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This work builds a unified framework for the study of quadratic form
distance measures as they are used in assessing the goodness of fit of mod-
els. Many important procedures have this structure, but the theory for these
methods is dispersed and incomplete. Central to the statistical analysis of
these distances is the spectral decomposition of the kernel that generates the
distance. We show how this determines the limiting distribution of natural
goodness-of-fit tests. Additionally, we develop a new notion, the spectral de-
grees of freedom of the test, based on this decomposition. The degrees of
freedom are easy to compute and estimate, and can be used as a guide in the
construction of useful procedures in this class.

1. Introduction. Modern scientific work has presented statistics with many
important challenges, but of particular importance are the challenges presented by
“large magnitude,” both in the dimension of data vectors and in the number of
vectors [see Lindsay, Kettenring and Siegmund (2004)]. Assessment of the fit of a
model in such a situation can be challenging.

Model fit assessment is usually based, either explicitly or implicitly, on mea-
sures of distance d(F,G) between probability measures F and G. Our foundation
stones will be quadratic distance measures. This class is characterized by the sim-
ple quadratic form structure

dK(F,G) =
∫ ∫

KG(s, t) d(F − G)(s) d(F − G)(t),

that is adaptable through the choice of a nonnegative definite kernel KG(s, t). This
form is asymmetric in F and G; here G will often be a distribution whose goodness
of fit we wish to assess, and F will often be a nonparametric estimate F̂ of the true
sampling distribution Fτ .

There are a number of important reasons why quadratic distances are central
to the study of goodness of fit. These will be discussed in Section 2. A central
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goal here is to fill in some major gaps in the theory of quadratic distances. One
major new result of this paper is the derivation of the limiting distribution for
quadratic distances when used as goodness-of-fit tests in parametric models. These
results depend on an appropriate spectral decomposition of the kernel K . We derive
several new examples of such decompositions.

However, in many potential applications the numerical difficulty of determining
the full spectral decomposition would make use of the limiting theory imprac-
tical. Our second set of major new results concerns the role of spectral degrees
of freedom (sDOF), a concept introduced in this paper. We show that the limiting
distributions involved are well approximated by chi-squared distributions when the
degrees of freedom are large. Moreover, the sDOF are easily estimated empirically.

For kernel smoothing-based L2 distances this is especially important because
degrees of freedom are a more natural measure of the operating characteristics
of the quadratic distance than are the bandwidth parameters. The literature on
quadratic distances contains virtually no discussion of a concept we find critical.
That is, in multivariate goodness of fit it is important to construct tuneable dis-
tances so that one can adjust the operating characteristics of the procedure to the
dimension of the sample space and the sample size, much as one would do in a
chi-squared analysis.

1.1. The formal setup. Let S be a sample space, with measurable sets B, and
let du(s) be the canonical “uniform” measure on this space. The building block
for our distance will be K(s, t), a bounded, symmetric kernel function on S × S.
In analogy with matrix theory, a kernel is called nonnegative definite (NND), if
the quadratic form

∫∫
K(s, t) dσ (s) dσ (t) is nonnegative for all bounded signed

measures σ , and it is conditionally NND (i.e., CNND) if nonnegativity holds for
all σ satisfying the condition

∫
dσ(s) = 0.

Although our theoretical developments will be given for abstract spaces S, it
is important that for data calculations we will use discrete spaces. If σ is finite
discrete, with masses at s1, . . . , sm, then the CNND requirements reduce to the
conditional nonnegative definiteness of the matrix K having i, j element K(si, sj ).

DEFINITION 1. Given a CNND KG(s, t), possibly depending on G, the
K-based quadratic distance between two probability measures F and G is de-
fined as

dK(F,G) =
∫ ∫

KG(s, t) d(F − G)(s) d(F − G)(t).(1.1)

Note that the distance is well defined even when F and G do not have densities
with respect to a common measure. The calculation for dK(F,G) can be written
in the form

dK(F,G) = K(F,F ) − K(F,G) − K(G,F) + K(G,G),
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where we have used the shortcut notation K(A,B) = ∫∫
K(s, t) dA(s) dB(t). We

will call dK(F̂ ,G) the empirical distance between the data and the G.
The discrete/matrix version of the problem will be of considerable statistical

interest for its use in estimation. Let Fτ be the true sampling distribution and F̂

the empirical distribution of a sample x1, . . . , xn from Fτ . Let K̂G be the n × n

empirical representation of the kernel KG, having ij th element KG(xi, xj ). In
this case a quantity such as

∫∫
KG(x, y) dF̂ (x) dF̂ (y) = 1T K̂G1/n2 estimates∫∫

KG(x, y) dFτ (x) dFτ (y).
A possible practical limitation of quadratic distances is that numerical calcu-

lation of the distance requires twofold integration over the sample space. If the
integrals are not explicit, one approach would be to perform Monte Carlo integra-
tion to calculate the distance, which in turn requires a simulation algorithm for
the distributions involved. However, it is sometimes possible to choose a model-
specific kernel that makes the distance calculation explicit and fast. This in turn
enables one to construct test procedures that rely on other computationally inten-
sive devices like bootstrapping.

2. The central role of quadratic distance. In this section we offer reasons
that quadratic distance-based methods are central to goodness-of-fit inference.

2.1. Important quadratic distances. A number of classically important dis-
tances, such as Pearson’s chi square or Cramér–von Mises, are quadratic distances.
Other more recent examples can be found in Fan (1997, 1998), Fan, Zhang and
Zhang (2001) and Zuo and He (2006).

L2 distances. In D = {1,2, . . . ,N} or N = {0,1,2, . . . } one can use the
“identity kernel” K(s, t) = I[s = t] and get the ordinary L2 distance

∑
(f (i) −

g(i))2. However, in R using the identity kernel gives the integral∫ ∫
I[x = y](f (x) − g(x)

)(
f (y) − g(y)

)
dx dy,

which is identically zero. We will later show how to construct kernels that approx-
imate the identity kernel, and hence the L2 distance.

Similarly, the Pearson kernel

KG(s, t) = I[s = t]√
g(s)g(t)

,(2.1)

which nominally gives the Pearson distance
∫
(f (s) − g(s))2/g(s) du(s) between

two densities, can be used in D or N , but cannot be used in R. This distance will
be important to our story, as it is the quadratic distance approximant of Kullback–
Leibler distance, as will be shown.
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An unconventional example. A kernel that is quite popular as a smoothing ker-
nel is the normal kernel with smoothing parameter h [Silverman (1986)]. The spe-
cial computational utility of this kernel derives from the convolution identity

Kh2
1+h2

2
(x, y) =

∫
Kh2

1
(x, z)Kh2

2
(z, y) dz.(2.2)

The identity implies if we use the normal kernel Kh2 together with the normal
model G = Kσ 2(x,μ) we obtain an explicit, no-integration-needed formula for the
empirical distance given as dK(F̂ ,G) = Kh2(F̂ , F̂ ) − 2n−1 ∑

i Kh2+σ 2(xi,μ) +
Kh2+2σ 2(μ,μ). This same computational facility carries over if G is a finite mix-
ture of normals.

2.2. Relationship to L2. For a given symmetric kernel K(s, t), there exists a
symmetric kernel K1/2 satisfying the relationship∫

K1/2(s, r)K1/2(r, t) du(r) = K(s, t).

(Existence will follow from the spectral decomposition that follows later.) For the
normal kernel, (2.2) shows that Kh2/2 is the square root kernel of the normal ker-
nel Kh2 .

The square root operation leads us to a natural interpretation of the quadratic
distance as an L2 distance between smoothed densities.

PROPOSITION 1. Let K(s, t) be a symmetric, nonnegative definite kernel.
Then

dK(F,G) =
∫ (

f ∗(z) − g∗(z)
)2

dz,

where f ∗(z) = ∫
K1/2(z, r) dF (r) and g∗(z) = ∫

K1/2(z, r) dG(r).

PROOF. By reversal of order of integration. �

From the above proposition we see that if we use F̂ instead of F , the empirical
distance dK(F̂ ,G) represents the L2(dz) distance between the kernel density esti-
mator f ∗(z) and the smoothed G distribution. Moreover, note that for the normal
kernel the above relationship implies that the kernel is positive definite.

Conversely, any kernel smoothing problem can be turned into a quadratic dis-
tance problem. If, for example, kh(x − y) is a smoothing kernel on R that is used
to construct the density estimator, the corresponding smoothed L2 distance arises
from the nonnegative definite kernel:

K(x,y) =
∫

kh(x − z)kh(z − y)dz.

This formula provides a simple way to generate CNND kernels from other ker-
nels k.
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2.3. von Mises expansions. We illustrate now that every smooth distance mea-
sure can be approximated, in a local sense, by a quadratic distance. To do this, we
use the idea of von Mises expansion.

Consider the Kullback–Leibler distance d(F,G) = ∑∞
i=0 f (i) ln[f (i)/g(i)]

defined on N . The influence function is

T ′
F ◦(s) = lnf ◦(s)/g(s) −

∞∑
i=0

f ◦(i) ln[f ◦(i)/g(i)].

Notice that the influence function is identically zero if “the null is true.” Moreover,
for the Kullback–Leibler distance, the Hessian is

T ′′
F ◦(i, j) = I[i = j ]√

f ◦(i)f ◦(j)
.

Thus, when the expansion point is f ◦ = g, the quadratic approximation to
Kullback–Leibler is the Pearson chi-squared distance:

∞∑
i=0

f (i) ln[f (i)/g(i)] ≈
∞∑
i=0

[f (i) − g(i)]2

g(i)
.

3. The decomposition theorem. We now turn to discuss briefly the important
role of spectral theory in determining the limiting distribution of the empirical
quadratic distance dK(F̂ ,G) between the data-based empirical distribution F̂ and
a hypothetical model G.

3.1. Functional spectral decomposition. Let K(x,y) be a real-valued
B-measurable positive definite kernel function on a measure space (S,B,M).
The functional spectral decomposition of a kernel is similar to the spectral de-
composition of a matrix with one very important exception: the functional spectral
decomposition depends on the underlying measure M . In our usage, the distribu-
tion M will usually be Fτ , the true distribution of the data. If we are calculating
the decomposition under the null hypothesis, M will be G for the simple hypoth-
esis H0 :Fτ = G, and for composite null hypotheses H0 :Fτ ∈ {Gθ }, M will be
one element of the parametric family of distributions. We will call M the baseline
measure and require that the kernel satisfies∫

S

∫
S
K(x,y)2 dM(x)dM(y) < ∞.(3.1)

This will hold for many typical examples because M is a probability measure
and K is bounded. Such a kernel K(x,y) generates a Hilbert–Schmidt operator
on L2(M) through the operation (Kg)(x) = ∫

K(x,y)g(y) dM(y). Our treatment
here largely follows Yosida (1980).
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THEOREM 3.1. A nonnegative definite kernel K satisfying (3.1) can be writ-
ten as

K(x,y) =
∞∑

j=1

λjφj (x)φj (y),(3.2)

where λj ’s and φj (x)’s are eigenvalues and corresponding normalized eigenvec-
tors of K under baseline measure M . The series in (3.2) converges strongly to K ;
that is, for every g in L2,

lim
n→∞

∫
S

(∫
S
K(x, y)g(y) dM(y)

−
n∑

j=1

∫
S
λjφj (x)φj (y)g(y) dM(y)

)2

dM(x) = 0.

Moreover, λj ≥ 0 since K is NND.

If K(x,y) is real-valued and symmetric, then K is a self-adjoint operator. The
decomposition of K(x,y) given in (3.2) corresponds to the spectral decomposi-
tion for a compact, self-adjoint operator, and will be called the (K,M) spectral
decomposition.

If M equals the empirical measure F̂ , then m(xi) = 1/n, the uniform density.
Let K̂ be the n × n empirical matrix with ij th element K(Xi,Xj ). It is then clear
that the (K, F̂ ) eigendecomposition is just the same as the matrix eigendecompo-
sition of the empirical kernel K̂ except that eigenvector normalization is changed
from ‖φ‖2 = 1 to ∫

φ2(x) dF̂ (x) = n−1‖φ‖2 = 1.

3.2. Spectral trace of a kernel. Fortunately, the most important attributes of
the spectral decomposition can be calculated (or estimated) without obtaining the
full decomposition. First, a consequence of the spectral decomposition theorem is
that we can calculate the sum of squared eigenvalues by integration:

∞∑
j=1

λ2
j =

∫ ∫
K(x,y)2 dM(x)dM(y) < ∞.

We will denote the above quantity by traceM(K2) due to its relationship to the
matrix trace calculation.

The quantity traceM(K2) is easily estimated from data. Suppose for measure M

we use the true distribution Fτ , and that X1, . . . ,Xn is a sample from Fτ . Then
traceFτ (K

2) is estimated consistently by trace
F̂
(K2), which equals tr(K̂2)/n2,
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where in the last expression we have used tr to denote the standard matrix trace
operation.

Many kernel functions satisfy even a stronger condition in that
∑∞

j=1 λj , which
we will write as traceM(K), is finite. The operators defined by those kernels
are called nuclear. Under mild continuity assumptions one can also calculate
traceM(K) without decomposition.

LEMMA 1. Let K(x,y) be a NND Hilbert–Schmidt kernel and let λi ,
i = 1,2,3, . . . , denote the eigenvalues of the corresponding operator. Suppose
that K(x,y) is continuous at (x, x) for almost all x with respect to the mea-
sure M . Then, a necessary and sufficient condition for

∑∞
j=1 λj < ∞ is that∫

K(x,x) dM(x) converges. Moreover, if
∑∞

j=1 λj < ∞, then

∞∑
j=1

λj =
∫

K(x,x) dM(x) = traceM(K).

For the proof of this lemma see Yang (2004).
Once again, traceFτ (K) admits a simple consistent estimator, namely tr(K̂)/n.

These empirical estimators of trace quantities will be important later, as they en-
able one to approximate the limiting distributions of the test statistics through
degrees-of-freedom calculations.

3.3. An interpretation; plus centering. Kernels and their representations are
heavily used in support vector machines, where the eigenfunctions represent the
“features” of importance in the problem, and the eigenvalues represent the weight
attached to those features [Hastie, Tibshirani and Friedman (2001)].

Similarly, in a statistical distance, we can write

dK(F,G) =
∫ ∫

K(s, t) d(F − G)(s) d(F − G)(t)

= ∑
λi

(∫
φj (s) dF (s) −

∫
φj (s) dG(s)

)2

,

so that the eigenvalues indicate the weight (importance) given the squared devi-
ations in the features, which for us are the difference in expected values of the
eigenfunctions under the two distributions.

However, there is an important detail missing. Because both F and G are prob-
ability measures, it is an easy exercise to show that K(x,y) and K∗(x, y) =
K(x,y) + a(x) + a(y) + b both generate exactly the same quadratic distance
dK(F,G), for any functions a(x) and scalar b. However, K and K∗ need not give
the same spectral decomposition. Fortunately, statistical considerations point to a
particularly natural choice for a(x) and b to use in the spectral decomposition. If
G is a hypothetical true model, then we should use the spectral decomposition of
the following modified kernel.
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DEFINITION 2. The G-centered kernel K , denoted by Kcen(G), is defined as
Kcen(G)(x, y) = K(x, y)−K(x,G)−K(G,y)+K(G,G).When the identity of G

is clear from context, we will use notation Kcen, K(x,G) = ∫
K(x, y) dG(y), and

the terms K(G,y) and K(G,G) are similarly defined.

Note, by easy calculation, that

Kcen(x,G) =
∫

Kcen(x, y) × 1dG(y) = 0.

That is, the centering of K has forced the function φ1(x) = 1 to be an eigenfunc-
tion of Kcen, with eigenvalue 0. As a consequence, by orthogonality to φ1, all the
nonzero eigenfunctions have mean zero under G :

∫
φk(x) dG(x) = 0.

The centering of the kernel is similar to a two-sided projection operation. If we
are in D , the discrete case, if g is the uniform density 1/N , as in the case of F̂ ,
and 11T /N is just the projection matrix P1 that projects onto the space of constant
vectors, then

Kcen = (I − P1)K(I − P1).(3.3)

This “bilateral projection” formulation will later motivate the centering technique
used when G depends on estimated parameters.

In addition, if we wish to estimate nonparametrically the kernel after it has been
centered by the true distribution Fτ , we can empirically center the empirical kernel
matrix K̂, obtaining

K̂cen = (I − P1)K̂(I − P1).(3.4)

We will later use this formula to estimate the total degrees of freedom.

3.4. Examples of spectral decompositions. In this section we will give several
exact spectral decompositions.

3.4.1. Poisson kernel. In this subsection we construct a kernel by specifying
the eigenvalues and eigenfunctions directly. The sample space will be the interval
[0,2π) and the baseline measure dM(x) will be the uniform probability density on
this interval [i.e., (2π)−1 dx]. The eigenvalues for the kernel will have a geomet-
rically decaying nature, (λ1, λ2, λ3, . . .) = (1, ρ, ρ,ρ2, ρ2, ρ3, ρ3, . . .), where 0 <

ρ < 1, with corresponding eigenfunctions (1,
√

2 cos(x),
√

2 sin(x),
√

2 cos(2x),√
2 sin(2x),

√
2 cos(3x),

√
2 sin(3x), . . .). Written in terms of its spectral expan-

sion, this gives the kernel

Kρ(θ,φ) = 1 +
∞∑

k=1

2ρk[cos(kθ) cos(kφ) + sin(kθ) sin(kφ)].(3.5)

If one rewrites the cosine and sine terms in terms of complex exponential terms,
one can use the geometric series formula to arrive at an explicit representation.
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LEMMA 2.

Kρ(θ,φ) = 1 − ρ2

1 − 2ρ cos(θ − φ) + ρ2

(3.6)
where 0 < ρ < 1 and 0 ≤ θ,φ < 2π.

Although not well known in statistics, this is the univariate version of the fa-
mous Poisson kernel. If we fix ρ and φ, then it becomes a density function in the
variable θ , with the parameter φ as a location parameter and ρ as a dispersion pa-
rameter. This density has been used in statistics as a distribution on the unit circle,
where it is known as the wrapped Cauchy distribution, first studied by Lévy (1939)
and Wintner (1947).

In physics, it is the operator that gives the solution to the physical problem
known as the “Dirichlet problem with boundary data” [e.g., Bhatia (2003)]. Addi-
tionally, it is a central tool in harmonic function theory [e.g., Axler, Bourdon and
Ramey (2001)].

In this paper we will focus on the univariate version (3.6). Of importance to
us here is that this distribution has a parameter, here ρ, that can be used to tune
the degrees of freedom of the distance. Clearly, one could apply this kernel to
distributions on any finite interval [a, b) by a suitable location and scale change in
the variables.

It is clear, using the infinite expansion (3.5) to do calculations, that after center-
ing by the uniform distribution M , the Poisson kernel has the decomposition

Kcen(θ,φ) = K(θ,φ) − 1

=
∞∑

k=1

2ρk[cos(kθ) cos(kφ) + sin(kθ) sin(kφ)].(3.7)

It can also be shown that the appropriate convolution of two Poisson kernels is
still a Poisson kernel, so this kernel is in many ways the natural analogue of the
Gaussian one when one is considering data restricted to an interval.

3.4.2. Normal kernel. Of central importance to statistics is the spectral de-
composition of the univariate normal kernel Kh2(x, y) when the baseline measure
is N(0, σ 2). A natural starting point is the Hermite polynomials. See Thangavelu
(1993) for the relationships used here.

DEFINITION 3. The Hermite polynomials Hn(x) are defined by the relation-
ship

Hn(x) = (−1)nex2 dn

dxn
e−x2

.
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As candidates for the eigenfunctions we create a family of scaled and damped
Hermite polynomials

Hn(x;a, b) = Hn(ax)e−b2x2/2,

for a and b positive. These are useful because, using a classical identity for Hermite
polynomials called Mehler’s formula, we can create “spectral-like” expansions of
Kh2 in which the scaled and damped Hermite polynomials play the role of eigen-
functions (see the Appendix for the definition of w∗ and γ ∗ used in the following
results).

Let γ ∗
n (x) be γn(x;a(w∗(r)), b(w∗(r))), as defined in (A.1).

THEOREM 3. Under baseline measure N(0, σ 2) the kernel Kh2(x, y) has the
spectral decomposition

∑∞
n=0 αβnγ ∗

n (x)γ ∗
n (y), where β = w∗(r) and

α = (1 − w∗2)1/2

2
√

πa(w∗)σ
.

This representation shares with the Poisson kernel geometrically declining
eigenvalues. It also captures the damped polynomial characteristic of the features
used in the distance.

4. Using distances for model assessment. In this section we give some of
the necessary theory behind testing-based model assessment.

4.1. Estimation of the distance. The next result gives a key property of the
G-centered kernel.

PROPOSITION 2. Let F,G be two arbitrary distributions. Then the quadratic
distance between F,G can be written as

dK(F,G) =
∫ ∫

Kcen(x, y) dF (x) dF (y).

This proposition shows that, for a fixed model G, the empirical distance
dK(F̂ ,G) = Kcen(G)(F̂ , F̂ ) := Vn is a V -statistic [Serfling (1980)]. It can be calcu-
lated in matrix form as 1T Kcen1/n2. One can also unbiasedly estimate dK(Fτ ,G),
where Fτ is the true distribution, by using the corresponding U -statistic:

Un = 1

n(n − 1)

∑
i

∑
j =i

Kcen(xi, xj ).(4.1)

The fundamental distinction between Un and Vn is the inclusion of the diagonal
terms Kcen(xi, xi), which have the nonzero expectation traceG(Kcen). Under the
null hypothesis Fτ = G, the true distance d(Fτ ,G) is zero, and EG(Un) = 0 but
EG(Vn) = E[Kcen(X,X)]/n, so that traceG(Kcen) represents the biasing term.



THEORY FOR QUADRATIC DISTANCES 993

4.2. Under the null. We start with the case where we have a prespecified null
model G that we wish to test, using as test statistic Vn = dK(F̂ ,G) or the unbiased
distance estimator Un(G). Letting Fτ denote the true distribution, the null hypoth-
esis is H0 :Fτ = G. Given a spectral decomposition of the centered kernel Kcen

under G, say Kcen(x, y) = ∑
λiφi(x)φi(y), a heuristic derivation of the limiting

distribution of dK(F̂ ,G) is quite easy. Write

dK(F̂ ,G) =
∫ ∫ ∑

λiφi(x)φi(y) dF̂ (x) dF̂ (y)

=
∞∑
i=1

λi(φ̄i)
2,

where the φ̄i are averages of mean-zero, variance-1 variables that are uncorrelated
over i. (Recall that the mean-zero property requires the use of the centered kernel.)
The obvious conclusion is that

nVn
dist−→χ∗(λ), λ = (λ1, λ2, . . .),

where χ∗(λ) = ∑
λiZ

2
i is an infinite weighted sum of independent chi-squared

variables. This is proved in Yang (2004).
The corresponding distributional result for the unbiased Un is that

√
n(n − 1)Un

dist−→χ∗
cen(λ),

where χ∗
cen(λ) = ∑

λi(Z
2
i − 1). This result was given formally for Un in Liu and

Rao (1995), and holds under the condition that
∑

λ2
i = traceG(K2) < ∞, which

is weaker than the condition
∑∞

i=1 λi < ∞ needed for Vn. Note that the result
for Vn cannot be improved upon because the distribution χ∗(λ) does not exist if∑

λi = ∞.

4.3. Under composite nulls. Next, consider the case where we wish to evalu-
ate a parametric model {Gθ : θ ∈ }. We will assume that the elements Gθ of this
model all have densities gθ (x) with respect to a common measure dμ. A natural
test statistic for the validity of this model is nVn = ndK(F̂ ,G

θ̂
) (or the corre-

sponding debiased statistic Un) where θ̂ is a consistent estimator of θ under the
null hypothesis H0 :Fτ ∈ {Gθ }. If this method were applied to Pearson’s kernel,
for example, one would end up with Pearson’s chi-squared test statistic.

The presence of the estimated parameter in Vn necessarily makes finding the
null distribution for general kernels K more difficult, but we will show here that
one can turn this problem into an eigendecomposition problem by artful centering
of the kernel. Results similar to those presented here were derived by Fan (1998)
for the special case of the weighted quadratic characteristic function distance.
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Suppose that p-dimensional θ is being estimated by the maximum likelihood
estimator θ̂ . We will assume that it can be expressed as a solution to the set of p

likelihood equations ∑
u(xi; θ) = 0,

where the likelihood scores u satisfy Eθ [u(X; θ)] = 0. Notice that we are here us-
ing the maximum likelihood estimator for the problem, not the minimum quadratic
distance estimator. The reason is that we anticipate that one would most likely use
the quadratic distance fit assessment in conjunction with a maximum likelihood
estimation procedure.

To find the distribution theory for the likelihood-estimated distance, we build
a score-centered kernel from K as follows. First, we construct the extended score
vector u∗ = (1,uT )T . We then define the extended information matrix for a single
observation to be

J
∗
θ = Eθ [u∗

θu∗T
θ ].

We will then let P ∗ be the kernel operator defined by

P ∗
θ (x, y) = u∗

θ (x)T · J
∗−1
θ · u∗

θ (y).(4.2)

The following formula shows that P ∗ can be interpreted as the projection operator
onto the extended space of likelihood scores:∫

P ∗
θ (x, y)u∗T

θ (y) dGθ(y) = u∗T
θ (x).(4.3)

The score-centered kernel is defined to be

Kθ
scen = (I − P ∗

θ )K(I − P ∗
θ )

= K(x,y) −
∫

P ∗
θ (x, z)K(z, y) dGθ(z)

−
∫

K(x, z)P ∗
θ (z, y) dGθ(z)

+
∫ ∫

P ∗
θ (x, z)K(z,w)P ∗

θ (w, y) dGθ(z) dGθ(w).

(4.4)

The key feature of the score-centered kernel Kθ
scen is that it is Gθ -orthogonal to the

scores and the constant 1, as indicated next.

PROPOSITION 3. The score-centered kernel satisfies∫
Kθ

scen(x, y)u∗(y) dGθ(y) = 0.

This is easily proved using the definition (4.4) and repeated use of the projection
property (4.3).
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Note that the scores u are themselves orthogonal to the constant, that is,
∫

u(x) ·
1dGθ(x) = 0; therefore we could also have constructed the score-centered kernel
by replacing (4.4) with

(I − Pθ) · Kcen(Gθ ) · (I − Pθ),(4.5)

where Pθ represents the projection onto the scores u instead of the extended
scores u∗.

In the discrete case, we can represent Pθ(i, j) by matrix Pθ = uθJ
−1
θ uT

θ , where
uθ is the N × p matrix with entries ∂θj

[loggθ (i)]. We then get the matrix formula

K
θ
scen = (I − PθDθ ) · K

θ
cen · (I − DθPθ ),

where Dθ is diagonal with diagonal entries gθ (i).
The empirical distance between the data and the estimated model is then

dK(F̂ ,G
θ̂
) =

∫ ∫
Kθ̂

scen(x, y) dF̂ (x) dF̂ (y).

This can be verified by using the fact
∫

u
θ̂
(x) dF̂ (x) = 0 for maximum likelihood

estimators.
This then leads to our main result.

THEOREM 4. Given the regularity assumptions itemized in the proofs, under
Gθ we have

n

[
dK(F̂ ,G

θ̂
) −

∫ ∫
Kθ

scen(x, y) dF̂ (x) dF̂ (y)

]
prob−→0.

If Kθ
scen has a spectral decomposition

∑
i λiφi(x)φi(y) with finite trace, it follows

that

ndK(F̂ ,G
θ̂
)

dist−→χ∗(λ),

where λ1, λ2, . . . are the eigenvalues of the spectral decomposition of Kθ
scen.

In the Appendix we outline the steps in the proof. Notice that while there ex-
ists a corresponding U-statistic estimator of the distance, in the composite null
hypothesis case it is no longer an unbiased estimator. One might still expect it to
have slightly better operating characteristics.

5. Spectral degrees of freedom. We have now presented an asymptotic the-
ory for quadratic distance methods that looks complicated and difficult to use.
Except for certain carefully designed kernels, the spectral decomposition will be
dependent on the underlying true model. It is likely there is not an explicit solution
to the eigenequations. Even if the decomposition is known, the limiting distribu-
tion itself will depend on infinitely many λ parameters.
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These difficulties are not as severe as they first appear, because the key features
of the spectral decomposition can be well summarized by the values of two scalar
parameters called the Pearson scale factor and the spectral degrees of freedom.
These two parameters are sufficient, in an asymptotic sense, for the description of
the limiting distribution of the distance. As an additional bonus, they can easily be
calculated for a model or estimated from the data without any spectral decomposi-
tion whatsoever.

5.1. Pearson scaling and DOF. Quadratic distances have no inherent scale.
That is, replacing the kernel K with K∗ = α · K , for an arbitrary constant α, cre-
ates a new distance that is equivalent to K for most mathematical and statistical
purposes.

Given a null measure G, we propose to rescale kernels so that they are as sim-
ilar as possible to some standard kernel. The most natural standard kernel is the
Pearson kernel. We will show that if we replace K with αK , where the scale factor
is

α = αG(K) = traceG(K)

traceG(K2)
=

∑
λi∑
λ2

i

,(5.1)

then the quadratic distance generated by αK is scaled to match the Pearson kernel.
Given there is a fixed measure of interest G, we define a distance between the

two kernels K1 and K2 via

traceG(K1 − K2)
2 =

∫ ∫ (
K1(x, y) − K2(x, y)

)2
dG(x)dG(y).

Define the scaling factor α so that αK is as similar as possible to the Pearson
kernel Q by minimizing the distance

traceG(Q − αK)2

= traceG(Q2) − 2α(traceG(QK)) + α2 traceG(K2).
(5.2)

Suppose for a moment we are in the finite discrete case, so we can write the Pearson
kernel as Q(x,y) = I[x = y]/√g(x)g(y). In this case we have

traceG(QK) =
∫ ∫

Q(x,y)K(x, y) dG(x)dG(y)

=
∫

K(x,x)

g(x)
g(x)g(x) du(x)

= traceG(K).

Putting this into the expansion (5.2), the minimizing α is (5.1).
In other cases, if one minimizes the modified objective traceG(−2αKQ +

α2K2), one again ends up with scale factor αG(K).
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5.2. Spectral degrees of freedom. We next define the spectral degrees of free-
dom (under G) of K to be

DOFG(K) = traceG(K)2

traceG(K2)
= (

∑
λi)

2∑
λ2

i

.(5.3)

Note that DOFG(K) equals traceG(α ·K), where α is the scale factor αG(K). That
is, the spectral degrees of freedom is just the sum of the eigenvalues of the rescaled
kernel.

Fan, Zhang and Zhang (2001) found that the limiting normal distribution of
their goodness-of-fit statistics had the mean-variance relationship of a scaled chi-
squared distribution, and they used this to define the degrees of freedom of these
tests. This relationship will be discussed in Section 5.4.

We will use a Satterthwaite approximation [Satterthwaite (1946)] to the χ∗(λ)

distribution to interpret DOF. Recall that under the null the empirical distance con-
verges asymptotically in distribution to a linear combination of independent chi-
squared random variables. Suppose we find scale a and degrees of freedom DOF
so that

E(αdK(F̂ ,G)) = E(χ2
DOF),

Var(αdK(F̂ ,G)) = Var(χ2
DOF).

Solving these two equations with respect to a and DOF, we obtain

α = 2E(dK(F̂ ,G))

Var(dK(F̂ ,G))

and

DOF = 2E2(dK(F̂ ,G))

Var(dK(F̂ ,G))
.(5.4)

Using E(dK(F̂ ,G)) = traceG(K) = ∑
λi and Var(dK(F̂ ,G)) = 2 traceG(K2) =

2
∑

λ2
i , we obtain that α is the Pearson scale factor and DOF is the same as defined

in (5.3).

5.3. Two examples. In this subsection we will use two examples to illustrate
calculation of the degrees of freedom. For point of comparison, we start with a
classical quadratic distance, the Cramér–von Mises, which has a surprisingly small
degrees of freedom. We then turn to the Poisson kernel as an example of the class
of tuneable diffusion kernels. We show the degrees of freedom can be tuned to any
value from 2 to infinity.
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5.3.1. Cramér–von Mises kernel. The Cramér–von Mises kernel is given as
K(u, v) = 1 − max(u, v) [Lindsay and Markatou (2002)]; its centered version is
given as

Kcen(u, v) = 1 − max(u, v) − (
(1 − u2)/2

) − (
(1 − v2)/2

) + (1/3).

Using G the uniform measure on (0,1), we obtain

trace(Kcen) =
∫

Kcen(u,u) du =
∫ 1

0

(1
3 + u2 − u

)
du = 1

6

and

trace(K2
cen) =

∫ 1

0

∫ 1

0
K2

cen(u, v) dudv = 1
90 .

Thus, the degrees of freedom for the centered Cramér–von Mises kernel are

DOF = (1/6)2

(1/90)
= 2.5.

5.3.2. The Poisson kernel. For the Poisson kernel (3.5), let the baseline mea-
sure be uniform on [0,2π). Centering the kernel gives us

Kcen(θ,φ) = Kρ(θ,φ) − 1.

The following proposition gives the degrees of freedom of the centered Poisson
kernel.

PROPOSITION 4. The degrees of freedom of the centered Poisson kernel with
respect to the uniform measure are given by

DOF = 2(1 + ρ)

1 − ρ
.

PROOF. From (3.7) the eigenvalues of the centered Poisson kernel with re-
spect to the uniform measure are given by the set of functions {ρ,ρ,ρ2, ρ2, . . .}.
Now

∞∑
j=1

λi = 2
∑

ρj = 2ρ

1 − ρ

and ∑
λ2

i = 2
∑

ρ2j = 2ρ2

1 − ρ2 .

Therefore, the degrees of freedom are as given above. �

When ρ → 0 the degrees of freedom converge to 2, corresponding to the test
that depends only on the first two eigenfunctions, whereas when ρ → 1 the degrees
of freedom diverge to infinity.
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5.4. Satterthwaite limit theory. We now explore the relationship between the
χ∗(λ) distribution, its Satterthwaite χ2

K approximation and its normal approxima-
tion. A central assumption of this analysis is that we are considering kernels (like
the normal or Poisson) with a tuning parameter η such that the degrees of freedom
become infinite as η → 0.

The construction of χ∗(λ) as a sum of independent random variables suggests
that we might hope for a central limit approximation for this distribution under the
condition that the degrees of freedom are sent to infinity. If so, normality would
imply that just two parameters would be sufficient to describe the distribution.
We here give a simple sufficient condition for this result, and then go further. We
will show that under the same conditions the Satterthwaite χ2

DOF approximation
provides a two-parameter approximation that is always superior to the normal ap-
proximation.

We start by standardizing to mean zero and variance 1:

χ∗
std(λ) = χ∗(λ) − ∑

λi√
2

∑
λ2

i

.

Since χ∗(λ) is a sum of independent variables, it is natural to study the cumulants
of this distribution. Note that the cumulants of the standard normal, other than
r = 2, are given by κr(Z) = 0, whereas κ2(Z) = 1, so these are the cumulants we
might hope to find in the limit.

To study the cumulants we define

γi = λi√∑
λ2

j

.

Then we have
∑

γ 2
i = 1 and

∑
γi = √

DOF(λ). If we are considering the impor-
tant special case of the χ2

R distribution, then R of the λi are 1 and the rest are zero.
This gives γi = 1/

√
R for R values of i and 0 else.

The following lemma gives the cumulants for the standardized chi-star distribu-
tion. It arises from a straightforward calculation using the properties of cumulant-
generating functions. Note that the cumulants of χ2

1 are given by κr(χ
2
1 ) =

2r−1(r − 1)!.
LEMMA 5. For r ≥ 2 the r th cumulant of standardized χ∗(λ) is

κr(χ
∗
std(λ)) = κr(χ

2
1 ) · 2−r/2 · ∑

γ r
i .

For the χ2
R distribution, an important special case, this gives κr(χ

2
R,std) = κr(χ

2
1 ) ·

2−r/2 · R1−r/2.

The degree of normality of the chi-star distribution can be measured by the
departure of its cumulants from the normal values. In this case, we can show that
the third cumulant (skewness) is the key factor.
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LEMMA 6. The normed cumulants

κr(χ
∗
std(λ))

κr(χ
2
1 )2−r/2

= ∑
γ r
i

are decreasing in r for r = 2,3,4, . . . .

PROOF. Each γi is bounded above by 1, so γ r
i ≥ γ r+1

i . �

We have the following consequence of the last lemma: if we use a tuneable ker-
nel with eigenvalues λη depending on tuning parameter η, then all the cumulants
of 3 and greater order converge to 0 as η → 0 if and only if the skewness cumulant
κ3(χ

∗
std(λη)) does. Indeed, if the skewness goes to zero, one can use the standard

Taylor expansion proof to verify that

χ∗
std(λη)

dist−→N(0,1) as η → 0.

For the χ2
R distribution, the skewness cumulant is κ3(χ

2
R,std) = 23/2 · R−1/2 re-

flecting its known convergence to normality. Below we will show that the skewness
for the Poisson kernel goes to zero at the same rate in R, where R is its spectral
degrees of freedom.

If the zero-limit skewness property holds, one might ask whether there would
sometimes be a preference for using the normal approximation over the Satterth-
waite approximation to χ∗

std(λ). The answer is never, because the following lemma
indicates that every cumulant of χ∗

std(λ) is closer to the Satterthwaite chi-squared
cumulant than it is to the normal.

LEMMA 7. Let R be a positive integer. For r ≥ 3, and for any χ∗(λ) distribu-
tion with DOF(λ) = R,

κr(χ
∗
std(λ))

κr(χ
2
std,R)

≥ 1.

PROOF. See Appendix. �

That is, the cumulants are always larger in magnitude than the chi-squared ones,
and further from zero, the normal theory value. This result also suggests that the
magnitude of the skewness ratio

κ3(χ
∗
std(λ))

κ3(χ
2
std,R)

could serve as a reasonable index of the relative chi-squaredness of the chi-star
distribution when the degrees of freedom are large. Additionally, the limit of this
ratio as R becomes infinite could serve as a single number summary.
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For the Poisson kernel example, with ρ = e−η and using the uniform baseline
density, we get

κ3(χ
∗
std(λ))

κ3(χ
2
std,R)

= (1 + e−η)2

(1 + e−η + e−2η)
,

a term which converges to 4/3 as η → 0. That is (and we found this surprising),
with geometrically declining eigenvalues the skewness of standardized χ∗(λ) lies
closer to the chi-square’s skewness than the latter’s does to the normal value of 0.
In general, for the Poisson kernel the ratio of r th cumulants converges to 2r−1/r ,
showing that the r th cumulant is the same magnitude as the chi-square: O(R1−r/2),
where R is the degrees of freedom.

6. Final comments. Quadratic distances with tuning parameters are in many
ways like smooth chi-squared goodness-of-fit tests: the L2 relationship suggests
that, as an alternative to constructing a finite set of bins, we are creating an infinite
number and averaging across their deviations. The spectral degrees of freedom
concept is meant to be a tool to help statisticians exploit this analogy.

If we accept this analogy, then the choice of the degrees of freedom in a prob-
lem is like the choice of the number of cells in the chi-squared test: it is clearly
extremely important in determining the power of the test against interesting alter-
natives, but it is also very hard to devise hard and fast rules about its choice. That
is because the nature of the interesting alternatives may not be clear to the user.
We might add, that provided one is using the test statistics as an exploratory tool,
there is no reason one would not consider a range of interesting degrees of freedom
as a means of exploring the possible deviations from the model at various scales
of smoothing. (We think that informal/exploratory model confirmation is widely
used, and this would simply be another instance.)

What then is an interesting range for degrees of freedom? At this time, we can
only offer a heuristic analysis based on chi-squared tests. In a very general sense,
increasing the number of cells in such a test, and therefore the degrees of freedom,
will create a gain in sensitivity to deviations that are localized within a single small
area (like a bump in the density), but also create increased variability of the test
statistic that causes it to lose power against more global alternatives that create a
small shift in probability in many cells.

In a chi-squared test one would want, even if searching for small local devi-
ations, some minimum sample counts per cell in order to cut variability. If that
minimum were 5, one would never have more than n/5 degrees of freedom. This
is a number we have used as a rough upper bound when we investigated a problem.

On the other hand, just as a chi-squared test with two cells would be too coarse
for most purposes, one should avoid having too small a degrees of freedom. In
this regard, the dimension of the sample space is important. To illustrate, if one
were to provide a one-degree-of-freedom test on each marginal distribution in a
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D-dimensional data set, then one has used D degrees of freedom. To also test all
the bivariate marginals would take an additional

(D
2

)
degrees of freedom. Based on

this heuristic, we have used
(D+1

2

)
as a very rough lower bound when investigating

multivariate data sets.
One important issue we have not touched upon in this paper is that of power.

It is very difficult to draw broad conclusions about test procedures based on their
power characteristics because the dimension of the alternative space is infinite, and
it is inevitable that the identity of the best performing test will be highly dependent
on the alternative that is chosen. Spitzner (2006) developed a detailed simulation
study that compared a variety of testing strategies for combining quadratic tests
into a single test statistic. Best power? The answer depended on the structure of the
alternative; Fan’s adaptive Neyman strategy [Fan (1996)] worked the best overall
in Spitzner’s particular simulation settings, but was not a universal winner.

APPENDIX: PROOFS AND LIMITING DISTRIBUTIONS

A.1. Proofs for Theorem 3.

LEMMA A.1. For any w ∈ (0,1), let a = a(w) =
√

(1−w)2

2h2w
and b = b(w) =√

1−w
h2 . Then

Kh2(x, y) = 1√
2πh

∞∑
i=0

[
wn(1 − w2)1/2

2nn!
]
Hn(x;a, b) · Hn(y;a, b).

PROOF. Mehler’s formula states that for w ∈ (0,1)

∞∑
n=0

cn(w)Hn(x)Hn(y) = exp
(

2xyw − (x2 + y2)w2

1 − w2

)
,

where

cn(w) =
[
wn(1 − w2)1/2

2nn!
]
.

A series of algebraic manipulations leads to the desired representation. �

The above formula is not a spectral representation unless we can choose a and b

so that the Hn(x;a, b) terms are orthogonal under the normal measure. The fol-
lowing gives us the necessary condition on a and b.

LEMMA A.2. Let a and b be two positive scalars satisfying a2 − b2 =
(2σ 2)−1. The functions γ0, . . . , γn, . . . defined by

γn(x;a, b) = Hn(x;a, b)

√
aσ

2n−1/2n!(A.1)

are orthonormal under the measure M = N(0, σ 2).
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PROOF. We start with the fundamental identity∫
R

Hm(x)Hn(x)e−x2
dx = I[m = n]2nn!√π.

With a change of variables x = ay, the left-hand side becomes

LHS = a

∫
R

Hm(ay)Hn(ay)e−a2y2
dy

= a

∫
R

Hm(ay)e−b2y2/2Hn(ay)e−b2y2/2e−(a2−b2)y2
dy

= a

∫
R

Hm(y;a, b)Hn(y;a, b)e−y2/2σ 2
dy.

We therefore have

1√
2πσ

∫
R

Hm(y;a, b)Hn(y;a, b)e−y2/2σ 2
dy = I[m = n]2nn!√π√

2πσa
,

as needed. �

The final trick is to try to select the scalar w∗ in the first lemma such that the
functions a(w∗) and b(w∗) that are defined there satisfy the condition a2 − b2 =
(2σ 2)−1 of the second lemma. Let r = h2/σ 2, the ratio of the kernel and baseline
variances.

LEMMA A.3. Set w∗(r) = 1 − 1
2 [√4r + r2 − r]. Then w∗(r) decreases

monotonely from 1 to 0 as a function of r , for r ∈ (0,∞). For any h2 and σ 2,
we have a(w∗(r))2 − b(w∗(r))2 = (2σ 2)−1.

PROOF. The function w∗(r) is the left-hand root of the quadratic equation
rw = (1 − w)2. Inspecting the plot of the two sides of this quadratic equation
verifies the listed functional properties. The last equality is easy algebra. �

A.2. Proofs for Theorem 4. First, we show that score-centering implies
mean-centering of the derivatives of the kernel.

PROPOSITION A.1. If the kernel is score-centered under Fτ = Gθ , then under
regularity conditions ∫

(∇θK
θ
sc(x, y)) dGθ(y) = 0.(A.2)
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In addition, ∫ ∫
∇2Kθ

sc(x, y) dGθ(x) dGθ(y) = 0.(A.3)

The proof can be easily obtained by differentiation under the integral sign.
These mean-zero properties can then be used to show the following:

PROPOSITION A.2. Under regularity conditions found in the proof,

n

∫ ∫
[Kθ̂

sc(x, y) − Kθ
sc(x, y)]dF̂ (x) dF̂ (y)

prob−→0.

PROOF. We plug the following Taylor expansion:

Kθ̂
sc(x, y) − Kθ

sc(x, y)

= (θ̂ − θ)T [∇Ksc(x, y)]
+ 1

2(θ̂ − θ)T [∇2Kθ
sc(x, y)](θ̂ − θ) + (rem)

into the above expression. We then assume root-n consistency of the MLE, so that√
n(θ̂ − θ) converges in distribution. We assume that if X and Y are independent

from Gθ , the kernels ∇Ksc(X,Y ) and ∇2Ksc(X,Y ), which are mean zero from
Proposition A.1, have finite variance, as do ∇Ksc(X,X) and ∇2Ksc(X,X). If so,
then n

∫∫ ∇Ksc(x, y) dF̂ (x) dF̂ (y) and n
∫∫ ∇2Ksc(x, y) dF̂ (x) dF̂ (y) converge

in distribution. This then assures that the first two terms are of stochastic order
Op(n−1/2) and Op(n−1), respectively. The remainder term is then no larger than
Op(n−1/2) under the assumption that the elements of the arrays ∇3Kθ∗

sc (X,Y ) and
∇3Kθ∗

sc (X,X) are bounded by finitely integrable functions for θ∗ in a neighbor-
hood of θ . �

A.3. Proofs for Lemma 7. We start by proving the result when the eigen-
value sequence is finite in length, say γ1, . . . , γN . We can then write

∑N
i=1 γ r

i /N =∑M
m=1 πm · ar

m, where a1, . . . , aM represent the M distinct values possible among
the γi and the πm represent the counts for each am, divided by N . The ex-
pression

∑
πmar

m is therefore the r th moment of the distribution that puts mass
πm at support point am. For this distribution we know the first two moments:∑

πma1
m = √

R/N and
∑

πma2
m = 1/N . We wish to know the minimum possible

value of the r th moment over the possible distributions represented by πm and am.
We enlarge the class of allowable distributions to include every distribution P

with its support in [0,1]. Under the theory of moments, the solution to this opti-
mization problem is an extremal distribution having index 3/2. That is, the optimal
P has two support points, one of which is 0 or 1. We can exclude 1 because this
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would maximize the r th moment, leaving us with one support point of 0. However,
the χ2

std,R distribution has the eigenvalue distribution P of index 3/2, putting all

its probability on the two support points 0 and 1/
√

R with masses (N − R)/N

and R/N , respectively, and so it has the extremal r th moment. The theorem is
concluded by taking limits as N → ∞.
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