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ESTIMATION OF A SEMIPARAMETRIC
TRANSFORMATION MODEL
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Université catholique de Louvain

This paper proposes consistent estimators for transformation parame-
ters in semiparametric models. The problem is to find the optimal transfor-
mation into the space of models with a predetermined regression structure
like additive or multiplicative separability. We give results for the estima-
tion of the transformation when the rest of the model is estimated non- or
semi-parametrically and fulfills some consistency conditions. We propose
two methods for the estimation of the transformation parameter: maximiz-
ing a profile likelihood function or minimizing the mean squared distance
from independence. First the problem of identification of such models is dis-
cussed. We then state asymptotic results for a general class of nonparametric
estimators. Finally, we give some particular examples of nonparametric es-
timators of transformed separable models. The small sample performance is
studied in several simulations.

1. Introduction. Taking transformations of the data has been an integral part
of statistical practice for many years. Transformations have been used to aid inter-
pretability as well as to improve statistical performance. An important contribution
to this methodology was made by Box and Cox (1964) who proposed a paramet-
ric power family of transformations that nested the logarithm and the level. They
suggested that the power transformation, when applied to the dependent variable
in a linear regression setting, might induce normality, error variance homogene-
ity and additivity of effects. They proposed estimation methods for the regression
and transformation parameters. Carroll and Ruppert (1984) applied this and other
transformations to both dependent and independent variables. A number of other
dependent variable transformations have been suggested, for example, the Zellner–
Revankar (1969) transform and the Bickel and Doksum (1981) transform. The
transformation methodology has been quite successful and a large literature exists
on this subject for parametric models; see Carroll and Ruppert (1988). In survival
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analysis there are many applications due to the interpretation of versions of the
model as accelerated failure time models, proportional hazard models, mixed pro-
portional hazard models and proportional odds models; see, for example, Doksum
(1987), Wei (1992), Cheng and Wu (1994), Cheng, Wei and Ying (1995) and van
den Berg (2001).

In this work we concentrate on transformations in a regression setting. For
many data, linearity of covariate effect after transformation may be too strong.
We consider a rather general specification, allowing for nonparametric covariate
effects. Let X be a d-dimensional random vector and Y be a random variable,
and let {(Xi, Yi)}ni=1 be an i.i.d. sample from this population. Consider the esti-
mation of the regression function m(x) = E(Y | X = x). Stone (1980, 1982) and
Ibragimov and Hasminskii (1980) showed that the optimal rate for estimating m

is n−�/(2�+d), with � a measure of the smoothness of m. This rate of convergence
can be very slow for large dimensions d. One way of achieving better rates of con-
vergence is making use of dimension reducing separability structures. The most
common examples are additive or multiplicative modeling. An additive structure
for m, for example, is a regression function of the form m(x) = ∑d

α=1 mα(xα),

where x = (x1, . . . , xd)
�

are the d-dimensional predictor variables and mα are
one-dimensional nonparametric functions. Stone (1986) showed that for such re-
gression curves the optimal rate for estimating m is the one-dimensional rate of
convergence n−�/(2�+1). Thus, one speaks of dimensionality reduction through ad-
ditive modeling.

We examine a semiparametric model that combines a parametric transformation
with the flexibility of an additive nonparametric regression function. Suppose that

�(Y) = G
(
m1(X1), . . . ,md(Xd)

) + ε,(1)

where ε is independent of X, while G is a known function and � is a monotonic
function. Special cases of G are G(z) = H(

∑d
α=1 zα) and G(z) = H(

∏d
α=1zα)

for some strictly monotonic known function H. The general model in which � is
monotonic and G(z) = ∑d

α=1 zα was previously addressed in Breiman and Fried-
man (1985) who suggested estimation procedures based on the iterative backfit-
ting method, which they called ACE. However, they did not provide many re-
sults about the statistical properties of their procedures. Linton, Chen, Wang and
Härdle (1997) considered the model with � = �θ parametric and additive G,

G(z) = ∑d
α=1 zα . They proposed to estimate the parameters of the transforma-

tion � by either an instrumental variable method or a pseudo-likelihood method
based on Gaussian ε. For the instrumental variable method, they assumed that iden-
tification held from some unconditional moment restriction but they did not pro-
vide justification for this from primitive conditions. Unfortunately, our simulation
evidence suggests that both methods work poorly in practice and may even be in-
consistent for many parameter configurations. To estimate the unknown functions
mα they used the marginal integration method of Linton and Nielsen (1995) and,
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consequently, their method cannot achieve the semiparametric efficiency bound
for estimation of θ even in the few cases where Gaussian errors are well defined
and their method is consistent.

We argue that an even more general version of the model (1) is identified follow-
ing results of Ekeland, Heckman and Nesheim (2004). For practical reasons, we
propose estimation procedures only for the parametric transformation case where
�(y) = �θo(y) for some parametric family {�θ(·), θ ∈ �} of transformations
where � ⊂ R

k . This model includes, for example, the Nielsen, Linton and Bickel
(1998) (reversed) proportional hazard model where the baseline hazard is para-
metric and the covariate effect is nonparametric. This is appropriate for certain
mortality studies where there are well established models for baseline mortality
but covariate effects are not so well understood. To estimate the transformation
parameters, we use two approaches. First, a semiparametric profile likelihood esti-
mator (PL) that involves nonparametric estimation of the density of ε, and second,
a mean squared distance from the independence method (MD) based on estimated
c.d.f.’s of (X, ε). Both methods use a profiled estimate of the (separable) nonpara-
metric components of mθ . We use both the integration method and the smooth
backfitting method of Mammen, Linton and Nielsen (1999) to estimate these com-
ponents. The MD estimator involves discontinuous functions of nonparametric es-
timators and we use the theory of Chen, Linton and Van Keilegom (2003) to obtain
its asymptotic properties. We derive the asymptotic distributions of our estimators
under standard regularity conditions, and we show that the estimators of θo are
root-n consistent. The corresponding estimators of the component functions mj(·)
behave as if the parameters θo were known and are also asymptotically normal at
nonparametric rates.

The rest of the paper is organized as follows. In the next section we clarify iden-
tification issues. In Section 3 we introduce the two estimators for the transforma-
tion parameter. Section 4 contains the asymptotic theory of these two estimators.
Additionally, we discuss tools like bootstrap for possible inference on the transfor-
mation parameter. Finally, in Section 5 we study the finite sample performance of
all methods presented and compare the different estimators of the transformation
parameter, as well as the different estimators of the additive components in this
context. A special emphasis is also given to the question of bandwidth choice. All
proofs are deferred to Appendix A and Appendix B.

2. Nonparametric identification. Suppose that

�(Y) = m(X) + ε,(2)

where ε is independent of X with unknown distribution Fε, and the functions �

and m are unknown. Then

FY |X(y, x) = Pr[Y ≤ y|X = x] = Fε

(
�(y) − m(x)

)
.(3)
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Recently Ekeland, Heckman and Nesheim (2004), building on ideas of Horowitz
(1996, 2001), have shown that this model is identifiable up to a couple of normal-
izations under smoothness conditions on (Fε,�,m) and monotonicity conditions
on � and Fε . The basic idea is to note that, for each j ,

∂FY |X(y, x)

∂y

/
∂FY |X(y, x)

∂xj

= − λ(y)

∂m(x)/∂xj

,(4)

where λ(y) = ∂�(y)/∂y. Then by integrating out either y or x, one obtains λ(·)
up to a constant or ∂m(·)/∂xj up to a constant. By further integrations, one ob-
tains �(·) and m(·) up to a constant. One then obtains Fε by inverting the rela-
tionship (3) and imposing the normalizations. Horowitz (1996) indeed covers the
special case where m(x) is linear.

The above arguments show that for identification it is not necessary to restrict �,
m or Fε beyond monotonicity, smoothness and normalization restrictions. How-
ever, the implied estimation strategy can be very complicated; see, for example,
Lewbel and Linton (2006). In addition, the fully nonparametric model does not at
all reduce the curse of dimensionality in comparison with the unrestricted condi-
tional distribution FY |X(y, x), which makes the practical relevance of the identifi-
cation result limited. This is why we consider additive and multiplicative structures
on m and a parametric restriction on �. The unrestricted model could be used for
testing of these assumptions, although we do not pursue this in this paper.

To conclude this section, we discuss briefly some related work on identification
of related models. Linton, Chen, Wang and Härdle (1997) assumed identification
of the model (2) with parametric � and additive m based on an unconditional mo-
ment restriction on the error term rather than full independence. In particular, they
assumed that E[Zε] = 0 for a vector of variables Z. This does not seem to be suf-
ficient to justify identification and, indeed, our simulation evidence supports this
concern. Finally, we mention a nonparametric identification result of Breiman and
Friedman (1985). They defined functions �(·),m1(·), . . . ,md(·) as minimizers of
the least squares objective function

e2(�,m1, . . . ,md) = E[{�(Y) − ∑d
α=1 mα(Xα)}2]

E[�2(Y )](5)

for general random variables Y,X1, . . . ,Xd. They showed the existence of min-
imizers of (5) and showed that the set of minimizers forms a finite dimensional
linear subspace (of an appropriate class of functions) under additional condi-
tions. These conditions were that: (i) �(Y) − ∑d

α=1 mα(Xα) = 0 a.s. implies
that �(Y),mα(Xα) = 0 a.s., α = 1, . . . , d; (ii) E[�(Y)] = 0,E[mα(Xα)] = 0,

E[�2(Y )] < ∞, and E[m2
α(Xα)] < ∞; (iii) The conditional expectation opera-

tors E[�(Y)|Xα], E[mα(Xα)|Y ], α = 1, . . . , d are compact. This result does not
require any model assumptions like conditional moments or independent errors,
but has more limited scope. We shall maintain the model assumption of indepen-
dent errors in the sequel.
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3. Estimating the transformation. In the sequel we consider the model

�θo(Y ) = m(X) + ε,(6)

where {�θ : θ ∈ �} is a parametric family of strictly increasing functions, while
the function m(·) is of unknown form but with a certain predetermined struc-
ture that is sufficient to yield dimensionality reduction. We assume that the error
term ε is independent of X, has distribution F , and E(ε) = 0. The covariate X

is d-dimensional and has compact support X = ∏d
α=1 RXα . Among the many

transformations of interest, the following ones are used most commonly: (Box–

Cox) �θ(y) = yθ−1
θ

(θ �= 0) and �θ(y) = log(y) (θ = 0); (Zellner–Revankar)
�θ(y) = lny + θy2; (Arcsinh) �θ(y) = sinh−1(θy)/θ. The arcsinh transform is
discussed in Johnson (1949) and more recently in Robinson (1991). The main ad-
vantage of the arcsinh transform is that it works for y taking any value, while the
Box–Cox and the Zellner–Revankar transforms are only defined if y is positive.
For these transformations, the error term cannot be normally distributed except for
a few isolated parameters, and so the Gaussian likelihood is misspecified. In fact,
as Amemiya and Powell (1981) point out, the resulting estimators (in the paramet-
ric case) are inconsistent when only n → ∞.

We let � denote a finite dimensional parameter set (a compact subset of R
k) and

M an infinite dimensional parameter set. We assume that M is a vector space of
functions endowed with metric ‖ · ‖M = ‖ · ‖∞. We denote θo ∈ � and mo ∈ M as
the true unknown finite and infinite dimensional parameters. Define the regression
function

mθ(x) = E[�θ(Y )|X = x]
for each θ ∈ �. Note that mθo(·) ≡ mo(·).

We suppose that we have a randomly drawn sample Zi = (Xi, Yi), i = 1, . . . , n,
from model (6). Define, for θ ∈ � and m ∈ M,

ε(θ,m) = �θ(Y ) − m(X),

and let εθ = ε(θ) = ε(θ,mθ) and εo = εθo . When there is no ambiguity, we also
use the notation ε and m to indicate εo and mo. Moreover, let �o = �θo .

In the sequel we will denote by m̂θ any estimator of mθ under either the additive
or the multiplicative model. In the simulation section we will focus on the additive
model and the smooth backfitting estimator, denoted by m̂BF

θ (·). See Mammen,
Linton and Nielsen (1999) for its definition. m̂BF

θ consistently estimates a func-
tion mBF

θ (·), where mBF
θ0

(·) = mθ0(·), but mBF
θ (·) �= mθ(·) for θ �= θ0.

3.1. The profile likelihood (PL) estimator. The method of profile likelihood
has already been applied to many different semiparametric estimation problems.
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The basic idea is simply to replace all unknown expressions of the likelihood func-
tion by their nonparametric (kernel) estimates. We consider �θ(Y ) = mθ(X) + εθ

for any θ ∈ �. Then, the cumulative distribution function is

Pr[Y ≤ y|X] = Pr[�θ(Y ) ≤ �θ(y)|X]
= Pr[εθ ≤ �θ(y) − mθ(X)|X]
= Fε(θ)

(
�θ(y) − mθ(X)

)
,

where Fε(θ)(e) = Fε(θ,mθ )(e) and Fε(θ,m) = P(ε(θ,m) ≤ e), and so

fY |X(y|x) = fε(θ)

(
�θ(y) − mθ(x)

)
�′

θ (y),

where fε(θ) and fY |X are the probability density functions of ε(θ) and of Y

given X. Then, the log likelihood function is
n∑

i=1

{
logfε(θ)

(
�θ(Yi) − mθ(Xi)

) + log�′
θ (Yi)

}
.

Let

f̂ε(θ)(e) := 1

ng

n∑
i=1

K2

(
e − ε̂i (θ)

g

)
,(7)

with ε̂i (θ) = ε̂i (θ,mθ) and ε̂i (θ,m) = εi(θ, m̂) = �θ(Yi) − m̂(Xi). Here, K2 is a
scalar kernel and g is a bandwidth sequence. Then, define the profile likelihood
estimator of θo by

θ̂PL = arg max
θ∈�

n∑
i=1

[
log f̂ε(θ)

(
�θ(Yi) − m̂θ (Xi)

) + log�′
θ (Yi)

]
.(8)

The computation of θ̂PL can be done by grid search in the scalar case and using
derivative-based algorithms in higher dimensions, assuming that the kernels are
suitably smooth.

3.2. Mean square distance from independence (MD) estimator. There are four
good reasons why it is worth providing alternative estimators when it comes to
practical work. First, as we will see in Section 5, the profile likelihood method is
computationally quite expensive. In particular, so far we have not found a reason-
able implementation for the recentered bootstrap. Second, for that approach we do
not only face the typical question of bandwidth choice for the nonparametric part
mθ , we additionally face a bandwidth for the density estimation; see equation (7).
Third, there are some transformation models �θ for which the support of Y de-
pends on the parameter θ and so are nonregular. Finally, although the estimator we
get from the profile likelihood is under certain conditions efficient in the asymp-
totic sense [Severini and Wong (1992)], this tells us little about its finite sample
performance, neither in absolute terms nor in comparison with competitors.
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One possible and computationally attractive competitor is the minimization of
the mean square distance from independence. Why it is computationally more at-
tractive will be explained in Section 5. This method we will introduce here has
been reviewed in Koul (2001) for other problems.

Define, for each θ ∈ � and m ∈ M, the empirical distribution functions

F̂X(x) = 1

n

n∑
i=1

1(Xi ≤ x);

F̂ε(θ)(e) = 1

n

n∑
i=1

1
(̂
εi(θ) ≤ e

);
F̂X,ε(θ)(x, e) = 1

n

n∑
i=1

1(Xi ≤ x)1
(̂
εi(θ) ≤ e

)
,

the moment function

GnMD(θ, m̂θ )(x, e) = F̂X,ε(θ)(x, e) − F̂X(x)F̂ε(θ)(e)

and the criterion function

‖GnMD(θ, m̂θ )‖2
2 =

∫
[GnMD(θ, m̂θ )(x, e)]2 dμ(x, e)(9)

for some probability measure μ. We define an estimator of θ , denoted θ̂MD, as any
approximate minimizer of ‖GnMD(θ, m̂θ )‖2

2 over �. To be precise, let

‖GnMD(θ̂MD, m̂θ̂ )‖2 = inf
θ∈�

‖GnMD(θ, m̂θ )‖2 + op

(
1/

√
n
)
.

There are many algorithms available for computing the optimum of general non-
smooth functions, for example, the Nelder–Mead, and the more recent genetic and
evolutionary algorithms.

We can use in (9) the empirical measure dμn of {Xi, ε̂i(θ)}ni=1, which results in
a criterion function

Qn(θ) = 1

n

n∑
i=1

[GnMD(θ, m̂θ )(Xi, ε̂i(θ))]2.(10)

In the sequel we will denote mθ to indicate either the function E[�θ(Y )|X = ·]
or the function mBF

θ defined above (or the population version of any other estimator
of mθ ). It will be clear from the context which function it represents.

4. Asymptotic properties. We now discuss the asymptotic properties of our
procedures. Note that although nonparametric density estimation with non- or
semiparametrically constructed variables has already been considered in Van Kei-
legom and Veraverbeke (2002) and in Sperlich (2005), their results cannot be ap-
plied directly to our problem. The first one treated the more complex problem of
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censored regression models but have no additional parameter like our θ . Neverthe-
less, as they consider density estimation with nonparametrically estimated resid-
uals, their results come much closer to our needs than the second paper. Neither
offer results on derivative estimation. As we will see now, this we need when we
translate our estimation problem into the estimation framework of Chen, Linton
and Van Keilegom (2003) [CLV (2003) in the sequel].

To be able to apply the results of CLV (2003) for proving the asymptotics of
the profile likelihood, we need an objective function that takes its minimum at
θo. Therefore, we introduce some notation. For any function ϕ, we define ϕ̇ :=
∂ϕ/∂θ and ˙̂ϕ := ∂ϕ̂/∂θ , respectively. Similarly, we define for any function ϕ:
ϕ′(u) := ∂ϕ(u)/∂u and ϕ̂′(u) := ∂ϕ̂(u)/∂u, respectively. The same holds for any
combination of primes and dots.

We use the abbreviated notation s = (m, r, f, g,h), sθ = (mθ , ṁθ , fε(θ), f
′
ε(θ),

ḟε(θ)), so = sθo and ŝθ = (m̂θ , ˙̂mθ, f̂ε(θ), f̂
′
ε(θ),

˙̂f ε(θ)). Then, define for any s =
(m, r, f, g,h),

GnPL(θ, s)

= n−1
n∑

i=1

{
1

f {εi(θ,m)}
(11)

× [g{εi(θ,m)}{�̇θ (Yi) − r(Xi)} + h{εi(θ,m)}]

+ �̇′
θ (Yi)

�′
θ (Yi)

}
,

and let GPL(θ, s) = E[GnPL(θ, s)], and �1PL = ∂
∂θ

GPL(θ, sθ )↓θ=θo .
Note that ‖GPL(θ, sθ )‖ and ‖GnPL(θ, ŝθ )‖ take their minimum at θo and θ̂PL

respectively (where ‖ · ‖ denotes the Euclidean norm). We assume in the Appendix
that the estimator of the nonparametric index obeys a certain asymptotic expan-
sion. Note that, when the index is additively separable, typical candidates are the
marginal integration estimator [Tjøstheim and Auestad (1994), Linton and Nielsen
(1995) and Sperlich, Tjøstheim and Yang (2002) for additive interaction models]
and the smooth backfitting [Mammen, Linton and Nielsen (1999) and Nielsen and
Sperlich (2005)]. Both estimators obey a certain asymptotic expansion. The proof
of such expansions can be found in Lemmas 6.1 and 6.2 of Mammen and Park
(2005) for backfitting and in Linton et al. (1997) for marginal integration. In con-
sequence, we obtain expansions for f̂ε(θ), f̂ ′

ε(θ),
˙̂f ε(θ).

THEOREM 4.1. Under Assumptions A.1–A.1 given in Appendix A, we have

θ̂PL − θo = −�−1
1PLGnPL(θo, so) + op(n−1/2),

√
n(θ̂PL − θo) �⇒ N(0,�PL),

where �PL = �−1
1PL Var{G1PL(θo, so)}(�T

1PL)−1.
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Note that the variance of θ̂PL equals the variance of the estimator of θo that is
based on the true (unknown) values of the nuisance functions mo, ṁo, fε, f

′
ε and

ḟε . For the smooth backfitting, we expect that the profile likelihood estimator is
semiparametrically efficient following Severini and Wong (1992); see also Linton
and Mammen (2005).

We obtain the asymptotic distribution of θ̂MD using a modification of Theo-
rems 1 and 2 of CLV (2003). That result applied to the case where the norm in (9)
was finite dimensional, although their Theorem 1 is true as stated with the more
general norm. Regarding their Theorem 2, we need to modify only condition 2.5
to take account of the fact that GnMD(θ,mθ) is a stochastic process in (x, e). Let
λθ(y) = �̇θ (y) = ∂�θ(y)/∂θ and let λo = λθo . We also note that

∂

∂θ
E[�θ(Y )|X]

⏐⏐⏐�
θ=θo

=
∫

λo

(
�−1

o (mo(X) + e)
)
fε(e) de.

Define the matrix

�1MD(x, e) = fε(e)E
[(

1(X ≤ x) − FX(x)
)(

λo

(
�−1

o

(
mo(X) + e

)) + ṁo(X)
)]

,

and the i.i.d. mean zero and finite variance random variables

Ui =
∫

[1(Xi ≤ x) − FX(x)][1(εi ≤ e) − Fε(e)]�1MD(x, e) dμ(x, e)

+ fX(Xi)

d∑
α=1

vo1α(Xαi, εi)

∫
fε(e)

(
1(Xi ≤ x) − FX(x)

)
× �1MD(x, e) dμ(x, e),

where vo1α(·) is defined in Assumption A.8 in Appendix A.

Let V1MD = E[UiU
�
i ] and �1MD = ∫

�1MD(x, e)�T
1MD(x, e) dμ(x, e).

THEOREM 4.2. Under Assumptions B.1–B.8 given in Appendix B, we have

θ̂MD − θo = −�
−1
1MDUi + op(n−1/2),

√
n(θ̂MD − θo) �⇒ N(0,�MD),

where �MD = �
−1
1MDV1MD�

−1
1MD.

REMARKS. 1. The properties of the resulting estimators of m and its compo-
nents follow from standard calculations as in Linton et al. (1997), Theorem 3: the
asymptotic distributions are as if the parameters θo were known.

2. Bootstrap standard errors. CLV (2003) proposes and justifies the use of the or-
dinary bootstrap. Let {Z∗

i }ni=1 be drawn randomly with replacement from {Zi}ni=1,
and let

G∗
nMD(θ,m)(x, e) = F̂ ∗

Xε(θ)(x, e) − F̂ ∗
X(x)F̂ ∗

ε(θ)(e),
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where F̂ ∗
Xε(θ), F̂

∗
X(x) and F̂ ∗

ε(θ) are computed from the bootstrap data. Let also
m̂∗

θ (·) (for each θ ) be the same estimator as m̂θ (·), but based on the bootstrap data.
Following Hall and Horowitz [(1996), page 897], it is necessary to recenter the
moment condition, at least in the overidentified case. Thus, define the bootstrap
estimator θ̂∗

MD to be any sequence that satisfies

‖G∗
nMD(θ̂∗

MD, m̂∗̂
θ∗

MD
) − GnMD(θ̂MD, m̂θ̂MD

)‖
(12)

= inf
θ∈�

‖G∗
nMD(θ, m̂∗

θ ) − GnMD(θ̂MD, m̂θ̂MD
)‖ + op∗(n−1/2),

where superscript ∗ denotes a probability or moment computed under the bootstrap
distribution conditional on the original data set {Zi}ni=1. The resulting bootstrap
distribution of

√
n(θ̂∗

MD − θ̂MD) can be shown to be asymptotically the same as the
distribution of

√
n(θ̂MD − θo), by following the same arguments as in the proof of

Theorem B in CLV (2003). Similar arguments can be applied to the PL method.
3. Estimated weights. Suppose that we have estimated weights μn(x, e) that

satisfy supx,e |μn(x, e) − μ(x, e)| = op(1). Then the estimator computed with the
estimated weights μn(x, e) has the same distribution theory as the estimator that
used the limiting weights μ(x, e).

4. Note that the asymptotic distributions in Theorems 4.1 and 4.2 do not depend
on the details of the estimator m̂BF

θ (x), only on their population interpretations
through

∂mBF
θ

∂θ
(·) = arg min

m∈Madd

∫ [(
∂mθ

∂θ
(X) − m(X)

)2]
fX(X)dX,(13)

where

Madd =
{
m :m(x) =

d∑
α=1

mα(xα) for some m1(·), . . . ,md(·)
}
.

5. Performance in finite samples. We consider the following data generating
process:

�θ(Y ) = b0 + b1X
2
1 + b2 sin(πX2) + εσe,(14)

where �θ is the Box–Cox transformation, X1,X2 ∼ U [−0.5,0.5]2 and ε drawn
from N(0,1) but restricted on [−3,3]. We study three different models with b0 =
3.0σe + b2 and b1, b2, σe as follows: for model 1, we set b1 = 5.0, b2 = 2.0,
σe = 1.5; for model 2, b1 = 3.5, b2 = 1.5, σe = 1.0; and for model 3, b1 = 2.5,
b2 = 1.0, σe = 0.5. Parameter θo is set to 0.0, 0.5 and 1.0. Note that �θ(Y ) is by
construction always positive in our simulations.

We estimated θ by a grid search on [−0.5,1.5] with step length 0.0625. Our
implementations for estimators of the additive index follow exactly Nielsen and
Sperlich (2005) for the backfitting (BF), and Hengartner and Sperlich (2005) for
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the marginal integration (MI). We just show results for the BF method; results
for marginal integration, further details and more results on the bootstrap can be
found in Sperlich, Linton and Van Keilegom (2007). BF has been chosen as we
know from Sperlich, Linton and Härdle (1999) that backfitting is more reliable
when predicting the whole mean function—which matters more in our context—
whereas MI has some advantages when looking at the marginal impacts. We use
the local constant versions with quartic kernel K(u) = 15

16(1 − u2)2+ and band-
width h1 = h2 = n−1/5h0 for a large range of h0-values. For the density estimator
of the predicted residuals in the PL, we use Silverman’s rule of thumb bandwidth
in each iteration.

5.1. Comparing PL with MD. We first evaluate robustness against bandwidth.
Table 1 gives the means and standard deviations calculated for samples of size
n = 100 from 500 replications for each θo and different bandwidth. Since the pa-
rameter set � = [−0.5,1.5], the simulation results for θo = 0.0 and 1.0 are biased
toward the interior of the �. Note further that there is also an interaction between
bandwidth and θ (the estimated as well as the real one) concerning the smoothness
of the model: using local constant smoothers, the estimates will have more bias for
larger derivatives. On the other hand, both a smaller θ and a larger h0 make the
model “smoother,” and vice versa. We therefore study the bandwidth choice in a
separate simulation.

Table 1 gives the results for any combination of model, bandwidth and method.
If the error distribution is small compared to the estimation error, then the MD is
expected to do worse. Indeed, even though model 3 is the smoothest model and
therefore the easiest estimation problem, for the smallest error standard deviation
(σe = 0.5), the MD does worse. In those cases the PL estimator should perform
better, and so it does. It might be surprising that θ mostly gets better estimated in
model 1 than in model 2 and model 3, where the nonparametric functionals are
much easier to estimate. But notice that for the quality of θ̂ the relation between
estimation error and model error is more important. This is also true for the PL
method. Nevertheless, at least for small samples, none of the estimators seems to
outperform uniformly the other: so the PL has mostly smaller variance, whereas
MD has mostly smaller bias. As expected, for very small samples, the results de-
pend on the bandwidth. For this reason, and due to its importance in practice, we
study this problem more in detail below. We should mention that the PL method is
much more expensive to calculate than the MD.

5.2. Bandwidth choice. Perhaps the simplest approach conceptually would be
to apply plug-in bandwidths. However, this method relies on asymptotic expres-
sions with unknown functions and parameters that are even more complicated to
estimate. Furthermore, in simulations [see Sperlich, Linton and Härdle (1999) or
Mammen and Park (2005)] they turned out not to work satisfactorily. Instead, we
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TABLE 1
Performance of MD and PL: Means (first line), standard deviations (second line) and mean squared error (third line) of θ̂ for different θo , models

[see (14)], and bandwidths hα = h0n−1/5, α = 1,2, for sample size n = 100. All numbers are calculated from 500 replications

Both methods when using BF

MD PL

θo 0.00 0.50 1.0 0.00 0.50 1.0 0.00 0.50 1.0 0.00 0.50 1.0 0.00 0.50 1.0 0.00 0.50 1.0
h0 0.3 0.4 0.5 0.2 0.3 0.4

Model 1

0.02 0.53 0.92 0.02 0.53 0.92 0.03 0.56 0.92 −0.00 0.43 0.83 −0.01 0.43 0.83 −0.00 0.43 0.83
0.11 0.40 0.55 0.12 0.42 0.58 0.12 0.44 0.58 0.07 0.28 0.44 0.08 0.29 0.47 0.08 0.31 0.49
0.01 0.16 0.31 0.01 0.18 0.34 0.02 0.20 0.34 0.01 0.08 0.22 0.01 0.09 0.24 0.01 0.10 0.27

Model 2

0.03 0.57 0.94 0.03 0.58 0.94 0.04 0.60 0.94 −0.00 0.45 0.87 −0.00 0.44 0.85 −0.00 0.45 0.84
0.15 0.44 0.56 0.16 0.46 0.57 0.16 0.47 0.58 0.01 0.31 0.46 0.10 0.32 0.47 0.10 0.33 0.50
0.02 0.20 0.31 0.03 0.22 0.33 0.03 0.23 0.34 0.01 0.10 0.23 0.01 0.10 0.25 0.01 0.11 0.27

Model 3

0.05 0.60 0.96 0.07 0.61 0.96 0.08 0.63 0.97 0.00 0.46 0.87 0.00 0.45 0.86 0.00 0.45 0.86
0.23 0.47 0.54 0.24 0.49 0.57 0.24 0.50 0.58 0.15 0.34 0.46 0.16 0.36 0.48 0.16 0.36 0.49
0.05 0.23 0.29 0.06 0.25 0.33 0.07 0.27 0.34 0.02 0.12 0.23 0.02 0.13 0.26 0.02 0.13 0.26
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TABLE 2
Simulation results for different sample sizes n with cross validation bandwidth to minimize (10) with

respect to θ . Numbers are calculated from 100 replications

MD with cv-bandwidth

n 100 200

θo mean(̂θ) std(̂θ) mse mean(̂θ) std(̂θ) mse

0.0 0.01 0.14 0.02 0.02 0.06 0.01
0.5 0.50 0.53 0.28 0.55 0.29 0.09
1.0 0.83 0.61 0.40 1.0 0.37 0.14

applied the cross-validation method for smooth backfitting developed in Nielsen
and Sperlich (2005) and adapted to our context.

In Table 2 we give the results for minimizing the MD over θ ∈ � choosing
h ∈ R

d by cross validation. Notice that we allow for different bandwidths for each
additive component. The simulations are done as before, but only for model 1 and
based on just 100 simulation runs what is enough to see the following: The results
presented in the table indicate that this method seems to work for any θ . We have
added here the results for the case n = 200. It might surprise that the constant for
“optimal” cv—bandwidths does not only change with θ , but even more with n

(not shown in table). Have in mind that in small samples the second order terms of
bias and variance are still quite influential and, thus, the rate n−1/5 is to be taken
carefully; compare with the above convergence-rate study.

A disadvantage of this cross validation procedure is that it is computationally
rather expensive, and often rather hard to implement in practice. This is especially
true if one wants to combine the cross validation method with the PL method.
Sperlich, Linton and Van Keilegom (2007) discuss some alternative approaches
like choosing θ and the bandwidth, simultaneously minimizing, respectively max-
imizing, the considered criteria function (8), respectively (10). In the same work
are given results on the performance of the suggested bootstrap procedures which
turn out there to perform reasonably well.

5.3. Comparison with existing methods. To our knowledge, the only existing
method comparable to ours has been proposed by Linton, Chen, Wang and Härdle
(1997). They considered the criterion functions

Q3 = (εT
θ Z W ZT εθ ) and Q4 = 1

n

n∑
i=1

Jθ (Yi) − ln
{

1

n
εT
θ εθ

}
,

where εθ = (ε1
θ , . . . , εn

θ )� is the vector of residuals of the transformed model us-
ing θ , while Z = (Z1, . . .Zn)

T are i.i.d. instruments with the property
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E[Ziε
i
θ ] = 0. Here, W is any symmetric positive definite weighting matrix, and

Jθ is the Jacobian of the transformation �θ . When we tried to estimate θ in our
simulation model (14), both criteria gave us always −0.25 for any data generating
θo. This was true for whichever smoother we used [in their article they just work
with the marginal integration estimator]. The problem could come from the fact
that they do not take care for the change of the total variation when transforming
the response variable Y . Therefore, we have tried some modifications norming the
criteria function by the total variation. Then the results change a lot, but still fail
in estimating θ .

APPENDIX A: PROFILE LIKELIHOOD ESTIMATOR

To prove the asymptotic normality of the profile likelihood estimator, we will
use Theorems 1 and 2 of Chen, Linton and Van Keilegom (2003) [abbreviated
by CLV (2003) in the sequel]. Therefore, we need to define the space to which
the nuisance function s = (m, r, f, g,h) belongs. We define this space by HPL =
M2 × C1

1(R)3, where Cb
a(R) (0 < a < ∞, 0 < b ≤ 1, R ⊂ R

k for some k) is the
set of all continuous functions f :R → R for which

sup
y

|f (y)| + sup
y,y′

|f (y) − f (y′)|
|y − y′|b ≤ a,

and where the space M depends on the model at hand. For instance, when the
model is additive, a good choice for M is M = ∑d

α=1 C1
1(RXα), and when the

model is multiplicative, M = ∏d
α=1 C1

1(RXα). We also need to define, according
to CLV (2003), a norm for the space HPL. Let

‖s‖PL = sup max
θ∈�

{‖mθ‖∞,‖rθ‖∞,‖fθ‖2,‖gθ‖2,‖hθ‖2},

where ‖ · ‖∞ (‖ · ‖2) denotes the L∞ (L2) norm. Finally, let’s denote ‖ · ‖ for the
Euclidean norm.

We assume that the estimator m̂θ is constructed based on a kernel function of de-
gree q1, which we assume of the form K1(u1)× · · ·×K1(ud), and a bandwidth h.
The required conditions on K1, q1 and h are mentioned in the list of regularity
conditions given below.

A.1. Assumptions. We assume throughout this appendix that the conditions
stated below are satisfied. Condition A.1–A.7 are regularity conditions on the ker-
nels, bandwidths, distributions FX , Fε , etc., whereas condition A.8 contains prim-
itive conditions on the estimator m̂θ that need to be checked depending on which
model structure and which estimator m̂θ one has chosen.

A.1 The probability density function Kj (j = 1,2) is symmetric and has compact
support,

∫
ukKj (u)du = 0 for k = 1, . . . , qj − 1,

∫
uqj Kj (u) du �= 0 and Kj

is twice continuously differentiable.
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A.2 nh → ∞, nh2q1 → 0, ng6(logg−1)−2 → ∞ and ng2q2 → 0, where q1 and q2
are defined in condition A.1 and q1, q2 ≥ 4.

A.3 The density fX is bounded away from zero and infinity and is Lipschitz con-
tinuous on the compact support X.

A.4 The functions mθ(x) and ṁθ (x) are q1 times continuously differentiable with
respect to the components of x on X × N (θo), and all derivatives up to order
q1 are bounded, uniformly in (x, θ) in X × N (θo).

A.5 The transformation �θ(y) is three times continuously differentiable in both θ

and y, and there exists a δ > 0 such that

E

[
sup

‖θ ′−θ‖≤δ

∣∣∣∣ ∂k+l

∂yk ∂θ l
�θ ′(Y )

∣∣∣∣] < ∞

for all θ in � and all 0 ≤ k + l ≤ 3.
A.6 The distribution Fε(θ)(y) is three times continuously differentiable with re-

spect to y and θ , and

sup
θ,y

∣∣∣∣ ∂k+l

∂yk ∂θ l
Fε(θ)(y)

∣∣∣∣ < ∞

for all 0 ≤ k + l ≤ 2.
A.7 For all η > 0, there exists ε(η) > 0 such that

inf‖θ−θo‖>η
‖GPL(θ, sθ )‖ ≥ ε(η) > 0.

Moreover, the matrix �1PL is of full (column) rank.
A.8 The estimators m̂o and ˙̂mo can be written as

m̂o(x) − mo(x) = 1

nh

n∑
i=1

d∑
α=1

K1

(
xα − Xαi

h

)
vo1α(Xαi, εi)

+ 1

n

n∑
i=1

vo2(Xi, εi) + v̂o(x)

and

˙̂mo(x) − ṁo(x) = 1

nh

n∑
i=1

d∑
α=1

K1

(
xα − Xαi

h

)
wo1α(Xαi, εi)

+ 1

n

n∑
i=1

wo2(Xi, εi) + ŵo(x),

where supx |v̂o(x)| = op(n−1/2), supx |ŵo(x)| = op(n−1/2), the functions
vo1α(x, e) and wo1α(x, e) are q1 times continuously differentiable with re-
spect to the components of x, their derivatives up to order q1 are bounded,
uniformly in x and e, E(vo2(X, ε)) = 0 and E(wo2(X, ε)) = 0. Moreover,
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with probability tending to 1, m̂θ , ˙̂mθ ∈ M, supθ∈� ‖m̂θ − mθ‖ = op(1),
supθ∈� ‖ ˙̂mθ − ṁθ‖ = op(1), ‖m̂θ − mθ‖ = op(n−1/4) and ‖ ˙̂mθ − ṁθ‖ =
op(n−1/4) uniformly over all θ with ‖θ − θo‖ = o(1), and

sup
x

|( ˙̂mθ − ṁθ )(x) − ( ˙̂mo − ṁo)(x)| = op(1)‖θ − θo‖ + Op(n−1/2)

for all θ with ‖θ − θo‖ = o(1). Finally, the space M satisfies∫ √
logN(λ,M,‖ · ‖∞) dλ < ∞, where N(λ,M,‖ · ‖∞) is the covering

number with respect to the norm ‖ · ‖∞ of the class M, that is, the mini-
mal number of balls of ‖ · ‖∞-radius λ needed to cover M.

A.2. Proof of Theorem 4.1. The proof consists of verifying the conditions
given in Theorem 1 (regarding consistency) and Theorem 2 (regarding asymptotic
normality) in CLV (2003). In Lemmas A.4–A.11 below, we verify these condi-
tions. The result then follows immediately from those lemmas, assuming that the
primitive conditions on m̂θ and the regularity conditions stated in A.1–A.8 hold
true. Before checking the conditions of these theorems, we first need to show three
preliminary Lemmas A.1–A.3 which give asymptotic expansions for the estima-
tors fε , f̂ ′

ε and ˙̂f ε . The proofs of all lemmas are deferred to Section A.3.

LEMMA A.1. For all y ∈ R,

f̂ε(y) − fε(y) = n−1
n∑

i=1

K2g(εi − y) − fε(y)

+ f ′
ε(y)n−1

n∑
i=1

[
d∑

α=1

vo1α(Xαi, εi)fXα(Xαi) + vo2(εi)

]
+ r̂o(y),

where supy |̂ro(y)| = op(n−1/2), and where the functions vo1α and vo2 are defined
in Assumption A.8. Moreover,

sup
y

sup
θ∈�

∣∣f̂ε(θ)(y) − fε(θ)(y)
∣∣ = op(1)

and

sup
y

sup
‖θ−θo‖≤δn

∣∣f̂ε(θ)(y) − fε(θ)(y)
∣∣ = op(n−1/4)

for all δn = o(1).

In a similar way as for Lemma A.1, we can prove the following two results. The
proofs are omitted.
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LEMMA A.2. For all y ∈ R,

˙̂f ε(y) − ḟε(y) = (ng)−1
n∑

i=1

K ′
2g(εi − y)

(
�̇θ (Yi) − ṁθ (Xi)

) − ḟε(y)

+ ḟ ′
ε(y)n−1

n∑
i=1

[
d∑

α=1

vo1α(Xαi, εi)fXα(Xαi) + vo2(εi)

]

+ f ′
ε(y)n−1

n∑
i=1

[
d∑

α=1

wo1α(Xαi, εi)fXα(Xαi) + wo2(εi)

]
+ r̂o(y),

where supθ,y |̂ro(y)| = op(n−1/2). Moreover,

sup
y

sup
θ∈�

∣∣ ˙̂f ε(θ)(y) − ḟε(θ)(y)
∣∣ = op(1)

and

sup
y

sup
‖θ−θo‖≤δn

∣∣ ˙̂f ε(θ)(y) − ḟε(θ)(y)
∣∣ = op(n−1/4)

for all δn = o(1).

LEMMA A.3. For all y ∈ R,

f̂ ′
ε(y) − f ′

ε(y) = (ng)−1
n∑

i=1

K ′
2g(y − εi) − f ′

ε(y)

+ f ′′
ε (y)n−1

n∑
i=1

[
d∑

α=1

vo1α(Xαi, εi)fXα(Xαi) + vo2(εi)

]
+ r̂o(y),

where supy |̂ro(y)| = op(n−1/2). Moreover,

sup
y

sup
θ∈�

∣∣f̂ ′
ε(θ)(y) − f ′

ε(θ)(y)
∣∣ = op(1)

and

sup
y

sup
‖θ−θo‖≤δn

∣∣f̂ ′
ε(θ)(y) − f ′

ε(θ)(y)
∣∣ = op(n−1/4)

for all δn = o(1).

LEMMA A.4. Uniformly for all θ ∈ �, GPL(θ, s) is continuous (with respect
to the ‖ · ‖PL-norm) in s at s = sθ .
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LEMMA A.5.

sup
y

sup
θ∈�

∣∣f̂ε(θ)(y) − fε(θ)(y)
∣∣ = op(1),

sup
y

sup
θ∈�

∣∣ ˙̂f ε(θ)(y) − ḟε(θ)(y)
∣∣ = op(1)

and

sup
y

sup
θ∈�

∣∣f̂ ′
ε(θ)(y) − f ′

ε(θ)(y)
∣∣ = op(1).

LEMMA A.6. For all sequences of positive numbers δn = o(1),

sup
θ∈�,‖s−sθ‖PL≤δn

‖GnPL(θ, s) − GPL(θ, s)‖ = op(1).

LEMMA A.7. The ordinary partial derivative in θ of GPL(θ, sθ ), denoted
�1PL(θ, sθ ), exists in a neighborhood of θo, is continuous at θ = θo, and the matrix
�1PL = �1PL(θo, so) is of full (column) rank.

For any θ ∈ �, we say that GPL(θ, s) is pathwise differentiable at s in the di-
rection [s − s] if {s + τ(s − s) : τ ∈ [0,1]} ⊂ HPL and limτ→0[GPL(θ, s + τ(s −
s)) − GPL(θ, s)]/τ exists; we denote the limit by �2PL(θ, s)[s − s].

LEMMA A.8. The pathwise derivative �2PL(θ, sθ ) of GPL(θ, sθ ) exists in all
directions s − sθ and satisfies the following:

(i) ‖GPL(θ, s) − GPL(θ, sθ ) − �2PL(θ, sθ )[s − sθ ]‖ ≤ c‖s − sθ‖2
PL

for all θ with ‖θ −θo‖ = o(1), all s with ‖s − sθ‖PL = o(1), some constant c < ∞;

(ii) ‖�2PL(θ, sθ )[̂sθ − sθ ] − �2PL(θo, so)[̂so − so]‖
≤ c‖θ − θo‖ × op(1) + Op(n−1/2)

for all θ with ‖θ − θo‖ = o(1), where ŝ = (m̂, ˙̂m, f̂ε,
˙̂f ε, f̂

′
ε).

LEMMA A.9. With probability tending to one, f̂ε,
˙̂f ε, f̂

′
ε ∈ C1

1(R). Moreover,

sup
y

sup
‖θ−θo‖≤δn

∣∣f̂ε(θ)(y) − fε(θ)(y)
∣∣ = op(n−1/4),

sup
y

sup
‖θ−θo‖≤δn

∣∣ ˙̂f ε(θ)(y) − ḟε(θ)(y)
∣∣ = op(n−1/4)

and

sup
y

sup
‖θ−θo‖≤δn

∣∣f̂ ′
ε(θ)(y) − f ′

ε(θ)(y)
∣∣ = op(n−1/4),

for any δn = o(1).
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LEMMA A.10. For all sequences of positive numbers {δn} with δn = o(1),

sup
‖θ−θo‖≤δn,‖s−sθ‖PL≤δn

‖GnPL(θ, s) − GPL(θ, s) − GnPL(θo, so)‖ = op(n−1/2).

LEMMA A.11.
√

n{GnPL(θo, so) + �2PL(θo,so)[̂s − so]} �⇒ N(0,Var{G1PL(θo, so)}).

A.3. Proofs of Lemmas A.1–A.11.

PROOF OF LEMMA A.1. Write

f̂ε(y) − fε(y)

= 1

ng

n∑
i=1

K ′
2g(εi − y)(̂εi − εi)

+ 1

n

n∑
i=1

K2g(εi − y) − fε(y) + op(n−1/2)

= − 1

ng

n∑
i=1

K ′
2g(εi − y)

{
1

n

n∑
k=1

d∑
α=1

K1h(Xαi − Xαk)vo1α(Xαk, εk)(15)

+ 1

n

n∑
k=1

vo2(εk) + v̂o(Xi)

}

+ 1

n

n∑
i=1

K2g(εi − y) − fε(y) + op(n−1/2)

= 1

n2

d∑
α=1

n∑
i,k=1

vo1α(Xαk, εk)ϕnik + f ′
ε(y)

1

n

n∑
k=1

vo2(εk)

+ 1

n

n∑
i=1

K2g(εi − y) − fε(y) + op(n−1/2),(16)

where ϕnik = − 1
g
K ′

2g(εi − y)K1h(Xαi − Xαk). Since E(ϕnik|Xk) =
f ′

ε(y)fXα(Xαk) + op(1), it follows that (16) equals

f ′
ε(y)

1

n

n∑
k=1

[
d∑

α=1

vo1α(Xαk, εk)fXα(Xαk) + vo2(εk)

]

+ 1

n

n∑
i=1

K2g(εi − y) − fε(y) + op(n−1/2).
�
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PROOF OF LEMMA A.4. Note that

GPL(θ, s)

= E

[
1

f (ε(θ,m))

{
g(ε(θ,m))

(
�̇θ (Y ) − r(X)

) + h(ε(θ,m))
} + �̇′

θ (Y )

�′
θ (Y )

]
,

which is continuous in s at s = sθ , provided conditions A.4–A.6 are satisfied. �

PROOF OF LEMMA A.5. This follows from Lemmas A.1–A.3. �

PROOF OF LEMMA A.6. The proof is similar to (but easier than) that of
Lemma A.10. We therefore omit the proof. �

PROOF OF LEMMA A.7. This follows from Assumption A.7. �

PROOF OF LEMMA A.8. Some straightforward calculations show that

�2PL(θ, sθ )[̂sθ − sθ ]
= lim

τ→0

1

τ

{
GPL

(
θ, sθ + τ (̂sθ − sθ )

) − GPL(θ, sθ )
}

= E

[{f ′
ε(θ)(εθ )

f 2
ε(θ)(εθ )

(m̂θ − mθ)(X) − (f̂ε(θ) − fε(θ))(εθ )

f 2
ε(θ)(εθ )

}

×
{
f ′

ε(θ)(εθ )[�̇θ (Y ) − ṁθ (X)] + ḟε(θ)(εθ )

}
(17)

+ 1

fε(θ)(εθ )

{ − f ′′
ε(θ)(εθ )[�̇θ (Y ) − ṁθ (X)](m̂θ − mθ)(X)

+ (
f̂ ′

ε(θ) − f ′
ε(θ)

)
(εθ )[�̇θ (Y ) − ṁθ (X)]

− f ′
ε(θ)(εθ )( ˙̂mθ − ṁθ )(X)

+ ( ˙̂f ε(θ) − ḟε(θ)

)
(εθ ) − ḟ ′

ε(θ)(εθ )(m̂θ − mθ)(X)
}]

.

The first part of Lemma A.8 now follows immediately. The second part follows
from the uniform consistency of m̂, ˙̂m, f̂ε(θ), ˙̂f ε(θ) and f̂ ′

ε(θ), and from the fact
that

sup
x

|( ˙̂mθ − ṁθ )(x) − ( ˙̂mo − ṁo)(x)| = op(1)‖θ − θo‖ + Op(n−1/2),

which follows from Assumption A.8. �

PROOF OF LEMMA A.9. This follows from Lemmas A.1–A.3. �
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PROOF OF LEMMA A.10. We will make use of Theorem 3 in Chen, Linton
and Van Keilegom (2003). According to this result, we need to prove that

(i)

E

[
sup

‖θ ′−θ‖<η,‖s′−s‖PL<η

|gPL(X,Y, θ ′, s′) − gPL(X,Y, θ, s)|2
]

≤ Kη2,

for all (θ, s) ∈ � × HPL, all η > 0 and for some K > 0.
(ii) ∫ ∞

0

√
logN(λ,HPL,‖ · ‖PL) dλ < ∞.

Part (ii) follows from Corollary 2.7.4 in van der Vaart and Wellner (1996), together
with Assumption A.8. Part (i) follows from the mean value theorem, together with
the differentiability conditions imposed on the functions of which the function gPL
is composed. �

PROOF OF LEMMA A.11. Combining the formula of �2PL(θo, so) given in
(17) with the representations of f̂ε(θ), ˙̂f ε(θ) and f̂ ′

ε(θ) given in Lemmas A.1–A.3,
we obtain after some calculations

GnPL(θo, so) + �2PL(θo, so)[̂s − so]

= n−1
n∑

i=1

{
1

fε(εi)
[f ′

ε(εi){�̇o(Yi) − ṁo(Xi)} + ḟε(εi)] + �̇′
o(Yi)

�′
o(Yi)

}

+ E

[
− 1

f 2
ε (ε)

{
1

ng

n∑
i=1

K2

(
εi − ε

g

)
− fε(ε)

}

× {f ′
ε(ε)[�̇o(Y ) − ṁo(X)] + ḟε(ε)}(18)

+ 1

fε(ε)

{
− 1

ng2

n∑
i=1

K ′
2

(
εi − ε

g

)
− f ′

ε(ε)

}
{�̇o(Y ) − ṁo(X)}

+ 1

fε(ε)

{
1

ng2

n∑
i=1

K ′
2

(
εi − ε

g

)(
�̇o(Yi) − ṁo(Xi)

) − ḟε(ε)

}]

+ op(n−1/2).

We next show that

E

[
ḟε(ε)

fε(ε)

]
= 0,(19)

E

[
1

fε(ε)

{
1

ng2

n∑
i=1

K ′
2

(
εi − ε

g

)(
�̇o(Yi) − ṁo(Xi)

) − ḟε(ε)

}]
= 0(20)
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and

E

[
− 1

f 2
ε (ε)

{
1

ng

n∑
i=1

K2

(
εi − ε

g

)}
{f ′

ε(ε)[�̇o(Y ) − ṁo(X)] + ḟε(ε)}
(21)

+ 1

fε(ε)

{
− 1

ng2

n∑
i=1

K ′
2

(εi − ε

g

)}
{�̇o(Y ) − ṁo(X)}

]
= 0.

It then follows that only the first term on the right-hand side of (18) [i.e., the term
GnPL(θo, so)] is nonzero, from which the result follows. We start by showing (19):

E

[
ḟε(ε)

fε(ε)

]
=

∫
ḟε(y) dy = ∂

∂θ

∫
fε(θ)(y) dy

⏐⏐⏐�
θ=θo

= 0,

since
∫

fε(θ)(y) dy = 1. Next, consider (20). The left-hand side equals

1

ng2

n∑
i=1

(
�̇o(Yi) − ṁo(Xi)

)
E

[
1

fε(ε)
K ′

2

(
εi − ε

g

)]
− E

[
ḟε(ε)

fε(ε)

]

= 1

ng

n∑
i=1

(
�̇o(Yi) − ṁo(Xi)

) ∫
K ′

2(u) du = 0.

Finally, for (22), note that the left-hand side can be written as

1

ng

n∑
i=1

E

[
1

f 2
ε (ε)

{
−K2

(
εi − ε

g

)
d

dθ
fε(θ)(ε(θ)) ↓θ=θo

+ d

dθ
K2

(
εi − ε(θ)

g

)⏐⏐⏐�
θ=θo

fε(ε)

}]

= 1

ng

n∑
i=1

E

[
d

dθ

K2((εi − ε(θ))/g)

fε(θ)(ε(θ))

⏐⏐⏐�
θ=θo

]

= 1

ng

n∑
i=1

d

dθ

∫
K2

(
εi − e

g

)
de = 0,

since
∫

K2(
εi−e

g
) de = g. This finishes the proof. �

APPENDIX B: MD ESTIMATOR

B.1. Assumptions. We assume throughout this appendix that Assumptions
B.1–B.8 given below are valid.

B.1 The probability density function K1 is symmetric and has compact support,∫
ukK1(u) du = 0 for k = 1, . . . , q1 − 1,

∫
uq1K1(u) du �= 0 and K1 is twice

continuously differentiable.
B.2 nh → ∞ and nh2q1 → 0, where q1 is defined in condition B.1 and q1 ≥ 4.
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B.3 The density fX is bounded away from zero and infinity and is Lipschitz con-
tinuous on the compact support X.

B.4 The function mθ(x) is q1 times continuously differentiable with respect to
the components of x on X × N (θo), and all derivatives up to order q1 are
bounded, uniformly in (x, θ) in X × N (θo).

B.5 The transformation �θ(y) is twice continuously differentiable in both θ

and y, and there exists a δ > 0 such that

E

[
sup

‖θ−θ ′‖≤δ

|λθ ′(Y )|k
]

< ∞

for all k and for all θ in �.
B.6 The distribution Fε(y) is twice continuously differentiable with respect to y,

and supy |f ′
ε(y)| < ∞.

B.7 For all η > 0, there exists ε(η) > 0 such that

inf‖θ−θo‖>η
‖GMD(θ,mθ)‖2 ≥ ε(η) > 0.

Moreover, the matrix �1MD(x, e) (defined in Section 4) is of full (column)
rank for a set of positive μ-measure (x, e).

B.8 The estimator m̂o can be written as

m̂o(x) − mo(x) = 1

nh

n∑
i=1

d∑
α=1

K1

(
xα − Xαi

h

)
vo1α(Xαi, εi)

+ 1

n

n∑
i=1

vo2(Xi, εi) + v̂o(x),

where supx |v̂o(x)| = op(n−1/2), the function vo1α(x, e) is q1 times contin-
uously differentiable with respect to the components of x, their derivatives
up to order q1 are bounded, uniformly in x and e, E(vo2(X, ε)) = 0. More-
over, with probability tending to 1, m̂θ ∈ M, supθ∈� ‖m̂θ − mθ‖ = op(1),
‖m̂θ − mθ‖ = op(n−1/4) uniformly over all θ with ‖θ − θo‖ = o(1), and

sup
x

|(m̂θ − mθ)(x) − (m̂o − mo)(x)| = op(1)‖θ − θo‖ + Op(n−1/2)

for all θ with ‖θ − θo‖ = o(1). Finally, the space M satisfies∫ √
logN(λ,M,‖ · ‖∞) dλ < ∞.

B.2. Proof of Theorem 4.2. We use a generalization of Theorems 1 (about
consistency) and 2 (about asymptotic normality) of Chen, Linton and Van Kei-
legom (2003), henceforth, CLV (2003). Below, we state the primitive conditions
under which these results are valid (see Lemmas B.1–B.6). Their proof is given in
Section B.3.



SEMIPARAMETRIC TRANSFORMATION MODEL 709

Given these lemmas, we have the desired result. We just reprieve the last part of
the argument because it is slightly different from CLV (2003) due to the different
norm. Note that

Fε(θ,m)(e) = Pr[�θ(Y ) − m(X) ≤ e]
= Pr

[
Y ≤ �−1

θ

(
m(X) + e

)]
= Pr

[
ε ≤ �o

(
�−1

θ

(
m(X) + e

)) − mo(X)
]

= EFε

[
�o

(
�−1

θ

(
m(X) + e

)) − mo(X)
]
.

Likewise, FX,ε(θ,m) satisfies

FX,ε(θ,m)(x, e) = Pr[X ≤ x,�θ(Y ) − m(X) ≤ e]
= E Pr

[
X ≤ x, ε ≤ �o

(
�−1

θ

(
m(X) + e

)) − mo(X)
]

= E
[
1(X ≤ x)Fε

[
�o

(
�−1

θ

(
m(X) + e

)) − mo(X)
]]

.

Define

GMD(θ,m)(x, e) = FX,ε(θ,m)(x, e) − FX(x)Fε(θ,m)(e).

Define now the stochastic processes

Ln(x, e) = √
n[F̂X,ε(x, e) − FX,ε(x, e)]

−FX(x)
√

n[F̂ε(e) − Fε(e)] − Fε(e)
√

n[F̂X(x) − FX(x)]
and

Ln(θ)(x, e) = Ln(x, e) + �1MD(x, e)(θ − θo) + [�2MD(θo,mo)(m̂ − mo)](x, e),

where for any θ ∈ � and any m,m ∈ M, �2MD(θ,m)(m − m)(x, e) is defined
in the following way. We say that GMD(θ,m) is pathwise differentiable at m

in the direction [m − m] at (x, e) if {m + τ(m − m) : τ ∈ [0,1]} ⊂ M and
limτ→0[GMD(θ,m+ τ(m−m))(x, e)−GMD(θ,m)(x, e)]/τ exist; we denote the
limit by �2MD(θ,m)[m − m](x, e).

A consequence of Lemmas B.1–B.6 is that

sup
‖θ−θo‖≤δn

‖GnMD(θ, m̂θ ) − Ln(θ)‖2
2 = op(n−1/2),

which means we can effectively deal with the minimizer of Ln(θ), say, θ. Note
that θ has an explicit solution and, indeed,

√
n(θ − θo) = −

[∫
�1MD�1MD

�(x, e) dμ(x, e)

]−1

×
∫

[Ln(x, e) + [�2MD(θo,mo)(m̂ − mo)](x, e)]
× �1MD(x, e) dμ(x, e).

Then apply Lemma B.6 below to get the desired result.
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LEMMA B.1. Uniformly for all θ ∈ �, GMD(θ,m) is continuous (with respect
to the ‖ · ‖∞-norm) in m at m = mθ .

LEMMA B.2. For all sequences of positive numbers δn = o(1),

sup
θ∈�,‖m−mθ‖M≤δn

‖GnMD(θ,m) − GMD(θ,m)‖2 = op(1).

LEMMA B.3. For all (x, e), the ordinary partial derivative in θ of
GMD(θ,mθ)(x, e), denoted �1MD(θ,mθ)(x, e), exists in a neighborhood of θo,

is continuous at θ = θo, and the matrix �1MD(x, e) = �1MD(θo,mo)(x, e) is of full
(column) rank for a set of positive μ-measure (x, e).

LEMMA B.4. For μ-all (x, e), the pathwise derivative �2MD(θ,mθ)(x, e) of
GMD(θ,mθ)(x, e) exists in all directions m − mθ and satisfies the following:

(i) ‖GMD(θ,m) − GMD(θ,mθ) − �2MD(θ,mθ)[m − mθ ]‖2 ≤ c‖m − mθ‖2
M

for all θ with ‖θ − θo‖ = o(1), all m with ‖m − mθ‖M = o(1), some constant
c < ∞;

(ii) ‖�2MD(θ,mθ)[m̂θ − mθ ] − �2MD(θo,mo)[m̂ − mo]‖2

≤ c‖θ − θo‖ × op(1) + Op(n−1/2)

for all θ with ‖θ − θo‖ = o(1).

LEMMA B.5. For all sequences of positive numbers {δn} with δn = o(1),

sup
‖θ−θo‖≤δn,‖m−mθ‖M≤δn

‖GnMD(θ,m) − GMD(θ,m) − GnMD(θo,mo)‖2

= op(n−1/2).

LEMMA B.6.
√

n

∫
{GnMD(θo,mo) + �2MD(θo,mo)[m̂ − mo]}(x, e)�1MD(x, e) dμ(x, e)

�⇒ N(0,V1MD).

B.3. Proofs of Lemmas B.1–B.6.

PROOF OF LEMMA B.1. This follows from the representation

GMD(θ,mθ)(x, e)
(22)

= E
[[1(X ≤ x) − FX(x)]Fε

[
�o

(
�−1

θ

(
mθ(X) + e

)) − mo(X)
]]

,

and the smoothness of Fε,�o and �−1
θ . �
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PROOF OF LEMMA B.2. Define the linearization

GL
nMD(θ,m)(x, e) = F̂X,ε(θ,m)(x, e) − FX(x)F̂ε(θ,m)(e)

− F̂X(x)Fε(θ,m)(e) + FX(x)Fε(θ,m)(e).

By the triangle inequality, we have

sup
θ∈�,‖m−mθ‖M≤δn

‖GnMD(θ,m) − GMD(θ,m)‖2

≤ sup
θ∈�,‖m−mθ‖M≤δn

‖GL
nMD(θ,m) − GMD(θ,m)‖2

+ sup
θ∈�,‖m−mθ‖M≤δn

‖GnMD(θ,m) − GL
nMD(θ,m)‖2.

We must show that both terms on the right-hand side are op(1). Define the sto-
chastic processes

τnε(θ,m, e) = F̂ε(θ,m)(e) − Fε(θ,m)(e)

and

τnXε(θ,m,x, e) = F̂X,ε(θ,m)(x, e) − FX,ε(θ,m)(x, e)

for each θ ∈ �, m ∈ M, x ∈ R
k, e ∈ R. We claim that

sup
θ∈�,‖m−mθ‖M≤δn,e∈R

|τnε(θ,m, e)| = op(1),(23)

sup
θ∈�,‖m−mθ‖M≤δn,x∈Rk,e∈R

|τnXε(θ,m,x, e)| = op(1),(24)

which implies that

sup
θ∈�,‖m−mθ‖M≤δn

‖GL
nMD(θ,m) − GL

MD(θ,m)‖2

= sup
θ∈�,‖m−mθ‖M≤δn

∥∥(
F̂X,ε(θ,m) − FX,ε(θ,m)

)
− FX

(
F̂ε(θ,m) − Fε(θ,m)

) − Fε(θ,m)(F̂X − FX)
∥∥

2

≤
[

sup
θ∈�,‖m−mθ‖M≤δn,e∈R

|τnXε(θ,m, e)|

+ sup
θ∈�,‖m−mθ‖M≤δn,x∈Rk,e∈R

|τnε(θ,m,x, e)| + sup
x∈Rk

|F̂X(x) − FX(x)|
]

= op(1).

Similarly, supθ∈�,‖m−mθ‖M≤δn
‖GnMD(θ,m)−GL

nMD(θ,m)‖2 = op(1). The proof
of (23) and (24) is based on Theorem 3 in CLV (2003). We omit the details because
it is similar to our proof of Lemma B.5. �
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PROOF OF LEMMA B.3. Below, we calculate �1MD(x, e) = �1MD(θo,mo) ×
(x, e). In a similar way �1MD(θ,mθ)(x, e) can be obtained. First, we have

∂

∂θ
Fε(θ,mθ )(e)

⏐⏐⏐�
θ=θo

= E
∂

∂θ
Fε

[
�o

(
�−1

θ

(
mθ(X) + e

)) − mo(X)
]⏐�

θ=θo

= fε(e)E
∂

∂θ
�o

(
�−1

θ

(
mθ(X) + e

))⏐⏐⏐�
θ=θo

= fε(e)E�′
o

(
�−1

o

(
mo(X) + e

)) ∂

∂θ

(
�−1

θ

(
mθ(X) + e

))⏐⏐⏐�
θ=θo

= fε(e)E�′
o

(
�−1

o

(
mo(X) + e

))[ λo(�
−1
o (mo(X) + e))

�′
o(�

−1
o (mo(X) + e))

+ 1

�′
o(�

−1
o (mo(X) + e))

ṁo(X)

]
= fε(e)E

[
λo

(
�−1

o

(
mo(X) + e

)) + mo(X)
]

by the chain rule. Similarly,

∂

∂θ
FX,ε(θ,mθ )(x, e)

⏐⏐⏐�
θ=θo

= fε(e)E
[
1(X ≤ x)

{
λo

(
�−1

o

(
mo(X) + e

)) + ṁo(X)
}]

.

Therefore,

�1MD(x, e) = �1MD(θo,mo)(x, e) = ∂GMD(θ,mθ)

∂θ
(x, e)

⏐⏐⏐�
θ=θo

= ∂

∂θ
FX,ε(θ,mθ )(x, e) − FX(x)

∂

∂θ
Fε(θ,mθ )(e)(25)

= fε(e)E
[(

1(X ≤ x) − FX(x)
)

× (
λo

(
�−1

o

(
mo(X) + e

)) + ṁo(X)
)]

. �

PROOF OF LEMMA B.4. By the law of iterated expectation and partial differ-
entiation, we obtain that

[�2MD(θo,mo)(m − mo)](x, e)

= ∂GMD(θo,mo + t (m − mo))

∂t
(x, e)

⏐⏐⏐�
t=0

= fε(e)E
[(

1(X ≤ x) − FX(x)
)(

m(X) − mo(X)
)]

.
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Similarly, the formula of [�2MD(θ,mθ)(m − mθ)](x, e) is given by

[�2MD(θ,mθ)(m − mθ)](x, e)

= lim
τ→0

1

τ
E

[{1(X ≤ x) − FX(x)}fε

[
�o

{
�−1

θ

(
mθ(X) + e

)} − mo(X)
]

× [
�o

{
�−1

θ

(
mθ(X) + τ(m − mθ)(X) + e

)}
− �o

{
�−1

θ

(
mθ(X) + e

)}]]
.

The two inequalities in the statement of Lemma B.4 now follow easily, using
the consistency of m̂θ and the fact that supx |(m̂θ − mθ)(x) − (m̂o − mo)(x)| =
op(1)‖θ − θo‖ + Op(n−1/2). �

PROOF OF LEMMA B.5. Define the stochastic processes

νnε(θ,m, e) = √
n
[
F̂ε(θ,m)(e) − Fε(θ,m)(e)

]
and

νnXε(θ,m,x, e) = √
n
[
F̂X, ε(θ,m)(x, e) − FX,ε(θ,m)(x, e)

]
for each θ :‖θ − θo‖ ≤ δn and m :‖m − mθ‖M ≤ δn, x ∈ R

k , e ∈ R. We claim that

sup
‖θ−θo‖≤δn,‖m−mθ‖M≤δn,e∈R

|νnε(θ,m, e)| = op(1),(26)

sup
‖θ−θo‖≤δn,‖m−mθ‖M≤δn,x∈Rd ,e∈R

|νnXε(θ,m,x, e)| = op(1).(27)

The proof of these results are based on Theorem 3 in CLV (2003). We have to show
that their condition (3.2) is satisfied, which requires in our case [with g(Z, θ,m) =
1(ε(θ,m) ≤ e) − E1(ε(θ,m) ≤ e) and g(Z, θ,m) = 1(X ≤ x)1(ε(θ,m) ≤ e) −
E1(X ≤ x)1(ε(θ,m) ≤ e)] that(

E

[
sup

(θ ′,m′):‖θ ′−θ‖<δ,‖m′−m‖M<δ

|g(Z, θ ′,m′) − g(Z, θ,m)|r
])1/r

≤ Kδs

for all (θ,m) ∈ � × M, all small positive value δ = o(1), and for some constants
s ∈ (0,1], K > 0, and that the bound holds for μ-almost all (x, e). We have

|g(Z, θ ′,m′) − g(Z, θ,m)| ≤ ∣∣1(
ε(θ,m) ≤ e

) − 1
(
ε(θ ′,m′) ≤ e

)∣∣
+∣∣E1

(
ε(θ,m) ≤ e

) − E1
(
ε(θ ′,m′) ≤ e

)∣∣
and ∣∣1(

ε(θ,m) ≤ e
) − 1

(
ε(θ ′,m′) ≤ e

)∣∣
= ∣∣1(

�θ(Y ) − m(X) ≤ e
) − 1

(
�θ ′(Y ) − m′(X) ≤ e

)∣∣
≤ ∣∣1(

�θ(Y ) − m(X) ≤ e
) − 1

(
�θ(Y ) − m′(X) ≤ e

)∣∣
+ ∣∣1(

�θ(Y ) − m′(X) ≤ e
) − 1

(
�θ ′(Y ) − m′(X) ≤ e

)∣∣.
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For all m′ ∈ M with ‖m′ − m‖M ≤ δ ≤ 1, we have for all Y , X, e

sup
‖m′−m‖M≤δ

∣∣1(
m′(X) ≥ �θ(Y ) − e

) − 1
(
m(X) ≥ �θ(Y ) − e

)∣∣
≤ 1

(
m(X) + δ ≥ �θ(Y ) − e

) − 1
(
m(X) − δ ≥ �θ(Y ) − e

)
.

The preceding term is either one or zero and its expectation is the probability
that m(X) + δ ≥ �θ(Y ) − e ≥ m(X) − δ, which is the probability that e + δ ≥
�θ(Y ) − m(X) ≥ e − δ, which is

Fε(θ,m)(e + δ) − Fε(θ,m)(e − δ)

= EFε

[
�o

(
�−1

θ

(
m(X) + e + δ

)) − mo(X)
]

− EFε

[
�o

(
�−1

θ

(
m(X) + e − δ

)) − mo(X)
]
.

We then apply the smoothness conditions on Fε,�o and �−1
θ to bound the right-

hand side by Kδ for small enough δ and constant K < ∞.

Next, by the Mean Value Theorem, we have �θ(Y ) − �θ ′(Y ) = λθ∗(Y ) × (θ −
θ ′), where θ∗ is an intermediate value between θ and θ ′. For all α > 0, by the
Bonferroni and Markov inequalities,

Pr
[

max
1≤i≤n

sup
‖θ−θ ′‖≤δ

|λθ ′(Yi)| > c × nα

]

≤ n × Pr
[

sup
‖θ−θ ′‖≤δ

|λθ ′(Y )| > c × nα

]

≤ n × E[sup‖θ−θ ′‖≤δ |λθ ′(Y )|k]
cknkα

= o(1),

provided k > α−1.
Therefore, we can safely assume that there is some upper bound c such that

sup‖θ−θ ′‖≤δ |�θ(Y ) − �θ ′(Y )| ≤ c × δ. Therefore, on this set,

sup
‖θ ′−θ‖≤δ

∣∣1(
�θ(Y ) − m′(X) ≤ e

) − 1
(
�θ ′(Y ) − m′(X) ≤ e

)∣∣
≤ 1

(
�θ(Y ) + cδ − m′(X) ≤ e

) − 1
(
�θ(Y ) − cδ − m′(X) ≤ e

)∣∣,
which has probability bounded by Kδ for some K > 0.

Therefore, condition (3.2) of Theorem 3 in CLV (2003) is satisfied with
r = 2 and s = 1/2, and condition (3.3) of Theorem 3 is satisfied by the con-
dition on the covering number of the class M, stated in Assumption B.8.

�
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PROOF OF LEMMA B.6. We show below that

[�2MD(θo,mo)(m̂ − mo)](x, e)

= fε(e)
√

n

∫ [(
1(X ≤ x) − FX(x)

)(
m̂(X) − mo(X)

)]
fX(X)dX

(28)

= fε(e)
1√
n

n∑
i=1

(
1(Xi ≤ x) − FX(x)

)

× fX(Xi)

d∑
α=1

vo1α(Xαi, εi) + op(1).

Therefore,

[
Ln(x, e) + [�2MD(θo,mo)(m̂ − mo)](x, e)

] = 1√
n

n∑
i=1

Ui(x, e) + op(1),

where

Ui(x, e) = [1(Xi ≤ x)1(εi ≤ e) − FX,ε(x, e)]
− FX(x)[1(εi ≤ e) − Fε(e)]
− Fε(e)[1(Xi ≤ x) − FX(x)]

+ fX(Xi)

d∑
α=1

vo1α(Xαi, εi)fε(e)
(
1(Xi ≤ x) − FX(x)

)
,

and where E[Ui(x, e)] = 0 for all x, e. Because FX,ε(x, e) = FX(x)Fε(e), we
have

Ui(x, e) = [1(Xi ≤ x) − FX(x)][1(εi ≤ e) − Fε(e)]

+fX(Xi)

d∑
α=1

vo1α(Xαi, εi)fε(e)
(
1(Xi ≤ x) − FX(x)

)
.

Now integrating Ui(x, e) with respect to �1MD(x, e) dμ(x, e) gives the answer.
Proof of (28): Write

m̂(X) − mo(X)

= 1

nh

n∑
i=1

d∑
α=1

K1

(
Xα − Xαi

h

)
vo1α(Xαi, εi)

+ 1

n

n∑
i=1

vo2(εi) + op(n−1/2).
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Then, provided nh2q1 → 0,

√
n

∫ [(
1(X ≤ x) − FX(x)

)(
m̂(X) − mo(X)

)]
fX(X)dX

= 1√
n

n∑
i=1

d∑
α=1

vo1α(Xαi, εi)

×
∫ [(

1(X ≤ x) − FX(x)
) 1

h
K1

(
Xα − Xαi

h

)]
fX(X)dX

+ 1√
n

n∑
i=1

vo2(εi)

∫ [(
1(X ≤ x) − FX(x)

)]
fX(X)dX + op(1)

= 1√
n

n∑
i=1

d∑
α=1

vo1α(Xαi, εi)

∫ [(
1(Xi + uh ≤ x) − FX(x)

)
K1(uα)

]
× fX(Xi + uh)du + op(1)

= 1√
n

n∑
i=1

d∑
α=1

vo1α(Xαi, εi)
(
1(Xi ≤ x) − FX(x)

)
fX(Xi) + op(1).

We also have to substitute ∂mθ

∂θ
(x) ↓θ=θo into the formula for �1MD. �

Acknowledgments. We thank Enno Mammen and two anonymous referees
for helpful discussion.

REFERENCES

AMEMIYA, T. and POWELL, J. L. (1981). A comparison of the Box–Cox maximum likelihood
estimator and the nonlinear two-stage least squares estimator. J. Econometrics 17 351–381.
MR0659799

BICKEL, P. J. and DOKSUM, K. (1981). An analysis of transformations revisited. J. Amer. Statist.
Assoc. 76 296–311. MR0624332

BOX, G. E. P. and COX, D. R. (1964). An analysis of transformations. J. Roy. Statist. Soc. Ser. B 26
211–252. MR0192611

BREIMAN, L. and FRIEDMAN, J. H. (1985). Estimating optimal transformations for multiple re-
gression and correlation (with discussion). J. Amer. Statist. Assoc. 80 580–619. MR0803258

CARROLL, R. J. and RUPPERT, D. (1984). Power transformation when fitting theoretical models to
data. J. Amer. Statist. Assoc. 79 321–328. MR0755088

CARROLL, R. J. and RUPPERT, D. (1988). Transformation and Weighting in Regression. Chapman
and Hall, New York. MR1014890

CHEN, X., LINTON, O. B. and VAN KEILEGOM, I. (2003). Estimation of semiparametric models
when the criterion function is not smooth. Econometrica 71 1591–1608. MR2000259

CHENG, S. C., WEI, L. J. and YING, Z. (1995). Analysis of transformation models with censored
data. Biometrika 82 835–845. MR1380818

CHENG, K. F. and WU, J. W. (1994). Adjusted least squares estimates for the scaled regression
coefficients with censored data. J. Amer. Statist. Assoc. 89 1483–1491. MR1310237

http://www.ams.org/mathscinet-getitem?mr=0659799
http://www.ams.org/mathscinet-getitem?mr=0624332
http://www.ams.org/mathscinet-getitem?mr=0192611
http://www.ams.org/mathscinet-getitem?mr=0803258
http://www.ams.org/mathscinet-getitem?mr=0755088
http://www.ams.org/mathscinet-getitem?mr=1014890
http://www.ams.org/mathscinet-getitem?mr=2000259
http://www.ams.org/mathscinet-getitem?mr=1380818
http://www.ams.org/mathscinet-getitem?mr=1310237


SEMIPARAMETRIC TRANSFORMATION MODEL 717

DOKSUM, K. (1987). An extension of partial likelihood methods for proportional hazard models to
general transformation models. Ann. Statist. 15 325–345. MR0885740

EKELAND, I., HECKMAN, J. J. and NESHEIM, L. (2004). Identification and estimation of Hedonic
Models. J. Political Economy 112 S60–S109.

HALL, P. and HOROWITZ, J. L. (1996). Bootstrap critical values for tests based on generalized-
method-of-moments estimators. Econometrica 64 891–916. MR1399222

HENGARTNER, N. W. and SPERLICH, S. (2005). Rate optimal estimation with the integration
method in the presence of many covariates. J. Multivariate Anal. 95 246–272. MR2170397

HOROWITZ, J. (1996). Semiparametric estimation of a regression model with an unknown transfor-
mation of the dependent variable. Econometrica 64 103–137. MR1366143

HOROWITZ, J. (2001). Nonparametric estimation of a generalized additive model with an unknown
link function. Econometrica 69 499–513. MR1819761

IBRAGIMOV, I. A. and HASMINSKII, R. Z. (1980). On nonparametric estimation of regression.
Soviet Math. Dokl. 21 810–814.

JOHNSON, N. L. (1949). Systems of frequency curves generated by methods of translation. Bio-
metrika 36 149–176. MR0033994

KOUL, H. L. (2001). Weighted Empirical Processes in Regression and Autoregression Models.
Springer, New York.

LEWBEL, A. and LINTON, O. (2007). Nonparametric matching and efficient estimators of homo-
thetically separable functions. Econometrica 75 1209–1227.

LINTON, O. B., CHEN, R., WANG, N. and HÄRDLE, W. (1997). An analysis of transformations for
additive nonparametric regression. J. Amer. Statist. Assoc. 92 1512–1521. MR1615261

LINTON, O. and MAMMEN, E. (2005). Estimating semiparametric ARCH(∞) models by kernel
smoothing. Econometrica 73 771–836. MR2135143

LINTON, O. B. and NIELSEN, J. P. (1995). A kernel method of estimating structured nonparametric
regression using marginal integration. Biometrika 82 93–100. MR1332841

MAMMEN, E., LINTON, O. B. and NIELSEN, J. P. (1999). The existence and asymptotic prop-
erties of a backfitting projection algorithm under weak conditions. Ann. Statist. 27 1443–1490.
MR1742496

MAMMEN, E. and PARK, B. U. (2005). Bandwidth selection for smooth backfitting in additive
models. Ann. Statist. 33 1260–1294. MR2195635

NIELSEN, J. P., LINTON, O. B. and BICKEL, P. J. (1998). On a semiparametric survival model with
flexible covariate effect. Ann. Statist. 26 215–241. MR1611784

NIELSEN, J. P. and SPERLICH, S. (2005). Smooth backfitting in practice. J. Roy. Statist. Soc. Ser. B
61 43–61. MR2136638

ROBINSON, P. M. (1991). Best nonlinear three-stage least squares estimation of certain econometric
models. Econometrica 59 755–786. MR1106511

SEVERINI, T. A. and WONG, W. H. (1992). Profile likelihood and conditionally parametric models.
Ann. Statist. 20 1768–1802. MR1193312

SPERLICH, S. (2005). On nonparametric estimation with constructed variables and generated regres-
sors. Preprint, Univ. Carlos III de Madrid, Spain.

SPERLICH, S., LINTON, O. B. and HÄRDLE, W. (1999). Integration and backfitting methods in
additive models: Finite sample properties and comparison. Test 8 419–458.

SPERLICH, S., LINTON, O. B. and VAN KEILEGOM, I. (2007). A computational note on estimation
of a semiparametric transformation model. Preprint, Georg-August Univ. Göttingen, Germany.

SPERLICH, S., TJØSTHEIM, D. and YANG, L. (2002). Nonparametric estimation and testing of
interaction in additive models. Econometric Theory 18 197–251. MR1891823

STONE, C. J. (1980). Optimal rates of convergence for nonparametric estimators. Ann. Statist. 8
1348–1360. MR0594650

STONE, C. J. (1982). Optimal global rates of convergence for nonparametric regression. Ann. Statist.
10 1040–1053. MR0673642

http://www.ams.org/mathscinet-getitem?mr=0885740
http://www.ams.org/mathscinet-getitem?mr=1399222
http://www.ams.org/mathscinet-getitem?mr=2170397
http://www.ams.org/mathscinet-getitem?mr=1366143
http://www.ams.org/mathscinet-getitem?mr=1819761
http://www.ams.org/mathscinet-getitem?mr=0033994
http://www.ams.org/mathscinet-getitem?mr=1615261
http://www.ams.org/mathscinet-getitem?mr=2135143
http://www.ams.org/mathscinet-getitem?mr=1332841
http://www.ams.org/mathscinet-getitem?mr=1742496
http://www.ams.org/mathscinet-getitem?mr=2195635
http://www.ams.org/mathscinet-getitem?mr=1611784
http://www.ams.org/mathscinet-getitem?mr=2136638
http://www.ams.org/mathscinet-getitem?mr=1106511
http://www.ams.org/mathscinet-getitem?mr=1193312
http://www.ams.org/mathscinet-getitem?mr=1891823
http://www.ams.org/mathscinet-getitem?mr=0594650
http://www.ams.org/mathscinet-getitem?mr=0673642


718 O. LINTON, S. SPERLICH AND I. VAN KEILEGOM

STONE, C. J. (1986). The dimensionality reduction principle for generalized additive models. Ann.
Statist. 14 592–606. MR0840516

TJØSTHEIM, D. and AUESTAD, B. (1994). Nonparametric identification of nonlinear time series:
Projections. J. Amer. Statist. Assoc. 89 1398–1409. MR1310230

VAN DEN BERG, G. J. (2001). Duration models: Specification, identification and multiple durations.
In The Handbook of Econometrics V (J. J. Heckman and E. Leamer, eds.) 3381–3460. North-
Holland, Amsterdam.

VAN DER VAART, A. W. and WELLNER, J. A. (1996). Weak Convergence and Empirical Processes.
Springer, New York. MR1385671

VAN KEILEGOM, I. and VERAVERBEKE, N. (2002). Density and hazard estimation in censored
regression models. Bernoulli 8 607–625. MR1935649

WEI, L. J. (1992). The accelerated failure time model: A useful alternative to the Cox regression
model in survival analysis. Statistics in Medicine 11 1871–1879.

ZELLNER, A. and REVANKAR, N. S. (1969). Generalized production functions. Rev. Economic
Studies 36 241–250.

O. LINTON

DEPARTMENT OF ECONOMICS

LONDON SCHOOL OF ECONOMICS

HOUGHTON STREET, LONDON WC2A 2AE
UNITED KINGDOM

E-MAIL: o.linton@lse.ac.uk

S. SPERLICH

INSTITUT FÜR STATISTIK

UND ÖKONOMETRIE

GEORG-AUGUST UNIVERSITÄT

PLATZ DER GÖTTINGER SIEBEN 5
37073 GÖTTINGEN

GERMANY

E-MAIL: stefan.sperlich@wiwi.uni-goettingen.de

I. VAN KEILEGOM

INSTITUT DE STATISTIQUE

UNIVERSITÉ CATHOLIQUE DE LOUVAIN

VOIE DU ROMAN PAYS 20
B 1348 LOUVAIN-LA-NEUVE

BELGIUM

E-MAIL: vankeilegom@stat.ucl.ac.be

http://www.ams.org/mathscinet-getitem?mr=0840516
http://www.ams.org/mathscinet-getitem?mr=1310230
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=1935649
mailto:o.linton@lse.ac.uk
mailto:stefan.sperlich@wiwi.uni-goettingen.de
mailto:vankeilegom@stat.ucl.ac.be

	Introduction
	Nonparametric identification
	Estimating the transformation
	The profile likelihood (PL) estimator
	Mean square distance from independence (MD) estimator

	Asymptotic properties
	Performance in finite samples
	Comparing PL with MD
	Bandwidth choice
	Comparison with existing methods

	Appendix A: Profile likelihood estimator
	Assumptions
	Proof of Theorem 4.1
	Proofs of Lemmas A.1-A.11

	Appendix B: MD estimator
	Assumptions
	Proof of Theorem 4.2
	Proofs of Lemmas B.1-B.6

	Acknowledgments
	References
	Author's Addresses

