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MIXED-RATES ASYMPTOTICS

BY PETER RADCHENKO

University of Southern California

A general method is presented for deriving the limiting behavior of es-
timators that are defined as the values of parameters optimizing an empirical
criterion function. The asymptotic behavior of such estimators is typically de-
duced from uniform limit theorems for rescaled and reparametrized criterion
functions. The new method can handle cases where the standard approach
does not yield the complete limiting behavior of the estimator. The asymp-
totic analysis depends on a decomposition of criterion functions into sums
of components with different rescalings. The method is explained by exam-
ples from Lasso-type estimation, k-means clustering, Shorth estimation and
partial linear models.

1. Introduction. Consider an estimator (an, bn) that in some sense optimizes
a random criterion function Gn(a, b) over an open subset of R

d1 × R
d2 . Two

types of mixed-rates asymptotic behavior can occur and often occur simultane-
ously. First, the components an and bn of the estimator may converge at different
rates. Second, the criterion function itself may have important components settling
down at different rates. The new method presented in this paper can handle both
types of mixed-rates behavior.

Deriving the asymptotics of an estimator can be viewed as a three step proce-
dure: proving consistency, establishing the rate of convergence and deriving the
limiting distribution. This paper concentrates only on the last two steps. The limit-
ing distribution is typically derived via a uniform limit theorem for the rescaled and
reparametrized criterion functions. Suppose that the rates of convergence for the
two components of the estimator have been established: q−1

n ‖an −a0‖∨ r−1
n ‖bn −

b0‖ = Op(1) for some fixed parameter value (a0, b0). Consider localized criterion
functions of the form

Hn(s, t) := Gn(a0 + qns, b0 + rnt) − Gn(a0, b0).

If, after appropriate rescaling, random functions Hn(s, t) settle down to a “nice”
stochastic process, the convergence in distribution of vectors (sn, tn) := (q−1

n [an −
a0], r−1

n [bn − b0]) to the corresponding optimizer of the limit process may follow
from a continuous mapping type of argument. Theorem 3.2.2 of van der Vaart and
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Wellner [21] makes this argument precise for estimators defined by maximization.
The above approach is standard when the rates rn and qn are the same, and it
can work in some mixed-rates cases, such as the change-point problem (see, e.g.,
the section on nonregular examples in Kosorok [8]). Other mixed-rates examples
where this argument succeeds can be found in Rotnitzky, Cox, Bottai and Robins
[16], Pollard and Radchenko [12] and Andrews [1].

Many mixed-rates problems cannot be completely handled by the above ap-
proach. In the examples considered in this paper, the localized criterion function
has the form

Hn(s, t) = αnfn(s) + βngn(s, t),

where βn = o(αn), the random function fn(s) settles down to a stochastic process
f (s), and gn is stochastically bounded. Because the limit of α−1

n Hn(s, t) is a sto-
chastic process indexed only by s, the standard approach fails to establish the lim-
iting distribution of the component tn. However, if random function gn(s, t) settles
down to a stochastic process g(s, t), a two-step continuous mapping argument can
be used to establish the distributional limit of the vector (sn, tn). This general idea
is made rigorous by Theorem 1 in Section 2.

Another challenging problem is deriving the correct rates of convergence for
the two components of the estimator. Standard methods represent the centered
criterion function Gn(a, b)−Gn(a0, b0) as a sum of a positive deterministic func-
tion and a random one, whose rates of growth around the value (a0, b0) can be
controlled (the deterministic function is typically approximated by a quadratic,
and the random function is often approximately linear). Balancing out the two
terms produces the rate of convergence: see, for example, Theorem 3.2.5 and The-
orem 3.2.16 in van der Vaart and Wellner [21]. When an and bn converge at dif-
ferent rates, this approach yields the “correct” rate only for the slower converg-
ing component. A reparametrization of the problem can sometimes be applied
beforehand to sidestep this issue (for interesting examples, see the references at
the end of the paragraph on the standard method for deriving the limiting distrib-
ution). Unfortunately, such a trick is not available in general, and a more careful
treatment of the criterion function is required. To derive the rate for the faster
converging component, say, bn, Theorem 2 in Section 3 balances out the terms
in a similar, but typically a more complicated, representation for the function
b �→ [Gn(an, b) − Gn(an, b0)].

Section 4 is devoted to mixed-rates problems that arise in M-estimation. Con-
sider a collection of functions gθ (x) and an empirical measure Pn, corresponding
to independent observations coming from a distribution P . Define the estimator θn

as the minimizer of the criterion function Gn(θ) = Pngθ , and suppose that func-
tion G(θ) = ∫

gθ dP is minimized by θ0. The stochastic bound ‖θn − θ0‖ = op(1)

usually follows from a uniform law of large numbers, and the central limit theorem
for the estimator is typically derived from a quadratic approximation of the form

Gn(θ) − Gn(θ0) ≈ (θ − θ0)
′G′′(θ0)(θ − θ0) + n−1/2(θ − θ0)

′Zn,
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under the regularity assumption that matrix G′′(θ0) is a positive definite matrix. If
this regularity assumption breaks down and G′′(θ0) is singular, the approximation
has to be carried out to higher order terms, which typically leads to mixed-rates
situations that standard methods cannot handle. Theorem 3 covers exactly such
cases. The form of the approximation to function G(θ) near θ0 determines the rates
of convergence and the main features of the limiting behavior of the components of
the estimator. Various remainder terms are handled by simple conditions imposed
on functions gθ .

Mixed-rates behavior naturally arises in the estimation of semiparametric mod-
els. Most of the results in this paper do not directly apply to such problems, but,
as the example in Section 8 demonstrates, some of the methods and ideas can be
carried over.

For the simplicity of the presentation, the estimators and the criterion functions
considered in this paper have at most two components converging at different rates.
All the results can be easily extended to cover cases of more than two mixed-rates
components.

This paper is organized as follows. Sections 2, 3 and 4 contain the general
mixed-rates asymptotics results, namely, the limiting distribution theorem, the
rates of convergence theorem and the M-estimation theorem. Proofs of these the-
orems are confined to Section 9. Sections 5, 6 and 7 contain applications of the
general results to particular problems in Lasso-type estimation, shorth estimation
and k-means clustering. Section 8 discusses a semiparametric example.

The abbreviation Qf = ∫
f dQ is used throughout the paper for a given mea-

surable function f and a signed measure Q. In particular, given independent ob-
servations Xi coming from a distribution P , let Pnf denote

∑
i≤n f (Xi)/n and

define the empirical process νn on a class of functions f by

f �→ νnf = n1/2(Pn − P)f = n−1/2
n∑

i=1

[f (Xi) − Pf ].

Write ‖ · ‖2 for the L2(P ) norm and say that a function f is square-integrable if
‖f ‖2 < ∞. Interpret f (θ) � g(θ) to mean that there exists a positive constant c0
such that f (θ) ≥ c0g(θ) for all θ in a sufficiently small neighborhood of the origin.
Analogously, interpret αn � βn to mean αn ≥ c0βn for all sufficiently large n.

2. Limiting distribution. Let the estimator (an, bn) converge in probability
to a fixed parameter value (a0, b0). Suppose that the rates of convergence qn

and rn have been established for the components an and bn, respectively. Vector
(sn, tn) := (q−1

n [an − a0], r−1
n [bn − b0]) optimizes the localized criterion function

Hn(s, t) and satisfies the tightness condition ‖(sn, tn)‖ = O∗
p(1). Focus on deriving

the limiting distribution of (sn, tn) when it is defined by minimization.
To avoid some measurability issues by allowing nonmeasurable maps, conver-

gence in distribution (denoted by “�”) is understood in the sense of Hoffmann–
Jørgensen. An exposition of this general concept can be found in the monographs
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of Dudley [3] and van der Vaart and Wellner [21]. Let Bloc(R
d) be the space of

all locally bounded real functions on R
d . Convergence of the random processes

considered in the examples of this paper is handled by equipping Bloc(R
d) with

the metric ρ for the topology of uniform convergence on compacta:

ρ(g,h) =
∞∑

k=1

2−k min[1, ρk(g,h)] where ρk(g,h) = sup
‖t‖≤k

|g(t) − h(t)|.

In Theorem 1, convergence of the components of the criterion function should be
understood with respect to this metric. The following continuity property of the
arg min functional with respect to ρ simplifies the statement of the theorem. Let
x∗ be the clean minimum of a function h in the sense that the strict inequality
h(x∗) < infε≤|x−x∗|≤r h(x) is satisfied for all positive r and ε. Then

ρ(hn,h) → 0 implies arg min
|x−x∗|≤r

hn(x) → x∗ for each r > 0.(1)

Note that the unique minimum of a continuous function is also its clean minimum
over each large enough ball. In fact, lower semicontinuity of the function is suf-
ficient. The proof of Theorem 1 would remain valid if Bloc(R

d) were equipped
with a different metric d , as long as assumption (1) were imposed explicitly and
formulated in terms of d .

The following result is stated in the cleanest form that covers the examples
considered in the paper, thus, some of its conditions can be relaxed. See Remark
for the alternative to the continuity assumption placed on the sample paths of the
limit process (f, g). Also note that the sample path properties required of the limit
process need to hold only almost surely.

THEOREM 1. Let Hn be random criterion functions on R
d1 × R

d2 and let
(sn, tn) be random vectors in R

d1 × R
d2 . Suppose that the following conditions are

satisfied:

(i) Hn(s, t) = αnfn(s) + βngn(s, t), where fn and gn are random functions
on R

d1 and R
d1 × R

d2 respectively, while αn and βn are positive numbers with
βn = o(αn);

(ii) (fn, gn) � (f, g) and the limit process has continuous sample paths;
(iii) Hn(sn, tn) ≤ infs,t Hn(s, t) + o∗

p(βn) and
(iv) ‖(sn, tn)‖ = O∗

p(1).

Assume that the sample paths of f (·) possess a unique minimum at a (random)
point s∗ and the sample paths of g(s∗, ·) possess a unique minimum at t∗. Then
(sn, tn) � (s∗, t∗).

REMARK. The assumptions on the sample paths of the limit process (f, g)

can be relaxed as follows. Assume that s∗ and t∗ are measurable random points
such that for almost all sample paths of the limit process:
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(a) s∗ is the “clean” minimum of f (·),
(b) t∗ is the “clean” minimum of g(s∗, ·) and
(c) for each ball B , the set of functions {g(·, t) : t ∈ B} is equicontinuous.

Theorem 1 can be generalized to cover cases where the optimizer is not defined
by minimization or maximization. Suppose that vectors (sn, tn) satisfy equalities
sn = �[Hn(·, tn)] and tn = 	[Hn(sn, ·)] for certain maps � and 	. Assume that
these maps are invariant to multiplications by positive constants and that 	 is also
invariant to translations. If, in addition, each map satisfies assumption (1) with the
proper replacement for the arg min, the proof of Theorem 1 still goes through. For
a rigorous account of this fact, see Theorem 1 in Radchenko [15].

3. Rates of convergence. Consider two-component estimators (an, bn) that
are defined by minimizing random criterion functions Gn(a, b). The following
lemma uses an approximation to the criterion function to establish the rate of con-
vergence of the slower converging component an and makes an initial guess at the
rate of convergence of the component bn. This guess is not quite correct, but it pro-
vides an improvement over existing results, which establish one convergence rate
for the whole long vector (an, bn). Lemma 1 requires a particular representation for
the criterion function. In many standard asymptotic problems, this representation
is satisfied with the term Mn(a, b) bounded below by a nonsingular quadratic, and
the term Nn(a, b) of the order Op(n−1/2‖(a, b)‖), which yields the usual n−1/2

rate of convergence. The lemma handles cases that are more general.

LEMMA 1. Suppose that inequalities Gn(an, bn) ≤ Gn(0,0) hold together
with the stochastic bound ‖(an, bn)‖ = o∗

p(1). Let α and β be positive numbers
satisfying α ≥ β , and let {γ1, . . . , γp, η1, . . . , ηp} be a collection of nonnegative
numbers satisfying γi < α for all i ∈ {1, . . . , p}. Suppose that criterion functions
Gn satisfy a representation

Gn(a, b) − Gn(0,0) = Mn(a, b) − Nn(a, b),

such that

Mn(an, bn) � ‖an‖α + ‖bn‖β with inner probability tending to one, and

[Nn(an, bn)]+ = O∗
p

(∑
i≤p

n−ηi‖(an, bn)‖γi

)
.

Define τa = mini≤p(
ηi

α−γi
). Then ‖an‖ = O∗

p(n−τa ) and ‖bn‖ = O∗
p(n−ατa/β).

Once the convergence rate of an is established, it becomes reasonable to fix a =
an and consider the function b �→ Gn(an, b). Existing results do not necessarily
yield the convergence rate of the minimizer of this function. The point of difficulty
is that the leading terms in the approximation to this function near its minimum are
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more complex than the ones that appear in the standard asymptotics. The following
theorem can handle such cases but it requires a more refined approximation to
the criterion function. One may want to use the help of Lemma 1 to obtain such
an approximation (see, e.g., the proof of Theorem 3), and then apply Theorem 2
to derive the “correct” convergence rate of bn. Note that Theorem 2 places no
assumptions at all on the space containing the a-component.

THEOREM 2. Let Gn(a, b) be a function of two components, where the first
component belongs to an abstract set, and the second belongs to a Euclidean
space. Suppose that inequalities Gn(an, bn) ≤ Gn(an,0) hold together with the
stochastic bound ‖bn‖ = o∗

p(1). Let β be positive and let {α1, . . . , αp,β1, . . . , βp}
be a collection of nonnegative numbers satisfying βi < β for all i ∈ {1, . . . , p}.
Assume that Gn satisfies a representation

Gn(a, b) − Gn(a,0) = Mn(a, b) − Nn(a, b),(2)

such that

Mn(an, bn) � ‖bn‖β with inner probability tending to one, and

[Nn(an, bn)]+ = O∗
p

(∑
i≤p

n−αi‖bn‖βi

)
.

Then ‖bn‖ = O∗
p(n−τb) for τb = mini≤p{ αi

β−βi
}. If [Nn]+ ≡ 0 then P∗{bn =

0} → 1.

4. M-estimators. The following definition introduces notation that is used in
the statement of Theorem 3. This notation simplifies the work with polynomials
that are homogeneous functions of the elements of vector (a, b) and the absolute
values of the elements of vector (a, b).

DEFINITION 1. Let ψ be a real valued function on R
d and let γ be a positive

constant. Say that ψ ∈ H+
1 (γ ) if ψ(λθ) = λγ ψ(θ) for all λ ≥ 0 and ψ(θ) > 0 for

all θ �= 0.
Let φ be a real valued function on R

d1 × R
d2 and let α and β be some posi-

tive constants. Say that φ ∈ H
(−)
2 (α,β) if φ(λ1a,λ2b) = (λ1)

α(λ2)
βφ(a, b) for all

nonnegative λ1 and λ2, while function φ assumes at least some negative values.

REMARK. For each continuous function ψ(θ) in the class H+
1 (γ ), there exist

positive constants c1 and c2 such that c1‖θ‖γ ≤ ψ(θ) ≤ c2‖θ‖γ .

Suppose that X1,X2, . . . ,Xn are independent observations in R
k coming from a

distribution P and write Pn for the corresponding empirical distribution. Suppose
that A is an open subset of R

d1 × R
d2 and let {ga,b(x) : (a, b) ∈ A} be a collection
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of real valued P -integrable functions on R
k . Assume that this collection of func-

tions is centered to satisfy g0,0 ≡ 0. Suppose that vectors (an, bn) minimize over A

the random criterion functions Gn(a, b) = Pnga,b and let (0,0) be the correspond-
ing minimizer of the population analog G(a,b) = Pga,b. The following theorem
derives the asymptotics of (an, bn) in the challenging case of the singular second
derivative matrix G′′(0,0).

THEOREM 3. Let {α,β, γ1, . . . , γp, η1, . . . , ηp} be a collection of positive
numbers. Assume that α > β > 1 and β > ηj for 1 ≤ j ≤ p. Suppose that
there exist continuous functions ψ1(a) ∈ H+

1 (α),ψ2(b) ∈ H+
1 (β) and φi(a, b) ∈

H
(−)
2 (γi, ηi) for 1 ≤ i ≤ p, such that near the origin the population criterion func-

tion satisfies the following conditions:

(i) G(a,b) � ‖a‖α + ‖b‖β ,
(ii) G(a,0) = ψ1(a) + o(‖a‖α) and

(iii) G(a,b) = G(a,0) + ψ2(b)[1 + o(1)] + ∑p
i=1 φi(a, b)[1 + o(1)] +

o(
∑α

i=1 ‖a‖α−i‖b‖i ).

Let τa = 1
2(α−1)

, λ0 = 1
2(β−1)

, λi = τaγi

β−ηi
for 1 ≤ i ≤ p, and define τb =

min0≤i≤p[λi]. Suppose there exist on R
k five square integrable functions, �1 (tak-

ing values in R
d1 ), �2 (taking values in R

d2 ) and real valued ra,b, sa,b and la,b,
such that:

(iv) ga,b(x) = a′�1(x) + b′�2(x) + ‖(a, b)‖ra,b(x);
(v) ga,b(x) − ga,0(x) − b′�2(x) = la,b(x) + ‖b‖sa,b(x);

(vi) sup‖(a,b)‖≤δn
|νnra,b| = op(1) and sup‖(a,b)‖≤δn

|νnsa,b| = op(1) for all
δn → 0;

(vii) sup‖a‖≤δn,‖b‖≤εn
|νnla,b| = op(n−βτb+1/2) for all δn = O(n−τa ), εn =

O(n−ατa/β).

Assume that ‖(an, bn)‖ = op(1). If ατa = βτb, then

(nτaan, n
τbbn) � arg min

s,t

[
ψ1(s) + s′Z1 + ψ2(t)

+ 1{λ0 = τb}t ′Z2 +
p∑

i=1

1{λi = τb}φi(s, t)

]
;

otherwise (nτaan, n
τbbn) � (s∗, t∗), where

s∗ = arg min
s

[ψ1(s) + s′Z1],

t∗ = arg min
t

[
ψ2(t) + 1{λ0 = τb}t ′Z2 +

p∑
i=1

1{λi = τb}φi(s
∗, t)

]
.
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Here (Z1,Z2) is a mean zero Gaussian vector with covariance matrix P(�1,�2)×
(�1,�2)

′.

Note that a stochastic process νnfa,b necessarily satisfies the uniform stochastic
bound required in condition (3) of the above theorem (cf. asymptotic equiconti-
nuity defined in van der Vaart [20]) if functions fa,b form a Donsker class and
‖fa,b‖2 → 0 as ‖(a, b)‖ → 0. Simple ways of checking that a class of functions
is Donsker are given, for example, in van der Vaart’s Theorem 19.5 and Theorem
19.14.

To illustrate the variety of asymptotic results produced by Theorem 3, consider
some simple approximations to the function G, which has a singular second deriv-
ative at the origin, where its minimum is located. Let (a, b) ∈ R

2 and consider
the case G(a,b) ≈ a4 + b2. Theorem 3 yields (n1/6an,n

1/2bn) � (arg mins[s4 +
sZ1], arg mint [t2 + tZ2]) if the conditions (iv)–(vii) are satisfied. Here (Z1,Z2) is
a mean zero Gaussian vector. Now consider the case G(a,b) ≈ a4 +b2 +a2b. Un-
der the same assumptions, the theorem yields (n1/6an,n

1/3bn) � (arg mins,t [s4 +
sZ1 + t2 + s2t]). If the approximation is G(a,b) ≈ a4 + b2 + a3b, the corre-
sponding result is (n1/6an,n

1/2bn) � (s∗, t∗) with s∗ = arg mins[s4 + sZ1] and
t∗ = arg mint [t2 + (s∗)3t + tZ2]). Note that Theorem 3 does not attempt to cover
every conceivable approximation to G(a,b), as the statement of the result would
become too long and complicated, but each such situation can be handled with
only minor modifications to the proof of the theorem.

5. Example: Lasso-type estimators. Assume that the observed variables Yi

satisfy the linear model

Yi = x′
iβ + εi, i = 1, . . . , n.

The errors εi are independent and identically distributed random variables that
have mean zero and variance σ 2. The parameter β is a vector in R

d that needs
to be estimated. The covariates xi are fixed and centered, and the matrix Cn =
1
n

∑n
i=1 xix

′
i is nonsingular.

Suppose λn and γ are positive real numbers. Define the “Lasso-type” estimator
βn as the minimizer of the penalized least-squares criterion,

Wn(α) =
n∑

i=1

(Yi − x′
iα)2 + λn

d∑
j=1

|αj |γ ,

over all vectors α = (α1, . . . , αd)′. In the particular cases of γ = 1 and γ = 2, this
estimator corresponds, respectively, to the “Lasso” of Tibshirani [18] and the ridge
regression. For general γ , such estimators were introduced by Frank and Friedman
[4]. The limiting behavior of the estimator βn was described by Knight and Fu [7]
under certain conditions on the growth rate of the weighting sequence {λn}.

Assume that the design satisfies the following regularity conditions:
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(i) matrixes Cn converge to a fixed matrix C;
(ii) as n tends to infinity, n−1 maxi≤n(x

′
ixi) converges to zero.

In the case of the nonsingular matrix C, Knight and Fu derived the
√

n-asymptotics
for βn after setting the growth rate for the weighting sequence {λn}. They required
that, for some nonnegative constant λ0,

λn/nmin(1/2,γ /2) → λ0.(3)

Note that when λ0 = 0, the penalty contribution is asymptotically negligible and
the limiting behavior of the estimator βn is the same as that of the usual least-
squares estimator.

To derive the asymptotics of βn, Knight and Fu used a standard approach that
is based on rescaling the parameters at the same rate and applying a continuous
mapping type of argument. When vector β has a zero component, γ < 1, and λn

grows faster than the rate given in (3), this approach fails to deliver the complete
asymptotics. For concreteness, consider the case d = 2, β = (1,0)′, γ = 1/2, and
set λn = λ0n

1/2 for some positive constant λ0. The standard approach establishes
the asymptotics of the first component of βn, but only yields the op(n−1/2) sto-
chastic order for the second component of the estimator (see Knight and Fu [7],
page 1361). The techniques developed in Section 3 are applied below to show that
the second component is in fact exactly zero with probability tending to one.

Because C is nonsingular and λn = o(n), the estimator βn is consistent (see
Theorem 1 of Knight and Fu [7]). The proof is based on the fact that, for each
fixed α, the penalty part of the criterion function Wn(α) is asymptotically negli-
gible compared to the least-squares part. Focus on vectors α that are near the true
parameter β , and write α = β + (a, b)′. Express the penalized criterion function
in terms of a and b. Denote n−1[Wn(α) − Wn(β)] by Gn(a, b), and let Zn stand
for n−1/2 ∑n

i=1 εixi . The regularity conditions on the design guarantee that the se-
quence of random vectors Zn has a limiting Gaussian distribution with mean zero
and covariance σ 2C. As a and b tend to zero,

Gn(a, b) = (a, b)Cn(a, b)′ − 2n−1/2(a, b)Zn

+ λ0

2
n−1/2a[1 + o(1)] + λ0n

−1/2|b|1/2.

The o(1) terms come from the Taylor expansion of |1 + a|1/2 near a = 0. Function
Gn is minimized by the vector (an, bn)

′ that is defined as the difference between
βn and β .

Define Mn(a, b) to be (a, b)Cn(a, b)′ + λ0n
−1/2|b|1/2 and let Nn equal

Gn − Mn. Note that for all n large enough, the eigen values of the sequence of
matrixes Cn are bounded away from zero. Apply Lemma 1 from Section 3 and
conclude that ‖(a, b)‖ = Op(n−1/2).

Let vn denote the bottom right element of the matrix Cn. Observe that

Gn(an, bn) − Gn(an,0) = vnb
2
n + Op(n−1/2|bn|) + λ0n

−1/2|bn|1/2.
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Note that λ0 and vn are positive and vn is bounded away from zero for all suffi-
ciently large n. Deduce that, with probability tending to one, the right-hand side of
the above display is bounded below by cb2

n for some positive c. Apply Theorem 2
with Nn ≡ 0 and conclude that P{bn = 0} → 1.

More examples of mixed-rates behavior in Lasso-type estimation can be found
in Radchenko [14].

6. Example: Shorth. Assume that the observations are independently sam-
pled from a distribution P on the real line and let [mn − rn,mn + rn] be the shortest
interval that contains at least half of the first n observations. The shorth estimator
is defined as the average over such an interval, but the goal of this section is the
limiting behavior of mn and rn. Grübel [5] derived the root-n asymptotics for rn
and Kim and Pollard [6] derived the cube root asymptotics for mn. The methods
of the present paper allow one to establish the joint limiting behavior of (mn, rn)

using a simple approximation to the criterion function.
Denote by μ and ρ the population solution, in other words, let [μ − ρ,μ + ρ]

be the shortest interval to which P assigns at least half the probability. As-
sume that the population solution is unique and let P have a bounded density
f that is differentiable at the endpoints μ ± ρ. Define the criterion function Vn by
Vn(ε, δ) = Pn[(μ + ε) − (ρ + δ), (μ + ε) + (ρ + δ)] − 1/2, and let V (ε, δ) denote
the population analog obtained by replacing Pn with P . Observe that V (0,0) = 0
and write out the Taylor expansion for function V near the origin:

V (ε, δ) = c1δ + c2ε
2 + c3εδ + c4δ

2 + o(ε2 + δ2),(4)

where the coefficients are c1 = f (μ − ρ) + f (μ + ρ), c2 = c4 = [f ′(μ + ρ) −
f ′(μ − ρ)]/2 and c3 = f ′(μ + ρ) + f ′(μ − ρ). The coefficient of the linear term
in ε equals zero because the function V (ε,0) is maximized at ε = 0. This forces
the equality f (μ + ρ) = f (μ − ρ). By the same reasoning, coefficient c2 must be
nonpositive. Assume c2 < 0 and c1 > 0 for regularity.

Recall the bound supm,r |Pn[m−r,m+r]−P [m−r,m+r]| = Op(n−1/2) from
the standard empirical process theory. Denote this supremum by �n. Uniqueness
of the population solution and regularity assumptions on the coefficients of the
Taylor expansion (4) guarantee that there exists a positive constant c such that,
for all small enough positive δ, inequality supm P [m − (ρ − δ),m + (ρ − δ)] <

1/2 − cδ holds. Consequently,

sup
m

Pn[m − (ρ − �n/c),m + (ρ − �n/c)] < �n + 1/2 − c�n/c = 1/2,

and hence, δn ≥ −�n/c. Expansion (4) also implies existence of a positive con-
stant b such that P [μ− (ρ +δ),μ+ (ρ +δ)] ≥ 1/2+bδ for all small enough posi-
tive δ. Take δ = �n/b and deduce that Pn[μ−(ρ+�n/b),μ+(ρ+�n/b)] ≥ 1/2.
Conclude that δn ≤ �n/b and, hence, δn = Op(n−1/2).
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Note that function Vn(·, δn) is maximized by εn and function V (·,0) has a clean
maximum at zero. Uniform convergence in probability of Vn(·, δn) to V (·,0) im-
plies εn = op(1). Introduce functions Mn(ε, δ) = |c2|ε2/4 and define functions Nn

by equalities

−[Vn(ε, δ) − Vn(0, δ)] = Mn(ε, δ) − Nn(ε, δ).

Note that when δ = δn, the expression on the left-hand side is minimized by ε = εn.
Denote the difference between the indicator functions of intervals [(μ+ ε)− (ρ +
δ), (μ + ε) + (ρ + δ)] and [μ − (ρ + δ),μ + (ρ + δ)] by J (ε, δ). Observe that

Vn(ε, δ) − Vn(0, δ) = V (ε, δ) − V (0, δ) + (Pn − P)J (ε, δ).

Recall that c2 < 0 by the regularity assumptions placed on the coefficients of ex-
pansion (4), and use the Taylor expansion (4) to deduce a stochastic bound

Nn(εn, δn) ≤ (Pn − P)J (εn, δn) − |c2|ε2
n/2 + Op(n−1/2|εn|) + Op(n−1).(5)

Note that the collection of functions J (ε, δ) is a Vapnik–Cervonenkis class. For R

near zero, the envelope function GR = sup{ε2+δ2≤R2} |J (ε, δ)| is the indicator of
the two intervals of total length bounded above by 4R; boundedness of the density
implies PG2

R = O(R). Hence, the conditions of Lemma 4.1 of Kim and Pollard [6]
are satisfied and, consequently, the bound |(Pn −P)J (εn, δn)|− cε2

n ≤ Op(n−2/3)

is valid for each positive c. It follows that

[(Pn − P)J (εn, δn) − |c2|ε2
n/2]+ = Op(n−2/3).

Combine this stochastic bound with bound (5) and deduce that

[Nn(εn, δn)]+ = Op(n−1/2|εn|) + Op(n−2/3).

An application of Theorem 2 yields εn = Op(n−1/3).
Set Is,t = 1[(μ + n−1/3t) − (ρ + n−1/2s), (μ + n−1/3t) + (ρ + n−1/2s)] −

1[μ−ρ,μ+ρ] and define the localized criterion functions Hn(s, t) = Vn(n
−1/3t,

n−1/2s). Use the empirical process notation to write an approximation to Hn(s, t)

that holds uniformly on compacta:

Hn(s, t) = n−1/2{c1s + νn[μ − ρ,μ + ρ]}
(6)

+ n−2/3{c2t + n1/6νnIs,t + o(1)}.
On each compact set, the stochastic processes Xn(s, t) = n1/6νnIn1/6s,t con-

verge in distribution to a tight Gaussian process by Theorem 19.28 of van der
Vaart [20]. The conditions of the theorem are checked in van der Vaart’s Exam-
ple 19.29 for essentially the same process as Xn. Consequently, Xn satisfies the
asymptotic equicontinuity condition of van der Vaart’s Theorem 18.14, and ap-
proximation n1/6νn[Is,t − νnI0,t ] = op(1) holds uniformly over s and t in each
given compact set. Note that

lim
n→∞n1/3PI0,t I0,t ′ = c1 min(|t |, |t ′|)
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and

lim
n→∞n1/6PI0,t1[μ − ρ,μ + ρ] = 0.

Write fn(s) and gn(s, t) for the two expressions in curly brackets that appear in
representation (6). Let B(t) be a two-sided Brownian motion and let Z be an inde-
pendent N(0,1/2) random variable. Conclude that

(fn(s), gn(s, t)) �
(
c1s − Z,c2t + √

c1B(t)
)
.

Recall that the rescaled solution (sn, tn) = (n1/2δn, n
1/3εn) is stochastically

bounded and note the relationship

sn = inf{s :Hn(s, tn) ≥ 0} and tn = arg max[Hn(sn, ·)].
Consider the functional � :h �→ inf{s :h(s) ≥ 0} and note that the value �[Hn(·,
t)] is well defined and finite for each t . Also note that � is invariant to multiplica-
tions by positive constants. Apply Theorem 1 in Radchenko [15] and express the
result in terms of the original variables:

(n1/2[rn − r], n1/3[mn − μ]) �
(
Z/c1, arg max

t

[
c2t + √

c1B(t)
])

.

Standard techniques fail to extract the limiting behavior of the estimator directly
from approximation (6) because the first component of the approximation domi-
nates the essential second component as n tends to infinity.

7. Example: k-means. The k-means procedure divides observations X1, . . . ,

Xn in R
d into k sets by locating the cluster centers and then assigning each obser-

vation to the closest center. The set of cluster centers Cn = {c1n, . . . , ckn} is chosen
to minimize

Wn(C) = n−1
∑
i≤n

min
1≤j≤k

‖xi − cj‖2(7)

as a function of sets C = {c1, . . . , ck} of k not necessarily distinct points in R
d .

Assume that the observations are independent and come from a distribution P

on R
d . Define the population criterion function, W(C) = P min1≤j≤k ‖X1 − cj‖2,

and let C0 be a set that minimizes W . Note that if P has a finite second moment
and is not concentrated on fewer than k points, then each set of optimal population
centers has to contain exactly k points. Under these conditions, and given that the
set C0 of optimal population centers is uniquely defined, Pollard [9] showed that
the sets Cn of optimal empirical centers are strongly consistent with respect to the
Hausdorff metric.

In the example that follows, condition (vi) of Theorem 3 needs to be verified for
classes of functions that possess the following simple property.

PROPERTY 1. The class of functions fθ (·) satisfies the following conditions:
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(i) the envelope function F(·) is square integrable with respect to P ;
(ii) there exist positive integers N and d such that each fθ can be represented

as a sum of at most N functions of the form LQ, where L is a linear function and
Q is the indicator function of the intersection of at most N half-spaces in R

d ;
(iii) ‖fθ‖2 → 0 as θ → 0.

The first two conditions imply that the class of functions fθ is Donsker. This
fact is proved on page 921 of Pollard [10], but it can also be easily deduced from
the standard results on pages 274–276 of van der Vaart [20]. The third condition
together with the Donsker property yield the required sup‖θ‖≤δn

|νnfθ | → 0 for
each δn → 0.

The following is a two-dimensional extension of the example discussed in Sec-
tion 7.1 of Radchenko [15]. Consider a distribution Q on the plane (x, y) that
concentrates on the lines {x = 1} and {x = −1}. Let Q put probability one half
on each line, and let the conditional distribution on each line be the double ex-
ponential. Write Q as P × μ, where P is the double exponential distribution and
μ{−1} = μ{1} = 1/2.

There are two pairs of optimal population centers, {(−1,0), (1,0)} and {(0,−1),

(0,1)}; denote them by Cv = {cv
1, cv

2} and Ch = {ch
1 , ch

2}, respectively. The super-
scripts reflect either the vertical or the horizontal direction of the split line, which
is defined as the common boundary for the two Voronoi half-planes generated by
a given pair of centers. Let Cv

n and Ch
n minimize the criterion function (7) over

two fixed nonoverlapping Hausdorff neighborhoods of the sets Cv and Ch, respec-
tively, and let Cn be a global minimizer. A slight extension of Pollard’s consistency
result yields

Cn ∈ {Cv
n,Ch

n } with probability tending to one,
Ch

n → Ch and Cv
n → Cv almost surely,

where the set convergence is understood with respect to the Hausdorff metric. In
fact, the probability with which Cn chooses between the two configurations con-
verges to a half. Near the set Ch, the population criterion function W is approx-
imated by a nonsingular quadratic. As a result, the solution Ch

n settles down at
the standard n−1/2 rate and satisfies a central limit theorem. The remainder of the
section is concerned with deriving the asymptotics of Cv

n , which is a challenging
problem because the quadratic approximation to the population criterion function
near the set Cv is singular.

Suppose that C = {c1, c2} is a candidate to minimize the criterion function (7)
over a small Hausdorff neighborhood of the set Cv . Let c1 = (c1x, c1y) be the point
lying close to cv

2 = (−1,0) and let c2 = (c2x, c2y) lie close to cv
2 = (1,0). Write z

to denote a point on the plane and let (x, y) be the coordinate form of z. Introduce
new variables by

δs = 1
2(c1x + c2x), δd = 1 + 1

2(c1x − c2x),

εs = 1
2(c1y − c2y) and εd = 1

2(c1y + c2y).
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These variables contain the information on how far the centers in the set C lie from
the corresponding centers in Cv . Define a = (δs, εd) and b = (δd, εs). Let ga,b(z)

be the squared distance from z to the closest center in C, written in terms of (a, b)

and centered:

ga,b(z) = [(x + 1 − δs − δd)2 + (y − εs − εd)2]
∧ [(x − 1 − δs + δd)2 + (y − εs + εd)2]
− ‖z + (1,0)‖2 ∧ ‖z − (1,0)‖2.

Define criterion functions Gn(a, b) = Pnga,b and G(a,b) = Pga,b, and note that
they are just the functions Wn(C) and W(C) centered at the set Cv and written in
terms of the new variables. Note that G(a,b) is minimized at zero and the points
(an, bn) that minimize Gn(a, b) are of order op(1) because of consistency.

The following approximation holds for G near zero (see Section 2.3 of Rad-
chenko [13]):

G(a,b) = 1
6(|δs | + |εd |)3 + 1

6

∣∣|δs | − |εd |∣∣3
+ δ2

d + ε2
s + δ2

s δd + 2δsεdεs − ε2
dδd + O(‖(a, b)‖4).

Note that conditions (i), (ii) and (iii) of Theorem 3 are satisfied with α = 3, β =
2,p = 3 and (γi, ηi) = (2,1) for 1 ≤ i ≤ 3. The corresponding homogeneous func-
tions are

ψ1(a) = 1
6(|δs | + |εd |)3 + 1

6

∣∣|δs | − |εd |∣∣3, ψ2(b) = δ2
d + ε2

s

and

φ1(a, b) = δ2
s δd, φ2(a, b) = 2δsεdεs, φ3(a, b) = −ε2

ddd .

Take functions �1(z) and �2(z) in condition (iv) as the L2 partial derivatives of
ga,b(z) with respect to a and b at (0,0). For example, let

b′�2(z) = −[2δd(x + 1) + 2εsy]H−(z) + [2δd(x − 1) − 2εsy]H+(z),

where H−(z) is the indicator function of the half-plane {z :x ≤ 0} and H+(z) is
the indicator functions of the half-plane {z :x > 0}. Condition (vi) for the remain-
der functions ra,b(x) follows from a general result on k-means (see Pollard [10],
Lemma B). The proof essentially consists of verifying that Property 1 holds for the
class {ra,b}.

The expression for ga,b(z) depends on the sign of x and on which of the centers
in the set C lies closer to the point z. Let D and U be the x-coordinates of the
crossing points of the split line corresponding to C with the lines {y = −1} and
{y = 1}, respectively. Note that when b = 0, the values D and U are simply δs −εd

and δs + εd . Introduce functions

A(z) = 1{|x| ≤ |D|, xD > 0, y = −1} + 1{|x| ≤ |U |, xU > 0, y = 1}
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and

A0(z) = A(z) − 1{|x| ≤ |δs − εd |, x(δs − εd) > 0, y = −1}
− 1{|x| ≤ |δs + εd |, x(δs + εd) > 0, y = 1}.

Simplify the notation for products of indicator functions by writing, for example,
AH+(z) for A(z)H+(z), and derive that

ga,b(z) − ga,0(z) − b′�2(z)

= δ2
d + ε2

s + 2(δsδd + εsεd)[H−(z) − H+(z)]
(8)

+ 4(xδd − δsδd − εsεd)[AH−(z) − AH+(z)]
+ 4(δs − x + yεd)[A0H−(z) − A0H+(z)].

Define the remainder functions sa,b(z) by equalities

‖b‖sa,b(z) = δ2
d + ε2

s + 2(δsδd + εsεd)[H−(z) − H+(z)]
+ 4(xδd − δsδd − εsεd)[AH−(z) − AH+(z)],

and observe that Property 1 holds for the class {sa,b}. Thus, conditions (v) and (vi)
of Theorem 3 are satisfied if the functions la,b(z) are defined as the remaining part
of expression (8), namely, 4(δs −x +yεd)[A0H−(z)−A0H+(z)]. Define τa = 1/4
and τb = 1/2 as Theorem 3 prescribes. It is only left to check condition (vii) of
Theorem 3 by establishing

sup
(a,b)∈Nn

|νnla,b| = op(n−1/2)(9)

for all sequences of rectangles Nn of the order O(n−1/4) × O(n−3/8) that are
centered at the origin. Write out the Taylor approximations U = δs + εd + δdεd −
εsεd + o(‖(a, b)‖2) and D = δs − εd − δdεd − εsεd + o(‖(a, b)‖2), and conclude
that quantities |D− (δs −εd)| and |U − (δs +εd)| are of order O(n−5/8) uniformly
over (a, b) in the neighborhoods Nn. Use the oscillation properties of the empirical
process established on page 765 in Shorack and Wellner [17] to conclude that

sup
(a,b)∈Nn

|νnAH−(z) − νnAH+(z)| = op(n−1/4).

Stochastic bound (9) follows directly.
Apply Theorem 3 and deduce that (n1/4an,n

1/2bn) � (s∗, t∗), where

s∗ = arg min
s

[ψ1(s) + s ′Z1]
and

t∗ = arg min
t

[
ψ2(t) + t ′Z2 +

3∑
i=1

φi(s
∗, t)

]
.

A closed form expression for (s∗, t∗) is given in Section 2.3 of Radchenko [13].
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8. Example: partial splines. The following semiparametric example is
discussed in Van de Geer ([19], Chapter 11), where a CLT is established for
the parametric component using its characterization as a zero of the derivative
of the criterion function. Below, the same result is derived by working directly
with the definition of the estimator as a minimizer, using the approach introduced
in Sections 2 and 3 for mixed-rates parametric problems.

Let (Y1,Z1), . . . , (Yn,Zn), . . . be independent copies of (Y,Z), where Y is a
real-valued response variable and Z is a covariate. Suppose, for simplicity, that Z

takes values in [0,1]2, write Z = (U,V ) and assume that the model

Y = g(U,V ) + W

is satisfied with E(W |Z) = 0 and g(U,V ) = θU + γ (V ). Here θ ∈ R is an un-
known parameter, and γ is an unknown member of the functional class

S =
{
η : [0,1] → R,

∫ 1

0

∣∣η(m)(v)
∣∣2 dv < ∞

}
,

defined for a fixed positive integer m. Assume that the tails of the error distribution
decrease exponentially fast: there exist positive constants K and σ 2

0 , such that, for
all z ∈ [0,1]2,

2K2E
(
e|W |/K − 1 − |W |/K|Z = z

) ≤ σ 2
0 .

Denote the distribution of (U,V ) by Q and write ‖f ‖2 for the L2(Q)-norm of a
function f . Define functions e(v) = E(U |V = v) and h(u, v) = u− e(v). Assume
that ‖h‖2 > 0.

Fix a positive λ0 and take λn = λ0n
−m/(2m+1). Consider a class F of all regres-

sion functions f of the form f (u, v) = αu + η(v) with α ∈ R and η ∈ S. Denote
the roughness of such a function by I 2(f ) = I 2(η) = ∫ 1

0 |η(m)(v)|2 dv. Define

gn = arg min
f ∈F

{
1

n

n∑
i=1

[Yi − f (Ui,Vi)]2 + λ2
nI

2(f )

}
,

the penalized least squares estimator of function g over the class F . Assume that
the regression of U on V is sufficiently smooth by requiring I (e) < ∞. Given a
function τ from the class S and a real δ, define fτ,δ(u, v) = [θ + δ]u + [γ (v) +
τ(v) − δe(v)] and note that function fτ,δ is a member of the class F . Introduce
criterion functions

Gn(τ, δ) = 1

n

n∑
i=1

[Yi − fτ,δ(Ui,Vi)]2 + λ2
nI

2(fτ,δ).

Write gn(u, v) as [θ + δn]u + [γ (v) + τn(v) − δne(v)] and observe that the pair
(τn, δn) minimizes Gn over the class {(τ, δ) : τ ∈ S, δ ∈ R}.

Methods from penalized least-squares estimation establish the common rate
of convergence for the two components of the estimator (τn, δn). Define r =
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m/(2m + 1). Stochastic bound ‖gn − g‖2 = Op(n−r )is derived in Lemma 11.1
of Van de Geer[19]. Note that ‖gn − g‖2

2 = δ2
n‖h‖2

2 + ‖τn‖2
2, because condi-

tional expectation E(h(U,V )|V = v) is zero for each v in [0,1]. Conclude that
δn = Op(n−r ) and ‖τn‖2 = Op(n−r ).

Apply the approach of Section 3 to improve the convergence rate of δn. Write
Xn for the standardized sum n−1/2 ∑n

i=1 h(Ui,Vi)Wi and deduce that

Gn(τ, δ) − Gn(τ,0)
(10)

= δ2Qnh
2 − 2δ[n−1/2Xn − Qnhτ ] + λ2

n[I 2(fτ,δ) − I 2(fτ,0)].
Equality Eh(U,V )τn(V ) = 0 implies Qnhτn = n−1/2νnhτn, and asymptotic
equicontinuity of the empirical process indexed by functions {hτ : τ ∈ S} yields
Qnhτn = op(n−1/2). Use the definition of the roughness to derive |I 2(fτn,δ) −
I 2(fτn,0)| ≤ I (δe)I (2γ +2τn−δe). Note the stochastic bound I (τn) = Op(1), im-
plied by Van de Geer’s Lemma 11.1, and conclude that λ2

n[I 2(fτn,δ)−I 2(fτn,0)] =
op(n−1/2δ). Expression (10) evaluated at τ = τn and δ = δn simplifies to

Gn(τn, δn) − Gn(τn,0) = δ2
nQnh

2 − 2δnn
−1/2[Xn + op(1)].

The law of large numbers yields Qnh
2 → ‖h‖2, and the limit is positive by as-

sumption. Observe that Xn = Op(1) and apply Theorem 2, with δ2Qnh
2 playing

the role of Mn(τ, δ), to derive the correct n−1/2 convergence rate of δn.
Note that δn minimizes the criterion function Gn(τn, δ) − Gn(τn,0) over δ. Lo-

calize this function by writing δ = n−1/2t , and use the results of the previous para-
graph to derive a quadratic approximation that holds uniformly on compacta,

Gn(τn, n
−1/2t) − Gn(τn,0) = n−1[t2Qnh

2 − 2tXn + op(1)].(11)

Define σ 2(z) = E(W 2|Z = z) and note that Xn � X, where X ∼ N(0,‖σh‖2
2).

Minimization of the random quadratic function in (11) yields n1/2δn = Xn/Qnh
2+

op(1), and a CLT for δn follows directly. Note that because the criterion functions
Gn(τn, ·) are convex, the formal derivation of the bound δn = Op(n−1/2) could
have been sidestepped.

9. Proofs.

9.1. Proof of Theorem 1. The next result is a version of the continuous map-
ping theorem.

LEMMA 2 (Modified continuous mapping). Consider a metric space (X, d).
Let random maps Xn :An → X be defined on some sets An ⊂ � and consider a
function g :X → R

d that is continuous at every point of a set X0 ⊂ X. Suppose
that X :� → X is a Borel measurable map for which there exists a Borel measur-
able set A, containing each of the sets An, such that X ∈ X0 on A. Suppose that
P

∗{d(Xn,X) > ε}∩An → 0 for all ε > 0. Then P
∗{‖g(Xn)−g(X)‖ > δ}∩An →

0 for all δ > 0.
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PROOF. Apply a standard device for proving continuous mapping theorems
(see, e.g., the proof of Theorem 1.9.5 in van der Vaart and Wellner [21]). Fix a
positive ε. Let Dk be the set of all x in X for which there exist y and z within the
open ball of radius 1/k around x with ‖g(y) − g(z)‖ > δ. Note that Dk is open
and the sequence Dk is decreasing. Also note that P{X ∈ Dk} ∩ A ↓ 0, because
every point in

⋂∞
k=1 Dk is a point in Xc

0. Observe that, for every fixed k,

P
∗{‖g(Xn) − g(X)‖ > δ} ∩ An

≤ P{X ∈ Dk} ∩ A + P
∗{d(Xn,X) > 1/k} ∩ An.

The first term on the right-hand side can be made arbitrarily small by choosing k

large enough. For a given choice of k, the second term tends to zero as n goes to
infinity. �

Dudley [2] proved a representation theorem for the convergence in distribution
in the sense of Hoffmann–Jørgensen. The following argument uses Dudley’s result
in the convenient form of Theorem 9.4 in Pollard [11], referred to as Representa-
tion Theorem.

PROOF OF THEOREM 1. Redefine function Hn so that vector (sn, tn) becomes
the unique minimum. This can be done by leaving function fn unchanged and
decreasing function gn by a o∗

p(1) amount at exactly the point (sn, tn). Note that
the assumptions of the theorem remain valid after the change.

It is enough to show that P
∗h(sn, tn) → P

∗h(s∗, t∗) for all bounded, uni-
formly continuous, real functions h on R

d1 × R
d2 . Invoke the Representation

Theorem for the convergence (fn, gn) � (f, g), denote the corresponding per-
fect maps by φn and write ω̃ for the elements of the new probability space.
Simplify the notation by replacing the composition fn(φn(ω̃), s) with f̃n(s),
writing s̃n for sn(φn(ω̃)), and so on, omitting the ω̃. Perfectness of φn implies
|P∗h(sn, tn) − Ph(s∗, t∗)| ≤ P̃

∗|h(̃sn, t̃n) − h(̃s∗, t̃∗)|, hence, it is enough to show
that random vectors (̃sn, t̃n) converge to (̃s∗, t̃∗) in outer probability (see, e.g.,
Theorem 1.9.5 in van der Vaart and Wellner). Write Ar

n for the subset of the new
probability space that is defined by {ω̃ : ‖̃sn‖ ∨ ‖̃tn‖ ∨ ‖̃s∗‖ ∨ ‖̃t∗‖ ≤ r}. Because
quantities ‖̃sn‖, ‖̃tn‖, ‖̃s∗‖ and ‖̃t∗‖ are stochastically bounded with respect to P̃ ∗,
it is sufficient to check that, for each fixed r ,

P̃
∗{‖̃sn − s̃∗‖ > δ} ∩ Ar

n → 0 and
(12)

P̃
∗{‖̃tn − t̃∗‖ > δ} ∩ Ar

n → 0 for all δ.

Fix a positive r and restrict all the functions on R
d1 to the ball {‖x‖ ≤ r}. Denote

by Xr the set of those (restricted) functions that are bounded and possess a unique
minimum. Write �r for the arg min map on Xr . On the set Ar

n, the points s̃n
and s̃∗ can be viewed as two values of the same map: s̃n = �r [α−1

n H̃n(·, t̃n)] and
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s̃∗ = �r [f̃ ]. The two corresponding arguments are close when n is large. Indeed,
on the set Ar

n,

sup
‖s‖≤r

|α−1
n H̃n(s, t̃n) − f̃ (s)|

≤ sup
‖s‖≤r

|f̃n(s) − f̃ (s)| + βn/αn sup
‖s‖∧‖t‖≤r

|g̃n(s, t)|.

The right-hand side of the above inequality goes to zero in outer probability be-
cause of the bound from the Representation Theorem and the boundedness of
g(s, t). Let Ar stand for the Borel measurable set {ω̃ :‖s̃∗‖ ≤ r} and observe that on
the set Ar the map �r is continuous at f̃ [compare with condition (1) in Section 2].
Apply the modified continuous mapping lemma with Ar

n, Ar and Xr playing the
role of An, A and X, and deduce the first convergence in display (12).

Define 	r analogously to �r , but with respect to R
d2 . Note that t̃n =

	r [g̃n(̃sn, ·)] and t̃∗ = 	r [g̃(̃s∗, ·)] on the set Ar
n. Also, on this set,

sup
‖t‖≤r

|g̃n(̃sn, t) − g̃(̃s∗, t)|

≤ sup
‖s‖∧‖t‖≤r

|g̃n(s, t) − g̃(s, t)| + sup
‖t‖≤r

|g̃(̃sn, t) − g̃(̃s∗, t)|.

The first term on the right-hand side tends to zero in outer probability because
of the bound from the Representation Theorem; the second term tends to zero in
outer probability by the standard continuous mapping theorem. Deduce the second
convergence in display (12) using an argument analogous to the one concluding
the previous paragraph. �

9.2. Proofs of the results in Section 3. The following lemma simplifies the
work with random polynomial functions.

LEMMA 3. Let α be positive and let {γ1, . . . , γp, η1, . . . , ηp} be a collec-
tion of nonnegative numbers satisfying γi < α for all i ∈ {1, . . . , p}. Define τ =
mini≤p(

ηi

α−γi
). For each positive δ and each O∗

p(1) sequence of random variables
Ln, there exist a O∗

p(1) sequence of random variables Mn, such that the following
upper bound holds for all positive u:

Ln

(∑
i≤p

n−ηiuγi

)
≤ δuα + Mnn

−ατ .

PROOF. It is enough to establish the bound for δ = 1. Let Mn(ω) be the small-
est real number satisfying the inequality supu≥0(Ln(ω)

∑
i≤p n−ηiuγi − uα) ≤
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Mn(ω)n−ατ . Given a positive ε, select a large enough L to ensure that P ∗{Ln >

L} < ε. Note that

P ∗{Mn > M} ≤ P ∗
{

sup
u≥0

(
L

∑
i≤p

n−ηiuγi − uα

)
> Mn−ατ

}
+ ε.

To see that the first term on the right-hand side of the above inequality is zero for
all M large enough, combine the upper bound

sup
u≥0

(
L

∑
i≤p

n−ηiuγi − uα

)
≤ max

i≤k
sup
u≥0

(pLn−ηi uγi − uα)

with the inequalities

sup
u≥0

(pLn−ηiuγi − uα) = cin
−αηi/(α−γi) ≤ cin

−ατ , i = 1, . . . , p.

Conclude that Mn = O∗
p(1). �

Proof of Theorem 2 is omitted because it is similar to the following argument.

PROOF OF LEMMA 1. Deduce ‖an‖α +‖bn‖β = O∗
p(

∑
i≤p n−ηi‖(an, bn)‖γi )

from inequality Gn(αn, bn) − Gn(0,0) ≤ 0. For each positive δ, use Lemma 3 to
establish

‖an‖α + ‖bn‖β ≤ δ‖(an, bn)‖α + O∗
p(n−ατa ).

Take a small enough δ and use inequality α ≥ β to derive ‖an‖α + ‖bn‖β =
O∗

p(n−ατa ). Conclude that ‖an‖ = O∗
p(n−τa ) and ‖bn‖ = O∗

p(n−ατa/β). �

9.3. Proof of Theorem 3. According to condition (iv),

Gn(a, b) = G(a,b) + n−1/2a′νn�1

+ n−1/2b′νn�2 + n−1/2‖(a, b)‖νnra,b.

Combine this representation with the stochastic bound ‖(an, bn)‖ = op(1) and de-
duce the approximation Gn(an, bn) = G(an, bn) + Op(n−1/2‖(an, bn)‖). Apply
Lemma 1 with function G playing the role of Mn and derive the stochastic bounds
‖an‖ = Op(n−τa ) and ‖bn‖ = Op(n−ατa/β). It follows from condition (v) that

Gn(a, b) − Gn(a,0)

= G(a,b) − G(a,0) + n−1/2b′νn�2

+ n−1/2‖b‖νnsa,b + n−1/2νnla,b.
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Conditions (vi) and (vii) yield νnsan,bn = op(1) and νnlan,bn = op(n−βτb+1/2).
Thus,

Gn(an, bn) − Gn(an,0)
(13)

= G(an, bn) − G(an,0) + Op(n−1/2‖bn‖) + op(n−βτb).

Observe that
∑α

i=1 ‖an‖α−i‖bn‖i = Op(n−1/2‖bn‖). Consequently,

G(an, bn) − G(an,0)

= ψ2(bn)[1 + op(1)] + Op

( p∑
i=1

n−τaγi‖bn‖ηi

)
+ op(n−1/2‖bn‖).

Combine this approximation with approximation (13) and let the term ψ2(bn)[1 +
op(1)] play the role of Mn(an, bn) in Theorem 2. Conclude that ‖bn‖ = Op(n−τb).

Introduce new variables s and t by s = nτaa and t = nτbb. Observe that

p∑
i=1

φi(n
−τa s, n−τb t) = n−βτb

p∑
i=1

n−(β−ηi)[λi−τb]φi(s, t)

and
α∑

i=1

‖n−τa s‖α−i‖n−τb t‖i ≤ n−τa(α−1)−τb

α∑
i=1

‖s‖α−i‖t‖i

= n−βτbn−(β−1)[λ0−τb]
α∑

i=1

‖s‖α−i‖t‖i .

Combine the last two displays with the approximations in conditions (iv) and (vii)
to deduce

G(n−τa s, n−τb t) = n−ατa [ψ1(s) + qn(s)]
(14)

+ n−βτb [ψ2(t) + φi(s, t)1{λi = τb} + wn(s, t)],
where supK1

|qn(s)| = o(1) for every compact set K1 in R
d1 , and supK2

|wn(s,

t)| = o(1) for every compact set K2 in R
d1 × R

d2 . Conditions (iv) through (vii)
yield

Gn(n
−τa s, n−τb t) = G(n−τa s, n−τb t) + n−ατa [s′νn�1 + q ′

n(s)]
(15)

+ n−βτb
[
n−(β−1)[λ0−τb]t ′νn�2 + w′

n(s, t)
]
,

where supK1
|q ′

n(s)| = op(1) for every compact set K1 in R
d1 , and supK2

|w′
n(s,

t)| = op(1) for every compact set K2 in R
d1 × R

d2 .
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Denote Gn(n
−τa s, n−τb t) by Hn(s, t). Combine approximations (14) and (15)

and conclude that, uniformly on compacta in R
d1 × R

d2 ,

Hn(s, t) = n−ατa [ψ1(s) + s′νn�1 + op(1)]

+ n−βτb

[
ψ2(t) + 1{λ0 = τb}t ′νn�2

+
p∑

i=1

1{λi = τb}φi(s, t) + op(1)

]
.

Note that ατa ≤ βτb. Indeed, this inequality is valid in the case λ0 = τb; in the
case λ0 �= τb, it follows from approximation (14) and the fact that function G

assumes only nonnegative values near the origin. If ατa < βτb, apply Theorem 1
to complete the proof. If ατa = βτb, the standard arg min theorem will suffice.
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