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We review machine learning methods employing positive definite ker-
nels. These methods formulate learning and estimation problems in a repro-
ducing kernel Hilbert space (RKHS) of functions defined on the data domain,
expanded in terms of a kernel. Working in linear spaces of function has the
benefit of facilitating the construction and analysis of learning algorithms
while at the same time allowing large classes of functions. The latter include
nonlinear functions as well as functions defined on nonvectorial data.

We cover a wide range of methods, ranging from binary classifiers to so-
phisticated methods for estimation with structured data.

1. Introduction. Over the last ten years estimation and learning methods uti-
lizing positive definite kernels have become rather popular, particularly in machine
learning. Since these methods have a stronger mathematical slant than earlier ma-
chine learning methods (e.g., neural networks), there is also significant interest in
the statistics and mathematics community for these methods. The present review
aims to summarize the state of the art on a conceptual level. In doing so, we build
on various sources, including Burges [25], Cristianini and Shawe-Taylor [37], Her-
brich [64] and Vapnik [141] and, in particular, Schölkopf and Smola [118], but we
also add a fair amount of more recent material which helps unifying the exposi-
tion. We have not had space to include proofs; they can be found either in the long
version of the present paper (see Hofmann et al. [69]), in the references given or
in the above books.

The main idea of all the described methods can be summarized in one para-
graph. Traditionally, theory and algorithms of machine learning and statistics has
been very well developed for the linear case. Real world data analysis problems,
on the other hand, often require nonlinear methods to detect the kind of dependen-
cies that allow successful prediction of properties of interest. By using a positive
definite kernel, one can sometimes have the best of both worlds. The kernel cor-
responds to a dot product in a (usually high-dimensional) feature space. In this
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space, our estimation methods are linear, but as long as we can formulate every-
thing in terms of kernel evaluations, we never explicitly have to compute in the
high-dimensional feature space.

The paper has three main sections: Section 2 deals with fundamental proper-
ties of kernels, with special emphasis on (conditionally) positive definite kernels
and their characterization. We give concrete examples for such kernels and discuss
kernels and reproducing kernel Hilbert spaces in the context of regularization. Sec-
tion 3 presents various approaches for estimating dependencies and analyzing data
that make use of kernels. We provide an overview of the problem formulations
as well as their solution using convex programming techniques. Finally, Section 4
examines the use of reproducing kernel Hilbert spaces as a means to define statis-
tical models, the focus being on structured, multidimensional responses. We also
show how such techniques can be combined with Markov networks as a suitable
framework to model dependencies between response variables.

2. Kernels.

2.1. An introductory example. Suppose we are given empirical data

(x1, y1), . . . , (xn, yn) ∈ X × Y.(1)

Here, the domain X is some nonempty set that the inputs (the predictor variables)
xi are taken from; the yi ∈ Y are called targets (the response variable). Here and
below, i, j ∈ [n], where we use the notation [n] := {1, . . . , n}.

Note that we have not made any assumptions on the domain X other than it
being a set. In order to study the problem of learning, we need additional structure.
In learning, we want to be able to generalize to unseen data points. In the case of
binary pattern recognition, given some new input x ∈ X, we want to predict the
corresponding y ∈ {±1} (more complex output domains Y will be treated below).
Loosely speaking, we want to choose y such that (x, y) is in some sense similar to
the training examples. To this end, we need similarity measures in X and in {±1}.
The latter is easier, as two target values can only be identical or different. For the
former, we require a function

k :X × X → R, (x, x ′) �→ k(x, x′)(2)

satisfying, for all x, x′ ∈ X,

k(x, x′) = 〈�(x),�(x′)〉,(3)

where � maps into some dot product space H , sometimes called the feature space.
The similarity measure k is usually called a kernel, and � is called its feature map.

The advantage of using such a kernel as a similarity measure is that it allows
us to construct algorithms in dot product spaces. For instance, consider the fol-
lowing simple classification algorithm, described in Figure 1, where Y = {±1}.
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FIG. 1. A simple geometric classification algorithm: given two classes of points (depicted by “o”
and “+”), compute their means c+, c− and assign a test input x to the one whose mean is closer. This
can be done by looking at the dot product between x −c [where c = (c+ +c−)/2] and w := c+ −c−,
which changes sign as the enclosed angle passes through π/2. Note that the corresponding decision
boundary is a hyperplane (the dotted line) orthogonal to w (from Schölkopf and Smola [118]).

The idea is to compute the means of the two classes in the feature space, c+ =
1

n+
∑

{i:yi=+1} �(xi), and c− = 1
n−

∑
{i:yi=−1} �(xi), where n+ and n− are the

number of examples with positive and negative target values, respectively. We then
assign a new point �(x) to the class whose mean is closer to it. This leads to the
prediction rule

y = sgn
(〈�(x), c+〉 − 〈�(x), c−〉 + b

)
(4)

with b = 1
2(‖c−‖2 − ‖c+‖2). Substituting the expressions for c± yields

y = sgn

(
1

n+
∑

{i:yi=+1}
〈�(x),�(xi)〉︸ ︷︷ ︸

k(x,xi)

− 1

n−
∑

{i:yi=−1}
〈�(x),�(xi)〉︸ ︷︷ ︸

k(x,xi)

+b

)
,(5)

where b = 1
2( 1

n2−

∑
{(i,j):yi=yj=−1} k(xi, xj ) − 1

n2+

∑
{(i,j):yi=yj=+1} k(xi, xj )).

Let us consider one well-known special case of this type of classifier. Assume
that the class means have the same distance to the origin (hence, b = 0), and that
k(·, x) is a density for all x ∈ X. If the two classes are equally likely and were
generated from two probability distributions that are estimated

p+(x) := 1

n+
∑

{i:yi=+1}
k(x, xi), p−(x) := 1

n−
∑

{i:yi=−1}
k(x, xi),(6)

then (5) is the estimated Bayes decision rule, plugging in the estimates p+ and p−
for the true densities.

The classifier (5) is closely related to the Support Vector Machine (SVM) that we
will discuss below. It is linear in the feature space (4), while in the input domain, it
is represented by a kernel expansion (5). In both cases, the decision boundary is a



1174 T. HOFMANN, B. SCHÖLKOPF AND A. J. SMOLA

hyperplane in the feature space; however, the normal vectors [for (4), w = c+−c−]
are usually rather different.

The normal vector not only characterizes the alignment of the hyperplane,
its length can also be used to construct tests for the equality of the two class-
generating distributions (Borgwardt et al. [22]).

As an aside, note that if we normalize the targets such that ŷi = yi/|{j :yj =
yi}|, in which case the ŷi sum to zero, then ‖w‖2 = 〈K, ŷŷ	〉F , where 〈·, ·〉F is
the Frobenius dot product. If the two classes have equal size, then up to a scaling
factor involving ‖K‖2 and n, this equals the kernel-target alignment defined by
Cristianini et al. [38].

2.2. Positive definite kernels. We have required that a kernel satisfy (3), that
is, correspond to a dot product in some dot product space. In the present section
we show that the class of kernels that can be written in the form (3) coincides with
the class of positive definite kernels. This has far-reaching consequences. There
are examples of positive definite kernels which can be evaluated efficiently even
though they correspond to dot products in infinite dimensional dot product spaces.
In such cases, substituting k(x, x′) for 〈�(x),�(x′)〉, as we have done in (5), is
crucial. In the machine learning community, this substitution is called the kernel
trick.

DEFINITION 1 (Gram matrix). Given a kernel k and inputs x1, . . . , xn ∈ X,
the n × n matrix

K := (k(xi, xj ))ij(7)

is called the Gram matrix (or kernel matrix) of k with respect to x1, . . . , xn.

DEFINITION 2 (Positive definite matrix). A real n × n symmetric matrix Kij

satisfying ∑
i,j

cicjKij ≥ 0(8)

for all ci ∈ R is called positive definite. If equality in (8) only occurs for c1 = · · · =
cn = 0, then we shall call the matrix strictly positive definite.

DEFINITION 3 (Positive definite kernel). Let X be a nonempty set. A function
k :X×X → R which for all n ∈ N, xi ∈ X, i ∈ [n] gives rise to a positive definite
Gram matrix is called a positive definite kernel. A function k :X × X → R which
for all n ∈ N and distinct xi ∈ X gives rise to a strictly positive definite Gram
matrix is called a strictly positive definite kernel.

Occasionally, we shall refer to positive definite kernels simply as kernels. Note
that, for simplicity, we have restricted ourselves to the case of real valued kernels.
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However, with small changes, the below will also hold for the complex valued
case.

Since
∑

i,j cicj 〈�(xi),�(xj )〉 = 〈∑i ci�(xi),
∑

j cj�(xj )〉 ≥ 0, kernels of the
form (3) are positive definite for any choice of �. In particular, if X is already a dot
product space, we may choose � to be the identity. Kernels can thus be regarded
as generalized dot products. While they are not generally bilinear, they share im-
portant properties with dot products, such as the Cauchy–Schwarz inequality: If k

is a positive definite kernel, and x1, x2 ∈ X, then

k(x1, x2)
2 ≤ k(x1, x1) · k(x2, x2).(9)

2.2.1. Construction of the reproducing kernel Hilbert space. We now define a
map from X into the space of functions mapping X into R, denoted as R

X, via

� :X → R
X where x �→ k(·, x).(10)

Here, �(x) = k(·, x) denotes the function that assigns the value k(x′, x) to x′ ∈ X.
We next construct a dot product space containing the images of the inputs un-

der �. To this end, we first turn it into a vector space by forming linear combina-
tions

f (·) =
n∑

i=1

αik(·, xi).(11)

Here, n ∈ N, αi ∈ R and xi ∈ X are arbitrary.
Next, we define a dot product between f and another function g(·) =∑n′
j=1 βjk(·, x′

j ) (with n′ ∈ N, βj ∈ R and x′
j ∈ X) as

〈f,g〉 :=
n∑

i=1

n′∑
j=1

αiβjk(xi, x
′
j ).(12)

To see that this is well defined although it contains the expansion coefficients and
points, note that 〈f,g〉 = ∑n′

j=1 βjf (x′
j ). The latter, however, does not depend on

the particular expansion of f . Similarly, for g, note that 〈f,g〉 = ∑n
i=1 αig(xi).

This also shows that 〈·, ·〉 is bilinear. It is symmetric, as 〈f,g〉 = 〈g,f 〉. More-
over, it is positive definite, since positive definiteness of k implies that, for any
function f , written as (11), we have

〈f,f 〉 =
n∑

i,j=1

αiαjk(xi, xj ) ≥ 0.(13)

Next, note that given functions f1, . . . , fp , and coefficients γ1, . . . , γp ∈ R, we
have

p∑
i,j=1

γiγj 〈fi, fj 〉 =
〈 p∑

i=1

γifi,

p∑
j=1

γjfj

〉
≥ 0.(14)
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Here, the equality follows from the bilinearity of 〈·, ·〉, and the right-hand inequal-
ity from (13).

By (14), 〈·, ·〉 is a positive definite kernel, defined on our vector space of func-
tions. For the last step in proving that it even is a dot product, we note that, by (12),
for all functions (11),

〈k(·, x), f 〉 = f (x) and, in particular, 〈k(·, x), k(·, x′)〉 = k(x, x′).(15)

By virtue of these properties, k is called a reproducing kernel (Aronszajn [7]).
Due to (15) and (9), we have

|f (x)|2 = |〈k(·, x), f 〉|2 ≤ k(x, x) · 〈f,f 〉.(16)

By this inequality, 〈f,f 〉 = 0 implies f = 0, which is the last property that was
left to prove in order to establish that 〈·, ·〉 is a dot product.

Skipping some details, we add that one can complete the space of functions (11)
in the norm corresponding to the dot product, and thus gets a Hilbert space H ,
called a reproducing kernel Hilbert space (RKHS).

One can define a RKHS as a Hilbert space H of functions on a set X with the
property that, for all x ∈ X and f ∈ H , the point evaluations f �→ f (x) are contin-
uous linear functionals [in particular, all point values f (x) are well defined, which
already distinguishes RKHSs from many L2 Hilbert spaces]. From the point evalu-
ation functional, one can then construct the reproducing kernel using the Riesz rep-
resentation theorem. The Moore–Aronszajn theorem (Aronszajn [7]) states that,
for every positive definite kernel on X × X, there exists a unique RKHS and vice
versa.

There is an analogue of the kernel trick for distances rather than dot products,
that is, dissimilarities rather than similarities. This leads to the larger class of con-
ditionally positive definite kernels. Those kernels are defined just like positive defi-
nite ones, with the one difference being that their Gram matrices need to satisfy (8)
only subject to

n∑
i=1

ci = 0.(17)

Interestingly, it turns out that many kernel algorithms, including SVMs and kernel
PCA (see Section 3), can be applied also with this larger class of kernels, due to
their being translation invariant in feature space (Hein et al. [63] and Schölkopf
and Smola [118]).

We conclude this section with a note on terminology. In the early years of kernel
machine learning research, it was not the notion of positive definite kernels that
was being used. Instead, researchers considered kernels satisfying the conditions
of Mercer’s theorem (Mercer [99], see, e.g., Cristianini and Shawe-Taylor [37] and
Vapnik [141]). However, while all such kernels do satisfy (3), the converse is not
true. Since (3) is what we are interested in, positive definite kernels are thus the
right class of kernels to consider.
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2.2.2. Properties of positive definite kernels. We begin with some closure
properties of the set of positive definite kernels.

PROPOSITION 4. Below, k1, k2, . . . are arbitrary positive definite kernels on
X × X, where X is a nonempty set:

(i) The set of positive definite kernels is a closed convex cone, that is,
(a) if α1, α2 ≥ 0, then α1k1 + α2k2 is positive definite; and (b) if k(x, x′) :=
limn→∞ kn(x, x′) exists for all x, x′, then k is positive definite.

(ii) The pointwise product k1k2 is positive definite.
(iii) Assume that for i = 1,2, ki is a positive definite kernel on Xi × Xi , where

Xi is a nonempty set. Then the tensor product k1 ⊗ k2 and the direct sum k1 ⊕ k2
are positive definite kernels on (X1 × X2) × (X1 × X2).

The proofs can be found in Berg et al. [18].
It is reassuring that sums and products of positive definite kernels are positive

definite. We will now explain that, loosely speaking, there are no other operations
that preserve positive definiteness. To this end, let C denote the set of all functions
ψ : R → R that map positive definite kernels to (conditionally) positive definite
kernels (readers who are not interested in the case of conditionally positive definite
kernels may ignore the term in parentheses). We define

C := {ψ |k is a p.d. kernel ⇒ ψ(k) is a (conditionally) p.d. kernel},
C′ = {ψ | for any Hilbert space F ,

ψ(〈x, x′〉F ) is (conditionally) positive definite},
C′′ = {ψ | for all n ∈ N:K is a p.d.

n × n matrix ⇒ ψ(K) is (conditionally) p.d.},
where ψ(K) is the n × n matrix with elements ψ(Kij ).

PROPOSITION 5. C = C′ = C′′.

The following proposition follows from a result of FitzGerald et al. [50] for
(conditionally) positive definite matrices; by Proposition 5, it also applies for (con-
ditionally) positive definite kernels, and for functions of dot products. We state the
latter case.

PROPOSITION 6. Let ψ : R → R. Then ψ(〈x, x′〉F ) is positive definite for any
Hilbert space F if and only if ψ is real entire of the form

ψ(t) =
∞∑

n=0

ant
n(18)
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with an ≥ 0 for n ≥ 0.
Moreover, ψ(〈x, x′〉F ) is conditionally positive definite for any Hilbert space

F if and only if ψ is real entire of the form (18) with an ≥ 0 for n ≥ 1.

There are further properties of k that can be read off the coefficients an:

• Steinwart [128] showed that if all an are strictly positive, then the kernel of
Proposition 6 is universal on every compact subset S of R

d in the sense that its
RKHS is dense in the space of continuous functions on S in the ‖ · ‖∞ norm.
For support vector machines using universal kernels, he then shows (universal)
consistency (Steinwart [129]). Examples of universal kernels are (19) and (20)
below.

• In Lemma 11 we will show that the a0 term does not affect an SVM. Hence, we
infer that it is actually sufficient for consistency to have an > 0 for n ≥ 1.

We conclude the section with an example of a kernel which is positive definite
by Proposition 6. To this end, let X be a dot product space. The power series
expansion of ψ(x) = ex then tells us that

k(x, x′) = e〈x,x′〉/σ 2
(19)

is positive definite (Haussler [62]). If we further multiply k with the positive defi-
nite kernel f (x)f (x′), where f (x) = e−‖x‖2/2σ 2

and σ > 0, this leads to the posi-
tive definiteness of the Gaussian kernel

k′(x, x′) = k(x, x′)f (x)f (x′) = e−‖x−x′‖2/(2σ 2).(20)

2.2.3. Properties of positive definite functions. We now let X = R
d and con-

sider positive definite kernels of the form

k(x, x′) = h(x − x′),(21)

in which case h is called a positive definite function. The following characterization
is due to Bochner [21]. We state it in the form given by Wendland [152].

THEOREM 7. A continuous function h on R
d is positive definite if and only if

there exists a finite nonnegative Borel measure μ on R
d such that

h(x) =
∫

Rd
e−i〈x,ω〉 dμ(ω).(22)

While normally formulated for complex valued functions, the theorem also
holds true for real functions. Note, however, that if we start with an arbitrary non-
negative Borel measure, its Fourier transform may not be real. Real-valued positive
definite functions are distinguished by the fact that the corresponding measures μ

are symmetric.
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We may normalize h such that h(0) = 1 [hence, by (9), |h(x)| ≤ 1], in which
case μ is a probability measure and h is its characteristic function. For instance, if
μ is a normal distribution of the form (2π/σ 2)−d/2e−σ 2‖ω‖2/2 dω, then the corre-
sponding positive definite function is the Gaussian e−‖x‖2/(2σ 2); see (20).

Bochner’s theorem allows us to interpret the similarity measure k(x, x′) =
h(x −x′) in the frequency domain. The choice of the measure μ determines which
frequency components occur in the kernel. Since the solutions of kernel algorithms
will turn out to be finite kernel expansions, the measure μ will thus determine
which frequencies occur in the estimates, that is, it will determine their regulariza-
tion properties—more on that in Section 2.3.2 below.

Bochner’s theorem generalizes earlier work of Mathias, and has itself been gen-
eralized in various ways, that is, by Schoenberg [115]. An important generalization
considers Abelian semigroups (Berg et al. [18]). In that case, the theorem provides
an integral representation of positive definite functions in terms of the semigroup’s
semicharacters. Further generalizations were given by Krein, for the cases of pos-
itive definite kernels and functions with a limited number of negative squares. See
Stewart [130] for further details and references.

As above, there are conditions that ensure that the positive definiteness becomes
strict.

PROPOSITION 8 (Wendland [152]). A positive definite function is strictly pos-
itive definite if the carrier of the measure in its representation (22) contains an
open subset.

This implies that the Gaussian kernel is strictly positive definite.
An important special case of positive definite functions, which includes the

Gaussian, are radial basis functions. These are functions that can be written as
h(x) = g(‖x‖2) for some function g : [0,∞[→ R. They have the property of be-
ing invariant under the Euclidean group.

2.2.4. Examples of kernels. We have already seen several instances of positive
definite kernels, and now intend to complete our selection with a few more exam-
ples. In particular, we discuss polynomial kernels, convolution kernels, ANOVA
expansions and kernels on documents.

Polynomial kernels. From Proposition 4 it is clear that homogeneous polynomial
kernels k(x, x′) = 〈x, x′〉p are positive definite for p ∈ N and x, x′ ∈ R

d . By direct
calculation, we can derive the corresponding feature map (Poggio [108]):

〈x, x′〉p =
(

d∑
j=1

[x]j [x′]j
)p

(23)
= ∑

j∈[d]p
[x]j1 · · · · · [x]jp · [x′]j1 · · · · · [x′]jp = 〈Cp(x),Cp(x′)〉,
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where Cp maps x ∈ R
d to the vector Cp(x) whose entries are all possible pth

degree ordered products of the entries of x (note that [d] is used as a shorthand for
{1, . . . , d}). The polynomial kernel of degree p thus computes a dot product in the
space spanned by all monomials of degree p in the input coordinates. Other useful
kernels include the inhomogeneous polynomial,

k(x, x ′) = (〈x, x′〉 + c)p where p ∈ N and c ≥ 0,(24)

which computes all monomials up to degree p.

Spline kernels. It is possible to obtain spline functions as a result of kernel expan-
sions (Vapnik et al. [144] simply by noting that convolution of an even number of
indicator functions yields a positive kernel function. Denote by IX the indicator (or
characteristic) function on the set X, and denote by ⊗ the convolution operation,
(f ⊗ g)(x) := ∫

Rd f (x′)g(x′ − x)dx′. Then the B-spline kernels are given by

k(x, x′) = B2p+1(x − x′) where p ∈ N with Bi+1 := Bi ⊗ B0.(25)

Here B0 is the characteristic function on the unit ball in R
d . From the definition

of (25), it is obvious that, for odd m, we may write Bm as the inner product between
functions Bm/2. Moreover, note that, for even m, Bm is not a kernel.

Convolutions and structures. Let us now move to kernels defined on structured
objects (Haussler [62] and Watkins [151]). Suppose the object x ∈ X is composed
of xp ∈ Xp , where p ∈ [P ] (note that the sets Xp need not be equal). For instance,
consider the string x = AT G and P = 2. It is composed of the parts x1 = AT and
x2 = G, or alternatively, of x1 = A and x2 = T G. Mathematically speaking, the
set of “allowed” decompositions can be thought of as a relation R(x1, . . . , xP , x),
to be read as “x1, . . . , xP constitute the composite object x.”

Haussler [62] investigated how to define a kernel between composite objects by
building on similarity measures that assess their respective parts; in other words,
kernels kp defined on Xp × Xp . Define the R-convolution of k1, . . . , kP as

[k1 
 · · · 
 kP ](x, x′) := ∑
x̄∈R(x),x̄′∈R(x′)

P∏
p=1

kp(x̄p, x̄′
p),(26)

where the sum runs over all possible ways R(x) and R(x′) in which we can de-
compose x into x̄1, . . . , x̄P and x′ analogously [here we used the convention that
an empty sum equals zero, hence, if either x or x′ cannot be decomposed, then
(k1 
 · · · 
 kP )(x, x′) = 0]. If there is only a finite number of ways, the relation R is
called finite. In this case, it can be shown that the R-convolution is a valid kernel
(Haussler [62]).
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ANOVA kernels. Specific examples of convolution kernels are Gaussians and
ANOVA kernels (Vapnik [141] and Wahba [148]). To construct an ANOVA kernel,
we consider X = SN for some set S, and kernels k(i) on S×S, where i = 1, . . . ,N .
For P = 1, . . . ,N , the ANOVA kernel of order P is defined as

kP (x, x′) := ∑
1≤i1<···<iP ≤N

P∏
p=1

k(ip)(xip , x′
ip

).(27)

Note that if P = N , the sum consists only of the term for which (i1, . . . , iP ) =
(1, . . . ,N), and k equals the tensor product k(1) ⊗· · ·⊗ k(N). At the other extreme,
if P = 1, then the products collapse to one factor each, and k equals the direct sum
k(1) ⊕ · · · ⊕ k(N). For intermediate values of P , we get kernels that lie in between
tensor products and direct sums.

ANOVA kernels typically use some moderate value of P , which specifies the or-
der of the interactions between attributes xip that we are interested in. The sum then
runs over the numerous terms that take into account interactions of order P ; fortu-
nately, the computational cost can be reduced to O(Pd) cost by utilizing recurrent
procedures for the kernel evaluation. ANOVA kernels have been shown to work
rather well in multi-dimensional SV regression problems (Stitson et al. [131]).

Bag of words. One way in which SVMs have been used for text categorization
(Joachims [77]) is the bag-of-words representation. This maps a given text to a
sparse vector, where each component corresponds to a word, and a component is
set to one (or some other number) whenever the related word occurs in the text.
Using an efficient sparse representation, the dot product between two such vectors
can be computed quickly. Furthermore, this dot product is by construction a valid
kernel, referred to as a sparse vector kernel. One of its shortcomings, however, is
that it does not take into account the word ordering of a document. Other sparse
vector kernels are also conceivable, such as one that maps a text to the set of pairs
of words that are in the same sentence (Joachims [77] and Watkins [151]).

n-grams and suffix trees. A more sophisticated way of dealing with string data
was proposed by Haussler [62] and Watkins [151]. The basic idea is as described
above for general structured objects (26): Compare the strings by means of the
substrings they contain. The more substrings two strings have in common, the
more similar they are. The substrings need not always be contiguous; that said, the
further apart the first and last element of a substring are, the less weight should be
given to the similarity. Depending on the specific choice of a similarity measure, it
is possible to define more or less efficient kernels which compute the dot product
in the feature space spanned by all substrings of documents.

Consider a finite alphabet �, the set of all strings of length n, �n, and the set of
all finite strings, �∗ := ⋃∞

n=0 �n. The length of a string s ∈ �∗ is denoted by |s|,
and its elements by s(1) . . . s(|s|); the concatenation of s and t ∈ �∗ is written st .
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Denote by

k(x, x′) = ∑
s

#(x, s)#(x′, s)cs

a string kernel computed from exact matches. Here #(x, s) is the number of occur-
rences of s in x and cs ≥ 0.

Vishwanathan and Smola [146] provide an algorithm using suffix trees, which
allows one to compute for arbitrary cs the value of the kernel k(x, x′) in O(|x| +
|x′|) time and memory. Moreover, also f (x) = 〈w,�(x)〉 can be computed in
O(|x|) time if preprocessing linear in the size of the support vectors is carried
out. These kernels are then applied to function prediction (according to the gene
ontology) of proteins using only their sequence information. Another prominent
application of string kernels is in the field of splice form prediction and gene find-
ing (Rätsch et al. [112]).

For inexact matches of a limited degree, typically up to ε = 3, and strings of
bounded length, a similar data structure can be built by explicitly generating a dic-
tionary of strings and their neighborhood in terms of a Hamming distance (Leslie
et al. [92]). These kernels are defined by replacing #(x, s) by a mismatch function
#(x, s, ε) which reports the number of approximate occurrences of s in x. By trad-
ing off computational complexity with storage (hence, the restriction to small num-
bers of mismatches), essentially linear-time algorithms can be designed. Whether a
general purpose algorithm exists which allows for efficient comparisons of strings
with mismatches in linear time is still an open question.

Mismatch kernels. In the general case it is only possible to find algorithms whose
complexity is linear in the lengths of the documents being compared, and the
length of the substrings, that is, O(|x| · |x′|) or worse. We now describe such a
kernel with a specific choice of weights (Cristianini and Shawe-Taylor [37] and
Watkins [151]).

Let us now form subsequences u of strings. Given an index sequence i :=
(i1, . . . , i|u|) with 1 ≤ i1 < · · · < i|u| ≤ |s|, we define u := s(i) := s(i1) . . . s(i|u|).
We call l(i) := i|u| − i1 + 1 the length of the subsequence in s. Note that if i is not
contiguous, then l(i) > |u|.

The feature space built from strings of length n is defined to be Hn := R
(�n).

This notation means that the space has one dimension (or coordinate) for each
element of �n, labeled by that element (equivalently, we can think of it as the
space of all real-valued functions on �n). We can thus describe the feature map
coordinate-wise for each u ∈ �n via

[�n(s)]u := ∑
i:s(i)=u

λl(i).(28)

Here, 0 < λ ≤ 1 is a decay parameter: The larger the length of the subsequence
in s, the smaller the respective contribution to [�n(s)]u. The sum runs over all
subsequences of s which equal u.
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For instance, consider a dimension of H3 spanned (i.e., labeled) by the string
asd. In this case we have [�3(Nasdaq)]asd = λ3, while [�3(lass das)]asd =
2λ5. In the first string, asd is a contiguous substring. In the second string, it ap-
pears twice as a noncontiguous substring of length 5 in lass das, the two oc-
currences are lass das and lass das.

The kernel induced by the map �n takes the form

kn(s, t) = ∑
u∈�n

[�n(s)]u[�n(t)]u = ∑
u∈�n

∑
(i,j):s(i)=t (j)=u

λl(i)λl(j).(29)

The string kernel kn can be computed using dynamic programming; see Watkins
[151].

The above kernels on string, suffix-tree, mismatch and tree kernels have been
used in sequence analysis. This includes applications in document analysis and
categorization, spam filtering, function prediction in proteins, annotations of dna
sequences for the detection of introns and exons, named entity tagging of docu-
ments and the construction of parse trees.

Locality improved kernels. It is possible to adjust kernels to the structure of spa-
tial data. Recall the Gaussian RBF and polynomial kernels. When applied to an
image, it makes no difference whether one uses as x the image or a version of x

where all locations of the pixels have been permuted. This indicates that function
space on X induced by k does not take advantage of the locality properties of the
data.

By taking advantage of the local structure, estimates can be improved. On bio-
logical sequences (Zien et al. [157]) one may assign more weight to the entries of
the sequence close to the location where estimates should occur.

For images, local interactions between image patches need to be consid-
ered. One way is to use the pyramidal kernel (DeCoste and Schölkopf [44] and
Schölkopf [116]). It takes inner products between corresponding image patches,
then raises the latter to some power p1, and finally raises their sum to another
power p2. While the overall degree of this kernel is p1p2, the first factor p1 only
captures short range interactions.

Tree kernels. We now discuss similarity measures on more structured objects.
For trees Collins and Duffy [31] propose a decomposition method which maps a
tree x into its set of subtrees. The kernel between two trees x, x′ is then computed
by taking a weighted sum of all terms between both trees. In particular, Collins
and Duffy [31] show a quadratic time algorithm, that is, O(|x| · |x′|) to compute
this expression, where |x| is the number of nodes of the tree. When restricting the
sum to all proper rooted subtrees, it is possible to reduce the computational cost
to O(|x| + |x′|) time by means of a tree to string conversion (Vishwanathan and
Smola [146]).
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Graph kernels. Graphs pose a twofold challenge: one may both design a kernel
on vertices of them and also a kernel between them. In the former case, the graph
itself becomes the object defining the metric between the vertices. See Gärtner [56]
and Kashima et al. [82] for details on the latter. In the following we discuss kernels
on graphs.

Denote by W ∈ R
n×n the adjacency matrix of a graph with Wij > 0 if an edge

between i, j exists. Moreover, assume for simplicity that the graph is undirected,
that is, W	 = W . Denote by L = D − W the graph Laplacian and by L̃ = 1 −
D−1/2WD−1/2 the normalized graph Laplacian. Here D is a diagonal matrix with
Dii = ∑

j Wij denoting the degree of vertex i.
Fiedler [49] showed that, the second largest eigenvector of L approximately de-

composes the graph into two parts according to their sign. The other large eigen-
vectors partition the graph into correspondingly smaller portions. L arises from the
fact that for a function f defined on the vertices of the graph

∑
i,j (f (i)−f (j))2 =

2f 	Lf .
Finally, Smola and Kondor [125] show that, under mild conditions and up to

rescaling, L is the only quadratic permutation invariant form which can be obtained
as a linear function of W .

Hence, it is reasonable to consider kernel matrices K obtained from L (and L̃).
Smola and Kondor [125] suggest kernels K = r(L) or K = r(L̃), which have
desirable smoothness properties. Here r : [0,∞) → [0,∞) is a monotonically de-
creasing function. Popular choices include

r(ξ) = exp(−λξ) diffusion kernel,(30)

r(ξ) = (ξ + λ)−1 regularized graph Laplacian,(31)

r(ξ) = (λ − ξ)p p-step random walk,(32)

where λ > 0 is chosen such as to reflect the amount of diffusion in (30), the de-
gree of regularization in (31) or the weighting of steps within a random walk (32)
respectively. Equation (30) was proposed by Kondor and Lafferty [87]. In Sec-
tion 2.3.2 we will discuss the connection between regularization operators and
kernels in R

n. Without going into details, the function r(ξ) describes the smooth-
ness properties on the graph and L plays the role of the Laplace operator.

Kernels on sets and subspaces. Whenever each observation xi consists of a set
of instances, we may use a range of methods to capture the specific properties of
these sets (for an overview, see Vishwanathan et al. [147]):

• Take the average of the elements of the set in feature space, that is, φ(xi) =
1
n

∑
j φ(xij ). This yields good performance in the area of multi-instance learn-

ing.
• Jebara and Kondor [75] extend the idea by dealing with distributions pi(x) such

that φ(xi) = E[φ(x)], where x ∼ pi(x). They apply it to image classification
with missing pixels.
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• Alternatively, one can study angles enclosed by subspaces spanned by the ob-
servations. In a nutshell, if U,U ′ denote the orthogonal matrices spanning the
subspaces of x and x′ respectively, then k(x, x′) = detU	U ′.

Fisher kernels. [74] have designed kernels building on probability density mod-
els p(x|θ). Denote by

Uθ(x) := −∂θ logp(x|θ),(33)

I := Ex[Uθ(x)U	
θ (x)],(34)

the Fisher scores and the Fisher information matrix respectively. Note that for max-
imum likelihood estimators Ex[Uθ(x)] = 0 and, therefore, I is the covariance of
Uθ(x). The Fisher kernel is defined as

k(x, x′) := U	
θ (x)I−1Uθ(x

′) or k(x, x′) := U	
θ (x)Uθ(x

′)(35)

depending on whether we study the normalized or the unnormalized kernel respec-
tively.

In addition to that, it has several attractive theoretical properties: Oliver et al.
[104] show that estimation using the normalized Fisher kernel corresponds to esti-
mation subject to a regularization on the L2(p(·|θ)) norm.

Moreover, in the context of exponential families (see Section 4.1 for a more
detailed discussion) where p(x|θ) = exp(〈φ(x), θ〉 − g(θ)), we have

k(x, x ′) = [φ(x) − ∂θg(θ)][φ(x′) − ∂θg(θ)](36)

for the unnormalized Fisher kernel. This means that up to centering by ∂θg(θ) the
Fisher kernel is identical to the kernel arising from the inner product of the suffi-
cient statistics φ(x). This is not a coincidence. In fact, in our analysis of nonpara-
metric exponential families we will encounter this fact several times (cf. Section 4
for further details). Moreover, note that the centering is immaterial, as can be seen
in Lemma 11.

The above overview of kernel design is by no means complete. The reader is
referred to books of Bakir et al. [9], Cristianini and Shawe-Taylor [37], Herbrich
[64], Joachims [77], Schölkopf and Smola [118], Schölkopf [121] and Shawe-
Taylor and Cristianini [123] for further examples and details.

2.3. Kernel function classes.

2.3.1. The representer theorem. From kernels, we now move to functions that
can be expressed in terms of kernel expansions. The representer theorem (Kimel-
dorf and Wahba [85] and Schölkopf and Smola [118]) shows that solutions of a
large class of optimization problems can be expressed as kernel expansions over
the sample points. As above, H is the RKHS associated to the kernel k.
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THEOREM 9 (Representer theorem). Denote by � : [0,∞) → R a strictly
monotonic increasing function, by X a set, and by c : (X × R

2)n → R ∪ {∞} an
arbitrary loss function. Then each minimizer f ∈ H of the regularized risk func-
tional

c((x1, y1, f (x1)), . . . , (xn, yn, f (xn))) + �(‖f ‖2
H )(37)

admits a representation of the form

f (x) =
n∑

i=1

αik(xi, x).(38)

Monotonicity of � does not prevent the regularized risk functional (37) from
having multiple local minima. To ensure a global minimum, we would need to
require convexity. If we discard the strictness of the monotonicity, then it no longer
follows that each minimizer of the regularized risk admits an expansion (38); it still
follows, however, that there is always another solution that is as good, and that does
admit the expansion.

The significance of the representer theorem is that although we might be trying
to solve an optimization problem in an infinite-dimensional space H , containing
linear combinations of kernels centered on arbitrary points of X, it states that the
solution lies in the span of n particular kernels—those centered on the training
points. We will encounter (38) again further below, where it is called the Sup-
port Vector expansion. For suitable choices of loss functions, many of the αi often
equal 0.

Despite the finiteness of the representation in (38), it can often be the case that
the number of terms in the expansion is too large in practice. This can be prob-
lematic in practice, since the time required to evaluate (38) is proportional to the
number of terms. One can reduce this number by computing a reduced representa-
tion which approximates the original one in the RKHS norm (e.g., Schölkopf and
Smola [118]).

2.3.2. Regularization properties. The regularizer ‖f ‖2
H used in Theorem 9,

which is what distinguishes SVMs from many other regularized function estima-
tors (e.g., based on coefficient based L1 regularizers, such as the Lasso (Tibshirani
[135]) or linear programming machines (Schölkopf and Smola [118])), stems from
the dot product 〈f,f 〉k in the RKHS H associated with a positive definite kernel.
The nature and implications of this regularizer, however, are not obvious and we
shall now provide an analysis in the Fourier domain. It turns out that if the kernel
is translation invariant, then its Fourier transform allows us to characterize how the
different frequency components of f contribute to the value of ‖f ‖2

H . Our expo-
sition will be informal (see also Poggio and Girosi [109] and Smola et al. [127]),
and we will implicitly assume that all integrals are over R

d and exist, and that the
operators are well defined.
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We will rewrite the RKHS dot product as

〈f,g〉k = 〈ϒf,ϒg〉 = 〈ϒ2f,g〉,(39)

where ϒ is a positive (and thus symmetric) operator mapping H into a function
space endowed with the usual dot product

〈f,g〉 =
∫

f (x)g(x) dx.(40)

Rather than (39), we consider the equivalent condition (cf. Section 2.2.1)

〈k(x, ·), k(x′, ·)〉k = 〈ϒk(x, ·),ϒk(x′, ·)〉 = 〈ϒ2k(x, ·), k(x′, ·)〉.(41)

If k(x, ·) is a Green function of ϒ2, we have

〈ϒ2k(x, ·), k(x′, ·)〉 = 〈δx, k(x′, ·)〉 = k(x, x′),(42)

which by the reproducing property (15) amounts to the desired equality (41).
For conditionally positive definite kernels, a similar correspondence can be es-

tablished, with a regularization operator whose null space is spanned by a set of
functions which are not regularized [in the case (17), which is sometimes called
conditionally positive definite of order 1, these are the constants].

We now consider the particular case where the kernel can be written k(x, x′) =
h(x − x′) with a continuous strictly positive definite function h ∈ L1(R

d) (cf. Sec-
tion 2.2.3). A variation of Bochner’s theorem, stated by Wendland [152], then tells
us that the measure corresponding to h has a nonvanishing density υ with respect
to the Lebesgue measure, that is, that k can be written as

k(x, x′) =
∫

e−i〈x−x′,ω〉υ(ω)dω =
∫

e−i〈x,ω〉e−i〈x′,ω〉υ(ω)dω.(43)

We would like to rewrite this as 〈ϒk(x, ·),ϒk(x′, ·)〉 for some linear operator ϒ .
It turns out that a multiplication operator in the Fourier domain will do the job. To
this end, recall the d-dimensional Fourier transform, given by

F [f ](ω) := (2π)−d/2
∫

f (x)e−i〈x,ω〉 dx,(44)

with the inverse F−1[f ](x) = (2π)−d/2
∫

f (ω)ei〈x,ω〉 dω.(45)

Next, compute the Fourier transform of k as

F [k(x, ·)](ω) = (2π)−d/2
∫ ∫ (

υ(ω′)e−i〈x,ω′〉)ei〈x′,ω′〉 dω′e−i〈x′,ω〉 dx′
(46)

= (2π)d/2υ(ω)e−i〈x,ω〉.
Hence, we can rewrite (43) as

k(x, x′) = (2π)−d
∫

F [k(x, ·)](ω)F [k(x′, ·)](ω)

υ(ω)
dω.(47)
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If our regularization operator maps

ϒ :f �→ (2π)−d/2υ−1/2F [f ],(48)

we thus have

k(x, x′) =
∫

(ϒk(x, ·))(ω)(ϒk(x′, ·))(ω)dω,(49)

that is, our desired identity (41) holds true.
As required in (39), we can thus interpret the dot product 〈f,g〉k in the RKHS

as a dot product
∫
(ϒf )(ω)(ϒg)(ω)dω. This allows us to understand regulariza-

tion properties of k in terms of its (scaled) Fourier transform υ(ω). Small values
of υ(ω) amplify the corresponding frequencies in (48). Penalizing 〈f,f 〉k thus
amounts to a strong attenuation of the corresponding frequencies. Hence, small
values of υ(ω) for large ‖ω‖ are desirable, since high-frequency components of
F [f ] correspond to rapid changes in f . It follows that υ(ω) describes the filter
properties of the corresponding regularization operator ϒ . In view of our com-
ments following Theorem 7, we can translate this insight into probabilistic terms:
if the probability measure υ(ω)dω∫

υ(ω)dω
describes the desired filter properties, then the

natural translation invariant kernel to use is the characteristic function of the mea-
sure.

2.3.3. Remarks and notes. The notion of kernels as dot products in Hilbert
spaces was brought to the field of machine learning by Aizerman et al. [1], Boser
at al. [23], Schölkopf at al. [119] and Vapnik [141]. Aizerman et al. [1] used ker-
nels as a tool in a convergence proof, allowing them to apply the Perceptron con-
vergence theorem to their class of potential function algorithms. To the best of our
knowledge, Boser et al. [23] were the first to use kernels to construct a nonlinear
estimation algorithm, the hard margin predecessor of the Support Vector Machine,
from its linear counterpart, the generalized portrait (Vapnik [139] and Vapnik and
Lerner [145]). While all these uses were limited to kernels defined on vectorial
data, Schölkopf [116] observed that this restriction is unnecessary, and nontrivial
kernels on other data types were proposed by Haussler [62] and Watkins [151].
Schölkopf et al. [119] applied the kernel trick to generalize principal component
analysis and pointed out the (in retrospect obvious) fact that any algorithm which
only uses the data via dot products can be generalized using kernels.

In addition to the above uses of positive definite kernels in machine learning,
there has been a parallel, and partly earlier development in the field of statis-
tics, where such kernels have been used, for instance, for time series analysis
(Parzen [106]), as well as regression estimation and the solution of inverse prob-
lems (Wahba [148]).

In probability theory, positive definite kernels have also been studied in depth
since they arise as covariance kernels of stochastic processes; see, for example,
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Loève [93]. This connection is heavily being used in a subset of the machine learn-
ing community interested in prediction with Gaussian processes (Rasmussen and
Williams [111]).

In functional analysis, the problem of Hilbert space representations of kernels
has been studied in great detail; a good reference is Berg at al. [18]; indeed, a large
part of the material in the present section is based on that work. Interestingly, it
seems that for a fairly long time, there have been two separate strands of devel-
opment (Stewart [130]). One of them was the study of positive definite functions,
which started later but seems to have been unaware of the fact that it considered
a special case of positive definite kernels. The latter was initiated by Hilbert [67]
and Mercer [99], and was pursued, for instance, by Schoenberg [115]. Hilbert calls
a kernel k definit if ∫ b

a

∫ b

a
k(x, x′)f (x)f (x′) dx dx′ > 0(50)

for all nonzero continuous functions f , and shows that all eigenvalues of the cor-
responding integral operator f �→ ∫ b

a k(x, ·)f (x) dx are then positive. If k satisfies
the condition (50) subject to the constraint that

∫ b
a f (x)g(x) dx = 0, for some fixed

function g, Hilbert calls it relativ definit. For that case, he shows that k has at most
one negative eigenvalue. Note that if f is chosen to be constant, then this notion
is closely related to the one of conditionally positive definite kernels; see (17). For
further historical details, see the review of Stewart [130] or Berg at al. [18].

3. Convex programming methods for estimation. As we saw, kernels can
be used both for the purpose of describing nonlinear functions subject to smooth-
ness constraints and for the purpose of computing inner products in some feature
space efficiently. In this section we focus on the latter and how it allows us to
design methods of estimation based on the geometry of the problems at hand.

Unless stated otherwise, E[·] denotes the expectation with respect to all random
variables of the argument. Subscripts, such as EX[·], indicate that the expectation
is taken over X. We will omit them wherever obvious. Finally, we will refer to
Eemp[·] as the empirical average with respect to an n-sample. Given a sample S :=
{(x1, y1), . . . , (xn, yn)} ⊆ X×Y, we now aim at finding an affine function f (x) =
〈w,φ(x)〉 + b or in some cases a function f (x, y) = 〈φ(x, y),w〉 such that the
empirical risk on S is minimized. In the binary classification case this means that
we want to maximize the agreement between sgnf (x) and y.

• Minimization of the empirical risk with respect to (w,b) is NP-hard (Minsky
and Papert [101]). In fact, Ben-David et al. [15] show that even approximately
minimizing the empirical risk is NP-hard, not only for linear function classes
but also for spheres and other simple geometrical objects. This means that even
if the statistical challenges could be solved, we still would be confronted with a
formidable algorithmic problem.
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• The indicator function {yf (x) < 0} is discontinuous and even small changes in
f may lead to large changes in both empirical and expected risk. Properties of
such functions can be captured by the VC-dimension (Vapnik and Chervonenkis
[142]), that is, the maximum number of observations which can be labeled in an
arbitrary fashion by functions of the class. Necessary and sufficient conditions
for estimation can be stated in these terms (Vapnik and Chervonenkis [143]).
However, much tighter bounds can be obtained by also using the scale of the
class (Alon et al. [3]). In fact, there exist function classes parameterized by a
single scalar which have infinite VC-dimension (Vapnik [140]).

Given the difficulty arising from minimizing the empirical risk, we now discuss
algorithms which minimize an upper bound on the empirical risk, while providing
good computational properties and consistency of the estimators. A discussion of
the statistical properties follows in Section 3.6.

3.1. Support vector classification. Assume that S is linearly separable, that
is, there exists a linear function f (x) such that sgnyf (x) = 1 on S. In this case,
the task of finding a large margin separating hyperplane can be viewed as one of
solving (Vapnik and Lerner [145])

minimize
w,b

1
2‖w‖2 subject to yi(〈w,x〉 + b) ≥ 1.(51)

Note that ‖w‖−1f (xi) is the distance of the point xi to the hyperplane H(w,b) :=
{x|〈w,x〉 + b = 0}. The condition yif (xi) ≥ 1 implies that the margin of separa-
tion is at least 2‖w‖−1. The bound becomes exact if equality is attained for some
yi = 1 and yj = −1. Consequently, minimizing ‖w‖ subject to the constraints
maximizes the margin of separation. Equation (51) is a quadratic program which
can be solved efficiently (Fletcher [51]).

Mangasarian [95] devised a similar optimization scheme using ‖w‖1 instead of
‖w‖2 in the objective function of (51). The result is a linear program. In general,
one can show (Smola et al. [124]) that minimizing the �p norm of w leads to the
maximizing of the margin of separation in the �q norm where 1

p
+ 1

q
= 1. The �1

norm leads to sparse approximation schemes (see also Chen et al. [29]), whereas
the �2 norm can be extended to Hilbert spaces and kernels.

To deal with nonseparable problems, that is, cases when (51) is infeasible, we
need to relax the constraints of the optimization problem. Bennett and Mangasarian
[17] and Cortes and Vapnik [34] impose a linear penalty on the violation of the
large-margin constraints to obtain

minimize
w,b,ξ

1
2‖w‖2 + C

n∑
i=1

ξi

(52)
subject to yi(〈w,xi〉 + b) ≥ 1 − ξi and ξi ≥ 0,∀i ∈ [n].
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Equation (52) is a quadratic program which is always feasible (e.g., w,b = 0 and
ξi = 1 satisfy the constraints). C > 0 is a regularization constant trading off the
violation of the constraints vs. maximizing the overall margin.

Whenever the dimensionality of X exceeds n, direct optimization of (52) is
computationally inefficient. This is particularly true if we map from X into an
RKHS. To address these problems, one may solve the problem in dual space as
follows. The Lagrange function of (52) is given by

L(w,b, ξ,α, η) = 1
2‖w‖2 + C

n∑
i=1

ξi

(53)

+
n∑

i=1

αi

(
1 − ξi − yi(〈w,xi〉 + b)

) −
n∑

i=1

ηiξi,

where αi, ηi ≥ 0 for all i ∈ [n]. To compute the dual of L, we need to identify the
first order conditions in w,b. They are given by

∂wL = w −
n∑

i=1

αiyixi = 0 and

∂bL = −
n∑

i=1

αiyi = 0 and(54)

∂ξi
L = C − αi + ηi = 0.

This translates into w = ∑n
i=1 αiyixi , the linear constraint

∑n
i=1 αiyi = 0, and the

box-constraint αi ∈ [0,C] arising from ηi ≥ 0. Substituting (54) into L yields the
Wolfe dual

minimize
α

1
2α	Qα−α	1 subject to α	y = 0 and αi ∈ [0,C], ∀i ∈ [n].(55)

Q ∈ R
n×n is the matrix of inner products Qij := yiyj 〈xi, xj 〉. Clearly, this can

be extended to feature maps and kernels easily via Kij := yiyj 〈�(xi),�(xj )〉 =
yiyj k(xi, xj ). Note that w lies in the span of the xi . This is an instance of the
representer theorem (Theorem 9). The KKT conditions (Boser et al. [23], Cortes
and Vapnik [34], Karush [81] and Kuhn and Tucker [88]) require that at optimality
αi(yif (xi) − 1) = 0. This means that only those xi may appear in the expan-
sion (54) for which yif (xi) ≤ 1, as otherwise αi = 0. The xi with αi > 0 are
commonly referred to as support vectors.

Note that
∑n

i=1 ξi is an upper bound on the empirical risk, as yif (xi) ≤ 0 im-
plies ξi ≥ 1 (see also Lemma 10). The number of misclassified points xi itself
depends on the configuration of the data and the value of C. Ben-David et al. [15]
show that finding even an approximate minimum classification error solution is
difficult. That said, it is possible to modify (52) such that a desired target number
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of observations violates yif (xi) ≥ ρ for some ρ ∈ R by making the threshold it-
self a variable of the optimization problem (Schölkopf et al. [120]). This leads to
the following optimization problem (ν-SV classification):

minimize
w,b,ξ

1
2‖w‖2 +

n∑
i=1

ξi − nνρ

(56)
subject to yi(〈w,xi〉 + b) ≥ ρ − ξi and ξi ≥ 0.

The dual of (56) is essentially identical to (55) with the exception of an additional
constraint:

minimize
α

1
2α	Qα subject to α	y = 0 and α	1 = nν and αi ∈ [0,1].(57)

One can show that for every C there exists a ν such that the solution of (57) is a
multiple of the solution of (55). Schölkopf et al. [120] prove that solving (57) for
which ρ > 0 satisfies the following:

1. ν is an upper bound on the fraction of margin errors.
2. ν is a lower bound on the fraction of SVs.

Moreover, under mild conditions, with probability 1, asymptotically, ν equals both
the fraction of SVs and the fraction of errors.

This statement implies that whenever the data are sufficiently well separable
(i.e., ρ > 0), ν-SV classification finds a solution with a fraction of at most ν margin
errors. Also note that, for ν = 1, all αi = 1, that is, f becomes an affine copy of
the Parzen windows classifier (5).

3.2. Estimating the support of a density. We now extend the notion of linear
separation to that of estimating the support of a density (Schölkopf et al. [117]
and Tax and Duin [134]). Denote by X = {x1, . . . , xn} ⊆ X the sample drawn
from P(x). Let C be a class of measurable subsets of X and let λ be a real-valued
function defined on C. The quantile function (Einmal and Mason [47]) with respect
to (P, λ,C) is defined as

U(μ) = inf{λ(C)|P(C) ≥ μ,C ∈ C} where μ ∈ (0,1].(58)

We denote by Cλ(μ) and Cm
λ (μ) the (not necessarily unique) C ∈ C that attain

the infimum (when it is achievable) on P(x) and on the empirical measure given
by X respectively. A common choice of λ is the Lebesgue measure, in which case
Cλ(μ) is the minimum volume set C ∈ C that contains at least a fraction μ of the
probability mass.

Support estimation requires us to find some Cm
λ (μ) such that |P(Cm

λ (μ)) − μ|
is small. This is where the complexity trade-off enters: On the one hand, we want
to use a rich class C to capture all possible distributions, on the other hand, large
classes lead to large deviations between μ and P(Cm

λ (μ)). Therefore, we have to
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consider classes of sets which are suitably restricted. This can be achieved using
an SVM regularizer.

SV support estimation works by using SV support estimation related to previous
work as follows: set λ(Cw) = ‖w‖2, where Cw = {x|fw(x) ≥ ρ}, fw(x) = 〈w,x〉,
and (w,ρ) are respectively a weight vector and an offset. Stated as a convex op-
timization problem, we want to separate the data from the origin with maximum
margin via

minimize
w,ξ,ρ

1
2‖w‖2 +

n∑
i=1

ξi − nνρ

(59)
subject to 〈w,xi〉 ≥ ρ − ξi and ξi ≥ 0.

Here, ν ∈ (0,1] plays the same role as in (56), controlling the number of observa-
tions xi for which f (xi) ≤ ρ. Since nonzero slack variables ξi are penalized in the
objective function, if w and ρ solve this problem, then the decision function f (x)

will attain or exceed ρ for at least a fraction 1 − ν of the xi contained in X, while
the regularization term ‖w‖ will still be small. The dual of (59) yield:

minimize
α

1
2α	Kα subject to α	1 = νn and αi ∈ [0,1].(60)

To compare (60) to a Parzen windows estimator, assume that k is such that it can
be normalized as a density in input space, such as a Gaussian. Using ν = 1 in (60),
the constraints automatically imply αi = 1. Thus, f reduces to a Parzen windows
estimate of the underlying density. For ν < 1, the equality constraint (60) still
ensures that f is a thresholded density, now depending only on a subset of X—
those which are important for deciding whether f (x) ≤ ρ.

3.3. Regression estimation. SV regression was first proposed in Vapnik [140]
and Vapnik et al. [144] using the so-called ε-insensitive loss function. It is a direct
extension of the soft-margin idea to regression: instead of requiring that yf (x)

exceeds some margin value, we now require that the values y − f (x) are bounded
by a margin on both sides. That is, we impose the soft constraints

yi − f (xi) ≤ εi − ξi and f (xi) − yi ≤ εi − ξ∗
i ,(61)

where ξi, ξ
∗
i ≥ 0. If |yi − f (xi)| ≤ ε, no penalty occurs. The objective function

is given by the sum of the slack variables ξi, ξ
∗
i penalized by some C > 0 and a

measure for the slope of the function f (x) = 〈w,x〉 + b, that is, 1
2‖w‖2.

Before computing the dual of this problem, let us consider a somewhat more
general situation where we use a range of different convex penalties for the devia-
tion between yi and f (xi). One may check that minimizing 1

2‖w‖2 +C
∑m

i=1 ξi +
ξ∗
i subject to (61) is equivalent to solving

minimize
w,b,ξ

1
2‖w‖2 +

n∑
i=1

ψ
(
yi − f (xi)

)
where ψ(ξ) = max(0, |ξ | − ε).(62)

Choosing different loss functions ψ leads to a rather rich class of estimators:
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• ψ(ξ) = 1
2ξ2 yields penalized least squares (LS) regression (Hoerl and Kennard

[68], Morozov [102], Tikhonov [136] and Wahba [148]). The corresponding
optimization problem can be minimized by solving a linear system.

• For ψ(ξ) = |ξ |, we obtain the penalized least absolute deviations (LAD) esti-
mator (Bloomfield and Steiger [20]). That is, we obtain a quadratic program to
estimate the conditional median.

• A combination of LS and LAD loss yields a penalized version of Huber’s robust
regression (Huber [71] and Smola and Schölkopf [126]). In this case we have
ψ(ξ) = 1

2σ
ξ2 for |ξ | ≤ σ and ψ(ξ) = |ξ | − σ

2 for |ξ | ≥ σ .
• Note that also quantile regression can be modified to work with kernels

(Schölkopf et al. [120]) by using as loss function the “pinball” loss, that is,
ψ(ξ) = (1 − τ)ψ if ψ < 0 and ψ(ξ) = τψ if ψ > 0.

All the optimization problems arising from the above five cases are convex
quadratic programs. Their dual resembles that of (61), namely,

minimize
α,α∗

1
2(α − α∗)	K(α − α∗) + ε	(α + α∗) − y	(α − α∗)(63a)

subject to (α − α∗)	1 = 0 and αi,α
∗
i ∈ [0,C].(63b)

Here Kij = 〈xi, xj 〉 for linear models and Kij = k(xi, xj ) if we map x → �(x).
The ν-trick, as described in (56) (Schölkopf et al. [120]), can be extended to
regression, allowing one to choose the margin of approximation automatically.
In this case (63a) drops the terms in ε. In its place, we add a linear constraint
(α − α∗)	1 = νn. Likewise, LAD is obtained from (63) by dropping the terms in
ε without additional constraints. Robust regression leaves (63) unchanged, how-
ever, in the definition of K we have an additional term of σ−1 on the main di-
agonal. Further details can be found in Schölkopf and Smola [118]. For quantile
regression we drop ε and we obtain different constants C(1 − τ) and Cτ for the
constraints on α∗ and α. We will discuss uniform convergence properties of the
empirical risk estimates with respect to various ψ(ξ) in Section 3.6.

3.4. Multicategory classification, ranking and ordinal regression. Many esti-
mation problems cannot be described by assuming that Y = {±1}. In this case it is
advantageous to go beyond simple functions f (x) depending on x only. Instead,
we can encode a larger degree of information by estimating a function f (x, y)

and subsequently obtaining a prediction via ŷ(x) := arg maxy∈Y f (x, y). In other
words, we study problems where y is obtained as the solution of an optimization
problem over f (x, y) and we wish to find f such that y matches yi as well as
possible for relevant inputs x.

Note that the loss may be more than just a simple 0–1 loss. In the following we
denote by �(y,y′) the loss incurred by estimating y′ instead of y. Without loss of
generality, we require that �(y,y) = 0 and that �(y,y′) ≥ 0 for all y, y′ ∈ Y. Key
in our reasoning is the following:
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LEMMA 10. Let f :X × Y → R and assume that �(y,y′) ≥ 0 with
�(y,y) = 0. Moreover, let ξ ≥ 0 such that f (x, y) − f (x, y ′) ≥ �(y,y′) − ξ

for all y′ ∈ Y. In this case ξ ≥ �(y, arg maxy′∈Y f (x, y′)).

The construction of the estimator was suggested by Taskar et al. [132] and
Tsochantaridis et al. [137], and a special instance of the above lemma is given by
Joachims [78]. While the bound appears quite innocuous, it allows us to describe
a much richer class of estimation problems as a convex program.

To deal with the added complexity, we assume that f is given by f (x, y) =
〈�(x,y),w〉. Given the possibly nontrivial connection between x and y, the
use of �(x,y) cannot be avoided. Corresponding kernel functions are given by
k(x, y, x′, y′) = 〈�(x,y),�(x′, y′)〉. We have the following optimization prob-
lem (Tsochantaridis et al. [137]):

minimize
w,ξ

1
2‖w‖2 + C

n∑
i=1

ξi

(64)
subject to 〈w,�(xi, yi) − �(xi, y)〉 ≥ �(yi, y) − ξi,∀i ∈ [n], y ∈ Y.

This is a convex optimization problem which can be solved efficiently if the con-
straints can be evaluated without high computational cost. One typically employs
column-generation methods (Bennett et al. [16], Fletcher [51], Hettich and Kor-
tanek [66] and Tsochantaridis et al. [137]) which identify one violated constraint
at a time to find an approximate minimum of the optimization problem.

To describe the flexibility of the framework set out by (64) we give several
examples below:

• Binary classification can be recovered by setting �(x,y) = y�(x), in which
case the constraint of (64) reduces to 2yi〈�(xi),w〉 ≥ 1 − ξi . Ignoring constant
offsets and a scaling factor of 2, this is exactly the standard SVM optimization
problem.

• Multicategory classification problems (Allwein et al. [2], Collins [30] and Cram-
mer and Singer [35]) can be encoded via Y = [N ], where N is the number of
classes and �(y,y′) = 1 − δy,y′ . In other words, the loss is 1 whenever we pre-
dict the wrong class and 0 for correct classification. Corresponding kernels are
typically chosen to be δy,y′k(x, x′).

• We can deal with joint labeling problems by setting Y = {±1}n. In other words,
the error measure does not depend on a single observation but on an entire set of
labels. Joachims [78] shows that the so-called F1 score (van Rijsbergen [138])
used in document retrieval and the area under the ROC curve (Bamber [10])
fall into this category of problems. Moreover, Joachims [78] derives an O(n2)

method for evaluating the inequality constraint over Y.
• Multilabel estimation problems deal with the situation where we want to find

the best subset of labels Y ⊆ 2[N] which correspond to some observation x.
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Elisseeff and Weston [48] devise a ranking scheme where f (x, i) > f (x, j) if
label i ∈ y and j /∈ y. It is a special case of an approach described next.

Note that (64) is invariant under translations �(x,y) ← �(x,y) + �0 where
�0 is constant, as �(xi, yi) − �(xi, y) remains unchanged. In practice, this
means that transformations k(x, y, x′, y′) ← k(x, y, x′, y′) + 〈�0,�(x, y)〉 +
〈�0,�(x′, y′)〉+‖�0‖2 do not affect the outcome of the estimation process. Since
�0 was arbitrary, we have the following lemma:

LEMMA 11. Let H be an RKHS on X×Y with kernel k. Moreover, let g ∈ H .
Then the function k(x, y, x ′, y′) + f (x, y) + f (x′, y′) + ‖g‖2

H is a kernel and it
yields the same estimates as k.

We need a slight extension to deal with general ranking problems. Denote by
Y = Graph[N ] the set of all directed graphs on N vertices which do not contain
loops of less than three nodes. Here an edge (i, j) ∈ y indicates that i is preferred
to j with respect to the observation x. It is the goal to find some function f :X ×
[N ] → R which imposes a total order on [N ] (for a given x) by virtue of the
function values f (x, i) such that the total order and y are in good agreement.

More specifically, Crammer and Singer [36] and Dekel et al. [45] propose a
decomposition algorithm A for the graphs y such that the estimation error is given
by the number of subgraphs of y which are in disagreement with the total order
imposed by f . As an example, multiclass classification can be viewed as a graph
y where the correct label i is at the root of a directed graph and all incorrect labels
are its children. Multilabel classification is then a bipartite graph where the correct
labels only contain outgoing arcs and the incorrect labels only incoming ones.

This setting leads to a form similar to (64), except for the fact that we now have
constraints over each subgraph G ∈ A(y). We solve

minimize
w,ξ

1
2‖w‖2 + C

n∑
i=1

|A(yi)|−1
∑

G∈A(yi )

ξiG

subject to 〈w,�(xi, u) − �(xi, v)〉 ≥ 1 − ξiG and ξiG ≥ 0(65)

for all (u, v) ∈ G ∈ A(yi).

That is, we test for all (u, v) ∈ G whether the ranking imposed by G ∈ yi is satis-
fied.

Finally, ordinal regression problems which perform ranking not over labels y

but rather over observations x were studied by Herbrich et al. [65] and Chapelle
and Harchaoui [27] in the context of ordinal regression and conjoint analysis
respectively. In ordinal regression x is preferred to x′ if f (x) > f (x′) and,
hence, one minimizes an optimization problem akin to (64), with constraint
〈w,�(xi) − �(xj )〉 ≥ 1 − ξij . In conjoint analysis the same operation is carried
out for �(x,u), where u is the user under consideration. Similar models were also
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studied by Basilico and Hofmann [13]. Further models will be discussed in Sec-
tion 4, in particular situations where Y is of exponential size. These models allow
one to deal with sequences and more sophisticated structures.

3.5. Applications of SVM algorithms. When SVMs were first presented, they
initially met with skepticism in the statistical community. Part of the reason was
that, as described, SVMs construct their decision rules in potentially very high-
dimensional feature spaces associated with kernels. Although there was a fair
amount of theoretical work addressing this issue (see Section 3.6 below), it was
probably to a larger extent the empirical success of SVMs that paved its way to
become a standard method of the statistical toolbox. The first successes of SVMs
on practical problems were in handwritten digit recognition, which was the main
benchmark task considered in the Adaptive Systems Department at AT&T Bell
Labs where SVMs were developed. Using methods to incorporate transformation
invariances, SVMs were shown to beat the world record on the MNIST bench-
mark set, at the time the gold standard in the field (DeCoste and Schölkopf [44]).
There has been a significant number of further computer vision applications of
SVMs since then, including tasks such as object recognition and detection. Never-
theless, it is probably fair to say that two other fields have been more influential in
spreading the use of SVMs: bioinformatics and natural language processing. Both
of them have generated a spectrum of challenging high-dimensional problems on
which SVMs excel, such as microarray processing tasks and text categorization.
For references, see Joachims [77] and Schölkopf et al. [121].

Many successful applications have been implemented using SV classifiers; how-
ever, also the other variants of SVMs have led to very good results, including SV
regression, SV novelty detection, SVMs for ranking and, more recently, problems
with interdependent labels (McCallum et al. [96] and Tsochantaridis et al. [137]).

At present there exists a large number of readily available software packages for
SVM optimization. For instance, SVMStruct, based on Tsochantaridis et al. [137]
solves structured estimation problems. LibSVM is an open source solver which
excels on binary problems. The Torch package contains a number of estimation
methods, including SVM solvers. Several SVM implementations are also available
via statistical packages, such as R.

3.6. Margins and uniform convergence bounds. While the algorithms were
motivated by means of their practicality and the fact that 0–1 loss functions yield
hard-to-control estimators, there exists a large body of work on statistical analysis.
We refer to the works of Bartlett and Mendelson [12], Jordan et al. [80], Koltchin-
skii [86], Mendelson [98] and Vapnik [141] for details. In particular, the review of
Bousquet et al. [24] provides an excellent summary of the current state of the art.
Specifically for the structured case, recent work by Collins [30] and Taskar et al.
[132] deals with explicit constructions to obtain better scaling behavior in terms of
the number of class labels.
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The general strategy of the analysis can be described by the following three
steps: first, the discrete loss is upper bounded by some function, such as ψ(yf (x)),
which can be efficiently minimized [e.g. the soft margin function max(0,1 −
yf (x)) of the previous section satisfies this property]. Second, one proves that
the empirical average of the ψ-loss is concentrated close to its expectation. This
will be achieved by means of Rademacher averages. Third, one shows that un-
der rather general conditions the minimization of the ψ-loss is consistent with the
minimization of the expected risk. Finally, these bounds are combined to obtain
rates of convergence which only depend on the Rademacher average and the ap-
proximation properties of the function class under consideration.

4. Statistical models and RKHS. As we have argued so far, the reproduc-
ing kernel Hilbert space approach offers many advantages in machine learning:
(i) powerful and flexible models can be defined, (ii) many results and algorithms
for linear models in Euclidean spaces can be generalized to RKHS, (iii) learning
theory assures that effective learning in RKHS is possible, for instance, by means
of regularization.

In this chapter we will show how kernel methods can be utilized in the context
of statistical models. There are several reasons to pursue such an avenue. First of
all, in conditional modeling, it is often insufficient to compute a prediction with-
out assessing confidence and reliability. Second, when dealing with multiple or
structured responses, it is important to model dependencies between responses in
addition to the dependence on a set of covariates. Third, incomplete data, be it due
to missing variables, incomplete training targets or a model structure involving la-
tent variables, needs to be dealt with in a principled manner. All of these issues can
be addressed by using the RKHS approach to define statistical models and by com-
bining kernels with statistical approaches such as exponential models, generalized
linear models and Markov networks.

4.1. Exponential RKHS models.

4.1.1. Exponential models. Exponential models or exponential families are
among the most important class of parametric models studied in statistics. Given a
canonical vector of statistics � and a σ -finite measure ν over the sample space X ,
an exponential model can be defined via its probability density with respect to ν

(cf. Barndorff-Nielsen [11]),

p(x; θ) = exp[〈θ,�(x)〉 − g(θ)]
(66)

where g(θ) := ln
∫
X

e〈θ,�(x)〉 dν(x).

The m-dimensional vector θ ∈ � with � := {θ ∈ R
m :g(θ) < ∞} is also called the

canonical parameter vector. In general, there are multiple exponential representa-
tions of the same model via canonical parameters that are affinely related to one
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another (Murray and Rice [103]). A representation with minimal m is called a min-
imal representation, in which case m is the order of the exponential model. One
of the most important properties of exponential families is that they have sufficient
statistics of fixed dimensionality, that is, the joint density for i.i.d. random vari-
ables X1,X2, . . . ,Xn is also exponential, the corresponding canonical statistics
simply being

∑n
i=1 �(Xi). It is well known that much of the structure of exponen-

tial models can be derived from the log partition function g(θ), in particular,

�θg(θ) = μ(θ) := Eθ [�(X)], ∂2
θ g(θ) = Vθ [�(X)],(67)

where μ is known as the mean-value map. Being a covariance matrix, the Hessian
of g is positive semi-definite and, consequently, g is convex.

Maximum likelihood estimation (MLE) in exponential families leads to a partic-
ularly elegant form for the MLE equations: the expected and the observed canoni-
cal statistics agree at the MLE θ̂ . This means, given an i.i.d. sample S = (xi)i∈[n],

E
θ̂
[�(X)] = μ(θ̂) = 1

n

n∑
i=1

�(xi) := rES[�(X)].(68)

4.1.2. Exponential RKHS models. One can extend the parameteric exponen-
tial model in (66) by defining a statistical model via an RKHS H with generating
kernel k. Linear function 〈θ,�(·)〉 over X are replaced with functions f ∈ H ,
which yields an exponential RKHS model

p(x;f ) = exp[f (x) − g(f )],
(69)

f ∈ H :=
{
f :f (·) = ∑

x∈S

αxk(·, x),S ⊆ X, |S| < ∞
}
.

A justification for using exponential RKHS families with rich canonical statis-
tics as a generic way to define nonparametric models stems from the fact that if
the chosen kernel k is powerful enough, the associated exponential families be-
come universal density estimators. This can be made precise using the concept of
universal kernels (Steinwart [128], cf. Section 2).

PROPOSITION 12 (Dense densities). Let X be a measurable set with a fixed
σ -finite measure ν and denote by P a family of densities on X with respect
to ν such that p ∈ P is uniformly bounded from above and continuous. Let
k : X × X → R be a universal kernel for H . Then the exponential RKHS fam-
ily of densities generated by k according to equation (69) is dense in P in the L∞
sense.
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4.1.3. Conditional exponential models. For the rest of the paper we will focus
on the case of predictive or conditional modeling with a—potentially compound or
structured—response variable Y and predictor variables X. Taking up the concept
of joint kernels introduced in the previous section, we will investigate conditional
models that are defined by functions f : X × Y → R from some RKHS H over
X × Y with kernel k as follows:

p(y|x;f ) = exp[f (x, y) − g(x,f )]
(70)

where g(x,f ) := ln
∫
Y

ef (x,y) dν(y).

Notice that in the finite-dimensional case we have a feature map � :X × Y →
R

m from which parametric models are obtained via H := {f :∃w,f (x, y) =
f (x, y;w) := 〈w,�(x, y)〉} and each f can be identified with its parameter w.
Let us discuss some concrete examples to illustrate the rather general model equa-
tion (70):

• Let Y be univariate and define �(x,y) = y�(x). Then simply f (x, y;w) =
〈w,�(x, y)〉 = yf̃ (x;w), with f̃ (x;w) := 〈w,�(x)〉 and the model equation
in (70) reduces to

p(y|x;w) = exp[y〈w,�(x)〉 − g(x,w)].(71)

This is a generalized linear model (GLM) (McCullagh and Nelder [97]) with
a canonical link, that is, the canonical parameters depend linearly on the co-
variates �(x). For different response scales, we get several well-known models
such as, for instance, logistic regression where y ∈ {−1,1}.

• In the nonparameteric extension of generalized linear models following Green
and Yandell [57] and O’Sullivan [105] the parametric assumption on the lin-
ear predictor f̃ (x;w) = 〈w,�(x)〉 in the GLMs is relaxed by requiring that f̃

comes from some sufficiently smooth class of functions, namely, an RKHS de-
fined over X. In combination with a parametric part, this can also be used to
define semi-parametric models. Popular choices of kernels include the ANOVA
kernel investigated by [149]. This is a special case of defining joint kernels from
an existing kernel k over inputs via k((x, y), (x′, y′)) := yy′k(x, x′).

• Joint kernels provide a powerful framework for prediction problems with struc-
tured outputs. An illuminating example is statistical natural language parsing
with lexicalized probabilistic context free grammars (Magerman [94]). Here x

will be an English sentence and y a parse tree for x, that is, a highly struc-
tured and complex output. The productions of the grammar are known, but the
conditional probability p(y|x) needs to be estimated based on training data
of parsed/annotated sentences. In the simplest case, the extracted statistics �

may encode the frequencies of the use of different productions in a sentence
with a known parse tree. More sophisticated feature encodings are discussed in
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Taskar et al. [133] and Zettlemoyer and Collins [156]. The conditional mod-
eling approach provide alternatives to state-of-the art approaches that estimate
joint models p(x, y) with maximum likelihood or maximum entropy and obtain
predictive models by conditioning on x.

4.1.4. Risk functions for model fitting. There are different inference principles
to determine the optimal function f ∈ H for the conditional exponential model
in (70). One standard approach to parametric model fitting is to maximize the
conditional log-likelihood—or equivalently—minimize a logarithmic loss, a strat-
egy pursued in the Conditional Random Field (CRF) approach of Lafferty [90].
Here we consider the more general case of minimizing a functional that includes a
monotone function of the Hilbert space norm ‖f ‖H as a stabilizer (Wahba [148]).
This reduces to penalized log-likelihood estimation in the finite-dimensional case,

Cll(f ;S) := −1

n

n∑
i=1

lnp(yi |xi;f ),

(72)

f̂ ll(S) := arg min
f ∈H

λ

2
‖f ‖2

H + Cll(f ;S).

• For the parametric case, Lafferty et al. [90] have employed variants of improved
iterative scaling (Darroch and Ratcliff [40] and Della Pietra [46]) to optimize
equation (72), whereas Sha and Pereira [122] have investigated preconditioned
conjugate gradient descent and limited memory quasi-Newton methods.

• In order to optimize equation (72) one usually needs to compute expectations of
the canonical statistics Ef [�(Y,x)] at sample points x = xi , which requires the
availability of efficient inference algorithms.

As we have seen in the case of classification and regression, likelihood-based
criteria are by no means the only justifiable choice and large margin methods offer
an interesting alternative. To that extend, we will present a general formulation of
large margin methods for response variables over finite sample spaces that is based
on the approach suggested by Altun et al. [6] and Taskar et al. [132]. Define

r(x, y;f ) := f (x, y) − max
y′ �=y

f (x, y′) = min
y′ �=y

log
p(y|x;f )

p(y′|x;f )
and

(73)
r(S;f ) := n

min
i=1

r(xi, yi;f ).

Here r(S;f ) generalizes the notion of separation margin used in SVMs. Since the
log-odds ratio is sensitive to rescaling of f , that is, r(x, y;βf ) = βr(x, y;f ), we
need to constrain ‖f ‖H to make the problem well defined. We thus replace f by
φ−1f for some fixed dispersion parameter φ > 0 and define the maximum margin
problem f̂ mm(S) := φ−1 arg max‖f ‖H=1 r(S;f/φ). For the sake of the presenta-
tion, we will drop φ in the following. (We will not deal with the problem of how to
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estimate φ here; note, however, that one does need to know φ in order to make an
optimal deterministic prediction.) Using the same line of arguments as was used
in Section 3, the maximum margin problem can be re-formulated as a constrained
optimization problem

f̂ mm(S) := arg min
f ∈H

1
2‖f ‖2

H s.t. r(xi, yi;f ) ≥ 1,∀i ∈ [n],(74)

provided the latter is feasible, that is, if there exists f ∈ H such that r(S;f ) > 0.
To make the connection to SVMs, consider the case of binary classification with
�(x,y) = y�(x), f (x, y;w) = 〈w,y�(x)〉, where r(x, y;f ) = 〈w,y�(x)〉 −
〈w,−y�(x)〉 = 2y〈w,�(x)〉 = 2ρ(x, y;w). The latter is twice the standard mar-
gin for binary classification in SVMs.

A soft margin version can be defined based on the Hinge loss as follows:

Chl(f ;S) := 1

n

n∑
i=1

min{1 − r(xi, yi;f ),0},
(75)

f̂ sm(S) := arg min
f ∈H

λ

2
‖f ‖2

H + Chl(f,S).

• An equivalent formulation using slack variables ξi as discussed in Section 3 can
be obtained by introducing soft-margin constraints r(xi, yi;f ) ≥ 1 − ξi , ξi ≥ 0
and by defining Chl = 1

n
ξi . Each nonlinear constraint can be further expanded

into |Y| linear constraints f (xi, yi) − f (xi, y) ≥ 1 − ξi for all y �= yi .
• Prediction problems with structured outputs often involve task-specific loss

function � :Y × Y → R discussed in Section 3.4. As suggested in Taskar et al.
[132] cost sensitive large margin methods can be obtained by defining re-scaled
margin constraints f (xi, yi) − f (xi, y) ≥ �(yi, y) − ξi .

• Another sensible option in the parametric case is to minimize an exponential
risk function of the following type:

f̂ exp(S) := arg min
w

1

n

n∑
i=1

∑
y �=yi

exp[f (xi, yi;w) − f (xi, y;w)].(76)

This is related to the exponential loss used in the AdaBoost method of Freund
and Schapire [53]. Since we are mainly interested in kernel-based methods here,
we refrain from further elaborating on this connection.

4.1.5. Generalized representer theorem and dual soft-margin formulation. It
is crucial to understand how the representer theorem applies in the setting of ar-
bitrary discrete output spaces, since a finite representation for the optimal f̂ ∈
{f̂ ll, f̂ sm} is the basis for constructive model fitting. Notice that the regularized
log-loss, as well as the soft margin functional introduced above, depends not only
on the values of f on the sample S, but rather on the evaluation of f on the aug-
mented sample S̃ := {(xi, y) : i ∈ [n], y ∈ Y}. This is the case, because for each xi ,
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output values y �= yi not observed with xi show up in the log-partition function
g(xi, f ) in (70), as well as in the log-odds ratios in (73). This adds an additional
complication compared to binary classification.

COROLLARY 13. Denote by H an RKHS on X × Y with kernel k and let
S = ((xi, yi))i∈[n]. Furthermore, let C(f ;S) be a functional depending on f

only via its values on the augmented sample S̃. Let � be a strictly monotoni-
cally increasing function. Then the solution of the optimization problem f̂ (S) :=
arg minf ∈H C(f ; S̃) + �(‖f ‖H ) can be written as

f̂ (·) =
n∑

i=1

∑
y∈Y

βiyk(·, (xi, y)).(77)

This follows directly from Theorem 9.
Let us focus on the soft margin maximizer f̂ sm. Instead of solving (75) directly,

we first derive the dual program, following essentially the derivation in Section 3.

PROPOSITION 14 (Tsochantaridis et al. [137]). The minimizer f̂ sm(S) can be
written as in Corollary 13, where the expansion coefficients can be computed from
the solution of the following convex quadratic program:

α∗ = arg min
α

{
1
2

n∑
i,j=1

∑
y �=yi

∑
y′ �=yj

αiyαjy′Kiy,jy′ −
n∑

i=1

∑
y �=yi

αiy

}
(78a)

s.t. λn
∑
y �=yi

αiy ≤ 1, ∀i ∈ [n];αiy ≥ 0,∀i ∈ [n], y ∈ Y,(78b)

where Kiy,jy′ := k((xi, yi), (xj , yj )) + k((xi, y), (xj , y
′)) − k((xi, yi), (xj , y

′)) −
k((xi, y), (xj , yj )).

• The multiclass SVM formulation of [35] can be recovered as a special case for
kernels that are diagonal with respect to the outputs, that is, k((x, y), (x′, y′)) =
δy,y′k(x, x′). Notice that in this case the quadratic part in equation (78a) simpli-
fies to ∑

i,j

k(xi, xj )
∑
y

αiyαjy[1 + δyi,yδyj ,y − δyi,y − δyj ,y].

• The pairs (xi, y) for which αiy > 0 are the support pairs, generalizing the no-
tion of support vectors. As in binary SVMs, their number can be much smaller
than the total number of constraints. Notice also that in the final expansion
contributions k(·, (xi, yi)) will get nonnegative weights, whereas k(·, (xi, y))

for y �= yi will get nonpositive weights. Overall one gets a balance equation
βiyi

− ∑
y �=yi

βiy = 0 for every data point.
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4.1.6. Sparse approximation. Proposition 14 shows that sparseness in the rep-
resentation of f̂ sm is linked to the fact that only few αiy in the solution to the dual
problem in equation (78) are nonzero. Note that each of these Lagrange multipliers
is linked to the corresponding soft margin constraints f (xi, yi)−f (xi, y) ≥ 1−ξi .
Hence, sparseness is achieved, if only few constraints are active at the optimal so-
lution. While this may or may not be the case for a given sample, one can still
exploit this observation to define a nested sequence of relaxations, where margin
constraint are incrementally added. This corresponds to a constraint selection al-
gorithm (Bertsimas and Tsitsiklis [19]) for the primal or, equivalently, a variable
selection or column generation method for the dual program and has been inves-
tigated in Tsochantaridis et al. [137]. Solving a sequence of increasingly tighter
relaxations to a mathematical problem is also known as an outer approximation.
In particular, one may iterate through the training examples according to some
(fair) visitation schedule and greedily select constraints that are most violated at
the current solution f , that is, for the ith instance one computes

ŷi = arg max
y �=yi

f (xi, y) = arg max
y �=yi

p(y|xi;f ),(79)

and then strengthens the current relaxation by including αiŷi
in the optimization of

the dual if f (xi, yi)−f (xi, ŷi) < 1 − ξi − ε. Here ε > 0 is a pre-defined tolerance
parameter. It is important to understand how many strengthening steps are nec-
essary to achieve a reasonable close approximation to the original problem. The
following theorem provides an answer:

THEOREM 15 (Tsochantaridis et al. [137]). Let R̄ = maxi,y Kiy,iy and choose
ε > 0. A sequential strengthening procedure, which optimizes equation (75) by
greedily selecting ε-violated constraints, will find an approximate solution where
all constraints are fulfilled within a precision of ε, that is, r(xi, yi;f ) ≥ 1 − ξi − ε

after at most 2n
ε

· max{1, 4R̄2

λn2ε
} steps.

COROLLARY 16. Denote by (f̂ , ξ̂ ) the optimal solution of a relaxation of the
problem in Proposition 14, minimizing R(f, ξ,S) while violating no constraint by
more than ε (cf. Theorem 15). Then

R(f̂ , ξ̂ ,S) ≤ R(f̂ sm, ξ∗,S) ≤ R(f̂ , ξ̂ ,S) + ε,

where (f̂ sm, ξ∗) is the optimal solution of the original problem.

• Combined with an efficient QP solver, the above theorem guarantees a runtime
polynomial in n, ε−1, R̄ and λ−1. This holds irrespective of special properties
of the data set utilized, the only exception being the dependency on the sample
points xi is through the radius R̄.
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• The remaining key problem is how to compute equation (79) efficiently. The an-
swer depends on the specific form of the joint kernel k and/or the feature map �.
In many cases, efficient dynamic programming techniques exists, whereas in
other cases one has to resort to approximations or use other methods to identify
a set of candidate distractors Yi ⊂ Y for a training pair (xi, yi) (Collins [30]).
Sometimes one may also have search heuristics available that may not find the
solution to Equation (79), but that find (other) ε-violating constraints with a
reasonable computational effort.

4.1.7. Generalized Gaussian processes classification. The model
equation (70) and the minimization of the regularized log-loss can be interpreted
as a generalization of Gaussian process classification (Altun et al. [4] and Ras-
mussen and Williams [111]) by assuming that (f (x, ·))x∈X is a vector-valued zero
mean Gaussian process; note that the covariance function C is defined over pairs
X×Y. For a given sample S, define a multi-index vector F(S) := (f (xi, y))i,y as
the restriction of the stochastic process f to the augmented sample S̃. Denote the
kernel matrix by K = (Kiy,jy′), where Kiy,jy′ := C((xi, y), (xj , y

′)) with indices
i, j ∈ [n] and y, y′ ∈ Y, so that, in summary, F(S) ∼ N (0,K). This induces a
predictive model via Bayesian model integration according to

p(y|x;S) =
∫

p(y|F(x, ·))p(F |S) dF,(80)

where x is a test point that has been included in the sample (transductive setting).
For an i.i.d. sample, the log-posterior for F can be written as

lnp(F |S) = −1
2FT K−1F +

n∑
i=1

[f (xi, yi) − g(xi,F )] + const.(81)

Invoking the representer theorem for F̂ (S) := arg maxF lnp(F |S), we know that

F̂ (S)iy =
n∑

j=1

∑
y′∈Y

αiyKiy,jy′,(82)

which we plug into equation (81) to arrive at

min
α

αT Kα −
n∑

i=1

(
αT Keiyi

+ log
∑
y∈Y

exp[αT Keiy]
)
,(83)

where eiy denotes the respective unit vector. Notice that for f (·) = ∑
i,y αiyk(·,

(xi, y)) the first term is equivalent to the squared RKHS norm of f ∈ H since
〈f,f 〉H = ∑

i,j

∑
y,y′ αiyαjy′ 〈k(·, (xi, y)), k(·, (xj , y

′))〉. The latter inner product
reduces to k((xi, y), (xj , y

′)) due to the reproducing property. Again, the key issue
in solving (83) is how to achieve spareness in the expansion for F̂ .
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4.2. Markov networks and kernels. In Section 4.1 no assumptions about the
specific structure of the joint kernel defining the model in equation (70) has been
made. In the following, we will focus on a more specific setting with multiple
outputs, where dependencies are modeled by a conditional independence graph.
This approach is motivated by the fact that independently predicting individual re-
sponses based on marginal response models will often be suboptimal and explicitly
modeling these interactions can be of crucial importance.

4.2.1. Markov networks and factorization theorem. Denote predictor vari-
ables by X, response variables by Y and define Z := (X,Y ) with associated sam-
ple space Z. We use Markov networks as the modeling formalism for representing
dependencies between covariates and response variables, as well as interdepen-
dencies among response variables.

DEFINITION 17. A conditional independence graph (or Markov network) is
an undirected graph G = (Z,E) such that for any pair of variables (Zi,Zj ) /∈ E if
and only if Zi ⊥⊥ Zj |Z − {Zi,Zj }.

The above definition is based on the pairwise Markov property, but by virtue of
the separation theorem (see, e.g., Whittaker [154]) this implies the global Markov
property for distributions with full support. The global Markov property says that
for disjoint subsets U,V,W ⊆ Z where W separates U from V in G one has that
U ⊥⊥ V |W . Even more important in the context of this paper is the factorization
result due to Hammersley and Clifford [61].

THEOREM 18. Given a random vector Z with conditional independence
graph G, any density function for Z with full support factorizes over C (G), the
set of maximal cliques of G as follows:

p(z) = exp

[ ∑
c∈C (G)

fc(zc)

]
,(84)

where fc are clique compatibility functions dependent on z only via the restriction
on clique configurations zc.

The significance of this result is that in order to specify a distribution for Z, one
only needs to specify or estimate the simpler functions fc.

4.2.2. Kernel decomposition over Markov networks. It is of interest to analyze
the structure of kernels k that generate Hilbert spaces H of functions that are
consistent with a graph.
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DEFINITION 19. A function f :Z → R is compatible with a conditional in-
dependence graph G, if f decomposes additively as f (z) = ∑

c∈C (G) fc(zc) with
suitably chosen functions fc. A Hilbert space H over Z is compatible with G,
if every function f ∈ H is compatible with G. Such f and H are also called
G-compatible.

PROPOSITION 20. Let H with kernel k be a G-compatible RKHS. Then there
are functions kcd : Zc × Zd → R such that the kernel decomposes as

k(u, z) = ∑
c,d∈C

kcd(uc, zd).

LEMMA 21. Let X be a set of n-tupels and fi, gi :X × X → R for i ∈ [n]
functions such that fi(x, y) = fi(xi, y) and gi(x, y) = gi(x, yi). If

∑
i fi(xi, y) =∑

j gj (x, yj ) for all x, y, then there exist functions hij such that
∑

i fi(xi, y) =∑
i,j hij (xi, yj ).

• Proposition 20 is useful for the design of kernels, since it states that only ker-
nels allowing an additive decomposition into local functions kcd are compati-
ble with a given Markov network G. Lafferty et al. [89] have pursued a sim-
ilar approach by considering kernels for RKHS with functions defined over
ZC := {(c, zc) : c ∈ c, zc ∈ Zc}. In the latter case one can even deal with cases
where the conditional dependency graph is (potentially) different for every in-
stance.

• An illuminating example of how to design kernels via the decomposition in
Proposition 20 is the case of conditional Markov chains, for which models based
on joint kernels have been proposed in Altun et al. [6], Collins [30], Lafferty
et al. [90] and Taskar et al. [132]. Given an input sequences X = (Xt)t∈[T ], the
goal is to predict a sequence of labels or class variables Y = (Yt )t∈[T ], Yt ∈ �.
Dependencies between class variables are modeled in terms of a Markov chain,
whereas outputs Yt are assumed to depend (directly) on an observation win-
dow (Xt−r , . . . ,Xt , . . . ,Xt+r ). Notice that this goes beyond the standard hid-
den Markov model structure by allowing for overlapping features (r ≥ 1). For
simplicity, we focus on a window size of r = 1, in which case the clique set is
given by C := {ct := (xt , yt , yt+1), c

′
t := (xt+1, yt , yt+1) : t ∈ [T − 1]}. We as-

sume an input kernel k is given and introduce indicator vectors (or dummy vari-
ates) I (Y{t,t+1}) := (Iω,ω′(Y{t,t+1}))ω,ω′∈�. Now we can define the local kernel
functions as

kcd(zc, z
′
d) := 〈

I
(
y{s,s+1}

)
I
(
y′{t,t+1}

)〉
(85)

×
{

k(xs, xt ), if c = cs and d = ct ,

k(xs+1, xt+1), if c = c′
s and d = c′

t .
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Notice that the inner product between indicator vectors is zero, unless the vari-
able pairs are in the same configuration.

Conditional Markov chain models have found widespread applications in nat-
ural language processing (e.g., for part of speech tagging and shallow parsing,
cf. Sha and Pereira [122]), in information retrieval (e.g., for information ex-
traction, cf. McCallum et al. [96]) or in computational biology (e.g., for gene
prediction, cf. Culotta et al. [39]).

4.2.3. Clique-based sparse approximation. Proposition 20 immediately leads
to an alternative version of the representer theorem as observed by Lafferty et al.
[89] and Altum et al. [4].

COROLLARY 22. If H is G-compatible then in the same setting as in Corol-
lary 13, the optimizer f̂ can be written as

f̂ (u) =
n∑

i=1

∑
c∈C

∑
yc∈Yc

βi
c,yc

∑
d∈C

kcd((xic, yc), ud),(86)

here xic are the variables of xi belonging to clique c and Yc is the subspace of Zc

that contains response variables.

• Notice that the number of parameters in the representation equation (86) scales
with n · ∑

c∈C |Yc| as opposed to n · |Y| in equation (77). For cliques with rea-
sonably small state spaces, this will be a significantly more compact represen-
tation. Notice also that the evaluation of functions kcd will typically be more
efficient than evaluating k.

• In spite of this improvement, the number of terms in the expansion in equa-
tion (86) may in practice still be too large. In this case, one can pursue a reduced
set approach, which selects a subset of variables to be included in a sparsified
expansion. This has been proposed in Taskar et al. [132] for the soft margin
maximization problem, as well as in Altun et al. [5] and Lafferty et al. [89]
for conditional random fields and Gaussian processes. For instance, in Lafferty
et al. [89] parameters βi

cyc
that maximize the functional gradient of the regular-

ized log-loss are greedily included in the reduced set. In Taskar et al. [132] a
similar selection criterion is utilized with respect to margin violations, leading
to an SMO-like optimization algorithm (Platt [107]).

4.2.4. Probabilistic inference. In dealing with structured or interdependent re-
sponse variables, computing marginal probabilities of interest or computing the
most probable response [cf. equation (79)] may be nontrivial. However, for de-
pendency graphs with small tree width, efficient inference algorithms exist, such
as the junction tree algorithm (Dawid [43] and Jensen et al. [76]) and variants
thereof. Notice that in the case of the conditional or hidden Markov chain, the
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junction tree algorithm is equivalent to the well-known forward–backward algo-
rithm (Baum [14]). Recently, a number of approximate inference algorithms have
been developed to deal with dependency graphs for which exact inference is not
tractable (see, e.g., Wainwright and Jordan [150]).

5. Kernel methods for unsupervised learning. This section discusses vari-
ous methods of data analysis by modeling the distribution of data in feature space.
To that extent, we study the behavior of �(x) by means of rather simple lin-
ear methods, which have implications for nonlinear methods on the original data
space X. In particular, we will discuss the extension of PCA to Hilbert spaces,
which allows for image denoising, clustering, and nonlinear dimensionality reduc-
tion, the study of covariance operators for the measure of independence, the study
of mean operators for the design of two-sample tests, and the modeling of complex
dependencies between sets of random variables via kernel dependency estimation
and canonical correlation analysis.

5.1. Kernel principal component analysis. Principal component analysis
(PCA) is a powerful technique for extracting structure from possibly high-
dimensional data sets. It is readily performed by solving an eigenvalue problem,
or by using iterative algorithms which estimate principal components.

PCA is an orthogonal transformation of the coordinate system in which we de-
scribe our data. The new coordinate system is obtained by projection onto the
so-called principal axes of the data. A small number of principal components is
often sufficient to account for most of the structure in the data.

The basic idea is strikingly simple: denote by X = {x1, . . . , xn} an n-sample
drawn from P(x). Then the covariance operator C is given by C = E[(x −
E[x])(x − E[x])	]. PCA aims at estimating leading eigenvectors of C via
the empirical estimate Cemp = Eemp[(x − Eemp[x])(x − Eemp[x])	]. If X is
d-dimensional, then the eigenvectors can be computed in O(d3) time (Press et al.
[110]).

The problem can also be posed in feature space (Schölkopf et al. [119])
by replacing x with �(x). In this case, however, it is impossible to compute
the eigenvectors directly. Yet, note that the image of Cemp lies in the span of
{�(x1), . . . ,�(xn)}. Hence, it is sufficient to diagonalize Cemp in that subspace.
In other words, we replace the outer product Cemp by an inner product matrix,
leaving the eigenvalues unchanged, which can be computed efficiently. Using
w = ∑n

i=1 αi�(xi), it follows that α needs to satisfy PKPα = λα, where P is
the projection operator with Pij = δij − n−2 and K is the kernel matrix on X.

Note that the problem can also be recovered as one of maximizing some
Contrast[f,X] subject to f ∈ F . This means that the projections onto the leading
eigenvectors correspond to the most reliable features. This optimization problem
also allows us to unify various feature extraction methods as follows:
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• For Contrast[f,X] = Varemp[f,X] and F = {〈w,x〉 subject to ‖w‖ ≤ 1}, we
recover PCA.

• Changing F to F = {〈w,�(x)〉 subject to ‖w‖ ≤ 1}, we recover kernel PCA.
• For Contrast[f,X] = Curtosis[f,X] and F = {〈w,x〉 subject to ‖w‖ ≤ 1}, we

have Projection Pursuit (Friedman and Tukey [55] and Huber [72]). Other con-
trasts lead to further variants, that is, the Epanechikov kernel, entropic contrasts,
and so on (Cook et al. [32], Friedman [54] and Jones and Sibson [79]).

• If F is a convex combination of basis functions and the contrast function is
convex in w, one obtains computationally efficient algorithms, as the solution
of the optimization problem can be found at one of the vertices (Rockafellar
[114] and Schölkopf and Smola [118]).

Subsequent projections are obtained, for example, by seeking directions orthogo-
nal to f or other computationally attractive variants thereof.

Kernel PCA has been applied to numerous problems, from preprocessing and
invariant feature extraction (Mika et al. [100]) to image denoising and super-
resolution (Kim et al. [84]). The basic idea in the latter case is to obtain a set
of principal directions in feature space w1, . . . ,wl , obtained from noise-free data,
and to project the image �(x) of a noisy observation x onto the space spanned
by w1, . . . ,wl . This yields a “denoised” solution �̃(x) in feature space. Finally,
to obtain the pre-image of this denoised solution, one minimizes ‖�(x′) − �̃(x)‖.
The fact that projections onto the leading principal components turn out to be good
starting points for pre-image iterations is further exploited in kernel dependency
estimation (Section 5.3). Kernel PCA can be shown to contain several popular
dimensionality reduction algorithms as special cases, including LLE, Laplacian
Eigenmaps and (approximately) Isomap (Ham et al. [60]).

5.2. Canonical correlation and measures of independence. Given two sam-
ples X,Y , canonical correlation analysis (Hotelling [70]) aims at finding direc-
tions of projection u, v such that the correlation coefficient between X and Y is
maximized. That is, (u, v) are given by

arg max
u,v

Varemp[〈u,x〉]−1 Varemp[〈v, y〉]−1

(87)
× Eemp

[〈u,x − Eemp[x]〉〈v, y − Eemp[y]〉].
This problem can be solved by finding the eigensystem of C

−1/2
x CxyC

−1/2
y , where

Cx,Cy are the covariance matrices of X and Y and Cxy is the covariance matrix
between X and Y , respectively. Multivariate extensions are discussed in Ketten-
ring [83].

CCA can be extended to kernels by means of replacing linear projections 〈u,x〉
by projections in feature space 〈u,�(x)〉. More specifically, Bach and Jordan [8]
used the so-derived contrast to obtain a measure of independence and applied it
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to Independent Component Analysis with great success. However, the formula-
tion requires an additional regularization term to prevent the resulting optimization
problem from becoming distribution independent.

Rényi [113] showed that independence between random variables is equivalent
to the condition of vanishing covariance Cov[f (x), g(y)] = 0 for all C1 func-
tions f,g bounded by L∞ norm 1 on X and Y. In Bach and Jordan [8], Das and
Sen [41], Dauxois and Nkiet [42] and Gretton et al. [58, 59] a constrained empiri-
cal estimate of the above criterion is used. That is, one studies

�(X,Y,F ,G) := sup
f,g

Covemp[f (x), g(y)]
(88)

subject to f ∈ F and g ∈ G.

This statistic is often extended to use the entire series �1, . . . ,�d of maximal
correlations where each of the function pairs (fi, gi) are orthogonal to the previ-
ous set of terms. More specifically Douxois and Nkiet [42] restrict F ,G to finite-
dimensional linear function classes subject to their L2 norm bounded by 1, Bach
and Jordan [8] use functions in the RKHS for which some sum of the �n

2 and the
RKHS norm on the sample is bounded.

Gretton et al. [58] use functions with bounded RKHS norm only, which provides
necessary and sufficient criteria if kernels are universal. That is, �(X,Y,F ,G) = 0
if and only if x and y are independent. Moreover, trPKxPKyP has the same
theoretical properties and it can be computed much more easily in linear time, as
it allows for incomplete Cholesky factorizations. Here Kx and Ky are the kernel
matrices on X and Y respectively.

The above criteria can be used to derive algorithms for Independent Component
Analysis (Bach and Jordan [8] and Gretton et al. [58]). While these algorithms
come at a considerable computational cost, they offer very good performance. For
faster algorithms, consider the work of Cardoso [26], Hyvärinen [73] and Lee
et al. [91]. Also, the work of Chen and Bickel [28] and Yang and Amari [155]
is of interest in this context.

Note that a similar approach can be used to develop two-sample tests based on
kernel methods. The basic idea is that for universal kernels the map between distri-
butions and points on the marginal polytope μ :p → Ex∼p[φ(x)] is bijective and,
consequently, it imposes a norm on distributions. This builds on the ideas of [52].
The corresponding distance d(p, q) := ‖μ[p]−μ[q]‖ leads to a U -statistic which
allows one to compute empirical estimates of distances between distributions effi-
ciently [22].

5.3. Kernel dependency estimation. A large part of the previous discussion
revolved around estimating dependencies between samples X and Y for rather
structured spaces Y, in particular, (64). In general, however, such dependencies can
be hard to compute. Weston et al. [153] proposed an algorithm which allows one
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to extend standard regularized LS regression models, as described in Section 3.3,
to cases where Y has complex structure.

It works by recasting the estimation problem as a linear estimation problem for
the map f :�(x) → �(y) and then as a nonlinear pre-image estimation problem
for finding ŷ := argminy‖f (x) − �(y)‖ as the point in Y closest to f (x).

This problem can be solved directly (Cortes et al. [33]) without the need for
subspace projections. The authors apply it to the analysis of sequence data.

6. Conclusion. We have summarized some of the advances in the field of
machine learning with positive definite kernels. Due to lack of space, this article
is by no means comprehensive, in particular, we were not able to cover statistical
learning theory, which is often cited as providing theoretical support for kernel
methods. However, we nevertheless hope that the main ideas that make kernel
methods attractive became clear. In particular, these include the fact that kernels
address the following three major issues of learning and inference:

• They formalize the notion of similarity of data.
• They provide a representation of the data in an associated reproducing kernel

Hilbert space.
• They characterize the function class used for estimation via the representer the-

orem [see equations (38) and (86)].

We have explained a number of approaches where kernels are useful. Many of them
involve the substitution of kernels for dot products, thus turning a linear geomet-
ric algorithm into a nonlinear one. This way, one obtains SVMs from hyperplane
classifiers, and kernel PCA from linear PCA. There is, however, a more recent
method of constructing kernel algorithms, where the starting point is not a linear
algorithm, but a linear criterion [e.g., that two random variables have zero covari-
ance, or that the means of two samples are identical], which can be turned into a
condition involving an efficient optimization over a large function class using ker-
nels, thus yielding tests for independence of random variables, or tests for solving
the two-sample problem. We believe that these works, as well as the increasing
amount of work on the use of kernel methods for structured data, illustrate that we
can expect significant further progress in the years to come.
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