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The efficiency of two Bayesian order estimators is studied. By using
nonparametric techniques, we prove new underestimation and overestima-
tion bounds. The results apply to various models, including mixture mod-
els. In this case, the errors are shown to be O(e−an) and O((logn)b/

√
n)

(a, b > 0), respectively.

1. Introduction. Order identification deals with the estimation and test of a
structural parameter which indexes the complexity of a model. In other words, the
most economical representation of a random phenomenon is sought. This problem
is encountered in many situations, including: mixture models [13, 19] with an un-
known number of components; cluster analysis [9], when the number of clusters is
unknown; autoregressive models [1], when the process memory is not known.

This paper is devoted to the study of two Bayesian estimators of the order of a
model. Frequentist properties of efficiency are particularly investigated. We obtain
new efficiency bounds under mild assumptions, providing a theoretical answer to
the questions raised, for instance, in [7] (see their Section 4).

1.1. Description of the problem. We observe n i.i.d. random variables (r.v.)
(Z1, . . . ,Zn) = Zn with values in a measured sample space (Z,F ,μ).

Let (�k)k≥1 be an increasing family of nested parametric sets and d the Euclid-
ean distance on each. The dimension of �k is denoted by D(k). Let �∞ =⋃

k≥1 �k and for every θ ∈ �∞, let fθ be the density of the probability measure
Pθ with respect to the measure μ.

The order of any distribution Pθ0 is the unique integer k such that Pθ0 ∈ {Pθ : θ ∈
�k \ �k−1} (with convention �0 = ∅). It is assumed that the distribution P � of
Z1 belongs to {Pθ : θ ∈ �∞}. The density of P � is denoted by f � = fθ� (θ� ∈
�k� \ �k�−1). The order of P � is denoted by k�, and is the quantity of interest
here.

We are interested in frequentist properties of two Bayesian estimates of k�. In
that perspective, the problem can be restated as an issue of composite hypotheses
testing (see [4]), where the quantities of interest are P �{k̃n < k�} and P �{k̃n >
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k�}, the under- and over-estimation errors, respectively. In this paper we determine
upper-bounds on both errors on k̃n defined as follows.

Let � be a prior on �∞ that writes as d�(θ) = π(k)πk(θ) dθ , for all θ ∈ �k

and k ≥ 1. We denote by �(k|Zn) the posterior probability of each k ≥ 1. In a
Bayesian decision theoretic perspective, the Bayes estimator associated with the
0–1 loss function is the mode of the posterior distribution of the order k:

k̂G
n = arg max

k≥1
{�(k|Zn)}.

It is a global estimator. Following a more local and sequential approach, we pro-
pose another estimator:

k̂L
n = inf{k ≥ 1 :�(k|Zn) ≥ �(k + 1|Zn)} ≤ k̂G

n .

If the posterior distribution on k is unimodal, then obviously both estimators are
equal. The advantage of k̂L

n over k̂G
n is that k̂L

n does not require the computation
of the whole posterior distribution on k. It can also be slightly modified into the
smallest integer k such that the Bayes factor comparing �k+1 to �k is less than
one. When considering a model comparison point of view, Bayes factors are often
used to compare two models; see [11]. In the following, we shall focus on k̂G

n and
k̂L
n , since the sequential Bayes factor estimator shares the same properties as k̂L

n .

1.2. Results in perspective. In this paper we prove that the underestimation
errors are O(e−an) (some a > 0); see Theorem 1. We also show that the overesti-
mation errors are O((logn)b/nc) (some b ≥ 0, c > 0); see Theorems 2 and 3. All
constants can be expressed explicitly, even though they are quite complicated. We
apply these results in a regression model and in a change points problem. Finally,
we show that our results apply to the important class of mixture models. Mixture
models have interesting nonregularity properties and, in particular, even though
the mixing distribution is identifiable, testing on the order of the model has proved
to be difficult; see, for instance, [6]. There, we obtain an underestimation error of
order O(e−an) and an overestimation error of order O((logn)b/

√
n) (b > 0); see

Theorem 4.
Efficiency issues in the order estimation problem have been studied mainly in

the frequentist literature; see [4] for a review on these results. There is an extensive
literature on Bayesian estimation of mixture models and, in particular, on the or-
der selection in mixture models. However, this literature is essentially devoted to
determining coherent noninformative priors (see, e.g., [15]) and to implementation
(see, e.g., [14]). To the best of our knowledge, there is hardly any work on frequen-
tist properties of Bayesian estimators such as k̂G

n and k̂L
n outside the regular case.

In the case of mixture models, Ishwaran, James and San [10] suggest a Bayesian
estimator of the mixing distribution when the number of components is unknown
and bounded and study the asymptotic properties of the mixing distribution. It is
to be noted that deriving rates of convergence for the order of the model from
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those of the mixing distribution would be suboptimal since the mixing distribution
converges at a rate at most equal to n−1/4 to be compared to our O((logn)b/

√
n)

(b > 0) in Theorem 4.

1.3. Organization of the paper. In Section 2 we state our main results. General
bounds are presented in Sections 2.1 (underestimation) and 2.2 (overestimation).
The regression and change points examples are treated in Section 2.3. We deal
with mixture models in Section 2.4. The main proofs are gathered in Section 3
(underestimation), Section 4 (overestimation) and Section 5 (examples). Section C
in the Appendix is devoted to an aspect of mixture models which might be of
interest in its own.

2. Efficiency bounds. Hereafter, the integral
∫

f dλ of a function f with re-
spect to a measure λ is written as λf .

Let L1+(μ) be the subset of all nonnegative functions in L1(μ). For every f ∈
L1+(μ) \ {0}, the measure Pf is defined by its derivative f with respect to μ.
For every f,f ′ ∈ L1+(μ), we set V (f,f ′) = Pf (logf − logf ′)2 [with convention
V (f,f ′) = ∞ whenever necessary].

Let �� = logf �. For all θ, θ ′ ∈ �∞, we set �θ = logfθ and define H(θ, θ ′) =
Pθ(�θ − �θ ′) when Pθ � Pθ ′ (∞ otherwise), the Kullback–Leibler divergence be-
tween Pθ and Pθ ′ . We also set H(θ) = H(θ�, θ) (each θ ∈ �∞).

Let us define, for every k ≥ 1, α, δ > 0 and t ∈ �k , θ ∈ �∞,

lt,δ = inf{fθ ′ : θ ′ ∈ �k,d(t, θ ′) < δ}, ut,δ = sup{fθ ′ : θ ′ ∈ �k,d(t, θ ′) < δ},
H�

k = inf{H(θ ′) : θ ′ ∈ �k}, Sk(δ) = {θ ′ ∈ �k :H(θ ′) ≤ H�
k + δ/2},

q(θ,α) = P �(�� − �θ )
2eα(��−�θ ) + V (��, �θ ) ∈ [0,∞].

Throughout this paper we suppose that the following standard conditions are sat-
isfied: for every k ≥ 1, (�k, d) is compact and θ 	→ �θ (z) from �k to R is con-
tinuous for every z ∈ Z. By definition of k�, we have H�

k = 0 for all k ≥ k� and
H�

k > 0 otherwise.
We consider now two assumptions that are useful for controlling the underesti-

mation and overestimation errors.

A1. For each k ≥ 1, there exist α, δ0 > 0, M ≥ 1 such that, for all δ ∈ (0, δ0],
sup{q(θ,α) : θ ∈ Sk(δ)} ≤ M.

A2. For every k ≥ 1 and θ ∈ �k , there exists ηθ > 0 such that

V (uθ,ηθ , f
�) + V (f �, lθ,ηθ ) + V (f �,uθ,ηθ ) + V (uθ,ηθ , fθ ) < ∞.

Assumption A1 states the existence of some (rather than any) exponential mo-
ment for log ratios of densities (�� − �θ ) for θ ranging over some neighborhood of
θ� and was also considered in [4].
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2.1. Underestimation. We first deal with the underestimation errors.

THEOREM 1. Assume that A1 and A2 are satisfied and that πk{Sk(δ)} > 0 for
all δ > 0 and k = 1, . . . , k�.

(i) There exist c′
1, c

′
2 > 0 such that, for every n ≥ 1,

P �n{k̂G
n < k�} ≤ c′

1e
−nc′

2 .(1)

(ii) If, in addition, H�
k > H�

k+1 for k = 1, . . . , k� −1, then there exist c1, c2 > 0
such that, for every n ≥ 1,

P �n{k̂L
n < k�} ≤ c1e

−nc2 .(2)

The proof of Theorem 1 is postponed to Section 3.
According to (1) and (2), both underestimation probabilities decay exponen-

tially quickly. This is the best achievable rate. This comes from a variant of the
Stein lemma (see Theorem 2.1 in [2] and Lemma 3 in [4]).

Values of constants c1, c
′
1, c2, c

′
2 can be found in the proof of Theorem 1. Eval-

uating them is difficult [see (9) for a lower bound on c2 in the regression model].
However, we think that they shed some light on the underestimation phenomenon.
It is natural to compare our underestimation exponents c2 and c′

2 to the constant
that appears in Stein’s lemma, namely, infθ∈�k�−1 H(θ, θ�). The constants do not
match, which does not necessarily mean that k̂G

n and k̂L
n are not optimal. We refer

to [4] for a discussion about optimality.

2.2. Overestimation. Let the largest integer which is strictly smaller than a ∈
R be denoted by �a�. For simplicity, let a ∨b and a ∧b be the maximum and mini-
mum of a, b ∈ R, and V (θ) = V (f �, fθ )∨V (fθ , f

�) (θ ∈ �∞). It is crucial in our
study of overestimation errors that, if A1 is satisfied and C1 = 5(1 + log2 M)/2α2,
then (following Lemma 5 and Theorem 5 in [20]) for all k ≥ k� and θ ∈ �k ,
H(θ) ≤ e−2 yields

V (θ) ≤ C1H(θ) log2 H(θ).(3)

Let us now introduce further notions and assumptions. Given δ > 0 and two
functions l ≤ u, the bracket [l, u] is the set of all functions f with l ≤ f ≤ u. We
say that [l, u] is a δ-bracket if l, u ∈ L1+(μ) and

μ(u − l) ≤ δ, P �(logu − log l)2 ≤ δ2,

Pu−l(logu − logf �)2 ≤ δ log2 δ and Pl(logu − log l)2 ≤ δ log2 δ.

For C a class of functions, the δ-entropy with bracketing of C is the logarithm
E(C, δ) of the minimum number of δ-brackets needed to cover C. A set of cardi-
nality exp(E(C, δ)) of δ-brackets which covers C is written as H(C, δ).
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For all θ ∈ �∞, we introduce the following quantities: �n(θ) = ∑n
i=1 �θ (Zi),

��
n = ∑n

i=1 ��(Zi) and, for every k ≥ 1, Bn(k) = π(k)
∫
�k

e�n(θ)−��
n dπk(θ). Obvi-

ously, if k < k′ are two integers, then k̂L
n = k yields Bn(k) ≥ Bn(k + 1) and k̂G

n = k

implies that Bn(k) ≥ Bn(k
′).

Let K > k� be an integer. We consider the following three assumptions:

O1(K). There exist C2,D1(k) > 0 (k = k� + 1, . . . ,K) such that, for every se-
quence {δn} decreasing to 0, for all n ≥ 1, and all k ∈ {k� + 1, . . . ,K},

πk{θ ∈ �k :H(θ) ≤ δn} ≤ C2δn
D1(k)/2.

O2(K). There exists C3 > 0 such that, for each k ∈ {k� + 1, . . . ,K}, there exists
a sequence {F k

n }, F k
n ⊂ �k , such that, for all n ≥ 1,

πk{(F k
n )c} ≤ C3n

−D1(k)/2.

O3. There exist β1,L,D2(k
�) > 0, and β2 ≥ 0 such that, for all n ≥ 1,

P �n{
Bn(k

�) <
(
β1(logn)β2nD2(k

�)/2)−1} ≤ L
(logn)3D1(k

�+1)/2+β2

n[D1(k
�+1)−D2(k

�)]/2 .

When O3 holds, let n0 be the smallest integer n such that

δ0 = 4 max
m≥n

{
m−1 log

[
β1(logm)β2mD2(k

�)/2]} ≤ e−2/2.(4)

When O1(K) and O3 hold with D2(k
�) < mink�<k≤K D1(k), given any s > 0, we

set δk,n = δk,1n
−1 log3 n for all n ≥ 2, k ∈ {k� + 1, . . . ,K}, with

δk,1 ≥ 128(1 + s)(C1 + 2)[D1(k) − D2(k
�)] ∨ 128C1D1(k) ∨ log−3 n0.(5)

We control the overestimation error for k̂G
n when a prior bound kmax on k� is

known.

THEOREM 2. If the prior � puts mass 1 on
⋃

k≤kmax
�k and if k� ≤

kmax, if A1, A2, O1(kmax), O2(kmax) and O3 are satisfied with D2(k
�) <

mink�<k≤kmax D1(k), if, in addition, for every k ∈ {k� + 1, . . . , kmax}, for all in-
tegers n ≥ n0 such that δk,n < δ0 and for every j ≤ �δ0/δk,n�,

E

(
F k

n ∩ [Sk(2(j+1)δk,n) \ Sk(2jδk,n)], jδk,n

4

)
≤ s/(1 + s)njδk,n

64(C1 + 2) log2(jδk,n)
,(6)

then there exists c′
3 > 0 such that, for all n ≥ n0,

P �n{k̂G
n > k�} ≤ c′

3
(logn)3 maxk D1(k)/2+β2

nmink[D1(k)−D2(k
�)]/2 .(7)

In the formula above index k ranges between k� + 1 and kmax.

On the contrary, the following result on the overestimation error of k̂L
n does not

rely on a prior bound on k�.
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THEOREM 3. Let k = k� +1. Let us suppose that assumptions A1, A2, O1(k),
O2(k) and O3 are satisfied with D2(k

�) < D1(k). If, in addition, for all integers
n ≥ n0 such that δk,n < δ0 and for every j ≤ �δ0/δk,n�, equation (6) is satisfied,
then there exists c3 > 0 such that, for all n ≥ n0,

P �n{k̂L
n > k�} ≤ c3

(logn)3D1(k
�+1)/2+β2

n[D1(k
�+1)−D2(k

�)]/2 .(8)

Proofs of Theorems 2 and 3 rely on tests of P � versus complements {Pθ : θ ∈
�k,H(θ) ≥ ε} of Kullback–Leibler balls around P � for k > k�, in the spirit of
[8]. They are postponed to Section 4. The upper bounds we get in the proofs are
actually tighter than the one stated in the theorems. Each time, we actually chose
the largest of several terms to make the formulas more readable. Besides, the pos-
sibility in Theorem 3 to tune the value of δk,1 makes it easier to apply the theorem
to the mixture model example. Naturally, the larger δk,1, the larger c3 and the less
accurate the overestimation bound.

Concerning condition (6), it warrants that (a critical region of) �k is not too
large, since the entropy is known to quantify the complexity of a model.

Assumption O1 is concerned with the decay to 0 of the prior mass of shrinking
Kullback–Leibler neighborhoods of θ�. Verifying this assumption in the mixture
setting is a demanding task; see Section 2.4. Note that dimensional indices D1(k)

(k > k�) are introduced, which might be different from the usual dimensions D(k).
They should be understood as effective dimensions of �k relative to �k� . In models
of mixtures of gγ densities (γ ∈ � ⊂ R

d ), for instance, D1(k
� + 1) = D(k�) + 1,

while D(k� +1) = D(k�)+ (d +1). It is to be noted that this assumption is crucial.
In particular, in the different context of [16], it is proved that if such a condition is
not satisfied, then some inconsistency occurs for the Bayes factor.

Finally, O3 is milder than the existence of a Laplace expansion of the marginal
likelihood (which holds in “regular models” as described in [18]), since in such
cases (see [18]), for c as large as need be, denoting by Jn the Jacobian matrix,
there exist δ,C > 0 such that

Bn(k
�) ≥

∫
|θ−θ̂ |1≤δ

e�n(θ)−�n(θ̂) dπk�(θ) ≥
(

2π

n

)D(k�)/2

|Jn|−1/2(
1 + OP (1/n)

)
,

and P �n{|Jn| + |OP (1/n)| > C} ≤ n−c, implying O3 with β1 > 0, β2 = 0 and
D2(k

�) = D(k�). In some cases however, dimensional index D2(k
�) may differ

from D(k�); see, for instance, Lemma 1.
According to (7) and (8), both overestimation errors decay as a negative power

of the sample size n (up to a power of a logn factor). Note that the overestimation
rate is necessarily slower than exponential, as stated in another variant of the Stein
Lemma (see Lemma 3 in [4]).

We want to emphasize that the overestimation rates obtained in Theorems 2
and 3 depend on intrinsic quantities [such as dimensions D1(k) and D2(k

�), power
β2]. On the contrary, the rates obtained in Theorems 10 and 11 of [4] depend
directly on the choice of a penalty term.
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2.3. Regression and change points models. Theorems 1, 2 and 3 (resp. 1 and 3)
apply to the following regression (resp. change points) model. In the rest of
this section, σ > 0 is given, gγ is the density of the Gaussian distribution with
mean γ and variance σ 2; X1, . . . ,Xn are i.i.d. and uniformly distributed on [0,1],
e1, . . . , en are i.i.d. with density g0 and independent from X1, . . . ,Xn. Moreover,
one observes Zi = (Xi, Yi) with Yi = ϕθ�(Xi) + ei (i = 1, . . . , n), where the defi-
nition of ϕθ� depends on the example.

Regression (see also Section 5.3 of [4]). Let {tk}k≥1 be a uniformly bounded sys-
tem of continuous functions on [0,1] forming an orthonormal system in L2([0,1])
(for the Lebesgue measure). Let � be a compact subset of R that contains 0
and �k = �k (each k ≥ 1). For every θ ∈ �k , set ϕθ = ∑k

j=1 θj tj and fθ (z) =
gϕθ (x)(y) [all z = (x, y) ∈ [0,1] × R].

Change points. For each k ≥ 1, let Tk be the set of (k+1)-tuples (tj )0≤j≤k , with
t0 = 0, tj ≤ tj+1 (all j < k), and tk = 1. Let � be a compact subset of R and �k =
Tk × �k (each k ≥ 1). For every θ = (α, t) ∈ �k , set ϕθ(x) = ∑k

j=1 αj1{tj−1 ≤
x < tj }, and fθ (z) = gϕθ (x)(y) (all z = (x, y) ∈ [0,1] × R).

In both examples there exists θ� ∈ �k� \ �k�−1 such that f � = fθ� . The stan-
dard conditions of compactness and continuous parameterization are fulfilled, and
A1 and A2 are satisfied. Besides, 2σ 2H(θ) = ‖ϕθ − ϕ�‖2

2 (all θ ∈ �∞), so the
additional condition stated in Theorem 1(ii) holds. Consequently, if πk is positive
on �k for each k ≥ 1, then Theorem 1 applies. In particular, using Fourier basis in
the regression model, we get

12c2 ≥ 1/max
k<k�

(
1

2σ 2 + �k+1

2σ 2 + 2k�

π
(1 + �k+1)

2
)
,(9)

where �k+1 = (θ�
k+1)

−2 ∑k�

j=k+2(θ
�
j )2 if k + 1 < k� and �k� = 0.

Also, it can be shown that there exists τ ≥ 1 such that [lθ,δ/τ ;uθ,δ/τ ] is a
δ-bracket for all θ ∈ �∞ and δ sufficiently small. Consequently, with the notation
of Theorems 2 and 3, and with F k

n = �k (O2 is then trivial), E(�k, jδk,n/4) ≤
−b log(jδk,n) + c for positive b, c, and we show in Appendix D how this implies
the desired condition on entropy.

The regression model is regular (as described in [18]), so O3 holds with
D2(k

�) = D(k�). Moreover, the form of H(θ) makes it easy to verify that O1(K) is
satisfied for any K > k� with D1 = D. Thus, Theorems 2 and 3 apply too. Further-
more, Theorem 3 applies in the change points model because, for any τ ∈ (0, 1

2)

(see Appendix A for a proof),

LEMMA 1. In the change points model, O1(k�+1) and O3 hold with D1(k
�+

1) = D(k�) + k�, D2(k
�) = D(k�) + k� − 1 + 2τ and β2 = 0.

Actually, the proof of Lemma 1 can easily be adapted to yield that O1(K) holds
for any K > k� with D1(K) = D(k�) + K − 1 (we omit the details for the sake of
conciseness). So Theorem 2 also applies in that model.
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2.4. Mixture models. We prove that Theorems 1 and 3 apply here with
D1(k

� + 1) = D(k�) + 1 and D2(k
�) = D(k�), yielding an overestimation rate

of order O((logn)c/
√

n) for some positive c.
We denote by | · |1 and | · |2 the �1 and �2 norms on R

d . Let � be a compact
subset of R

d and � = {g = (g1, . . . , gk) ∈ �k : minj<j ′ |gj − gj ′ |2 = 0}. For all
γ ∈ �, let gγ be a density. In this section mixtures of gγ ’s are studied. Formally,
�1 = � and for every k ≥ 2,

�k =
{
θ = (p,γ ) :p = (p1, . . . , pk−1) ∈ R

k−1+ ,

k−1∑
j=1

pj ≤ 1,γ ∈ �k

}
.

Every θ ∈ �k (k ≥ 2) is associated with fθ = ∑k−1
j=1 pjgγj

+ (1 − ∑k−1
j=1 pj )gγk

.
Note that D(k) = k(d + 1) − 1 for each k ≥ 1. Also, the standard conditions of

compactness and continuous parameterization are fulfilled.
We consider the following six assumptions which will be used in the mixture

case. The first-, second- and third-order differentiation (with respect to γ ) opera-
tors are denoted by ∇ , D2 and D3, and | · | stands for any norm on the space of
second and third-order derivatives. We say that a function is Ck if it is k times
continuously differentiable:

M1. For each k ≥ 1, prior πk writes as dπk(θ) = π
p
k (p)π

γ
k (γ ) dp dγ [all θ =

(p,γ ) ∈ �k]. It is C1 over �k . Moreover, there exist ε,C > 0 such that,
setting �ε = {γ ∈ � : infg∈� |γ − g|1 ≥ ε}, γ ∈ �ε yields π

γ
k (γ ) ≥ C, and

when d = 1, π
γ
k (γ ) ∝ ∏

j<j ′ |γj − γj ′ |2 upon �ε .
M2. For all γ ∈ �,η > 0, let us define g

γ,η
= inf{gγ ′ : |γ − γ ′|1 ≤ η} and gγ,η =

sup{gγ ′ : |γ − γ ′|1 ≤ η}. There exist η1,M > 0 such that, for every γ1, γ2 ∈
�, there exists η2 > 0 such that

Pgγ1,η1
−g

γ1,η1
(1 + log2 gγ2) ≤ Mη1, Pgγ2

log2(gγ1,η1
/g

γ1,η1
) ≤ Mη2

1,

Pgγ1,η1
−g

γ1,η1
log2 gγ1,η1

≤ Mη1 log2 η1

and

Pgγ1,η1
(log2 gγ1,η1

+ log2 gγ2) + Pgγ2
(log2 gγ1,η1

+ log2 g
γ1,η1

) ≤ M.

M3. For every γ1, γ2 ∈ �, there exists α > 0 such that

sup{Pγ1(gγ2/gγ )α :γ ∈ �} < ∞.

M4. The parameterization γ 	→ gγ (z) is C2 for μ-almost every z ∈ Z. Moreover,
μ[supγ∈�(|∇gγ |1 + |D2gγ |)] is finite.

The parameterization γ 	→ loggγ (z) is C3 for μ-almost every z ∈ Z and
for every γ ∈ �, the Fisher information matrix I (γ ) is positive definite. Be-
sides, for all γ1, γ2 ∈ �, there exists η > 0 for which

Pγ1 |D2 loggγ2 |2 + Pγ1 sup{|D3 loggγ |2 : |γ − γ2|1 ≤ η} < ∞.
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M5. Let I = {(r, s) : 1 ≤ r ≤ s ≤ d}. There exist a nonempty subset A of I
and two constants η0, a > 0 such that, for every k ≥ 2, for every k-tuple
(γ1, . . . , γk) of pairwise distinct elements of �:

(a) functions gγj
, (∇gγj

)l (j ≤ k, l ≤ d) are linearly independent;
(b) for every j ≤ k, functions gγj

, (∇gγj
)l, (D

2gγj
)rs (all l ≤ d, (r, s) ∈

A) are linearly independent;
(c) for each j ≤ k, (r, s) ∈ I \ A, there exist λ

0j
rs , . . . , λ

dj
rs ∈ R such that

(D2gγj
)rs = λ

0j
rs gγj

+ ∑d
l=1 λ

lj
rs(∇gγj

)l ;
(d) for all η ≤ η0 and all u, v ∈ R

d , for each j ≤ k, if

∑
(r,s)∈A

(|urus | + |vrvs |) +
∣∣∣∣∣ ∑
(r,s)/∈A

λ0j
rs (urus + vrvs)

∣∣∣∣∣ ≤ η,

then |u|22 + |v|22 ≤ aη.

These assumptions suffice to guarantee the bounds below.

THEOREM 4. If M1–M5 are satisfied, then there exists n1 ≥ 1 and c4 > 0
such that, for all n ≥ n1,

P �{k̂L
n < k�} ≤ c1e

−nc2,(10)

P �{k̂L
n > k�} ≤ c4

(logn)[3(d+1)k�/2]
√

n
.(11)

The positive constants c1, c2 are defined in Theorem 1.

Note that all assumptions involve the mixed densities gγ (γ ∈ �) rather than
the resulting mixture densities fθ (θ ∈ �∞). Assumption M2 implies A2 and M3
implies A1. Assumption M4 is a usual regularity condition. Assumption M5
is a weaker version of the strong identifiability condition defined by [5], which is
assumed in most paper dealing with asymptotic properties of mixtures. In particu-
lar, strong identifiability does not hold in location-scale mixtures of Gaussian r.v.,
but M5 does (with A = I \ {(1,1)}). In fact, Theorem 4 applies, and we have the
following:

COROLLARY 1. Set A,B > 0 and � = {(μ,σ 2) ∈ [−A,A] × [ 1
B

,B]}. For
every γ = (μ,σ 2) ∈ �, let us denote by gγ the Gaussian density with mean μ and
variance σ 2. Then (10) and (11) hold with d = 2 for all n ≥ n0.

Other examples include, for instance, mixtures of Gamma(a, b) in a or in b [but
not in (a, b)], of Beta(a, b) in (a, b), of GIG(a, b, c) in (b, c) (another example
where strong identifiability does not hold, but M5 does).
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3. Underestimation proofs. Let us start with new notation. For f,f ′ ∈
L1+(μ) \ {0}, we set H(f,f ′) = Pf (logf − logf ′) when it is defined (∞ other-
wise), H(f ) = H(f �, f ), and V (f ) = V (f �, f ) ∨ V (f,f �). For every θ ∈ �∞,
the following shortcuts will be used (W stands for H or V ): W(f,fθ ) = W(f, θ),
W(fθ , f ) = W(θ,f ), W(fθ) = W(θ). For every probability density f ∈ L1(μ),
P ⊗n

f is denoted by P n
f and the expectation with respect to Pf (resp. P n

f ) by Ef

(resp. En
f ).

Theorem 1 relies on the following lower bound on Bn(k).

LEMMA 2. Let k ≤ k� and δ ∈ (0, αM ∧ δ0]. Under the assumptions of Theo-
rem 1, with probability at least 1 − 2 exp{−nδ2/8M},

Bn(k) ≥ π(k)πk{Sk(δ)}
2

e−n[H�
k +δ].

PROOF. Let 1 ≤ k ≤ k�, 0 < δ ≤ αM ∧ δ0 and define

B = {(θ,Zn) ∈ �k × Zn :�n(θ) − ��
n ≥ −n[H�

k + δ]}.
Then, using the same calculations as in Lemma 1 of [17], we obtain

P �n

{
πk{Sk(δ) ∩ Bc} ≥ πk{Sk(δ)}

2

}
≤

∫
Sk(δ)

2P �n{Bc}
πk{Sk(δ)} dπk(θ).(12)

Set s ∈ [0, α] and θ ∈ Sk(δ) and let ϕθ(t) = P �et(��−�θ ) (every t ∈ R). By virtue
of A1, function ϕθ is C∞ over [0, α] and ϕ′′

θ is bounded by q(θ,α) ≤ M on that
interval. Moreover, a Taylor expansion implies that

ϕθ(s) = 1 + sH(θ) + s2
∫ 1

0
(1 − t)ϕ′′

θ (st) dt ≤ 1 + sH(θ) + 1
2s2M.

Applying the Chernoff method and inequality log t ≤ t −1 (t > 0) implies that, for
all θ ∈ Sk(δ),

P �n{Bc} ≤ exp{−ns[H�
k + δ] + n logϕθ(s)}

≤ exp{−ns[H�
k + δ − H(θ)] + ns2M/2}.

We choose s = [H�
k + δ − H(θ)]/M ∈ [δ/2, α] so that the above probability is

bounded by exp{−nδ2/8M} and Lemma 2 is proved. �

To prove Theorem 1, we construct nets of upper bounds for the fθ ’s (θ ∈ �k ,
k = 1, . . . , k� − 1). Similar nets have been first introduced in a context of nonpara-
metric Bayesian estimation in [3]. We focus on k̂L

n ; the proof for k̂G
n is a straight-

forward adaptation.

PROOF OF THEOREM 1. Since P �n{k̂L
n < k�} = ∑k�−1

k=1 P �n{k̂L
n = k}, it is suf-

ficient to study P �n{k̂L
n = k} for k between 1 and k� − 1.



948 A. CHAMBAZ AND J. ROUSSEAU

Let δ < αM ∧ δ0 ∧ [H�
k − H�

k+1]/2, c = 1
2π(k)πk{Sk(δ)} ∈ (0,1] and ε =

2δ/[H�
k − H�

k+1] ∈ (0,1). Lemma 2 yields

P �n{k̂L
n = k} ≤ P �n{Bn(k) ≥ Bn(k + 1)}

(13)
≤ 2e−nδ2/(8M) + P �n{

Bn(k) ≥ ce−n[H�
k+1+δ]}.

We now study the rightmost term of (13). Let θ, θ ′ ∈ �k . The dominated con-
vergence theorem and A2 ensure that there exists ηθ > 0 such that d(θ, θ ′) <

ηθ yields H(uθ,η) ≤ H(θ ′) ≤ H(uθ,η) + δ, V (θ�, uθ,η) ≤ (1 + ε)V (θ�, θ ′) and
V (uθ,η, θ

�) ≤ (1 + ε)V (θ ′, θ�). Let B(θ, ηθ ) = {θ ′ ∈ �k :d(θ, θ ′) < ηθ } for all
θ ∈ �k . The collection of open sets {B(θ, ηθ )}θ∈�k

covers �k , which is a com-
pact set. So, there exist θ1, . . . , θNε ∈ �k such that �k = ⋃Nε

j=1 B(θj , ηθj
). For

j = 1, . . . ,Nε , letting uj = uθj ,ηθj
,

T̃kj = {θ ∈ �k :�θ ≤ loguj ,H(θ) ≤ H(uj ) + δ,

V (θ�, uj ) ≤ (1 + ε)V (θ�, θ),V (uj , θ
�) ≤ (1 + ε)V (θ, θ�)},

then Tk1 = T̃k1 and Tkj = T̃kj ∩ (
⋃

j ′<j T̃kj ′)c (j = 2, . . . ,Nε). The family
{Tk1, . . . , TkNε} is a partition of �k .

Accordingly, with �n,uj
= ∑n

i=1 loguj (Zi) (j = 1, . . . ,Nε), the rightmost term
of (13) is smaller than

P �n

{
Nε∑
j=1

∫
Tkj

e�n(θ)−��
n dπk(θ) ≥ ce−n[H�

k+1+δ]
}

≤
Nε∑
j=1

P �n

{
e
�n,uj

−��
n

∫
Tkj

e
�n(θ)−�n,uj dπk(θ) ≥ ce−n[H�

k+1+δ]πk+1{Tkj }
}

≤
Nε∑
j=1

P �n{�n,uj
− ��

n ≥ −n[H�
k+1 + δ] + log c}

≤
Nε∑
j=1

P �n{�n,uj
− ��

n + nH(uj ) ≥ nρj + log c}

for ρj = [H(uj ) − H�
k+1 − δ]. Note that ρj ≥ (1 − ε)[H(θj ) − H�

k+1] > 0 for j =
1, . . . ,Nε by construction. Applying (29) of Proposition B.1 (whose assumptions
are satisfied) finally implies that

P �n{
Bn(k) ≥ ce−n[H�

k+1+δ]}
≤ Nε

c
exp

{
−n

(1 − ε)2

2(1 + ε)
[H�

k − H�
k+1]min

(
inf

θ∈�k

H(θ) − H�
k+1

V (θ)
,

1 + ε

1 − ε

)}
.

We conclude, since Nε does not depend on n. �
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4. Overestimation proofs. We choose again to focus on k̂L
n , the proof for k̂G

n

being very similar.

PROOF OF THEOREM 3. Set n0 and δ0 as in (4), then note that u 	→ u log2 u

increases on interval (0, e−2). By definition of k̂L
n ,

P �n{k̂L
n > k�} ≤ P �n{Bn(k

�) < Bn(k
� + 1)}

≤ P �n{
Bn(k

�) ≤ (
β1(logn)β2nD2(k

�)/2)−1}
(14)

+ P �n{
Bn(k

� + 1) ≥ (
β1(logn)β2nD2(k

�)/2)−1}
.

Assumption O3 deals with the first term of the right-hand side of (14). Let us focus
on the second one. To this end, �k�+1 is decomposed into the following three sets:
letting δ1 satisfy (5) and δn = δ1n

−1 log3 n,

Sk�+1(2δ0)
c = {θ ∈ �k�+1 :H(θ) > δ0},

Sn = Sk�+1(2δ0) ∩ Sk�+1(2δn)
c = {θ ∈ �k�+1 : δn < H(θ) ≤ δ0},

Sk�+1(2δn) = {θ ∈ �k�+1 :H(θ) ≤ δn}.
Note that Sn can be empty. According to this decomposition, the quantity of inter-
est is bounded by the sum of three terms (the second one is 0 when Sn is empty):
if wn = 3π(k� + 1)β1(logn)β2nD2(k

�)/2, then

P �n{
Bn(k

� + 1) ≥ (
β1(logn)β2nD2(k

�)/2)−1}
≤ P �n

{∫
Sk�+1(2δ0)

c
e�n(θ)−��

n dπk�+1(θ) ≥ 1/wn

}
(15)

+ P �n

{∫
Sn

e�n(θ)−��
n dπk�+1(θ) ≥ 1/wn

}

+ P �n

{∫
Sk�+1(2δn)

e�n(θ)−��
n dπk�+1(θ) ≥ 1/wn

}
.

The Markov inequality, Fubini theorem and O1 yield (as in the proof of
Lemma 2) the following bound on the third term, pn,3, of (15):

pn,3 ≤ wnπk�+1{Sk�+1(2δn)} ≤ C2wnδn
D1(k

�+1)/2

(16)

≤ 3β1C2π(k� + 1)δ1
D1(k

�+1)/2 (logn)3D1(k
�+1)/2+β2

n[D1(k
�+1)−D2(k

�)]/2 .

The first term of (15), pn,1, is like P �n{Bn(k) ≥ ce−n[H�
k+1+δ]}, already bounded

in the proof of Theorem 1. Indeed, the infima for θ ∈ Sk�+1(2δ0)
c of H(θ),

V (θ�, θ) and V (θ, θ�) are positive and the scheme of proof of Theorem 1 also
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applies here: there exist c4, c5 > 0 which do not depend on n and guarantee
that

pn,1 ≤ c4e
−nc5 .(17)

When δn < δ0, bounding the second term of (15), pn,2, goes in four steps.
Let �n = �δ0/δn�. For all j = 1, . . . ,�n, let Sn,j = {θ ∈ Fn ∩ Sn : jδn <

H(θ) ≤ (j + 1)δn}. Consider [li , ui] ∈ H(Sn,j , jδn/4), define ui = ui/μui and
introduce the local tests

φi,j = 1
{
�n,ui

− ��
n + nH(ui) ≥ n

jδn

2

}
= φn,f,ρ,c

for f = ui , ρ = jδn/2 and c = 1 in the perspective of Proposition B.1.
Step 1. Set θ ∈ Sn,j such that fθ ∈ [li , ui], g = fθ and ρ′ = logμui . Then μg =

1, V (g) = V (θ) > 0 and H(ui) − (ρ + ρ′) = P �(�� − logui) − logμui − ρ =
P �(�� − logui)−ρ = H(θ)+P �(�θ − logui)−ρ ≥ H(θ)−P �(logui − log li)−
ρ ≥ jδn

4 > 0. Thus, according to (30) of Proposition B.1,

En
θ (1 − φi,j ) ≤ exp

{−n[H(ui) − (ρ + ρ′)]
2

(
H(ui) − (ρ + ρ′)

V (θ)
∧ 1

)}
.

Since H(θ) ≤ (j + 1)δn ≤ 2δ0 ≤ e−2, then log2 δn ≥ log2(jδn) and (3) yield
V (θ) ≤ C1H(θ) log2 H(θ) ≤ C1(j + 1)δn log2(jδn). Consequently, j/(j + 1) ≥
1/2 and 8C1 log2(jδn) ≥ 1 imply

En
θ (1 − φi,j ) ≤ exp

{
− njδn

64C1 log2(jδn)

}
.(18)

Step 2. Proposition B.1 and (29) ensure that

E�nφi,j ≤ exp
{
−njδn

4

(
jδn

2V (ui)
∧ 1

)}
.

The point is now to bound V (ui). Let again θ ∈ Sn,j be such that fθ ∈ [li , ui].
Using repeatedly (a + b)2 ≤ 2(a2 + b2) (a, b ∈ R), the definition of a δ-bracket
and (3) yield

V (θ�, ui) = P �(�� − logui + logμui)
2

≤ 2P �(�� − logui)
2 + 2 log2 μui

≤ 4P �(�� − �θ )
2 + 4P �(�θ − logui)

2 + 2
(
μ(ui − li)

)2(19)

≤ 4V (θ) + 4P �(logui − log li)
2 + 2

(
μ(ui − li)

)2

≤ 2(2C1 + 3)(j + 1)δn log2(jδn),

and similarly,

V (ui, θ
�) ≤ 4(C1 + 2)(j + 1)δn log2(jδn).(20)
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A bound on V (ui) is derived from (19) and (20), which yields in turn

E�nφi,j ≤ exp
{
− njδn

64(C1 + 2) log2(jδn)

}
.(21)

Step 3. Now, consider the global test

φn = max
{
φi,j : i ≤ exp{E(Sn,j , jδn/4)}, j ≤ �n

}
.

Equation (18) implies that, for every j ≤ �n and θ ∈ Sn,j ,

En
θ (1 − φn) ≤ exp

{
− njδn

64C1 log2(jδn)

}
.(22)

Furthermore, if we set ρn = nδn/[64(1 + s)(C1 + 2) log2 δn], then bounding φn by
the sum of all φi,j , invoking (21) and (6) yield

E�nφn ≤
�n∑
j=1

exp
{
E(Sn,j , jδn/4) − njδn

64(C1 + 2) log2(jδn)

}

≤
�n∑
j=1

exp{−jρn} ≤ exp{−ρn}
1 − exp{−ρn} .

Since δ1 ≥ 128(1 + s)(C1 + 2)[D1(k
� + 1) − D2(k

�)] ∨ log−3(n0), one has
log2 δn ≤ 4 log2 n, and ρn ≥ 1

2 [D1(k
� + 1) − D2(k

�)] logn. Thus, the final bound
is

E�nφn ≤ 1

n[D1(k
�+1)−D2(k

�)]/2 − 1
.(23)

Step 4. We now bound pn,2:

pn,2 = E�n
(
φn + (1 − φn)

)
1
{∫

Sn

e�n(θ)−��
n dπk�+1(θ) ≥ 1/wn

}

≤ E�nφn + P �n

{∫
Sn∩F c

n

e�n(θ)−��
n dπk�+1(θ) ≥ 1/2wn

}

+ E�n(1 − φn)1
{∫

Sn∩Fn

e�n(θ)−��
n dπk�+1(θ) ≥ 1/2wn

}
.

The first term of the right-hand side is bounded according to (23). Moreover, ap-
plying the Markov inequality and Fubini theorem to the second term above, pn,2,2,
ensures that

pn,2,2 ≤ 6β1C3
(logn)β2

n[D1(k
�+1)−D2(k

�)]/2 .(24)
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As for the third term, pn,2,3, invoking again the Markov inequality and Fubini
theorem, then (22), yields

pn,2,3 ≤ 2wn

�n∑
j=1

∫
Sn,j

En
θ (1 − φn)dπk�+1(θ)

≤ 2wn

�n∑
j=1

exp
{
− njδn

64C1 log2(jδn)

}
πk�+1{Sn,j }

≤ 2wn exp
{
− nδn

64C1 log2 δn

}
≤ 2wn exp

{
− δ1

256C1
logn

}

≤ 6β1π(k� + 1)
(logn)β2

n[D1(k
�+1)−D2(k

�)]/2 .

Combining inequalities (23), (24) and (25) yields

pn,2 ≤ 1

n[D1(k
�+1)−D2(k

�)]/2 − 1
+ 6β1

(
π(k� + 1) + C3

) (logn)β2

n[D1(k
�+1)−D2(k

�)]/2 .

Inequalities (16), (17) and the one above conclude the proof. �

5. Mixtures proofs. In the sequel we use the notation θ� = (p�,γ �), p� =
(p�

1, . . . , p
�
k�−1) and p�

k� = 1 − ∑k�−1
j=1 p�

j . Also, if θ = (p,γ ) ∈ �k , then 1 −∑k−1
j=1 pj is denoted by pk .
The standard conditions hold. Assumption A1 is verified by proving (with usual

regularity and convexity arguments) the existence of α > 0 such that the function
θ 	→ P �eα(��−�θ ) is bounded on �k� . Assumption A2 follows from M2. Lemma 3
in [12] guarantees that H�

k > H�
k+1 (every k < k�). So, the underestimation error

bound (10) in Theorem 4 is a consequence of Theorem 1.
The overestimation error bound (11) in Theorem 4 is a consequence of Theo-

rem 3. Let us verify that O1(k� + 1), O2(k� + 1) and O3 are satisfied.

PROPOSITION 1. There exists C2 > 0 such that, in the setting of mixture mod-
els, for every sequence {δn} that decreases to 0, for all n ≥ 1,

πk�+1{θ ∈ �k�+1 :H(θ) ≤ δn} ≤ C2δn
[D(k�)+1]/2.

PROPOSITION 2. If F k�+1
n = {(p,γ ) ∈ �k�+1 : minj≤k�+1 pj ≥ e−n} approx-

imates the set �k�+1, then O2(k� + 1) is fulfilled. Furthermore, the entropy condi-
tion (6) holds as soon as δ1 is chosen large enough.

The technical proofs of Propositions 1 and 2 are postponed to Appendix C
and D, respectively. Assumption O3 is obtained (with β2 = 0) from the Laplace
expansion under P �, which is regular (see also the comment after Theorem 3).
Finally, Theorem 3 applies and Theorem 4 is proven.
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APPENDIX A: PROOF OF LEMMA 1

Let θ� = (α�, t�) and θ ∈ �k�+1 satisfy H(θ) ≤ δn. For every j ≤ k� (resp.
j ≤ k), we denote by τ �

j (resp. τj ) the interval [t�j−1, t
�
j [ (resp. [tj−1, tj [) [hence,

H(θ) = ∑
j≤k�

∑
j ′≤k�+1(α

�
j − αj ′)2μ(τ�

j ∩ τj ′)], and set s(j) such that μ(τ�
j ∩

τs(j)) = maxl≤k μ(τ �
j ∩ τl). So, μ(τ�

j ∩ τs(j)) ≥ μ(τ�
j )/k, and (α�

j − αs(j))
2 ≤ cδn

for all j ≤ k�. If s(j) = s(j ′) for j ′ > j , then necessarily j ′ ≥ (j + 2) and
s(j + 1) = s(j), while α�

j �= α�
j+1, so we do get k� conditions on θ . Suppose now

without loss of generality that s(j) = j for all j ≤ k�. Then (αk −α�
k�)

2(1 − tk�) ≤
δn, another condition on θ . Moreover, for all j < k�, μ(τ�

j ) − μ(τ�
j ∩ τj ) =

μ(τ�
j ∩ τj−1) + μ(τ�

j ∩ τj+1), μ(τj ) − μ(τ�
j ∩ τj ) = μ(τj ∩ τ �

j−1) + μ(τj ∩ τ �
j+1)

(with convention τ−1 = τ �−1 = ∅) and α�
j �= α�

j+1 imply |μ(τ)−μ(τ�
j ∩ τj )| ≤ cδn

for τ ∈ {τ �
j , τj }. So, |(t�j − tj ) − (t�j−1 − tj−1)| ≤ 2cδn. Using successively these

inequalities from j = 1 to j = (k� − 1), we get (k� − 1) conditions on θ of
the form |t�j − tj | ≤ cδn. Combining those conditions yields O1(k� + 1) with
D1(k

� + 1) = D(k�) + k�.
Let Sn = {t� + u/n :u ∈ R

k�+1+ , u0 = uk� = 0, |u|1 ≤ τ
2 log logn} ⊂ Tk� . For

large n, there exists an event of probability 1 − (1 − mink |t�k − t�k−1|/2)n upon
which the model is regular in α for any fixed t ∈ Sn, hence, there exists C > 0
(independent of t) such that, on that event,∫

�k�
e�n(θ)−��

n dπk�(α|t) ≥ C

nk�/2 e�n(α̂t ,t)−��
n ≥ C

nk�/2 e�n(α�,t)−��
n,(25)

where α̂t is the maximum likelihood estimator for fixed t . Denote nj (t) =∑n
i=1 1{Xi ∈ [t�j , t�j + uj/n[} and v2(t) = σ 2 ∑k�

j=1(α
�
j − α�

j−1)
2nj (t) for any

t ∈ Sn. Then ξ(t) = �n(α
�, t)−��

n + 1
2v2(t) is, conditionally on X1, . . . ,Xn, a cen-

tered Gaussian r.v. with variance v2(t). Because each nj (t) is Binomial(n,uj/n)

distributed, the Chernoff method implies, for any t ∈ Sn,

P �n{v2(t) ≥ τ logn} = O
(
1/

√
n
)
.(26)

Moreover, since ξ(t) is conditionally Gaussian, it is easily seen by using (26) that,
for any t ∈ Sn, setting B = {Zn :�n(α

�, t) − ��
n ≥ −1

2(v2(t) + τ logn)},
P �n{Bc} = O

(
1/

√
n
)
,(27)

too. Now, the same technique as in the proof of Lemma 2 yields

P �n

{∫
Sn

e�n(α�,t)−��
n dπk�(t) ≤ n−k�+1−τ

}
≤

∫
Sn

2P �n{Bc}
πk�(Sn)

dπk�(t)(28)

whenever πk�{Sn} = c(log logn/n)k
�−1 ≥ 2n−k�+1. By combining (25), (27) and

(28), we obtain that O3 holds with D2(k
�) = 3k� + 2(τ − 1).
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APPENDIX B: CONSTRUCTION OF TESTS

PROPOSITION B.1. Let (ρ, c) belong to R
∗+ × (0,1] and f ∈ L1+(μ) \ {0}.

Assume that V (f ) is positive and finite. Let �n,f = ∑n
i=1 logf (Zi) and

φn,f,ρ,c = 1{�n,f − ��
n + nH(f ) ≥ nρ + log c}.

The following bound holds:

E�nφn,f,ρ,c ≤ 1

c
exp

{
−nρ

2

(
ρ

V (f )
∧ 1

)}
.(29)

Let ρ′ ∈ R+ and g ∈ L1+(μ) be such that μg = 1, g ≤ eρ′
, f and V (g) is finite.

If, in addition, (ρ + ρ ′) < H(f ), then the following bound holds true:

En
g(1 − φn,f,ρ,c) ≤ exp

{
−n[H(f ) − (ρ + ρ′)]

2

(
H(f ) − (ρ + ρ′)

V (g)
∧ 1

)}
.(30)

PROOF. H(f ) is also finite. Let us denote logf by �f , logg by �g and set
s ∈ (0,1]. Then

c E�nφn,f,ρ,c = cP �n{�n,f − ��
n ≥ nρ − nH(f ) + log c}

≤ e−ns(ρ−H(f ))(P �es(�f −��))n.
A Taylor expansion of the function t 	→ P �et(�f −��) implies that

P �es(�f −��) = 1 − sH(f ) + s2
∫ 1

0
(1 − t)

∫
(f �)1−stf st (�� − �f )2 dμdt

≤ 1 − sH(f ) + s2V (f �, f )1−stV (f,f �)st /2

≤ 1 − sH(f ) + s2V (f )/2,

by a Hölder inequality with parameters 1/st and 1/(1 − st). Moreover, since
log t ≤ t − 1 (t > 0), we have

c E�nφn,f,ρ,c ≤ exp[−nsρ + ns2V (f )/2].
The choice s = 1 ∧ ρ

V (f )
yields (29). Similarly, for all s ∈ (0,1],

En
g(1 − φn,f,ρ,c) ≤ P n

g {��
n − �n,f > n[H(f ) − ρ]}

≤ P n
g {��

n − �n,g > n[H(f ) − (ρ + ρ ′)]}
≤ e−ns[H(f )−(ρ+ρ′)](Pge

s(��−�g))n.
The same arguments as before lead to Pge

s(��−�g) ≤ 1 + s2V (g)/2 and

En
g(1 − φn,f,ρ,c) ≤ exp{−ns[H(f ) − (ρ + ρ ′)] + ns2V (g)/2}.

The choice s = 1 ∧ H(f )−(ρ+ρ′)
V (g)

yields (30). �
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APPENDIX C: PROOF OF PROPOSITION 1

Let {δn} be a decreasing sequence of positive numbers which tend to 0. Let us
denote by ‖ · ‖ the L1(μ) norm. Because

√
H(θ) ≥ ‖f � − fθ‖/2, M1 ensures that

Proposition 1 holds if

πk�+1
{
θ ∈ �k�+1 :‖f � − fθ‖ ≤ √

δn

} ≤ C2
√

δn
D(k�)+1

(31)

for some C2 > 0 which does not depend on {δn}. We use a new parameterization
for translating ‖f � − fθ‖ ≤ √

δn in terms of parameters p and γ . It is a variant of
the locally conic parameterization [6], using the L1 norm instead of the L2 norm.
In the sequel, c,C will be generic positive constants.

L1 locally conic parameterization. For each θ = (p,γ ) ∈ int(�k�+1), we de-
fine iteratively the permutation σθ upon {1, . . . , k� + 1} as follows:

• (j1, σθ (j1)) = min(j,j ′) arg min{|γ �
j − γj ′ |1 : j ≤ k�, j ′ ≤ k� + 1}, where the first

minimum is for the lexicographic ranking;
• if (j1, σθ (j1)), . . . , (jl−1, σθ (jl−1)) with l < k� have been defined, then (jl,

σθ (jl)) = min(j,j ′) arg min{|γ �
j − γj ′ |1}, where in the arg min, index j ≤ k�

does not belong to {j1, . . . , jl−1} and index j ′ ≤ k� + 1 does not belong to
{σθ (j1), . . . , σθ (jl−1)};

• once (j1, σθ (j1)), . . . , (jk�, σθ (jk�)) are defined, the value of σθ(k
� + 1) is

uniquely determined.

We can assume without loss of generality that σθ = id, the identity permutation
over {1, . . . , k� +1}. Indeed, for every θ = (p,γ ) ∈ �k�+1 and each permutation ς

onto {1, . . . , k� +1}, let θς = (pς ,γ ς ) ∈ �k�+1 be the parameter with coordinates
p

ς
j = pς(j), γ

ς
j = γς(j) (all j ≤ k� + 1) and set π

ς
k�+1(θ) = πk�+1(θ

ς ).
Since for all θ and ς , ‖f � − fθ‖ = ‖f � − fθς ‖,

πk�+1
{
θ ∈ �k�+1 :‖f � − fθ‖ ≤ √

δn

}
(32)

= ∑
ς

π
ς
k�+1

{
θ ∈ �k�+1 :σθ = id,‖f � − fθ‖ ≤ √

δn

}
,

where the sum above is on all possible permutations.
We show below that the term in the sum above associated with ς = id is

bounded by a constant times
√

δn
D(k�)+1. The proof involves only properties that

all π
ς
k�+1 share. Studying the latter term is therefore sufficient to conclude that

Proposition 1 holds.
Set �� = {θ ∈ �k�+1 :σθ = id}. For all θ ∈ ��, let γθ = γk�+1, pθ = pk�+1 and

Rθ = (ρ1, . . . , ρk�−1, r1, . . . , rk�), where

ρj = pj − p�
j

pθ

and rj = γj − γ �
j

pθ

(j ≤ k�).
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Note that
∑

j≤k� ρj = −1. Now, define

N(γθ ,Rθ) =
∥∥∥∥∥gγθ +

k�∑
j=1

p�
j r

T
j ∇gγ �

j
+

k�∑
j=1

ρjgγ �
j

∥∥∥∥∥,
then tθ = pθN(γθ ,Rθ).

LEMMA C.1. For all θ ∈ ��, let �(θ) = (tθ , γθ ,Rθ). The function � is a
bijection between �� and �(��). Furthermore, T = supθ∈�� tθ is finite, so that
the projection of �(��) along its first coordinate is included in [0, T ]. Finally,
for all ε > 0, there exists η > 0 such that, for every θ ∈ ��, ‖f � − fθ‖ ≤ η yields
tθ ≤ ε.

PROOF. It is readily seen that � is a bijection. We point out that N(γ,R) is
necessarily positive for all (t, γ,R) ∈ �(��), by virtue of M5. As for the finiteness
of T , note that, for any θ ∈ ��,

tθ =
∥∥∥∥∥pθgγθ +

k�∑
j=1

p�
j (γj − γ �

j )T ∇gγ �
j

+
k�∑

j=1

(pj − p�
j )gγ �

j

∥∥∥∥∥
(33)

≤ 2 +
k�∑

j=1

p�
j‖(γj − γ �

j )T ∇gγ �
j
‖.

The right-hand side term above is finite because � is bounded and ‖(∇gγ �
j
)l‖ (j ≤

k�, l ≤ d) are finite thanks to M4. Hence, T is finite.
The last part of the lemma is a straightforward consequence of the compactness

of � and continuity of θ 	→ fθ (z). �

Proof of (31). For any τ > 0, define the sets

Bτ
1 =

{
θ ∈ �� : min

j≤k�
|γθ − γ �

j |1 > τ,‖f � − fθ‖ ≤ √
δn

}
and

Bτ
2 =

{
θ ∈ �� : min

j≤k�
|γθ − γ �

j |1 ≤ τ,‖f � − fθ‖ ≤ √
δn

}
.

Inequality (31) is a consequence of the following:

LEMMA C.2. Given τ > 0, there exists C > 0 such that, for all n ≥ 1,

πk�+1{Bτ
1 } ≤ C

√
δn

k�(d+1)
.(34)

LEMMA C.3. There exist τ,C > 0 such that, for all n ≥ 1,

πk�+1{Bτ
2 } ≤ C

√
δn

k�(d+1)
.(35)
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Because � is compact, continuity arguments on the norm in finite dimensional
spaces yield the following useful property: Under M5, if g1, . . . , gk ∈ L1(μ) are k

functions such that, for every γ ∈ �, gγ , g1, . . . , gk are linearly independent, then
there exists C > 0 such that, for all a = (a0, . . . , ak) ∈ R

k+1 and γ ∈ �,∥∥∥∥∥a0gγ +
k∑

j=1

ajgj

∥∥∥∥∥ ≥ C

k∑
j=0

|aj |.(36)

PROOF OF LEMMA C.2. Let τ > 0, let (t, γ,R) ∈ �(��) and θ = (p,γ ) =
�−1(t, γ,R) satisfy |γθ −γ �

j |1 > τ for all j ≤ k� and ‖f �−fθ‖ ≤ √
δn. Given any

z ∈ Z, a Taylor–Lagrange expansion (in t) of [f �(z) − fθ (z)] yields the existence
of to ∈ (0, t) (depending on z) such that

|f �(z) − fθ (z)| ≥ t

N

∣∣∣∣∣gγ (z) +
k�∑

j=1

p�
j r

T
j ∇gγ �

j
(z) +

k�∑
j=1

ρjgγ �
j
(z)

∣∣∣∣∣
− t2

N2

∣∣∣∣∣
k�∑

j=1

ρj r
T
j ∇gγ o

j
(z) + 1

2

k�∑
j=1

po
j r

T
j D2gγ o

j
(z)rj

∣∣∣∣∣,
where γ o

j = γ �
j + torj /N and po

j = p�
j + toρj /N (all j ≤ k�). Therefore, by virtue

of M4, there exists C > 0 such that

‖f � − fθ‖ ≥ t

(
1 − C

t

N2

[
k�∑

j=1

(|ρj ||rj |1 + |rj |22)
])

.(37)

Furthermore, M5 and (36) imply that, for some C > 0 (depending on τ ),

N ≥ C

(
1 +

k�∑
j=1

(|ρj | + p�
j |rj |1)

)
,(38)

so the following lower bound on ‖f � − fθ‖ is deduced from (37):

‖f � − fθ‖ ≥ t

(
1 − C

∑k�

j=1(|pj − p�
j ||γj − γ �

j |1 + |γj − γ �
j |22)∑k�

j=1(|pj − p�
j | + p�

j |γj − γ �
j |1)

)
.(39)

By mimicking the last part of the proof of Lemma C.1, we obtain that the right-
hand term in (39) is larger than t/2 for n large enough (independently of θ ). Be-
cause t = pθN and (38) holds, there exists c > 0 such that

πk�+1{Bτ
1 } ≤ πk�+1

{
θ ∈ �� :

k�∑
j=1

(|pj − p�
j | + p�

j |γj − γ �
j |1) ≤ c

√
δn

}
,

leading to (34) by virtue of M1. �
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PROOF OF LEMMA C.3. Let τ > 0 and θ = (p,γ ) ∈ �� satisfying ‖f � −
fθ‖ ≤ √

δn. Assume that |γθ − γ �
j |1 ≤ τ for some j ≤ k�, say, j = 1. By construc-

tion of ��, |γ1 − γ �
1 |1 ≤ |γθ − γ �

1 |1 ≤ τ , and τ can be chosen small enough so that
γθ must be different from γ �

j for every j = 2, . . . , k�. We consider without loss of
generality that γθ /∈ {γ �

j : j ≤ k�}.
Lemma C.1 implies that |γj − γ �

j |1 and |pj − p�
j | go to 0 as n ↑ ∞ for every

j = 2, . . . , k�. This yields that |p1 + pθ − p�
1| goes to 0 as n ↑ ∞. Therefore, by

virtue of M5 and (36), there exist c,C > 0 such that, for n large enough,

‖f � − fθ‖ ≥ C

(
k�∑

j=2

|pj − p�
j | +

k�∑
j=2

p�
j |γj − γ �

j |1

+
∣∣∣∣∣(p1 + pθ − p�

1)

+ ∑
(r,s)/∈A

λ0
rs[pθ(γθ − γ �

1 )r (γθ − γ �
1 )s

+ p1(γ1 − γ �
1 )r (γ1 − γ �

1 )s]
∣∣∣∣∣

+ ∑
(r,s)∈A

[pθ |(γθ − γ �
1 )r (γθ − γ �

1 )s |
(40)

+ p1|(γ1 − γ �
1 )r (γ1 − γ �

1 )s |]

+
d∑

l=1

∣∣∣∣∣p1(γ1 − γ �
1 )l + pθ(γθ − γ �

1 )l

+ ∑
(r,s)/∈A

λl
rs[pθ(γθ − γ �

1 )r (γθ − γ �
1 )s

+ p1(γ1 − γ �
1 )r (γ1 − γ �

1 )s]
∣∣∣∣∣
)

− c

(
pθ |γθ − γ �

1 |31 + p1|γ1 − γ �
1 |31 +

k�∑
j=2

|γj − γ �
j |22

)

= CA1 − cA2.

Since |γj − γ �
j |1 goes to 0 for j = 2, . . . , k�,

∑k�

j=2 |γj − γ �
j |22 can be neglected

compared to
∑k�

j=2 p�
j |γj − γ �

j |1 when n is large enough. If CA1 ≤ 2cA2, then
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j=2 |pj − p�
j | ≤ 2cA2, so that |p1 + pθ − p�

1| ≤ 2cA2, which yields in turn∣∣∣∣∣ ∑
(r,s)/∈A

λ0
rs[pθ(γθ − γ �

1 )r (γθ − γ �
1 )s + p1(γ1 − γ �

1 )r(γ1 − γ �
1 )s]

∣∣∣∣∣
+ ∑

(r,s)∈A

[pθ |(γθ − γ �
1 )r (γθ − γ �

1 )s | + p1|(γ1 − γ �
1 )r(γ1 − γ �

1 )s |] ≤ 4cA2.

Consequently, M5 guarantees the existence of C′ > 0 such that

pθ |γθ − γ �
1 |22 + p1|γ1 − γ �

1 |22
≤ C′(pθ |γθ − γ �

1 |31 + p1|γ1 − γ �
1 |31),

which is impossible when τ is chosen small enough. Therefore, CA1 > 2cA2 and
(40) together with M5 give

‖f � − fθ‖ ≥ C

(
k�∑

j=2

|pj − p�
j | +

k�∑
j=2

p�
j |γj − γ �

j |1 + |p1 + pθ − p�
1|

+ pθ |γθ − γ �
1 |22 + p1|γ1 − γ �

1 |22

+
d∑

l=1

∣∣∣∣∣p1(γ1 − γ �
1 )l + pθ(γθ − γ �

1 )l

+ ∑
(r,s)/∈A

λl
rs[pθ(γθ − γ �

1 )r (γθ − γ �
1 )s

+ p1(γ1 − γ �
1 )r (γ1 − γ �

1 )s]
∣∣∣∣∣
)
,

for some C > 0. Finally,

|p1 + pθ − p�
1| +

k�∑
j=2

|pj − p�
j | + p1|γ1 − γ �

1 |22 + pθ |γθ − γ �
1 |22

(41)

+ |p1(γ1 − γ �
1 ) + pθ(γθ − γ �

1 )|1 +
k�∑

j=2

p�
j |γj − γ �

j |1 ≤ C
√

δn.

Therefore, for τ small enough and n large enough,

πk�+1{Bτ
2 } ≤ πk�+1{θ ∈ �� : (41) holds}.

The conditions on pj and γj (j = 2, . . . , k�) and a symmetry argument imply

that the right-hand side term above is bounded by a constant times
√

δn
[(d+1)(k�−1)]
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times wn, where

wn =
∫

1{pθ ≥ p1}1{|p1 + pθ − p�
1| + p1|γ1 − γ �

1 |22
+ pθ |γθ − γ �

1 |22 + |p1(γ1 − γ �
1 )

+ pθ(γθ − γ �
1 )|1 ≤ C

√
δn

}
dπ

γ
k�+1(γ ) dπ

p
k�+1(p).

Note that the conditions in the integrand imply that |γθ − γ1|22 ≤ 4C
√

δn/p1 and
pθ ≥ p�

1/4 as soon as C
√

δn ≤ p�
1/2. Simple calculus (based on M1) yields the

result.

APPENDIX D: PROOF OF PROPOSITION 2

It is readily seen that O2(k� + 1) holds for the chosen approximating set. Let us
focus now on the entropy condition (6).

Constructing δ-brackets. Let δ1 satisfy (5). A convenient value will be chosen
later on. Set j ′ ≤ �δ0/δn�, ε = j ′δn/4 and τ ≥ 1.

Let θ = (p,γ ) ∈ �k�+1 be arbitrarily chosen. Let η ∈ (0, η1) be small enough
so that, for every j ≤ k� + 1, uj = gγj ,η and vj = g

γj ,η
(as defined in M2) sat-

isfy, for all γ ∈ �, Puj−vj
(1 + log2 gγ ) ≤ ε/τ , Pgγ (loguj − logvj )

2 ≤ (ε/τ)2 and
Puj−vj

log2 uj ≤ (ε/τ) log2(ε/τ).

If we define vθ = (1 − ε/τ)(
∑k�+1

j=1 pjvj ) and uθ = (1 + ε/τ)(
∑k�+1

j=1 pjuj ),
then there exists τ ≥ 1 (which depends only on k� and the constant M of M2)
such that the bracket [vθ , uθ ] is an ε-bracket. The repeated use of (

∑
j pjuj/∑

j pjvj ) ≤ maxj uj /vj is the core of the proof we omit.

Control of the entropy. The rule x1(1 − ε/τ) = e−n and xj+1(1 − ε/τ) =
xj (1 + ε/τ) is used for defining a net for the interval (e−n,1). Such a net has
at most [1 + n/ log(1 + ε/τ)/(1 − ε/τ) ≤ 1 + 2nτ/ε] support points. Using re-
peatedly this construction on each dimension of the (k� + 1)-dimensional sim-
plex yields a net for {p ∈ R

k�

+ : minj≤k� pj ≥ e−n,1 − ∑
j≤k� pj ≥ e−n} with at

most O((n/ε)(k
�+1)) support points. We can choose a net for �k�+1 with at most

O(ε−d(k�+1)) support points such that each γ ∈ �k�+1 is within | · |1-distance ε of
some element of the net.

Consequently, the minimum number of ε-brackets needed to cover F k�+1
n is

O(n(k�+1)/ε(d+1)(k�+1)), so there exist constants a, b, c > 0 for which

E

(
F k�+1

n ,
j ′δn

4

)
≤ a logn − b log(j ′δn) + c.(42)

Now, let us note that nj ′δn

log2(j ′δn)
≥ nδn

(log δn) log(j ′δn)
≥ nδn

log2 δn
and consider each term

of the right-hand side of (42) in turn. It is readily seen that a logn ≤ nδn/ log2 δn
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is equivalent to

δ1 ≥ [
(log3 n)n(δ1/a)1/2−1]−1

.(43)

Now, −b log(j ′δn) ≤ nδn

(log δn) log(j ′δn)
if and only if −b log δn ≤ δ1 log3 n. Since

log2 δn ≤ 4 log2 n, both are valid as soon as

δ1 ≥ 2b/ log2 n.(44)

Finally, using again log2 δn ≤ 4 log2 n yields that c ≤ nδn/ log2 δn when

δ1 ≥ 4c/ logn.(45)

When δ1 ≥ a, the largest values of the right-hand sides of (43), (44) and (45) are
achieved at n0. So, δ1 can be chosen large enough (independently of j ′ and n) so
that (5), (43), (44) and (45) hold for all n ≥ n0 and j ′ ≤ �δ0/δn�. This completes
the proof of Proposition 2, because E(F k�+1

n , j ′δn/4) is larger than the left-hand
side of (6) (with j ′ substituted to j ). �
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