuity of everySy with respect toP .
Even more, (RF) forces the following condition (IT) to be satisfied by the product
r.c.p.{Sy :y ∈ Y } and by the liftingρ ∈ �(Q):

R(A × B) = 0 
⇒ Q(B) = 0 or Sy(A) = 0 for all y ∈ ρ(B).(IT)

Clearly, (IT) also yields the absolute continuity of{Sy :y ∈ Y } with respect toP .
Moreover, we will see in Proposition 2.7 that the conditions (RF) and (IT) are
equivalent.

The main result of the first part (Theorem 2.3) shows that if condition (IT) holds
true, then (RF) and (SP) are satisfied with properly chosen liftings. If the weaker
assumptionR 	 P ⊗ Q is satisfied, then one can always modify the liftingρ

and the product r.c.p.{Sy :y ∈ Y } to enforce conditions (IT), (RF) and (SP) (see
Theorem 2.6).

The second part of the paper deals with quite arbitrary measuresR, but we
assume that theσ -algebraA is separable in the Frechet–Nikodym pseudometric
[i.e., there is a countable collection of setsAn ∈ A such that, givenε > 0 and
A ∈ A, there isAn with P (A�An) < ε]. We show that in this case one can
achieve (SP) (see Theorem 3.6). The proof is completely independent of [10].
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2. Absolutely continuous measures. Throughout this section, probability
spaces(X,A,P ) and (Y,B,Q) are arbitrary but(Y,B,Q) is assumed to be
complete. According to [10], Theorem 2.9, for given densityρ ∈ ϑ(Q), there exist
densitiesσ ∈ ϑ(P ) andϕ ∈ ϑ(P ⊗̂Q) such that, for allE ∈ A ⊗̂B, we have:

(a) P ([ϕ(E)]y ∪ [ϕ(Ec)]y) = 1 for all y ∈ Y ;
(b) [ϕ(E)]y = σ([ϕ(E)]y) for all y ∈ Y ;
(c) [ϕ(E)]x ∈ B for all x ∈ X;
(d) ϕ(A × B) ⊇ σ(A) × ρ(B) wheneverA ∈ A andB ∈ B.

LEMMA 2.1. Let (IT) be satisfied by a product r.c.p. {Sy :y ∈ Y } on A

for R with respect toQ and the densityρ ∈ ϑ(Q). If τy ∈ �(Ŝy) for y ∈ Y

is chosen, then there exists a Boolean homomorphismϕy :A ⊗̂R B → τy(Ây)

satisfyingϕy(A × Y ) = τy(A) for all y ∈ Y and ϕy(X × B) = X if y ∈ ρ(B)

andϕy(X ×B) = ∅ otherwise, and such thatϕy(E) = ∅ for all E ∈ A ⊗̂R B with
R̂(E) = 0.

PROOF. For eachy ∈ Y , setϕy(A×Y ) := τy(A), ϕy(X×B) := X if y ∈ ρ(B)

andϕy(X × B) := ∅ otherwise. Then setϕ0
y(A × B) := ϕy(A × Y ) ∩ ϕy(X × B)

for A ∈ A andB ∈ B. Thenϕ0
y :A × B → τy(Ây) is a Boolean homomorphism.

(IT) simply says that ifR(A × B) = 0, thenϕ0
y(A × B) = ∅ for all y ∈ Y , A ∈ A

andB ∈ B.
Writing γ :A×B → (A×B)/R for the canonical surjection, we find a Boolean

homomorphismϕy : (A × B)/R → τy(Ây) such thatϕ0
y = ϕy ◦ γ . Note that

τy(Ây) is a complete Boolean algebra due to Maharam’s theorem (see, e.g., [7],
Theorem 3, page 40, or [15], Theorem 3.9, page 1146). For this reason we can
extendϕy to a Boolean homomorphism̂ϕy onto(A ⊗̂R B)/R, the measure algebra
of A ⊗̂R B modulo R by [14], Theorem 33.1, page 141. Putϕy := ϕ̂y ◦ γ̂ if
γ̂ :A ⊗̂R B → (A ⊗̂R B)/R is the canonical surjection satisfyinĝγ |A × B = γ .
Thenϕy extendsϕ0

y . �

THEOREM 2.2. Assume that a product r.c.p. {Sy :y ∈ Y } on A for R with
respect toQ and a densityρ ∈ ϑ(Q) satisfy(IT). Then there existψ ∈ ϑ(R̂) and
ψy ∈ ϑ(Ŝy) such that the following conditions are satisfied for allE ∈ A ⊗̂R B:

(i) Ŝy([ψ(E)]y ∪ [ψ(Ec)]y) = 1 for all y ∈ Y ;
(ii) ψy([ψ(E)]y) = [ψ(E)]y for all y ∈ Y ;
(iii) [ψ(E)]x ∈ B for all x ∈ X;
(iv) ψ(A × B) ⊇ ⋃

y∈ρ(B)(ψy(A) × {y}) for all A ∈ A and allB ∈ B.

PROOF. First recall that (IT) impliesSy 	 P for all y ∈ Y . From Sy 	 P

for all y ∈ Y , we get, obviously,R 	 P ⊗ Q (see Section 1). Iff is a Radon–
Nikodym derivative ofR with respect toP ⊗ Q, put ER := ϕ({f > 0}). It
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follows that ER ∈ A ⊗̂B and ϕ(ER) = ER. Moreover,(P ⊗̂Q)(E ∩ ER) = 0
implies R̂(E) = 0 and R̂(ER) = 1; that is,ER is the “measurable support” of
the measureR. Moreover,Ey

R ∈ A andσ(E
y
R) = E

y
R for all y ∈ Y by condition (b)

above. For allE ∈ A ⊗̂B, define

ψ1(E) :=
{

X × Y, if E = X × Y a.e.(R̂),

ϕ(E ∩ ER), otherwise.

By [8] we getψ1 ∈ ϑ(R̂).
Next put N := {y ∈ Y :Sy(E

y
R) < 1}. Then N ∈ B0. Notice thatEy

R is a
measurable support ofSy for all y /∈ N since, for all suchy, we haveSy(E

y
R) = 1

andP (A ∩ E
y
R) = 0 implies Sy(A) = 0 becauseSy 	 P . If, for all A ∈ A and

y /∈ N , we define

ψy(A) :=
{

X, if A = X a.e.(Ŝy),

σ (A ∩ E
y
R), otherwise,

then againψy ∈ ϑ(Sy) for all y /∈ N by [8]. We denote the unique extension ofψy

to Ây also byψy .
For y ∈ N , take someτy ∈ �(Ŝy) and let ϕy be defined according to

Lemma 2.1. Then defineψy := τy for y ∈ N andψ(E) := [ψ1(E) ∩ (X × Nc)] ∪⋃
y∈N(ϕy(E) × {y}) for all E ∈ A ⊗̂R B.
First ψ(E) = ψ1(E) = E a.e.(R̂) implies ψ(E) = E a.e.(R̂) and ψ(E) ∈

A ⊗̂R B. For E,F ∈ A ⊗̂R B with E = F a.e. (R̂), we get ψ1(E ∩ ER) =
ψ1(F ∩ ER) andϕy(E) = ϕy(F ), the latter by Lemma 2.1. This impliesψ(E) =
ψ(F ). ψ is stable with respect to intersections sinceψ1 and all theϕy are for
all y ∈ Y . Since clearlyψ(∅) = ∅, we getψ ∈ ϑ(R̂). So we are left with the
verification of (i)–(iv).

(i) For y ∈ N , we have ϕy(E) ∪ ϕy(E
c) = X since ϕy is a Boolean

homomorphism: hence (i) is fullfilled in that case.
For y /∈ N , we get Ŝy([ψ(E)]y ∪ [ψ(Ec)]y) = Sy(([ϕ(E)]y ∪ [ϕ(Ec)]y) ∩

E
y
R) = 1, the latter sinceP ([ϕ(E)]y ∪ [ϕ(Ec)]y) = 1 for all y ∈ Y .
(ii) If y ∈ N , then [ψ(E)]y = ψy(A) for someA ∈ A, so ψy([ψ(E)]y) =

ψy(ψy(A)) = ψy(A) = [ψ(E)]y .
If y ∈ Nc, then[ψ(E)]y = [ψ1(E)]y . Hence ifR̂(X × Y�E) > 0, then

ψy

([ψ(E)]y) = ψy

([ψ1(E)]y) = σ
([ψ1(E)]y ∩ E

y
R

)
= σ

([ψ1(E)]y) ∩ E
y
R = σ

([ϕ(E)]y ∩ E
y
R

) ∩ E
y
R

= σ
([ϕ(E)]y) ∩ E

y
R = [ϕ(E)]y ∩ E

y
R = [ϕ(E)]y ∩ [ϕ(ER)]y

= [ϕ(E ∩ ER)]y = [ψ1(E)]y = [ψ(E)]y .

Assertion (iii) immediately follows from the corresponding property ofϕ.
(iv) For A ∈ A and allB ∈ B, we getψ(A × B) = [((σ (A) × ρ(B)) ∩ ER) ∩

(X × Nc)] ∪ ⋃
y∈N(ϕy(A × B) × {y}).
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For y ∈ ρ(B) ∩ Nc, we get[((σ (A) × ρ(B)) ∩ ER) ∩ (X × Nc)]y = σ(A) ∩
E

y
R = ψy(A), that is,[((σ (A)×ρ(B))∩ER)∩(X×Nc)] = ⋃

y∈ρ(B)∩Nc(ψy(A)×
{y}).

For y ∈ N , we getϕy(A × B) = ψy(A) if y ∈ ρ(B) andϕy(A × B) = ∅ if
y /∈ ρ(B). Both cases taken together give the assertion.�

THEOREM 2.3. Assume that(IT) is satisfied by a product r.c.p. {Sy :y ∈ Y }
on A for R with respect toQ and byρ ∈ �(Q). Then there existσy ∈ �(Ŝy) for
all y ∈ Y as well asπ ∈ �(R̂) such that the following conditions hold true:

(i) [π(E)]y = σy([π(E)]y) for all y ∈ Y andE ∈ A ⊗̂R B;
(ii) π(A × B) = ⋃

y∈ρ(B)(σy(A) × {y}) for all A ∈ A and allB ∈ B.

PROOF. Let ψy andψ be given as in Theorem 2.2. Next chooseσy ∈ �(Ŝy)

satisfyingψy(A) ⊆ σy(A) for all A ∈ A and ally ∈ Y , and defineπ ∈ ϑ(R̂) by
setting, for eachE ∈ A ⊗̂R B and eachy ∈ Y ,

[π(E)]y = σy

([ψ(E)]y)
.(3)

Sinceψ(E) ⊆ π(E) for all E ∈ A ⊗̂R B, we getR̂-measurability ofπ(E), and it
follows easily thatπ ∈ ϑ(R̂). In order to prove thatπ is a lifting, it suffices to show
that we have alwaysπ(Ec) = [π(E)]c. But this is a consequence of Theorem 2.2
and (3), as we get for eachy the equality

[π(Ec)]y = σy

([ψ(Ec)]y) = σy

(([ψ(E)]y)c) = (
σy

([ψ(E)]y))c = ([π(E)]y)c
.

This proves thatπ ∈ �(R̂). �

LEMMA 2.4. If R 	 P ⊗Q, then for anyρ ∈ �(Q) and for any product r.c.p.
{Sy :y ∈ Y } on A for R with respect toQ, there exist a product r.c.p. {Ty :y ∈ Y }
onA for R with respect toQ, ϕ′ ∈ ϑ(R̂) andρ′ ∈ �(Q) such that{Ty �= Sy} ∈ B0
and (IT) is satisfied by the product r.c.p. {Ty :y ∈ Y } and the liftingρ′. Moreover,
ρ′ andϕ′ satisfy conditions(a)–(d)from the beginning of this section, too.

PROOF. PutN := {y ∈ Y :Sy(E
y
R) < 1} and noteN ∈ B0. Choosey0 ∈ Nc

and defineρ′(B) := [ρ(B) ∩ Nc] ∪ N if y0 ∈ ρ(B) and ρ′(B) := ρ(B) ∩ Nc

otherwise. Putϕ′(E) := [ϕ(E) ∩ (X × Nc)] ∪ {(x, y) ∈ X × N : (x, y0) ∈ ϕ(E)}
for all E ∈ A ⊗̂R B. It is now straightforward to verify thatρ′ ∈ �(Q).

To verify that ϕ′ ∈ ϑ(R̂), let E,F ∈ A ⊗̂R B. The equalityϕ′(E ∩ F) =
ϕ′(E)∩ϕ′(F ) is perhaps most easily verified by checking all equalities of sections
[ϕ′(E ∩ F)]y = [ϕ′(E)]y ∩ [ϕ′(F )]y for all y ∈ Y . The other density properties
of ϕ′ are straightforward to verify.

It is also easy to see thatρ′ andϕ′ have all the properties (a)–(d) (with the
sameσ as before). Next putTy := Sy for y ∈ Nc andTy := Sy0 if y ∈ N . Clearly,
{Ty :y ∈ Y } is a product r.c.p. onA for R with respect toQ such that{Ty �= Sy} ∈
B0. For A ∈ A andB ∈ B, thenR(A × B) = 0 impliesϕ′(A × B) = ∅, saying
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σ(A) = ∅ or ρ′(B) = ∅. But ρ′(B) = ∅ implies Q(B) = 0. If Q(B) > 0, then
σ(A) = ∅, implying Ty(A) = 0 for all y ∈ Nc. But Ty(A) = Sy0(A) = 0 for all
y ∈ N sincey0 ∈ Nc. So (IT) is satisfied for{Ty :y ∈ Y } andρ′. �

THEOREM 2.5. If R 	 P ⊗ Q, then there exist a product r.c.p. {Ty :y ∈ Y }
on A for R with respect toQ and a liftingρ′ ∈ �(Q) such that{Ty :y ∈ Y } and
ρ′ satisfy(IT), and there existψy ∈ ϑ(T̂y) for all y ∈ Y as well asψ ∈ ϑ(R̂) such
that the following conditions hold true for allE ∈ A⊗̂RB:

(i) T̂y([ψ(E)]y ∪ [ψ(Ec)]y) = 1 for all y ∈ Y ;
(ii) [ψ(E)]y = ψy([ψ(E)]y) for all y ∈ Y ;
(iii) [ψ(E)]x ∈ B for all x ∈ X;
(iv) ψ(A × B) ⊇ ⋃

y∈ρ′(B)(ψy(A) × {y}) for all A ∈ A and all B ∈ B.

PROOF. We choose a product r.c.p.{Sy :y ∈ Y } satisfyingSy 	 P for all
y ∈ Y . Now applying Lemma 2.4, we modify the product r.c.p.{Sy :y ∈ Y },
obtaining a product r.c.p.{Ty :y ∈ Y }, and findρ′, ϕ′ satisfying all the conditions
of Lemma 2.4. The product r.c.p.{Ty :y ∈ Y } and the liftingρ′ satisfy (IT). Now
apply Theorem 2.2 for the product r.c.p.{Ty :y ∈ Y } and for ρ′, instead of the
product r.c.p.{Sy :y ∈ Y } andρ, and withϕ′ instead ofϕ in the proof. Theorem 2.2
produces now the requiredψ ∈ ϑ(R̂) andψy ∈ ϑ(T̂y), y ∈ Y . �

THEOREM 2.6. If R 	 P ⊗ Q, then there exist a product r.c.p. {Ty :y ∈ Y }
on A for R with respect toQ and a liftingρ′ ∈ �(Q) such that{Ty :y ∈ Y } and
ρ′ satisfy(IT), and there existσy ∈ �(T̂y) for all y ∈ Y as well as� ∈ �(R̂) such
that the following conditions hold true:

(i) [�(E)]y = σy([�(E)]y) for all y ∈ Y and allE ∈ A⊗̂RB;
(ii) �(A × B) = ⋃

y∈ρ′(B)(σy(A) × {y}) for all A ∈ A and all B ∈ B.

PROOF. Let Ty , ψy , ρ′ and ψ be given as in Theorem 2.5. Next choose
σy ∈ �(T̂y) satisfyingψy(A) ⊆ σy(A) for all A ∈ A and all y ∈ Y and define
� ∈ ϑ(R̂) exactly as we have definedπ in the proof of Theorem 2.3. The required
result follows in the same way as in the proof of Theorem 2.3.�

For given product r.c.p.{Sy :y ∈ Y } on A for R with respect toQ, put BA :=
{y ∈ Y :Sy(A) > 0} for all A ∈ A. DefineBS := {BA :A ∈ A}. It follows that
Y ∈ BS andBS is directed upwards sinceBA ∪BC ⊆ BA∪C for A,C ∈ A. Denote
by TS the topology generated byBS on Y and letτρ := {B ∈ B : B ⊆ ρ(B)} be
one of the lifting topologies onY considered in [7], Chapter V. We do not assume
in the next proposition thatR is absolutely continuous with respect toP ⊗ Q.

PROPOSITION2.7. For a product r.c.p. {Sy :y ∈ Y } on A for R with respect
to Q, {σy ∈ �(Ŝy) :y ∈ Y }, ρ ∈ �(Q) andπ ∈ �(R̂), the following conditions are
all equivalent:
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(i) {Sy :y ∈ Y } andρ ∈ �(Q) satisfy the condition(IT);
(ii) BS ⊆ τρ ;
(iii) ρ is TS-strong;
(iv) ρ, {σy :y ∈ Y } andπ satisfy the rectangle formula(RF).

PROOF. (i) ⇔ (ii) Assume thatBA ⊆ ρ(BA) for all A ∈ A and takeA ∈ A and
B ∈ B such thatR(A×B) = 0. Then

∫
B Sy(A)dQ(y) = 0. This yieldsSy(A) = 0

for Q-almost ally ∈ B. Henceρ(B) ⊆ ρ(Bc
A). But by the assumption, we have

ρ(Bc
A) ⊆ Bc

A and so ifQ(B) > 0, thenSy(A) = 0 providedy ∈ ρ(B).
Now the reverse implication. Assume that (IT) is satisfied and take anA ∈ A.

ThenR(A × Bc
A) = 0. If Q(Bc

A) = 0, thenQ(BA) = 1 and soY = ρ(BA) ⊇ BA.
If Q(Bc

A) > 0, then (IT) yieldsSy(A) = 0 for all y ∈ ρ(Bc
A). That means that

ρ(Bc
A) ⊆ Bc

A, or equivalently,BA ⊆ ρ(BA).
(ii) ⇔ (iii) is obvious since ifT is an arbitrary topology onY , thenρ ∈ �(Q)

is T -strong for the topologyT if and only if T ⊆ τρ .
The implication (iv)⇒ (i) is clear, while the implication (i)⇒ (iv) follows from

Theorem 2.3. �

3. Arbitrary probability measures. In this section we assume that we are
given a liftingρ on (Y,B,Q). We start with the following well-known result.

LEMMA 3.1. Let f be a bounded real-valued(A ⊗ B)-measurable function
on X × Y . Then the functiony ∈ Y �→ ∫

X f y(x) dSy(x) is B-measurable and the
equality ∫

X×Y
f (x, y) dR(x, y) =

∫
Y

∫
X

f y(x) dSy(x) dQ(y)

holds true.
If f is a bounded real-valued(A ⊗̂R B)-measurable function onX × Y , then:

(i) the functionf y is Ây-measurable forQ-a.a. y ∈ Y ;
(ii) the functiony �→ ∫

X f y(x) dŜy(x) is B̂-measurable;
(iii) the equality∫

X×Y
f (x, y) dR̂(x, y) =

∫
Y

∫
X

f y(x) dŜy(x) dQ̂(y)

holds true.

In particular, if E ∈ A ⊗̂R B, then

R̂(E) =
∫
Y

Ŝy(E
y) dQ̂(y).

The next result corresponds to Lemma 2.1 of [10] and plays an essential role in
the proof of Proposition 3.4.
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PROPOSITION 3.2. If C is a finite subalgebra ofA, then for everyf ∈
L∞(R) := L∞(X × Y,A ⊗ B,R), we have the following section property of the
conditional expectation:

Y \ {y ∈ Y : [EC⊗B(f )]y = E
y
C
(f y) a.e. (Sy |C)} ∈ B0.

PROOF. By Lemma 3.1, iff ∈ L∞(R), C ∈ C, B ∈ B, then∫
B

∫
C
[EC⊗B(f )]y(x) dSy(x) dQ(y)

=
∫
C×B

EC⊗B(f )(x, y) dR(x, y)

=
∫
C×B

f (x, y) dR(x, y)

=
∫
B

∫
C

f y(x) dSy(x) dQ(y)

=
∫
B

∫
C

E
y
C
(f y)(x) dSy(x) dQ(y).

This implies that, for eachC ∈ C, there existsNC ∈ B0 such that, for any
y ∈ Y \ NC we have∫

C
[EC⊗B(f )]y(x) dSy(x) =

∫
C

E
y
C
(f y)(x) dSy(x).

If Nf := ⋃
C∈C NC , thenNf ∈ B0, and for ally ∈ Y \ Nf and allC ∈ C, we have∫

C
[EC⊗B(f )]y(x) dSy(x) =

∫
C

E
y
C
(f y)(x) dSy(x).

It follows that we have, for ally ∈ Y \ Nf ,

[EC⊗B(f )]y = E
y
C
(f y) a.e.(Sy |C). �

LEMMA 3.3. Let C be a finite subalgebra ofA and let H ∈ A \ C. Let
D = σ(C ∪ {H }). Assume that for eachy ∈ Y , there existsτy ∈ �(Sy |C) and
ϕ ∈ �(R|C ⊗ B) such that

[ϕ(A × B)]y = τy(A) for all A ∈ C,B ∈ B andQ-almost ally ∈ B,(4)

[ϕ(A × B)]y = ∅ for all A ∈ C,B ∈ B andQ-almost ally ∈ Bc.(5)

Then there existξ ∈ �(R|D ⊗ B) andξy ∈ �(Sy |D) for y ∈ Y such that

[ξ(A × B)]y = ξy(A) for all A ∈ D,B ∈ B andQ-almost ally ∈ B,(6)

[ξ(A × B)]y = ∅ for all A ∈ D,B ∈ B andQ-almost ally ∈ Bc.(7)

Moreover, ξ |C ⊗ B = ϕ andξy|C = τy for all y ∈ Y .
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PROOF. By induction, one can always assume thatH is contained in some
atom (call itAH ) of C. We set then

ξy(H) =


∅, if Sy(H) = 0,

τy(AH ), if Sy(AH \ H) = 0,

H, otherwise,

and

ξy(AH \ H) =


τy(AH ), if Sy(H) = 0,

∅, if Sy(AH \ H) = 0,

τy(AH ) \ H, otherwise.

If D = (A ∩ H) ∪ (B ∩ Hc) with A,B ∈ C given, then we set

ξy(D) = (
ξy(H) ∩ τy(A)

) ∪ (
ξy(AH \ H) ∩ τy(B)

) ∪ τy(B ∩ Ac
H ).

We may write it also in a more symmetric way, if we notice thatξy(H
c) =

ξy(AH \ H) ∪ ξy(A
c
H ). Then we have

ξy(D) = (
ξy(H) ∩ τy(A)

) ∪ (
ξy(H

c) ∩ τy(B)
)
.

Similarly, if BA := {y ∈ Y :Sy(A) > 0}, then we set

ξ(H × Y ) := [(H × Y ) ∩ ϕ(AH × BH)]
∪ [

(Hc × Y ) ∩ ϕ
(
AH × (

Y \ BAH \H
))]

,

ξ
(
(AH \ H) × Y

) := [(H × Y ) ∩ ϕ(AH × Bc
H )]

∪ [
(Hc × Y ) ∩ ϕ

(
AH × BAH \H

)]
,

and ifE = [F ∩ (H × Y )] ∪ G ∩ [(Hc × Y )] with F,G ∈ C ⊗ B, then

ξ(E) = (
ϕ(F ) ∩ ξ(H × Y )

) ∪ (
ϕ(G) ∩ ξ

(
(AH \ H) × Y

)) ∪ ϕ
(
(G ∩ (Ac

H × Y )
)

or

ξ(E) = (
ϕ(F ) ∩ ξ(H × Y )

) ∪ (
ϕ(G) ∩ ξ(Hc × Y )

)
.

We are now going to check the section properties ofξ . If y ∈ Y , then

[ξ(H × Y )]y = (
H ∩ [ϕ(AH × BH )]y) ∪ (

Hc ∩ [
ϕ

(
AH × (

Y \ BAH \H
))]y)

.

Now

[ϕ(AH × BH)]y =
{

τy(AH ), for Q-a.e.y ∈ BH,

∅, for Q-a.e.y /∈ BH ,

and [
ϕ

(
AH × (

Y \ BAH \H
))]y =

{
τy(AH ), for Q-a.e.y /∈ BAH \H ,

∅, for Q-a.e.y ∈ BAH \H .
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The above relations give[ξ(H × Y )]y = ξy(H) for Q-almost ally ∈ Y .
In a similar way, we get

[ξ(Hc × Y )]y = ξy(H
c)

for Q-almost ally ∈ Y .
Consider now arbitraryA ∈ D, B ∈ B. Then there exist̃A1, Ã2 ∈ C such that

A = (Ã1 ∩ H) ∪ (Ã2 ∩ Hc)

and so

A × B = [(Ã1 × B) ∩ (H × Y )] ∪ [(Ã2 × B) ∩ (Hc × Y )].
Then, applying (4) and (5), we have, forQ-almost ally ∈ B,

[ξ(A × B)]y = ([ϕ(Ã1 × B)]y ∩ [ξ(H × Y )]y)
∪ ([ϕ(Ã2 × B)]y ∩ [ξ(Hc × Y )]y)

= ([ϕ(Ã1 × B)]y ∩ ξy(H)
) ∪ ([ϕ(Ã2 × B)]y ∩ ξy(H

c)
)

= ([τy(Ã1)]y ∩ ξy(H)
) ∪ ([τy(Ã2)]y ∩ ξy(H

c)
)

= ξy(A)

and[ξ(A × B)]y = ∅ for Q-almost ally ∈ Bc. That proves (6) and (7).�

PROPOSITION3.4. Assume thatA contains a countably generatedσ -algebra
which is dense inA (in the Fréchet–Nikodym pseudometric) with respect toP .
Then there exist̃ϕ ∈ ϑ(R) and{τy ∈ ϑ(Sy) :y ∈ Y } such that, for eachF ∈ A⊗B,

[ϕ̃(F )]y = τy

([ϕ̃(F )]y)
for almost ally ∈ Y.

There exists alsoϕ ∈ ϑ(R̂) such that, for eachF ∈ A ⊗̂R B,

[ϕ(F )]y = τy

([ϕ(F )]y)
for all y ∈ Y

and

[ϕ(F )]x ∈ B for all x ∈ X.

PROOF. Let (Cn)n∈N be a sequence of finite algebrasCn such thatC1 =
{∅,X}, Cn ⊆ Cn+1 for n ∈ N andD := σ(

⋃
n∈N Cn) is P -dense inA. It is easily

seen thatD ⊗ B = σ(
⋃

n∈N(Cn ⊗ B)).
Then, we constructϕn ∈ �(R|Cn ⊗ B) and τny ∈ �(Sy |Cn) according to

Lemma 3.3, taking asϕ1 ∈ �(R|C1 ⊗ B) the lifting determined byρ ∈ �(Q) and
by τ1y ∈ �(Sy |C1) the only existing lifting on(X,C1, Sy |C1). Following [6], we
defineϕ̃ ∈ ϑ(R|D ⊗ B) andτ̃y ∈ ϑ(Sy |D) with ϕ̃|(Cn ⊗B) = ϕn andτ̃y|Cn = τny

for all y ∈ Y and alln ∈ N by means of

ϕ̃(F ) := ⋂
k∈N

⋃
n∈N

⋂
m≥n

ϕm

({
ECm⊗B(χF ) > 1− 1/k

})
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if F ∈ D ⊗ B and

τ̃y(A) := ⋂
k∈N

⋃
n∈N

⋂
m≥n

τmy

({
E

y

Cm
(χA) > 1− 1/k

})
if A ∈ D. Then, forF ∈ D ⊗ B, let Nm,F ∈ B0 be such that (see Proposition 3.2){

y ∈ Y :
[
ECm⊗B(χF )

]y = E
y
Cm

(χFy ) a.e.(Sy |Cm)
}c ⊆ Nm,F .

If NF := ⋃
m∈N Nm,F , thenNF ∈ B0 and it follows from Proposition 3.2 that, for

all y ∈ Y \ NF ,

[ϕ̃(F )]y = ⋂
k∈N

⋃
n∈N

⋂
m≥n

[
ϕm

({
ECm⊗B(χF ) > 1− 1/k

})]y
= ⋂

k∈N

⋃
n∈N

⋂
m≥n

τmy

([{
ECm⊗B(χF ) > 1− 1/k

}]y)
= ⋂

k∈N

⋃
n∈N

⋂
m≥n

τmy

({[
ECm⊗B(χF )

]y
> 1− 1/k

})
= ⋂

k∈N

⋃
n∈N

⋂
m≥n

τmy

({
E

y
Cm

(χFy ) > 1− 1/k
}) = τ̃y(F

y).

It follows that τ̃y([ϕ̃(F )]y) = [ϕ̃(F )]y for all y /∈ NF .
Notice that according to Lemma 3.3, the setsϕm({ECm⊗B(χF ) > 1− 1/k}) are

members ofCm ⊗B and so the setsτmy([{ECm⊗B(χF ) > 1−1/k}]y) are properly
defined. Then, we set[ϕ(F )]y = τ̃y([ϕ̃(F )]y) for everyy ∈ Y andF ∈ D ⊗ B.
Notice that sincẽϕ(F ) ∈ D ⊗ B, we have[ϕ̃(F )]y ∈ D and [ϕ̃(F )]x ∈ B, for
everyy ∈ Y andx ∈ X. This proves the correctness of the definition ofϕ. It is
clear thatϕ(F ) ∈ A ⊗̂R B. But asD ⊗ B is R-dense inA ⊗ B, we can extendϕ
in the unique way to the wholeA ⊗̂R B. We denote this extension also byϕ.

At the moment, each densitỹτy is defined on theσ -algebraD. For everyy ∈ Y ,
denote again bỹτy the obvious extension of̃τy to Dy := σ(D ∪ Ay0). It is well
known (cf. [6]) that each density on aσ -subalgebra containing all sets of measure
zero can be extended to a density on the wholeσ -algebra without changing its
values on the smallerσ -algebra. Letτy ∈ ϑ(Sy) be an arbitrary extension of̃τy

from Dy to A. One can easily see thatϕ and {τy :y ∈ Y } satisfy the required
properties. �

THEOREM 3.5. Assume thatA contains a countably generatedσ -algebra
which is dense inA (in the Fréchet–Nikodym pseudometric) with respect toP .
Then there existτy ∈ ϑ(Ŝy) for all y ∈ Y and ψ ∈ ϑ(R̂) satisfying, for all
E ∈ A ⊗̂R B, the following conditions:

(i) Ŝy([ψ(E)]y ∪ [ψ(Ec)]y) = 1 for all y ∈ Y ;
(ii) [ψ(E)]y = τy([ψ(E)]y) for all y ∈ Y ;
(iii) [ψ(E)]x is Q̂-measurable for allx ∈ X.
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PROOF. There existϕ ∈ ϑ(R̂) and τy ∈ ϑ(Sy) for all y ∈ Y satisfying the
thesis of Proposition 3.4. We denote again byτy the unique extension ofτy to Ây .
Let

� := {
ϕ ∈ ϑ(R̂) :∀y ∈ Y ∀E ∈ A ⊗̂R B [ϕ(E)]y ⊆ τy

([ϕ(E)]y)
and ∀E ∈ A ⊗̂R B ϕ(E) ⊆ ϕ(E)

}
.

Notice first that� �= ∅ sinceϕ ∈ �.

We consider� with inclusion as the partial order:ϕ1 ≤ ϕ2 if ϕ1(E) ⊆ ϕ2(E)

for eachE ∈ A ⊗̂R B.

CLAIM 1. There exists a maximal element in�.

PROOF. The only fact we have to prove is that each chain{ϕα}α∈A ⊆ � has a
dominating element in�. The obvious candidate isϕ given, for eachE ∈ A ⊗̂R B,
by

ϕ(E) = ⋃
α∈A

ϕα(E).(8)

It can be easily seen thatϕ is a density dominating the chain andϕ ∈ �.
Indeed, let us prove first the measurability ofϕ(E). To do it notice first that

ϕ(Ec) = ⋃
α∈A

ϕα(Ec).(9)

and that (8) and (9) together yield immediately

ϕ(E) ∩ ϕ(Ec) = ∅.

Hence,ϕ(E) ⊆ [ϕ(Ec)]c and so if anα ∈ A is fixed, then

ϕα(E) ⊆ ϕ(E) ⊆ [ϕ(Ec)]c ⊆ [ϕα(Ec)]c

for eachE ∈ A ⊗̂R B. Since R̂ is complete andϕα ∈ ϑ(R̂), this proves the

measurability ofϕ(E) and the relationϕ(E)
R̂= E. Consider now the section

properties ofϕ(E). For fixedy ∈ Y ,

[ϕ(E)]y = ⋃
α∈A

[ϕα(E)]y ⊆ ⋃
α∈A

τy

([ϕα(E)]y)
,

and so, by virtue of [7], Chapter III, Section 3, the set[ϕ(E)]y is Ŝy -measurable.
Setting in the above inclusionsϕ(E) instead ofϕα(E), we see that the inclusion
[ϕ(E)]y ⊆ τy([ϕ(E)]y) is satisfied also.
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We have to prove yet thatϕ is a density. To do it, takeE,F ∈ A ⊗̂R B. We have

ϕ(E) ∩ ϕ(F ) = ⋃
α∈A

ϕα(E) ∩ ⋃
α∈A

ϕα(F )

= ⋃
α∈A

[
ϕα(E) ∩ ⋃

β∈A

ϕβ(F )

]

= ⋃
α∈A

[ ⋃
β∈A

ϕα(E) ∩ ϕβ(F )

]

= ⋃
α∈A

[ ⋃
α≤β

ϕα(E) ∩ ϕβ(F )

]
⊆ ⋃

α∈A

[ ⋃
α≤β

ϕβ(E) ∩ ϕβ(F )

]

= ⋃
α∈A

[ ⋃
α≤β

ϕβ(E ∩ F)

]
⊆ ϕ(E ∩ F).

The reverse inclusion and other properties are clear and soϕ ∈ ϑ(R̂). This proves
thatϕ dominates the whole chain. According to the Zorn–Kuratowski lemma the
set� possesses a maximal elementψ . �

CLAIM 2. For eachy ∈ Y andE ∈ A ⊗̂R B,

Ŝy

([ψ(E)]y ∪ [ψ(Ec)]y) = 1.

PROOF. Notice first that asψ ∈ �, all sections[ψ(E)]y are Ŝy -measurable.
Suppose now that there existH ∈ A ⊗̂R B andy0 ∈ Y such that̂Sy0([ψ(H)]y0 ∪
[ψ(Hc)]y0) < 1. Let

W := τy0

[([ψ(H)]y0 ∪ [ψ(Hc)]y0
)c]

and let

[ψ̂(E)]y =
{ [ψ(E)]y, if y �= y0,

[ψ(E)]y0 ∪ (
W ∩ [ψ(H ∪ E)]y0

)
, if y = y0.

It is clear thatψ(E) ⊆ ψ̂(E) for eachE ∈ A ⊗̂R B. In particular,ψ̂(X × Y ) =
X × Y. Also the other density properties are fulfilled.

It follows directly from the definition that̂ψ and ψ are different densities.
In order to get a contradiction with our hypothesis, it is enough to show that
[ψ̂(E)]y0 ⊆ τy0([ψ̂(E)]y0), but this is immediate. IfE ∈ A ⊗̂R B, then

τy0

([ψ̂(E)]y0
) ⊇ τy0

([ψ(E)]y0
) ∪ τy0

(
W ∩ [ψ(H ∪ E)]y0

)
⊇ [ψ(E)]y0 ∪ [

τy0(W) ∩ ([ψ(H ∪ E)]y0
)]

⊇ [ψ(E)]y0 ∪ (
W ∩ [ψ(H ∪ E)]y0

)
= [ψ̂(E)]y0.
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This completes the proof of the claim.�

CLAIM 3. For eachy ∈ Y andE ∈ A ⊗̂R B,

[ψ(E)]y = τy

([ψ(E)]y)
.

PROOF. Set, for eachy ∈ Y andE ∈ A ⊗̂R B,

[ψ̃(E)]y = τy

([ψ(E)]y)
.

Clearly, ψ(F ) ⊆ ψ̃(F ) for eachF . Moreover, the equalityψ(E) ∩ ψ(Ec) = ∅

yields for eachy the relationτy([ψ(E)]y)∩τy([ψ(Ec)]y) = ∅. As a consequence,
we getψ̃(E) ∩ ψ̃(Ec) = ∅, and theñψ(Ec) ⊆ (ψ̃(E))c. Hence

ψ(Ec) ⊆ ψ̃(Ec) ⊆ [ψ̃(E)]c ⊆ [ψ(E)]c.
Sinceψ ∈ ϑ(R̂), we haveR̂([ψ(E)]c) = R̂[ψ(Ec)] and soψ̃(E) is R̂-measurable.
It follows thatψ̃ ∈ � and soψ = ψ̃ , due to the maximality ofψ . �

CLAIM 4. X-sections ofψ are Q̂-measurable.

PROOF. In order to prove the measurability of theX-sections ofψ , notice
that sinceϕ and ψ are densities in the same measure space, the equalities
R̂(ϕ(E)�ψ(E)) = 0 andR̂(ϕ(E) ∪ ϕ(Ec)) = 1 hold true for everyE ∈ A ⊗̂R B.
It follows then from Lemma 3.1 that there isME ∈ B0 such that, for ally /∈ ME ,

Ŝy

([ϕ(E)]y�[ψ(E)]y) = 0 and Ŝy

([ϕ(E)]y ∪ [ϕ(Ec)]y) = 1.

It follows that if y /∈ ME , then

[ψ(E)]y = τy

([ψ(E)]y) = τy

([ϕ(E)]y) = [ϕ(E)]y .

Hence,

ϕ(E) ∩ (X × Mc
E) = ψ(E) ∩ (X × Mc

E),

and consequently, we have for allx ∈ X,

[ϕ(E)]x ∩ Mc
E = [ψ(E)]x ∩ Mc

E.

Since all sections[ϕ(E)]x areQ̂-measurable, it follows that the sections[ψ(E)]x
areQ̂-measurable. �

This completes the proof of Theorem 3.5.�

THEOREM 3.6. Assume thatA contains a countably generatedσ -algebra
which is dense inA (in the Fréchet–Nikodym pseudometric) with respect toP .
Then there existσy ∈ �(Ŝy) for all y ∈ Y andπ ∈ �(R̂) such that the following
condition is satisfied:

[π(E)]y = σy

([π(E)]y)
for all y ∈ Y andE ∈ A ⊗̂R B.(10)

Equivalently, for eachf ∈ L∞(R̂) and eachy ∈ Y ,

[π(f )]y = σy

([π(f )]y)
.
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PROOF. According to Theorem 3.5, there existτy ∈ ϑ(Ŝy) for all y ∈ Y and
ψ ∈ ϑ(R̂) such that, for allE ∈ A ⊗̂R B,

[ψ(E)]y = τy

([ψ(E)]y)
for all y ∈ Y(11)

and

Ŝy

([ψ(E)]y ∪ [ψ(Ec)]y) = 1 for all y ∈ Y.(12)

We take now, for eachy ∈ Y , a lifting σy ∈ �(Ŝy) such thatτy ⊆ σy and define
π ∈ ϑ(R̂) by setting, for eachE ∈ A ⊗̂R B and eachy ∈ Y ,

[π(E)]y = σy

([ψ(E)]y)
.(13)

Sinceψ(E) ⊆ π(E) for all E ∈ A ⊗̂R B, we getR̂-measurability ofπ(E) and

π(E)
R̂= E. In order to prove thatπ is a lifting, it suffices to show that we have

alwaysπ(Ec) = [π(E)]c. But this is a consequence of (12) and (13) as we get for
eachy the equality[π(Ec)]y = ([π(E)]y)c. This proves thatπ ∈ �(R̂). �

REMARK 3.7. There is an obvious question: Can liftingπ (or � from
Theorem 2.6) be chosen in such a way that all the sections[π(E)]x would be
Q̂-measurable? Such a property holds true for the densityψ in Theorem 3.5. As it
has been observed in [10], an improvement of this type is in general impossible in
case of product measuresR.

4. Examples. In case of the regular conditional probabilities defined on the
same basic space whereB ⊂ A, the following result holds true (see [2] or [9],
page 358):

Let(X,A,P ) be a probability space and letB be a sub-σ -algebra ofA. Assume
that{Px :x ∈ X} is a r.c.p. onA with respect toB. Then, if there exists a probability
measurẽP onA such that every measurePx is absolutely continuous with respect
to P̃ , thenP |B is atomic and, for eachA ∈ A, there existsNA ∈ B0 such that

Px(A) = ∑
n

P (A ∩ Bn)

P (Bn)
χBn(x) for everyx ∈ X \ NA,

whereB1,B2, . . . are all the atoms ofP |B.
If A is countably generated, then one can replace the setsNA by one setN ∈ B0

satisfying the above equality for allA ∈ A.

One may ask if a similar simplification takes place also in case of our
investigations. The following example shows that this is not the case. When the
algebrasA andB are “independent,” then there are nice examples with absolutely
continuous product regular conditional probabilities. The product r.c.p. in the first
example is even uniformly absolutely continuous, that is,

∀ ε > 0 ∃ δ > 0 ∀A ∈ A,

[
P (A) < δ 
⇒ sup

y∈Y

Sy(A) < ε

]
.
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EXAMPLE 4.1. Let (X,A) = (Y,B) = ((−∞,+∞),L), whereL denotes
the Lebesgue measurable sets, and letλ be the Lebesgue measure. Moreover, let
C ⊂ [0,1] be a set of positive measure: 0< λ(C) ≤ 1. For eachy ∈ Y , let Sy be
the measure defined onA by

Sy(A) := 1/
√

2π
∫
A\(C+y) exp{−(t − y)2/2}dt

1/
√

2π
∫
R\(C+y) exp{−(t − y)2/2}dt

=
∫
A\(C+y) exp{−(t − y)2/2}dt∫

R\C exp{−t2/2}dt

if A ∈ A. Then set

Q(B) = 1√
2π

∫
B

exp(−t2/2) dt,

R(A × B) =
∫
B

Sy(A)dQ(y)

and

P (A) = R(A × Y ).

R is obviously additive onA × B, and sinceP andQ are perfect,R is countably
additive onA × B and so it can be uniquely extended to a measure onA ⊗ B

(see [13]). We denote the extension also byR.

CLAIM 1. For every boundedA ∈ A, the functionS·(A) is continuous and
Q 	 P .

CLAIM 2. If ρ is a strong lifting forQ, then{Sy :y ∈ Y } satisfies(IT).

PROOF. If R(A×B) = 0 andQ(B) > 0, thenSy(A) = 0 for all y ∈ B1, where
B1 ⊂ B andQ(B1) = Q(B). SinceS·(A) is continuous, we getSy(A) = 0 for
all y ∈ B1. Sinceρ is strong, we have thenSy(A) = 0 for all y ∈ ρ(B1). But
B1 ⊇ ρ(B1) ⊃ ρ(B1) = ρ(B). �

CLAIM 3. P ⊗ Q is not absolutely continuous with respect toR.

PROOF. Let H := ⋃
y∈Y (C + y) × {y}. We claim thatH ∈ A ⊗ B. In fact,

notice that(x, y) ∈ H ⇔ x − y ∈ C. HenceH = g−1(C), whereg(x, y) = x − y.
SinceSy(H

y) = Sy(C + y) = 0 for everyy ∈ Y , we haveR(H) = 0. On the other
hand,Q(Hx) = Q(−C +x) > 0 for everyx ∈ X, which givesP ⊗Q(H) > 0. �

A good example when the property (RF) does not take place is the following:
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EXAMPLE 4.2. Letλ be the Lebesgue measure on the real line. IfX = Y =
[0,1] are endowed with Lebesgue measurable sets and� is the diagonal of[0,1]2,
then setR(E) = λ(E ∩ �)/

√
2 andSy = δy (the measure concentrated in{y})

for all y ∈ [0,1]. We have thenR([0,1/2] × [1/2,1]) = 0 but S1/2[0,1/2] = 1.
According to Theorem 3.6 (or directly, by a simple calculation), there is a lifting
π ∈ �(R̂) and there are liftings (uniquely determined in this case)σy ∈ �(Sy)

such that the equality (10) is satisfied:

[π(E)]y = σy

([π(E)]y)
for all y ∈ Y andE ∈ A ⊗̂R B.

As the measuresSy are mutually singular, no rectangle formula holds true.

5. An application to stochastic processes. Let {ξy}y∈Y be an arbitrary
real-valued stochastic process on(X,A,P ). If {ζy}y∈Y is another stochastic
process, then it is calledR-equivalentto {ξy}y∈Y if, for eachy ∈ Y , the equality
ξy = ζy holds true a.e.(Sy). {ζy}y∈Y is then called amodificationof {ξy}y∈Y ,
and vice versa.{ξy}y∈Y is said to beR̂-measurableif the map(x, y) → ξy(x)

is R̂-measurable.{ξy}y∈Y is bounded if supy∈Y ‖ξy‖L∞(Sy) < ∞. There are
several papers concerning the existence of (P ⊗̂Q)-measurable processes that are
equivalent to a given process (cf. [3, 4, 16, 17]). If the initial process is already
(P ⊗̂Q)-measurable, then one looks for its (P ⊗̂Q)-measurable modification
behaving better than the original process. In general, a measurable process
equivalent to a bounded{ξy}y∈Y is defined by settingζy = σ(ξy), whereσ ∈ �(P̂ )

and the initial process{ξy}y∈Y or the measure spaces satisfy some additional
conditions. It is shown, however, in [3] that if the continuum hypothesis holds,
then there exist nonpathological measure spaces(X,A,P ) and(Y,B,Q), a lifting
σ ∈ �(P̂ ) and an (A ⊗ B)-measurable stochastic process such that the lifting
converts it into a non-(P ⊗̂Q)-measurable process (being a modification of the
initial one). Thus, not always and not every lifting converts a measurable process
into its measurable modification.

In the next theorem, we examine the problem of the existence of a measurable
lifting modification of a measurable process in case ofR being not necessarily
a product probability. We have not got any characterization of liftings converting
measurable processes into their measurable modifications; we just show that if
A is not too large, then there exist liftings which always produce anR̂-measurable
modification of an arbitrarŷR-measurable stochastic process. In fact, as the proof
of Theorem 3.6 shows, in general there are a lot of such liftings. Since we assume
only the existence of a product r.c.p., the measureR may be quite far from
the product measureP ⊗ Q and so the theorem describes a more general case
than previously known results (when the separability ofA is assumed and no
separability of the final process is needed).

THEOREM 5.1. Assume thatA contains a countable algebra which is dense
in A with respect toP . Then for each bounded measurable stochastic process
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{ξy}y∈Y on (X,A,P ), there is a collectionζ̃ := {ζy}y∈Y of Ŝy -measurable
functionsζy onX and a collection of liftingsσy ∈ �(Ŝy), y ∈ Y, such that:

(i) ξy = ζy a.e. (Sy) for all y ∈ Y ;
(ii) ζy = σy(ζy) for all y ∈ Y ;
(iii) the map̃ζ :X × Y → (−∞,+∞) is R̂-measurable.

PROOF. In view of Theorem 3.6, there existπ ∈ �(R̂) and a family{σy ∈
�(Ŝy) :y ∈ Y } such that, given process̃ξ = {ξy}y∈Y , we have

[π(̃ξ)]y = σy

([π(̃ξ)]y)
for all y ∈ Y.

By Lemma 3.1, there existsNξ̃ ∈ B0 such that

ξy = [π(̃ξ)]y a.e.(Sy) for all y /∈ Nξ̃ .

We define now a collectioñζ := {ζy}y∈Y of Sy -measurable functions onX by
setting

ζy = σy(ξy) for eachy ∈ Y.

Sinceπ(̃ξ) is R̂-measurable, one can easily see that{ζy}y∈Y satisfies the required
conditions. �

Acknowledgments. The authors would like to thank the anonymous reviewers
for their valuable remarks. Due to them, the results of the second section could
have been essentially improved. Moreover, the presentation of the results is more
readable now.

REFERENCES

[1] A DAMSKI , W. (1986). Factorization of measures and perfection.Proc. Amer. Math. Soc.97
30–32.

[2] BLACKWELL , D. (1942). Idempotent Markoff chains.Ann. Math.43 560–567.
[3] COHN, D. L. (1978). Liftings and the construction of stochastic processes.Trans. Amer. Math.

Soc.246 429–438.
[4] DUDLEY, R. M. (1972). A counterexample on measurable processes.Proc. Sixth Berkeley

Symp. Math. Statist. Probab.2 57–66. Univ. California Press, Berkeley. [CorrectionAnn.
Probab.1 (1973) 191–192.]

[5] FADEN, A. M. (1985). The existence of regular conditional probabilities: Necessary and
sufficient conditions.Ann. Probab.13 288–298.

[6] GRAF, S. and VON WEIZSÄCKER, H. (1976). On the existence of lower densities in
noncomplete measure spaces.Measure Theory. Lecture Notes in Math.541 133–135.
Springer, Berlin.

[7] I ONESCU TULCEA, A. and IONESCU TULCEA, C. (1965).Topics in the Theory of Lifting.
Springer, Berlin.

[8] I ONESCU TULCEA, C. and MAHER, R. (1971). A note on almost strong liftings.Ann. Inst.
Fourier (Grenoble) 21 35–41.

[9] L OÉVE, M. (1955).ProbabilityTheory. Van Nostrand, New York.



2408 W. STRAUSS, N. D. MACHERAS AND K. MUSIAŁ

[10] MUSIAŁ, K., STRAUSS, W. and MACHERAS, N. D. (2000). Product liftings and densities with
lifting invariant and density invariant sections.Fund. Math.166 281–303.

[11] PACHL, J. K. (1978). Disintegration and compact measures.Math. Scand.43 157–168.
[12] RAMACHANDRAN , D. (1979).Perfect Measures II. MacMillan, Delhi.
[13] RYLL -NARDZEWSKI, C. (1953). On quasi-compact measures.Fund. Math.40 125–130.
[14] SIKORSKI, R. (1964).Boolean Algebras, 2nd ed. Springer, Berlin.
[15] STRAUSS, W., MACHERAS, N. D. and MUSIAŁ, K. (2002). Liftings. InHandbook of Measure

Theory(E. Pap, ed.) 1131–1184. North-Holland, Amsterdam.
[16] TALAGRAND , M. (1987). Measurability problems for empirical processes.Ann. Probab.15

204–212.
[17] TALAGRAND , M. (1988). On liftings and the regularization of stochastic processes.Probab.

Theory Related Fields78 127–134.

W. STRAUSS

FACHBEREICHMATHEMATIK

INSTITUT FÜR STOCHASTIK

UND ANWENDUNGEN

ABTEILUNG FÜR FINANZ

UND VERSICHERUNGSMATHEMATIK

UNIVERSITÄT STUTTGART

POSTFACH80 11 40
D-70511 STUTTGART

GERMANY

E-MAIL : strauss@mathematik.uni-stuttgart.de

N. D. MACHERAS

DEPARTMENT OFSTATISTICS

AND INSURANCESCIENCE

UNIVERSITY OF PIRAEUS

80 KARAOLI AND DIMITRIOU STREET

185 34 PIRAEUS

GREECE

E-MAIL : macheras@unipi.gr

K. M USIAŁ

INSTITUTE OFMATHEMATICS

WROCŁAW UNIVERSITY

PL. GRUNWALDZKI 2/4
50-384 WROCŁAW

POLAND

E-MAIL : musial@math.uni.wroc.pl


