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HURST EXPONENT ESTIMATION OF LOCALLY SELF-SIMILAR
GAUSSIAN PROCESSES USING SAMPLE QUANTILES

BY JEAN-FRANÇOIS COEURJOLLY1

University of Grenoble 2

This paper is devoted to the introduction of a new class of consistent es-
timators of the fractal dimension of locally self-similar Gaussian processes.
These estimators are based on convex combinations of sample quantiles of
discrete variations of a sample path over a discrete grid of the interval [0,1].
We derive the almost sure convergence and the asymptotic normality for
these estimators. The key-ingredient is a Bahadur representation for sam-
ple quantiles of nonlinear functions of Gaussian sequences with correlation
function decreasing as k−αL(k) for some α > 0 and some slowly varying
function L(·).

1. Introduction. Many naturally occurring phenomena can be effectively
modeled using self-similar processes. Among the simplest models, one can con-
sider the fractional Brownian motion introduced in the statistics community by
Mandelbrot and Van Ness [22]. Fractional Brownian motion can be defined as
the only centered Gaussian process, denoted by (X(t))t∈R, with stationary incre-
ments and with variance function v(·), given by v(t) = σ 2|t |2H , for all t ∈ R.
The fractional Brownian motion is an H -self-similar process, that is for all c > 0,

(X(ct))t∈R

d= cH (X(t))t∈R (where d= means equal in finite-dimensional distribu-
tions) with autocovariance function behaving like O(|k|2H−2) as |k| → +∞. So
the discretized increments of the fractional Brownian motion (called the fractional
Gaussian noise) constitute a short-range dependent process, when H < 1/2, and
a long-range dependent process, when H > 1/2. The index H also characterizes
the path regularity since the fractal dimension of the fractional Brownian motion
is equal to D = 2 −H . According to the context (long-range dependent processes,
self-similar processes, . . .), a very large variety of estimators of the parameter H

has been investigated. The reader is referred to Beran [6], Coeurjolly [8] or Bardet
et al. [5] for an overview of this problem. Among the most often used estimators
we have: methods based on the variogram, on the log-periodogram, for example,
Geweke and Porter-Hudak [15] in the context of long-range dependent processes,
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maximum likelihood estimator (and Whittle estimator) when the model is paramet-
ric, for example, fractional Gaussian noise, methods based on the wavelet decom-
position, for example, Flandrin [14] or Stoev et al. [26] and the references therein,
and on discrete filtering studied by Kent and Wood [19], Istas and Lang [18] and
Coeurjolly [9]. We are mainly interested in the last one, which has several similari-
ties with the wavelet decomposition method. Following Constantine and Hall [11],
Kent and Wood [19], Istas and Lang [18], in the case when the process is observed
at times i/n for i = 1, . . . , n, this method is adapted to a larger class than the frac-
tional Brownian motion, namely, the class of centered Gaussian processes with
stationary increments that are locally self-similar (at zero). A process (X(t))t∈R

is said to be locally self-similar (at zero) if its variance function, denoted by v(·),
satisfies

v(t) = E(X(t)2) = σ 2|t |2H (
1 + r(t)

)
with r(t) = o(1) as |t | → 0,(1)

for some 0 < H < 1. An estimator of H is derived by using the stationarity of
the increments and the local behavior of the variance function. When observing
the process at regular subdivisions, the stationarity of the increments is crucial
since the method based on discrete filtering (and the one based on the wavelet de-
composition) essentially uses the fact that the variance of the increments can be
estimated by the sample moment of order 2. We do not believe that this framework
could be valid for the estimation of the Hurst exponent of Riemann–Liouville’s
process, for example, Alòs, Mazet and Nualart [1] which is an H -self-similar cen-
tered Gaussian process but with increments satisfying only some kind of local
stationarity, see Remark 2 for more details.

Let us be more specific on the construction of the wavelet decomposition
method (see, e.g., Flandrin [14]): the authors noticed that the variance of the
wavelet coefficient at a scale say j behaves like 2j (2H−1). An estimator of H is
then derived by regressing the logarithm of sample moment of order 2 at each scale
against log(j) for various scales. This procedure exhibits good properties since it
is also proved that the more vanishing moments the wavelet has the observations
are more decorrelated. And so asymptotic results are quite easy to obtain. How-
ever, Stoev et al. [26] illustrate the fact that this kind of estimator is very sensitive
to additive outliers and to nonstationary artefacts. Therefore, they mainly propose
to replace at each scale, the sample moment of order 2, by the sample median
of the squared coefficients. This procedure, for which the authors assert that no
theoretical result is available, is clearly more robust.

The main objective of this paper is to extend the procedure proposed by Stoev
et al. [26] by deriving semiparametric estimators of the parameter H , using dis-
crete filtering methods, for the class of processes defined by (1). The procedure
is extended in the sense that we consider either convex combinations of sample
quantiles or trimmed-means. Moreover, we provide convergence results. The key-
ingredient is a Bahadur representation of sample quantiles obtained in a certain
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dependence framework. Let Y = (Y (1), . . . , Y (n)) be a vector of n i.i.d. random
variables with cumulative distribution function F , as well denote by ξ(p) and
ξ̂ (p) the quantile, respectively, the sample quantile of order p. By assuming that
F ′(ξ(p)) > 0 and F ′′(ξ(p)) exists, Bahadur proved that as n → +∞,

ξ̂ (p) − ξ(p) = p − F̂ (p)

f (ξ(p))
+ rn,

with rn = Oa.s.(n
−3/4 log(n)3/4). Using a law of iterated logarithm’s type result,

Kiefer [20] obtained the exact rate n−3/4 log log(n)3/4. Extensions of the above
results to dependent random variables have been pursued in Sen [24] for φ-mixing
variables, in Yoshihara [29] for strongly mixing variables, and recently in Wu [30]
for short-range and long-range dependent linear processes, following works of
Hesse [16] and Ho and Hsing [17]. Our contribution is to provide a Bahadur rep-
resentation for sample quantiles in another context that is for nonlinear functions
of Gaussian processes with correlation function decreasing as k−αL(k) for some
α > 0 and some slowly varying function L(·). The bounds for rn are obtained
under the same assumption as those used by Bahadur [4].

The paper is organized as follows. In Section 2, we give some basic notations
and some background on discrete filtering. In Section 3, we derive semiparametric
estimators of the parameter H , when a single sample path of a process defined
by (1) is observed over a discrete grid of the interval [0,1]. Section 4 presents the
main results: Bahadur representations and asymptotic results for our estimators. In
Section 5 some numerical computations are presented to compare the theoretical
asymptotic variance of our estimators and a simulation study is also given. In par-
ticular, we illustrate the relative efficiency with respect to Whittle estimator and
the fact that such estimators are more robust than classical ones. Finally, proofs of
different results are presented in Section 6.

2. Some notations and some background on discrete filtering. Given some
random variable Y , FY (·) denotes the cumulative distribution function of Y and
ξY (p) the quantile of order p, 0 < p < 1. If FY (·) is absolutely continuous
with respect to Lebesgue measure, the probability density function is denoted by
fY (·). The cumulative distribution (resp. probability density) function of a stan-
dard Gaussian variable is denoted by �(·) [resp. φ(·)]. Based on the observation
of a vector Y = (Y (1), . . . , Y (n)) of n random variables distributed as Y , the sam-
ple cumulative distribution function and the sample quantile of order p are respec-
tively denoted by F̂Y (·;Y) and ξ̂Y (p;Y) or simply by F̂(·;Y) and ξ̂(p;Y). Finally,
for some measurable function g(·), we denote by g(Y) the vector of length n with
real components g(Y (i)), for i = 1, . . . , n.

A sequence of real numbers un is said to be O(vn) [resp. o(vn)] for an other se-
quence of real numbers vn, if un/vn is bounded (resp. converges to 0 as n → +∞).
A sequence of random variables Un is said to be Oa.s.(vn) [resp. oa.s.(vn)] if Un/vn

is almost surely bounded (resp. if Un/vn converges toward 0 with probability 1).
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The statistical model corresponds to a discretized version X = (X(i/n))i=1,...,n

of a locally self-similar Gaussian process defined by (1).
One of the ideas of our method is to construct some estimators by using some

properties of the variance of the increments of X or the variance of the increments
of order 2 of X. While considering the increments of X is conventional since the
associated sequence is stationary, considering the increments of order 2 (or of a
higher order) could be stranger. However, the main interest relies upon the fact that
the observations of the latter resulting sequences are less correlated than those of
the simple increments’ sequence. All these vectors can actually be seen as special
discrete filtering of the vector X. Let us now specify some general background on
discrete filtering and its consequence on the correlation structure. The vector a is
a filter of length � + 1 and of order ν ≥ 1 with real components if

�∑
q=0

qjaq = 0 for j = 0, . . . , ν − 1 and
�∑

q=0

qνaq �= 0.

For example, a = (1,−1) [resp. a = (1,−2,1)] is a filter with order 1 (resp. 2).
Let Xa be the series obtained by filtering X with a, then:

Xa
(

i

n

)
=

�∑
q=0

aqX

(
i − q

n

)
for i ≥ � + 1.

Applying in turn the filter a = (1,−1) and a = (1,−2,1) leads to the increments
of X, respectively the increments of X of order 2. One may also consider other
filters such as Daubechies wavelet filters, for example, Daubechies [13].

The following assumption is needed by different results presented hereafter:

ASSUMPTION A1(k). For i = 1, . . . , k

v(i)(t) = σ 2β(i)|t |2H−i + o(|t |2H−i )

with β(i) = 2H(2H − 1) · · · (2H − i + 1) (where k ≥ 1 is an integer).

This assumption assures that the variance function v(·) is sufficiently smooth
around 0. It allows us to assert that the correlation structure of a locally self-similar
discretized and filtered Gaussian process can be compared to the one of the frac-
tional Brownian motion. This is announced more precisely in the following lemma.

LEMMA 1 (e.g., Kent and Wood [19]). Let a and a′ be two filters of length
� + 1 and �′ + 1, of order ν and ν′ ≥ 1. Then we have

E
(
Xa

(
i

n

)
Xa′

(
i + j

n

))
= −σ 2

2

�∑
q,q ′=0

aqa′
q ′v

(
q − q ′ + j

n

)
(2)

= γ a,a′
n (j)

(
1 + δa,a′

n (j)
)
,
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with

γ a,a′
n (j) = σ 2

n2H
γ a,a′

(j), γ a,a′
(j) = −1

2

�∑
q,q ′=0

aqa′
q ′ |q − q ′ + j |2H(3)

and

δa,a′
n (j) =

∑
q,q ′ aqaq ′ |q − q ′ + j |2H × r((q − q ′ + j)/n)

γ a,a′
(j)

.(4)

Moreover, as |j | → +∞,

γ a,a′
(j) = O

(
1

|j |2H−ν−ν′

)
.(5)

Finally, under Assumption A1(ν + ν′), as n → +∞
δa,a′
n (j) = o(1).(6)

REMARK 1. In the case of the fractional Brownian motion the sequence δn

is equal to 0, whereas it converges toward 0 for more general locally self-similar
Gaussian processes, such as the Gaussian processes with stationary increments and
with variance function v(t) = 1 − exp(−|t |2H ) or v(t) = log(1 + |t |2H ) for which
Assumption A1(k) is satisfied (for every k ≥ 1).

REMARK 2. The stationarity of the increments and the local self-similarity
required on the process X(·) are important, if the process is observed at times
i/n for i = 1, . . . , n. The crucial result of Lemma 1 is that the variance function
of the filtered series behaves asymptotically as γ a

n (0). It seems to be difficult to
relax the constraint of stationarity. Consider for example the Riemann–Liouville’s
process, for example, Alòs, Mazet and Nualart [1]. This process is a Gaussian
process which is H -self similar Gaussian but with increments satisfying only some
kind of local stationarity. Following the computations of Lim [21], the variance of
the increments’ series of the Riemann–Liouville’s process is equal to

E
((

X

(
i + 1

n

)
− X

(
i

n

))2)
= 1

n2H

1

�(H + 1/2)2

{
I + 1

2H

}
,

with I = ∫ i
0 ((1+u)H−1/2 −uH−1/2)3 du+ ∫ i/n

0 u2H−1 du. This integral cannot be
asymptotically independent of time. Note that this could be the case if the process
is observed at irregular subdivisions. This question has not been investigated.

Define Ya as the normalized vector Xa with variance 1. The covariance between
Y a(i/n) and Y a′

(i + j/n) is denoted by ρa,a′
n (j). Under Assumption A1(ν + ν′),

the following equivalence holds as n → +∞

ρa,a′
n (j) ∼ ρa,a′

(j) = γ a,a′
(j)√

γ a,a(0)γ a′,a′
(0)

.(7)
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When a = a′, we set, for the sake of simplicity γ a
n (·) = γ a,a

n (·), δa
n(·) = δa,a

n (·),
ρa

n(·) = ρa,a
n (·), γ a,a(·) = γ a(·) and ρa(·) = ρa,a(·).

3. New estimators of H .

3.1. Estimators based on a convex combination of sample quantiles. Let
(p, c) = (pk, ck)k=1,...,K ∈ ((0,1) × R

+)K for an integer 1 ≤ K < +∞. Define
the following statistics based on a convex combination of sample quantiles:

ξ̂ (p, c;Xa) =
K∑

k=1

ckξ̂(pk;Xa),(8)

where ck, k = 1, . . . ,K are positive real numbers such that
∑K

k=1 ck = 1. For ex-
ample, this corresponds to the sample median when K = 1,p = 1/2, c = 1, to a
mean of quartiles when K = 2,p = (1/4,3/4), c = (1/2,1/2). Consider the fol-
lowing computation: from Lemma 1, we have, as n → +∞,

ξ̂ (p, c;Xa) ∼ σ 2

n2H
γ a(0)̂ξ (p, c;Ya).

REMARK 3. It may be expected that ξ̂ (p, c;Ya) converges toward a constant
as n → +∞. In itself, this result is not interesting, since two parameters remain
unknown: σ 2 and H and thus, it is impossible to derive an estimator of H .

Remark 3 suggests that we have to use at least two filters. Among all available
filters, let us consider the sequence (am)m≥1 defined by

am
i =

{
aj , if i = jm,
0, otherwise,

for i = 0, . . . ,m�,

which is none other than the filter a dilated m times. For example, if the fil-
ter a = a1 corresponds to the filter (1,−2,1), then a2 = (1,0,−2,0,1), a3 =
(1,0,0,−2,0,0,1), . . . . As noted by Kent and Wood [19] or Istas and Lang [18],
the filter am, of length m� + 1, is of order ν and has the following interesting
property:

γ am

(0) = m2Hγ a(0).(9)

From Lemma 1, this simply means that E(Xam
(i/n)2) = m2H E(Xa(i/n)2), ex-

hibiting some kind of self-similarity property of the filtered coefficients. As spec-
ified in the Introduction, the same property can be pointed out in the context of
wavelet decomposition.

Our methods, that exploit the nice property (9), are based on a convex combina-
tion of sample quantiles ξ̂ (p, c;g(Xam

)) for two positive functions g(·): g(·) = |·|α
for α > 0 and g(·) = log | · |. For the sake of conciseness of the paper, we only
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present version of estimators with g(·) = | · |α and refer the reader to Coeurjolly
[10] for more details. For such functions g(·) we manage, by using some property
established in Lemma 1, to define some very simple estimators of the Hurst ex-
ponent through a simple linear regression. Other choices of the function g(·) have
not been investigated in this paper. At this stage, let us specify that our methods
extend the one proposed by Stoev et al. [26]; indeed they only consider the statistic
ξ̂ (p, c;g(Xam

)) for p = 1/2, c = 1, g(·) = (·)2, that is the sample median of the
squared coefficients. From (3) and (9), we have

ξ̂ (p, c; |Xam |α) = E((Xam
(1/n))2)α/2ξ̂ (p, c; |Yam |α)

(10)

= mαH σα

nαH
γ a(0)α/2(

1 + δam

n (0)
)α/2

ξ̂ (p, c; |Yam |α).

Denote by κH = n−2Hσ 2γ a(0). Equation (10) can be rewritten as

log ξ̂ (p, c; |Xam |α) = αH log(m) + log
(
κ

α/2
H ξ|Y |α (p, c)

) + εα
m,(11)

with the random variables εα
m defined by

εα
m = log

(
ξ̂ (p, c; |Yam |α)

ξ|Y |α (p, c)

)
+ α

2
log

(
1 + δam

n (0)
)
,(12)

where, for some random variable Z, ξZ(p, c) = ∑K
k=1 ckξZ(pk). We decide to

rewrite equation (10) as (11), since we expect that εα
m converges (almost surely)

toward 0 as n → +∞. From Remark 3, an estimator of H can be defined through
a linear regression of (log ξ̂ (p, c; |Xam |α))m=1,...,M on (logm)m=1,...,M for some

M ≥ 2. This estimator is denoted by Ĥ α . By denoting A the vector of length M

with components Am = logm − 1
M

∑M
m=1 log(m), m = 1, . . . ,M , we have explic-

itly from (11) and the definition of least squares estimates (see, e.g., Antoniadis et
al. [2]):

Ĥ α = AT

α‖A‖2 (log ξ̂ (p, c; |Xam |α))m=1,...,M,(13)

where ‖z‖ for some vector z of length d denotes the norm defined by (
∑d

i=1 z2
i )

1/2.
We can point out that Ĥ α is independent of the scaling coefficient σ 2.

3.2. Estimators based on trimmed means. Let 0 < β1 ≤ β2 < 1 and β =
(β1, β2), denote by g(Xa)

(β)
the β-trimmed mean of the vector g(Xa) given by

g(Xa)
(β) = 1

n − [nβ2] − [nβ1]
n−[nβ2]∑
[nβ1]+1

(g(Xa))(i),n,
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where (g(Xa))(1),n ≤ (g(Xa))(2),n ≤ · · · ≤ (g(Xa))(2),n are the order statistics of
(g(Xa))1, . . . , (g(Xa))n. It is well known that (g(Xa))(i),n = ξ̂( i

n
;g(Xa)). Hence,

by following the ideas of the previous section, one may obtain

log
(|Xam |α(β)) = αH log(m) + log

(
κ

α/2
H |Y |α(β)) + εα,tm

m ,(14)

with

εα,tm
m = |Yam |α(β) − |Y |α(β) + α

2
log

(
1 + δam

n (0)
)
,(15)

where for some random variable Z, Z
(β)

is referring to

Z
(β) = 1

1 − β2 − β1

∫ 1−β2

β1

ξZ(p)dp.(16)

As in the previous section, an estimator of H , denoted by Ĥ α,tm, is derived through
a log-linear regression

Ĥ α,tm = AT

α‖A‖2

(|Xam |α(β))
m=1,...,M.(17)

REMARK 4. The estimator referred to the “estimator based on the quadratic
variations” in the simulation study and studied with the same formalizm by Coeur-
jolly [9] corresponds to the estimator Ĥ α,tm with α = 2, β1 = β2 = 0.

4. Main results. To simplify the presentation of different results, consider
the two following assumptions on different parameters involved in the estimation
procedures.

ASSUMPTION A2(p, c). a is a filter of order ν ≥ 1, α is a positive real number,
p (resp. c) is a vector of length K (for some 1 ≤ K < +∞) such that 0 < pk < 1
(resp. ck > 0 and

∑K
k=1 ck = 1), M is an integer ≥ 2.

ASSUMPTION A3(β). a is a filter of order ν ≥ 1, α is a positive real number,
β = (β1, β2) is such that 0 < β1 ≤ β2 < 1, M is an integer ≥ 2.

Since AT (log(m))m=1,...,M = ‖A‖2 and AT 1 = 0 [where 1 = (1)m=1,...,M ], we
have

Ĥ α − H = AT

α‖A‖2 εα and Ĥ α,tm − H = AT

α‖A‖2 εα,tm,(18)

where εα = (εα
m)m=1,...,M and εα,tm = (εα,tm

m )m=1,...,M . Hence, in order to study
the convergence of different estimators, it is sufficient to obtain some convergence
results of sample quantiles ξ̂ (p,g(Ya)) for some function g(·) and some filter a.
Therefore, we first establish a Bahadur representation of sample quantiles for some
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nonlinear function of Gaussian sequences with correlation function decreasing
as k−α , for some α > 0. In fact, the existing literature on nonlinear function of
Gaussian sequences (e.g., Taqqu [27]) allows us to slightly extend this framework
by considering correlation function decreasing as k−αL(k), for some slowly vary-
ing function L(·).

4.1. Bahadur representation of sample quantiles. Let us recall some impor-
tant definitions on Hermite polynomials. The j th Hermite polynomial (for j ≥ 0)
is defined for t ∈ R by

Hj(t) = (−1)j

φ(t)

djφ(t)

dtj
.(19)

The Hermite polynomials form an orthogonal system for the Gaussian measure.
More precisely, we have E(Hj (Y )Hk(Y )) = j !δj,k . For a measurable function g(·)
defined on R for which E(g(Y )2) < +∞, the following expansion holds:

g(t) = ∑
j≥τ

cj

j !Hj(t) with cj = E(g(Y )Hj (Y )),

where the integer τ defined by τ = inf{j ≥ 0, cj �= 0}, is called the Hermite rank
of the function g. Note that this integer plays an important role. For example, it is
related to the correlation of g(Y1) and g(Y2) (for Y1 and Y2 two standard Gaussian

variables with correlation ρ) since E(g(Y1)g(Y2)) = ∑
k≥τ

(ck)
2

k! ρk ≤ ρτ‖g‖L2(dφ).
In order to obtain a Bahadur representation (see, e.g., Serfling [25]), we have to

ensure that F ′
g(Y )(ξ(p)) > 0 and F ′′

g(Y )(·) exists and is bounded in a neighborhood
of ξ(p). This is achieved if the function g(·) satisfies the following assumption
(see, e.g., Dacunha-Castelle and Duflo [12], page 33).

ASSUMPTION A4(ξ(p)). There exist Ui , i = 1, . . . ,L, disjoint open sets such
that Ui contains a unique solution to the equation g(t) = ξg(Y )(p), such that
F ′

g(Y )(ξ(p)) > 0 and such that g is a C2-diffeomorphism on
⋃L

i=1 Ui .

Note that under this assumption

F ′
g(Y )

(
ξg(Y )(p)

) = fg(Y )

(
ξg(Y )(p)

) =
L∑

i=1

φ(g−1
i (ξ(p)))

g′(g−1
i (ξ(p)))

,

where gi(·) is the restriction of g(·) on Ui . Now, define, for some real u, the func-
tion hu(·) by

hu(t) = 1{g(t)≤u}(t) − Fg(Y )(u).(20)

We denote by τ(u) the Hermite rank of hu(·). For the sake of simplicity, we set
τp = τ(ξg(Y )(p)). For some function g(·) satisfying Assumption A4(ξ(p)), we
denote by

τp = inf
γ∈⋃L

i=1 g(Ui)

τ (γ ),(21)
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that is the minimal Hermite rank of hu(·) for u in a neighborhood of ξg(Y )(p).

THEOREM 2. Let {Y(i)}+∞
i=1 be a stationary (centered) Gaussian process with

variance 1, and correlation function ρ(·) such that, as i → +∞
|ρ(i)| ∼ L(i)i−α,(22)

for some α > 0 and some slowly varying function at infinity L(s), s ≥ 0. Then,
under Assumption A4(ξ(p)), we have almost surely, as n → +∞

ξ̂(p;g(Y)) − ξg(Y )(p) = p − F̂(ξg(Y )(p);g(Y))

fg(Y )(ξg(Y )(p))
+ Oa.s.(rn(α, τp)),(23)

the sequence (rn(α, τp))n≥1 being defined by

rn(α, τp) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n−3/4 log(n)3/4, if ατp > 1,
n−3/4 log(n)3/4Lτp(n)3/4, if ατp = 1,

n−1/2−ατp/4 log(n)τp/4+1/2L(n)τp/4, if 2/3 < ατp < 1,
n−ατp log(n)τpL(n)τp , if 0 < ατp ≤ 2/3,

(24)

where for some τ ≥ 1, Lτ (n) = ∑
|i|≤n |ρ(i)|τ .

Note that if L(·) is an increasing function, Lτ (n) = O(log(n)L(n)τ ).

REMARK 5. Without giving any details here, let us say that the behavior of
the sequence rn(·, ·) is related to the characteristic (short-range or long-range de-
pendence) of the process {hu(Y (i))}+∞

i=1 for u in a neighborhood of ξg(Y )(p). In
the case ατp > 1, corresponding to short-range dependent processes, the result
is similar to the one proved by Bahadur, see, for example, Serfling [25], in the
i.i.d. case. For short-range dependent linear processes, using a law of iterated log-
arithm’s type result Wu [30] obtained a sharper bound, that is n−3/4 log log(n)3/4.
This bound is obtained under the assumption that F ′(·) and F ′′(·) exist and are
uniformly bounded. For long-range dependent processes (ατp ≤ 1), we can ob-
serve that the rate of convergence is always lower than n−3/4 log(n)3/4 and that
the dominant term n−3/4 is obtained when ατp → 1.

We now propose a uniform Bahadur type representation of sample quantiles.
Such a representation has an application in the study of trimmed-mean. For
0 < p0 ≤ p1 < 1 consider the following assumption which extends Assump-
tion A4(ξ(p)).

ASSUMPTION A5(p0,p1). There exists Ui , i = 1, . . . ,L, disjoint open sets
such that Ui contains a solution to the equation g(t) = ξg(Y )(p) for all p0 ≤
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p ≤ p1, such that F ′
g(Y )(ξ(p)) > 0 for all p0 ≤ p ≤ p1 and such that g is a

C2-diffeomorphism on
⋃L

i=1 Ui .
Under the previous assumption, define

τp0,p1 = inf
γ∈⋃L

i=1 g(Ui)

τ (γ ).(25)

THEOREM 3. Under the conditions of Theorem 2 and Assumption A5(p0,p1),
we have almost surely, as n → +∞

sup
p0≤p≤p1

∣∣∣∣̂ξ(p;g(Y)) − ξg(Y )(p) − p − F̂(ξg(Y )(p);g(Y))

fg(Y )(ξg(Y )(p))

∣∣∣∣
(26)

= Oa.s.(rn(α, τp0,p1)).

REMARK 6. To obtain convergence results of estimators of H , some results
are needed concerning sample quantiles of the form ξ̂(p;g(Yam

)), with g(·) = | · |.
Lemma 13 asserts that the Hermite rank τp of the function hξg(Y )(p)(·) with
g(·) = | · |, is equal to 2 for all 0 < p < 1. Moreover, for all 0 < p < 1 and for
all 0 < p0 ≤ p1 < 1, Assumptions A4(ξ(p)) and A5(p0,p1) are satisfied, and we
have τp = τp0,p1 = 2. Since from Lemma 1, the correlation function of Yam

sat-
isfies (22) with α = 2ν − 2H and L(·) = 1, by applying Theorem 2, the sequence
rn(·, ·) is then given by

rn(2ν − 2H,2) = n−3/4 log(n)3/4, if ν ≥ 2(27)

and for ν = 1

rn(2 − 2H,2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n−3/4 log(n)3/4, if 0 < H < 3/4,
n−3/4 log(n)3/2, if H = 3/4,
n−1/2−(1−H) log(n), if 3/4 < H < 5/6,
n−2(2−2H) log(n)2, if 5/6 ≤ H < 1.

(28)

4.2. Convergence results of estimators of H . In order to specify convergence
results, we make the following assumption concerning the remainder term of the
variance function v(·).

ASSUMPTION A6(η). There exists η > 0 such that v(t) = σ 2|t |2H (1 +
O(|t |η)), as |t | → 0.

The first result concentrates itself on estimators Ĥ α based on a convex combi-
nation of sample quantiles.

THEOREM 4. Under Assumptions A1(2ν), A2(p, c) and A6(η):
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(i) we have almost surely, as n → +∞,

Ĥ α − H =
⎧⎪⎨⎪⎩

O(n−η) + Oa.s.(n
−1/2 log(n)), if ν > H + 1

4 ,
O(n−η) + Oa.s.(n

−1/2 log(n)3/2), if ν = 1, H = 3
4 ,

O(n−η) + Oa.s.

(
n−2(1−H) log(n)

)
, if ν = 1, 3

4 < H < 1.

(29)

(ii) The mean squared errors (MSE) of Ĥ α satisfies

MSE(Ĥ α − H) = O
(
vn(2ν − 2H)

) + O
(
rn(2ν − 2H,2)2) + O(n−2η).(30)

The sequence rn(2ν − 2H,2) is given by (27) and (28) and the sequence vn(·) is
defined by

vn(2ν − 2H) =
⎧⎪⎨⎪⎩

n−1, if ν > H + 1
4 ,

n−1 log(n), if ν = 1, H = 3
4 ,

n−4(1−H), if ν = 1, 3
4 < H < 1.

(31)

(iii) If the filter a is such that ν > H + 1/4, and if η > 1/2, then we have the
following convergence in distribution, as n → +∞,

√
n(Ĥ α − H) −→ N (0, σ 2

α ),(32)

where σ 2
α is defined for α ≥ 0 by

σ 2
α = ∑

i∈Z

∑
j≥1

1

(2j)!
(

K∑
k=1

H2j−1(qk)ck

qk

πα
k

)2

BT R(i, j)B.(33)

The vector B is defined by B = AT

‖A‖2 , and the real numbers qk and πα
k are defined

by

qk = �−1
(

1 + pk

2

)
and πα

k = (qk)
α∑K

j=1 cj (qj )α
.(34)

Finally, the matrix R(i, j), defined for i ∈ Z and j ≥ 1, is a M × M matrix whose
(m1,m2) entry is

(R(i, j))m1,m2 = ρam1 ,am2
(i)2j ,(35)

where ρam1 ,am2
(·) is the correlation function defined by (7).

REMARK 7. The expression of the variance σ 2
α given by (33) could appear to

be very complicated. However, given some vectors p and c and some integer M , it
does not take unreasonable effort to compute it for each value of H by truncating
the two series. This issue is investigated in Section 5 to compare the different
parameters.
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REMARK 8. Let us discuss the result (30). The first term, O(vn), is due to the
variance of the sample cumulative distribution function. The second term, O(r2

n)

is due to the departure of ξ̂ (p) − ξ(p) from F̂ (ξ(p)) − p. We leave the reader to
check that

O
(
rn(2ν − 2H,2)2) + O

(
vn(2ν − 2H)

)
=

{
O

(
vn(2ν − 2H)

)
, if ν ≥ H + 1

4 ,
O

(
rn(2ν − 2H,2)2)

, if ν < H + 1
4 .

Finally, the third one, O(n−2η) is a bias term due to the misspecification of the
variance function v(·) around 0.

REMARK 9. If K = 1, we have, for every α > 0,

σ 2
α = σ 2

0 = ∑
i∈Z

∑
j≥1

H2j−1(q)2

q2(2j)! BT R(i, j)B.

Assume Assumption A6(η) with η > 1/2 which allows to neglict the bias term
with respect to the variance one. The result (32) is proved by using some general
central limit theorem obtained in this dependence context by Arcones [3], which
is available as soon as ρa(·)2 is summable. Therefore, if only Assumption A1(2)

is assumed, the filter a cannot exceed 1 [and then correspond to a = (1,−1)] and,
due to (5), the result (32) is valid only for 0 < H < 3/4. As a practical point of
view, one observes that for such a filter and large values of H , the estimators have
very big variance. Note that if Assumption A1(2ν) can be assumed for ν > 1, then
the asymptotic normality is valid for all the values of H .

The following theorem presents the analog results obtained for the estimator
Ĥ α,tm based on trimmed-means.

THEOREM 5. Under Assumptions A1(2ν), A3(β) and A6(η), properties
(i) and (ii) of Theorem 4 hold for the estimator Ĥ α,tm with the same rates of con-
vergences.

(iii) if the filter a is such that ν > H + 1/4 and if η > 1/2, then, under the nota-
tions of Theorem 4, we have the following convergence in distribution, as n → +∞

√
n(Ĥ α,tm − H) −→ N (0, σ 2

α,tm),(36)

where σ 2
α,tm is defined for α ≥ 0 by

σ 2
α,tm = ∑

i∈Z

∑
j≥1

1

(2j)!
(∫ 1−β2

β1
H2j−1(q)qα−1 dp∫ 1−β2
β1

qα dp

)2

BT R(i, j)B,(37)

with q = �−1(
1+p

2 ).
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5. Numerical computation and simulations.

5.1. Asymptotic constants σ 2
α and σ 2

α,tm. In order to compare the different es-
timators, we intend to compute the asymptotic constants σ 2

α and σ 2
α,tm defined

by (33) and (37) for various set of parameters (a,p, c,β,M). For this work, both
series defining σ 2

α and σ 2
α,tm are truncated (|i| ≤ 200, j ≤ 150). Figure 2 illustrates

a part of this work. We can propose the following general remarks:

• Among all filters tested, the best one seems to be

a� =
{

inc1, if 0 < H < 3/4,
db4, otherwise,

where inc1 and db4 respectively denote the filter (1,−1) and the Daubechies
wavelet filter with two zero moments explicitly given by

db4 = (0.4829629,−0.8365763,0.22414386,0.12940952).

• Choice of M : increasing M seems to reduce the asymptotic constant σ 2
α . Obvi-

ously, a too large M increases the bias since ξ̂ (p, c;g(XaM
)) or g(XaM

)
(β)

are
estimated with N − M� observations. We recommend setting it to the value 5.

• We did not manage [theoretically and numerically since series defining (33)
and (37) are truncated] to determine the optimal value of α. However, for exam-
ples considered, it should be near the value 2.

• Again, this is quite difficult to know theoretically and numerically which choice
of p is optimal. What we observed is that, for fixed parameters a, M and α, the
asymptotic constants are very close to each other.

• Choice of p in the case of a single quantile (see Figure 2): the optimal p seems
to be near the value 90%. However, p = 1/2, corresponding to the estimator
based on the median, leads to good results.

• Choice of β1 = β2 = β for the estimators based on trimmed-means (see Fig-
ure 2): obviously the constant grows with β but we can point out that estimators
based on 10%-trimmed-means are very competitive with the ones obtained by
quadratic variations (β = 0).

5.2. Simulation. A short simulation study is proposed in Table 1 and Fig-
ure 1 for n = 1000 and H = 0.8. We consider two locally self-similar Gaussian
processes whose variance functions are in turn v(t) = |t |2H (fractional Brownian
motion) and v(t) = 1 − exp(−|t |2H ). To generate sample paths discretized over
a grid [0,1], we use the method of circulant matrix (see Wood and Chan [28]),
which is particularly fast, even for large sample sizes. Various versions of esti-
mators are considered and compared with classical ones, that is the one based on
quadratic variations, Coeurjolly [9], and the Whittle estimator, Beran [6]. In order
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TABLE 1
Mean and standard deviations for n = 1,000 and H = 0.8 using 500 Monte Carlo simulations of

sample paths of processes with variance function v(·) = | · |2H , respectively,
v(·) = 1 − exp(−| · |2H ) (first table) and contaminated versions (second table); see (38)

Estimators v(·) = | · |2H v(·) = 1 − exp(−| · |2H )

Noncontaminated sample paths
p = 1/2, c = 1 (median) 0.796 (0.042) 0.801 (0.042)
p = 0.9, c = 1 0.797 (0.035) 0.798 (0.036)
p = (1/4,3/4), c = (1/2,1/2), g(·) = | · |2 0.795 (0.036) 0.800 (0.037)
10%-trimmed mean, g(·) = | · |2 0.797 (0.03) 0.799 (0.034)
Quadratic variations method 0.802 (0.032) 0.798 (0.032)
Whittle estimator 0.805 (0.024) 0.806 (0.024)

Contaminated sample paths
p = 1/2, c = 1 (median) 0.798 (0.047) 0.803 (0.045)
p = 0.9, c = 1 0.793 (0.033) 0.789 (0.032)
p = (1/4,3/4), c = (1/2,1/2), g(·) = | · |2 0.797 (0.040) 0.796 (0.037)
10%-trimmed mean, g(·) = | · |2 0.792 (0.037) 0.797 (0.033)
Quadratic variations method 0.329 (0.162) 0.353 (0.149)
Whittle estimator 0.519 (0.106) 0.510 (0.100)

to illustrate the robustness of our estimators, we also applied them to contaminated
version of sample path processes. We obtain a new sample path discretized at times

FIG. 1. Two examples for the sample paths of noncontaminated (top) and contaminated processes
with variance function v(·) = | · |2H (left), respectively, v(·) = 1 − exp(−| · |2H ) (right); see (38).
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FIG. 2. Left: σ 2
α,tm in terms of β; Right: σ 2

α for estimators based on a single quantile in terms
of p. Three values of the parameter H are considered: 0.3 (top), 0.5 (middle), 0.8 (bottom). The
parameter M is fixed to M = 5. The constant line corresponds to the asymptotic variance of the
Whittle’s estimator.
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i/n and denoted by XC(i/n) for i = 1, . . . , n through the following model:

XC(i/n) = X(i/n) + U(i)V (i),(38)

where U(i), i = 1, . . . , n, are Bernoulli independent variables B(0.005), and V (i),
i = 1, . . . , n, are independent centered Gaussian variables with variance σ 2

C(i)

such that the signal noise ratio at time i/n is equal to 20 dB. As a general conclu-
sion of Table 1, one can say that all versions of our estimators are very competitive
with classical ones when the processes are observed without contamination and
they seem to be particularly robust to additive outliers. Both bias and variance are
approximately unchanged. This is clearly not the case for classical estimators. In-
deed, concerning quadratic variations’ method, the estimation procedure is based
on the estimation of E((Xam

(1/n))2) by sample mean of order 2 of (Xam
)2 (Coeur-

jolly [9]) that is particularly sensitive to additive outliers. Bad results of Whittle
estimator can be explained by the fact that maximum likelihood methods are also
nonrobust methods.

6. Proofs. We denote by ‖ · ‖L2(dφ) (resp. ‖ · ‖�q ) the norm defined by
‖h‖L2(dφ)= E(h(Y )2)1/2 for some measurable function h(·) [resp. (

∑
i∈Z|ui |q)1/2

for some sequence (ui)i∈Z]. In order to simplify the presentation of proofs, we use
the notations F(·), ξ(·), f(·), F̂ (·) and ξ̂ (·), instead of Fg(Y )(·), ξg(Y )(·), fg(Y )(·),
F̂g(Y )(·;g(Y)) and ξ̂g(Y )(·;g(Y)), respectively. For some real x, [x] denotes the
integer part of x. Finally, λ denotes a generic positive constant.

6.1. Sketch of the proof of Theorem 2. We give here a brief explanation of
the strategy to prove Theorem 2. This proof follows exactly the one proposed by
Serfling [25] in the i.i.d. case. One starts by writing

p − F̂ (ξ(p))

f (ξ(p))
− (̂

ξ(p) − ξ(p)
) = A(p) + B(p) + C(p),

with

A(p) = p − F̂ (̂ξ (p))

f (ξ(p))
,(39)

B(p) = F̂ (̂ξ (p)) − F̂ (ξ(p)) − (F(̂ξ(p)) − F(ξ(p)))

f (ξ(p))
,(40)

C(p) = F(̂ξ(p)) − F(ξ(p))

f (ξ(p))
− (̂

ξ(p) − ξ(p)
)
.(41)

From the definition of sample quantile, we have almost surely, see, for example,
Serfling [25], A(p) = Oa.s.(n

−1). Now, in order to control the term C(p), Tay-
lor’s theorem is used and a control of ξ̂ (p) − ξ(p) is needed. The latter one is
done by Lemma 9 which exhibits the sequence εn(α, τp) such that ξ̂ (p) − ξ(p) =
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Oa.s.(εn(α, τp)). Then, in order to control B(p) it is sufficient to control the ran-
dom variable

Sn(ξ(p), εn(α, τp)) = sup
|x|≤εn(α,τp)

∣∣�(
ξ(p) + x

) − �(ξ(p))
∣∣,

with �(·) = F̂ (·) − F(·). This result is detailed in Lemma 10. In order to specify
the rate explicited by Theorem 2, we present and prove Lemmas 9 and 10. Some
preliminary results, given by Lemma 6, Corollary 7 and Lemma 8, are needed.
Among other things, Lemma 6 and Corollary 7 propose some inequalities for con-
trolling the sample mean of nonlinear function of Gaussian sequences with corre-
lation function satisfying (22).

6.2. Auxiliary lemmas for the proof of Theorem 2.

LEMMA 6. Let {Y(i)}+∞
i=1 a Gaussian stationary process with variance 1 and

correlation function ρ(·) such that, as i → +∞, |ρ(i)| ∼ L(i)i−α , for some α > 0
and some slowly varying function at infinity L(·). Let h(·) ∈ L2(dφ) and denote by
τ its Hermite rank. Define

Yn = 1

n

n∑
i=1

h(Y (i)).

Then, for all γ > 0, there exists a positive constant κγ = κγ (α, τ ), such that

P(|Yn| ≥ κγ yn) = O(n−γ ),(42)

with

yn = yn(α, τ ) =
⎧⎪⎨⎪⎩

n−1/2 log(n)1/2, if ατ > 1,
n−1/2 log(n)1/2Lτ (n)1/2, if ατ = 1,
n−ατ/2 log(n)τ/2L(n)τ/2, if 0 < ατ < 1,

(43)

where Lτ (n) = ∑
|i|≤n |ρ(i)|τ . In the case ατ = 1, we assume that for all j > τ ,

the limit, limn→+∞ Lτ (n)−1 ∑
|i|≤n |ρ(i)|j exists.

PROOF. Let (yn)n≥1 be the sequence defined by (43). The proof is splitted into
three parts according to the value of ατ .

Case ατ < 1. From Chebyshev’s inequality, we have for all q ≥ 1

P(|Yn| ≥ κγ yn) ≤ 1

κ
2q
γ y

2q
n

E((Y n)
2q).

From Theorem 1 of Breuer and Major [7] and in particular equation (2.6), we have,
as n → +∞

E((Y n)
2q) ∼ (2q)!

2qq!
1

nq
σ 2q, with σ 2 = ∑

i∈Z

∑
j≥τ

(cj )
2

j ! ρ(i)j ,(44)
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where cj denotes the j th Hermite coefficient of h(·). Note that σ 2 ≤ ‖h‖2
L2(dφ)

×
‖ρ‖2

�τ . Thus, for n large enough, we have

P(|Yn| ≥ κγ yn) ≤ λ

nqy
2q
n

(2q)!
2qq!

(‖h‖2
L2(dφ)

‖ρ‖2
�τ κ

−2
γ

)q
.(45)

From Stirling’s formula, we have as q → +∞
(2q)!
2qq! ∼ √

2qq(2e−1)q .(46)

From (43) by choosing q = [log(n)], (45) becomes

P(|Yn| ≥ κγ yn) ≤ λ
(
2e−1‖h‖2

L2(dφ)
‖ρ‖2

�τ κ
−2
γ

)log(n) = O(n−γ ),

if κ2
γ > 2‖h‖2

L2(dφ)
‖ρ‖2

�τ exp(γ − 1).

Case ατ = 1. Using the proof of Theorem 1′ of Breuer and Major [7], we can
prove that for all q ≥ 1

E((n1/2Lτ (n)−1/2Yn)
2q) ≤ λ

2q!
2qq!E((n1/2Lτ (n)−1/2Yn)

2)q

≤ λ
2q!
2qq!

(∑
j≥τ

(cj )
2

j ! lim
n→+∞Lτ (n)−1

∑
|i|≤n

|ρ(i)|j
)q

(47)

≤ λ
2q!
2qq!‖h‖2q

L2(dφ)
.

Then from Chebyshev’s inequality, we have for all q ≥ 1

P(|Yn| ≥ κγ yn) ≤ λ
Lτ (n)q

nqy
2q
n

2q!
2qq!

(‖h‖2
L2(dφ)

κ−2
γ

)q
.

From (43) by choosing q = [log(n)], we obtain

P(|Yn| ≥ κγ yn) ≤ λ
(
2e−1‖h‖2

L2(dφ)
κ−2
γ

)log(n) = O(n−γ ),

if κ2
γ > 2‖h‖2

L2(dφ)
× exp(γ − 1).

Case ατ < 1. Denote by kα the lowest integer satisfying kαα > 1, that is kα =
[1/α] + 1, and for j ≥ τ denote by Zj the following random variable:

Zj = 1

n

n∑
i=1

cj

j !Hj(Y (i)).

Denote by κ1,γ and κ2,γ two positive constants such that κγ = max(κ1,γ , κ2,γ ).
From the triangle inequality,

P(|Yn| ≥ κγ yn) ≤ P

(∣∣∣∣∣Yn −
kα−1∑
j=τ

Zj

∣∣∣∣∣ ≥ κ1,γ yn

)
+

kα−1∑
j=τ

P(|Zj | ≥ κ2,γ yn).(48)
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Since

Yn −
kα−1∑
j=τ

Zj = 1

n

n∑
i=1

∑
j≥kα

cj

j !Hj(Y (i))

= 1

n

n∑
i=1

h′(Y (i)),

where h′(·) is a function with Hermite rank kα . Applying Lemma 6 in the case
ατ > 1, it follows that, for all γ > 0, there exists a constant κ1,γ such that, for n

large enough

P

(∣∣∣∣∣Yn −
kα−1∑
j=τ

Zj

∣∣∣∣∣ ≥ κ1,γ yn

)
= O(n−γ ).(49)

Now, let τ ≤ j < kα and q ≥ 1, from Theorem 3 of Taqqu [27], we have

P(|Zj | ≥ κ2,γ yn)

≤ 1

κ
2q
2,γ y

2q
n

(
cj

j !
)2q

n−2qE

( ∑
i1,...,i2q

Hj (Y (i1)) · · ·Hj(Y (i2q))

)
(50)

≤ λ
L(n)jq

nαjqy
2q
n

(
cj

j ! κ
−1
2,γ

)2q

μ2q,

where μ2q is a constant such that μ2q ≤ ( 2
1−αj

)qE(Hj (Y )2q). It is also proved in

Taqqu [27], page 228, that E(Hj (Y )2q) ∼ (2jq)!/(2jq(jq)!), as q → +∞. Thus,
from Stirling’s formula, we obtain as q → +∞

P(|Zj | ≥ yn)

≤ λ
L(n)(j−τ)q

nα(j−τ)q
log(n)−τqqjq

(
2

1 − αj

(
cj

j !
)2(

2j

e

)j

κ−1
2,γ

)q

.

By choosing q = [log(n)], we finally obtain, as n → +∞
kα−1∑
j=τ

P(|Zj | ≥ κ2,γ yn) ≤ λ

(
2

1 − ατ

(
cτ

τ !
)2(

2τ

e

)τ

κ−2
2,γ

)log(n)

(51)
= O(n−γ ),

if κ2
2,γ > 2

1−ατ
( cτ

τ ! )
2(2τ)τ exp(γ − τ). From (48), we get the result by combin-

ing (49) and (51). �
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COROLLARY 7. Under conditions of Lemma 6, for all α > 0, j ≥ 1 and
γ > 0, there exists q = q(γ ) ≥ 1 and ζγ > 0 such that

E

({
1

n

n∑
i=1

Hj(Y (i))

}2q)
≤ ζγ n−γ .(52)

PROOF. (44), (47) and (50) imply that there exists λ = λ(q) > 0 such that for
all q ≥ 1, we have

E

({
1

n

n∑
i=1

Hj(Y (i))

}2q)
≤ λ(q)n−q

= λ(q) ×
⎧⎨⎩

n−q, if αj > 1,
Lτp(n)n−q, if αj = 1,
L(n)αjqn−αjq, if αj < 1,

(53)

= O(n−γ ).

Indeed, it is sufficient to choose q such that, q > γ if αj ≥ 1 and q > γ/αj if
αj < 1. �

LEMMA 8. Let 0 < p < 1, denote by g(·) a function satisfying Assump-
tion A4(ξ(p)) and by (xn)n≥1 a sequence with real components, such that xn → 0,
as n → +∞. Then, for all j ≥ 1, there exists a positive constant dj = dj (ξ(p)) <

+∞ such that, for n large enough∣∣cj

(
ξ(p) + xn

) − cj (ξ(p))
∣∣ ≤ dj |xn|.(54)

PROOF. Let j ≥ 1, under Assumption A4(ξ(p)), for n large enough, ξ(p) +
xn ∈ ⋃L

i=1 g(Ui). Thus, for n large enough,

cj

(
ξ(p) + xn

) − cj (ξ(p))

=
∫

R

(
hξ(p)+xn(t) − hξ(p)(t)

)
Hj(t)φ(t) dt

=
L∑

i=1

∫
Ui

(
1gi(t)≤ξ(p)+xn − 1gi(t)≤ξ(p)

)
Hj(t)φ(t) dt

=
L∑

i=1

∫ Mi,n

mi,n

(−1)jφ(j)(t) dt,

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L∑
i=1

−(
φ(Mi,n) − φ(mi,n)

)
, if j = 1,

L∑
i=1

(−1)j
(
φ(j−1)(Mi,n) − φ(j−1)(mi,n)

)
, if j > 1,



HURST EXPONENT ESTIMATION USING SAMPLE QUANTILES 1425

where gi(·) is the restriction of g(·) to Ui , and where mi,n (resp. Mi,n) is the
minimum (resp. maximum) between g−1

i (ξ(p)+ xn) and g−1
i (ξ(p)). We leave the

reader to check that there exists a positive constant dj , such that, for n large enough∣∣cj

(
ξ(p) + xn

) − cj (ξ(p))
∣∣

≤ dj |xn| ×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L∑
i=1

∣∣φ(j)(g(−1)
i (u)

)(
g

(−1)
i

)′
(u)

∣∣, if j = 1,2,

L∑
i=1

∣∣φ(j−2)(g(−1)
i (u)

)(
g

(−1)
i

)′
(u)

∣∣, if j > 2,

which is the desired result. �

LEMMA 9. Under conditions of Theorem 2, there exists a constant denoted by
κε = κε(α, τp), such that, we have almost surely, as n → +∞,∣∣̂ξ(p;g(Y)) − ξg(Y )(p)

∣∣ ≤ εn,(55)

where εn = εn(α, τ (ξ(p))) = κεyn(α, τ (ξ(p)), yn(·, ·) being defined by (43).

PROOF. We have

P
(|̂ξ(p) − ξ(p)| ≥ εn

) = P
(̂
ξ(p) ≤ ξ(p) − εn

) + P
(̂
ξ(p) ≥ ξ(p) + εn

)
.(56)

Using Lemma 1.1.4(iii) of Serfling [25], we have

P
(̂
ξ(p) ≤ ξ(p) − εn

) ≤ P
(
F̂

(
ξ(p) − εn

) ≥ p
)
.(57)

Under Assumption A4(ξ(p)), for n large enough

p − F
(
ξ(p) − εn

) = f(ξ(p))εn + o(εn) ≥ f(ξ(p))

2
εn.

Consequently, for n large enough and from (57)

P
(̂
ξ(p) ≤ ξ(p) − εn

) ≤ P

(
F̂

(
ξ(p) − εn

) − F
(
ξ(p) − εn

) ≥ f(ξ(p))

2
εn

)
.(58)

Define τp,n = τ(ξ(p) − εn), from Lemma 8, we have for n large enough

F̂
(
ξ(p) − εn

) − F
(
ξ(p) − εn

) ≥ 2
(
F̂ (ξ(p)) − F(ξ(p))

) + 2εn

∑
j∈Jn

Zn,j ,(59)

where

Jn =
⎧⎨⎩

{τp < j ≤ τp,n}, if τp,n > τp,
∅, if τp,n = τp,
{τp,n ≤ j < τp}, if τp,n < τp.

and Zn,j = 1

n

n∑
i=1

dj

j ! Hj(Y (i)).
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Now, define cε = κεf(ξ(p))/4. Let γ > 0, (52) implies that there exists q ≥ 1 such
that, for n large enough

P

(
|2εnZn| ≥ f(ξ(p))

2
εn

)
≤ ∑

j∈Jn

P(|Zn,j | > cε)

(60)

≤ ∑
j∈Jn

1

c
2q
ε

E(Z
2q
n,j ) = O(n−γ ).

Let us fix γ = 2. From (58), (59) and (60) and from Lemma 6 [applied to the
function hξ(p)(·)], we obtain

P
(̂
ξ(p) ≤ ξ(p) − εn

) ≤ P
(|F̂ (ξ(p)) − F(ξ(p))| ≥ cεεn

) + O(n−2) = O(n−2),

if cε > κ2 that is if κε > 4/f(ξ(p))κ2.
Let us now focus on the second right-hand term of (56). Following the sketch

of this proof, we may also obtain, for n large enough

P
(̂
ξ(p) ≥ ξ(p) + εn

) = O(n−2),

if κε > 4/f(ξ(p))κ2. Thus, for n large enough P(|̂ξ(p) − ξ(p)| ≥ εn) = O(n−2),
which leads to the result thanks to Borel–Cantelli’s lemma. �

The following lemma is an analogous result obtained by Bahadur in the i.i.d.
framework; see Lemma E, page 97, of Serfling [25].

LEMMA 10. Under conditions of Theorem 2, denote by �(z) for z ∈ R the
random variable, �(z) = F̂(z;g(Y)) − Fg(Y )(z). Then, we have almost surely, as
n → +∞

Sn

(
ξg(Y )(p), εn(α, τp)

) = sup
|x|≤εn

∣∣�(
ξg(Y )(p) + x

) − �
(
ξg(Y )(p)

)∣∣
(61)

= Oa.s.(rn(α, τp)),

where εn = εn(α, τp) is defined by (55) and rn(α, τp) is defined by (24).

PROOF. Put εn = εn(α, τp) and rn = rn(α, τp). Denote by (βn)n≥1 and
(ηb,n)n≥1 the following two sequences

βn = [n3/4εn] and ηb,n = ξ(p) + εn

b

βn

,

for b = −βn, . . . , βn. Using the monotonicity of F(·) and F̂ (·), we have

Sn(ξ(p), εn) ≤ max−βn≤b≤βn

|Mb,n| + Gn,(62)
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where Mb,n = �(ηb,n) − �(ξ(p)) and Gn = max−βn≤b≤βn−1(F(ηb+1,n) −
F(ηb,n)). Under Assumption A4(ξ(p)), we have for n large enough

Gn ≤ (ηb+1,n − ηb,n) × sup
|x|≤εn

f
(
ξ(p) + x

) = O(n−3/4).(63)

The proof is finished if one can prove that for all γ > 0 (in particular γ = 2) and
for all b, there exists κ ′

γ such that

P(|Mb,n| ≥ κ ′
γ rn) = O(n−γ ).(64)

Indeed, since βn = O(n1/2+δ) for all δ > 0, if (64) is true, then we have

P

(
max−βn≤b≤βn

|Mb,n| ≥ κ ′
2rn(α, τp)

)
≤ (2βn + 1) × max−βn≤b≤βn

P(|Mb,n| ≥ κ ′
2rn)

= O(n−3/2+δ).

Thus, from Borel–Cantelli’s lemma, we have almost surely

max−βn≤b≤βn

|Mb,n| = Oa.s.(rn).

And so, from (62) and (63).

Sn(ξ(p), εn) = Oa.s.(rn) + O(n−3/4) = Oa.s.(rn),(65)

which is the stated result.
So, the rest of the proof is devoted to prove (64). For the sake of simplicity,

denote by h′
n(·) the function hηb,n

(·) − hξ(p)(·). For n large enough, the Hermite
rank of h′

n(·) is at least equal to τp , that is defined by (21). In the sequel, we need
the following bound for ‖h′

n‖2
L2(dφ)

‖h′
n‖2

L2(dφ)
= E(h′

n(Y )2) = ωn(1 − ωn)

with ωn = ∣∣Fg(Y )(ηb,n) − Fg(Y )(ξ(p))
∣∣.

As previously, we have ωn = O(εn) and so, there exists ζ > 0, such that

‖h′
n‖2

L2(dφ)
≤ ζεn.(66)

From now on, in order to simplify the proof, we use the following upper-bound:

εn = εn(α, τp) ≤ εn(α, τp),

and with a slight abuse, we still denote εn = εn(α, τp). Note also, that from
Lemma 8, the j th Hermite coefficient, for some j ≥ τp , is given by cj (ηb,n) −
cj (ξ(p)). And there exists a positive constant dj = dj (ξ(p)) such that for n large
enough

|cj (ηb,n) − cj (ξ(p)| ≤ dj εn

|b|
βn

≤ dj εn.(67)
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We now proceed like in the proof of Lemma 6.
Case ατp > 1: Using Theorem 1 of Breuer and Major [7] and (45), we can

obtain for all q ≥ 1

P(|Mb,n| ≥ κ ′
γ rn) ≤ λ

1

nqr
2q
n

(2q)!
2qq!

1

(κ ′
γ )2q

‖h′
n‖2q

L2(dφ)
‖ρ‖2q

�τp
.(68)

As q → +∞, we get

P(|Mb,n| ≥ κ ′
γ rn) ≤ λ

ε
q
n

nqr
2q
n

qq

(
2ζe−1‖ρ‖2

�τp

1

(κ ′
γ )2

)q

.

From (24), (43) (with τ = τp) and by choosing q = [log(n)], we have

P(|Mb,n| ≥ κ ′
γ rn) ≤ λ

(
2ζκεe

−1‖ρ‖2
�τp

1

(κ ′
γ )2

)log(n)

= O(n−γ ),(69)

if κ ′
γ

2
> 2ζκε‖ρ‖2

�τp exp(γ − 1).
Case ατp = 1 from (47), we can obtain for all q ≥ 1

E(M
2q
b,n) ≤ λ

(2q)!
2qq!

Lτp(n)q

nq
‖h′

n‖2q

L2(dφ)
≤ λζ q (2q)!

2qq!
Lτp(n)qε

q
n

nq

≤ λ
Lτp(n)qε

q
n

nq
(2ζe−1)qqq.

From (24), (43) (with τ = τp), by choosing q = [log(n)], we have

P(|Mb,n| ≥ κ ′
γ rn) ≤ 1

κ ′
γ

2qr
2q
n

E(M
2q
b,n)

≤ λ

(
2ζκεe

−1
d2
τp

τp!
1

κ ′
γ

2

)log(n)

= O(n−γ ),

if κ ′
γ

2
> 2ζκεd

2
τp

/τp! exp(γ − 1).
Case ατp < 1: Denote by (r1,n)n≥1 and by (r2,n)n≥1 the following two se-

quences

r1,n = n−1/2−ατp/4 log(n)τp/4+1/2L(n)τp/4 and
(70)

r2,n = n−ατp log(n)τpL(n)τp .

Note that max(r1,n, r2,n) is equal to r1,n, when 2/3 < ατp < 1 and to r2,n, when
0 < ατp ≤ 2/3. So, in order to obtain (64) in the case 0 < ατp < 1, it is sufficient
to prove that there exists κ ′

γ such that, for n large enough

P
(|Mb,n| ≥ κ ′

γ max(r1,n, r2,n)
) = O(n−γ ).
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Denote by kα the integer [1/α]+1 for which αkα > 1, and by Zj,n for τp ≤ j < kα

the random variable defined by

Zj,n = 1

n

n∑
i=1

cj (ηb,n) − cj (ξ(p))

j ! Hj(Y (i)).

From the triangle inequality, we have

P
(|Mb,n| ≥ κ ′

γ max(r1,n, r2,n)
)

(71)

≤ P

(∣∣∣∣∣Mb,n −
kα−1∑
j=τp

Zj,n

∣∣∣∣∣ ≥ κ ′
γ r1,n

)
+

kα−1∑
j=τp

P(|Zj,n| ≥ κ ′
γ r2,n).

Since,

Mb,n −
kα−1∑
j=τp

Zj,n = 1

n

n∑
i=1

∑
j≥kα

cj (ηb,n) − cj (ξ(p))

j ! Hj(Y (i)) = 1

n

n∑
i=1

h′′
n(Y (i)),

where h′′
n(·) is a function with Hermite rank kα , such that αkα > 1, we have

from (68)

P

(∣∣∣∣∣Mb,n −
kα−1∑
j=τp

Zj,n

∣∣∣∣∣ ≥ κ ′
γ r1,n

)
≤ λ

1

nqr
2q
1,n

‖h′
n‖2q

L2(dφ)

(2q)!
2qq!

1

κ ′
γ

2q
‖ρ‖2q

�kα
(72)

for all q ≥ 1. From (66), we obtain, as q → +∞,

P

(∣∣∣∣∣Mb,n −
kα−1∑
j=τp

Zj,n

∣∣∣∣∣ ≥ κ ′
γ r1,n

)
≤ λ

ε
q
n

nqr
2q
1,n

qq(2ζe−1‖ρ‖2
�kα κ ′

γ
−2

)q .

From (43) (with τ = τp), (70) and by choosing q = [log(n)], we obtain

P

(∣∣∣∣∣Mb,n −
kα−1∑
j=τp

Zj,n

∣∣∣∣∣ ≥ κ ′
γ r1,n

)
≤ λ(2ζe−1‖ρ‖2

�kα κεκ
′
γ

−2
)log(n)

(73)
= O(n−γ ),

if κ ′
γ

2
> κ ′

1,γ = 2ζ‖ρ‖2
�kα

κε exp(γ − 1). Now, concerning the last term of (71),
from (50), we can prove, for all τp ≤ j < kα ,

P(Zj,n ≥ κ ′
γ r2,n) ≤ λ

L(n)jq

nαjqr
2q
2,n

1

κ ′
γ

2q

(
cj (ηb,n) − cj (ξ(p))

j !
)2q

μ2q,

where μ2q is a constant such that, as q → +∞,

μ2q ≤ λ

(
2

1 − αj

)q (2jq)!
2jq(jq)! .
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From (67), we have, as q → +∞,

P(Zj,n ≥ κ ′
γ r2,n) ≤ λ

ε
2q
n L(n)jq

nαjqr
2q
2,n

qjq

(
2

1 − αj

(
2j

e

)j

d2
j κ ′

γ
−2

)2q

.

From (24), (43) (with τ = τp) by choosing q = [log(n)], we have, as n → +∞,

P(Zj,n ≥ κ ′
γ r2,n) ≤ λ

(
log(n)L(n)

nα

)(j−τp)q(
2

1 − αj

(
2j

e

)j

d2
j κ2

ε κ ′
γ

−2
)q

.

Consequently, as n → +∞, we finally obtain

kα−1∑
j=τp

P(Zj,n ≥ κ ′
γ r2,n) ≤ λ

(
2

1 − ατ

(
2τ

e

)τ

d2
τ κ2

ε κ ′
γ

−2
)log(n)

(74)
= O(n−γ ),

if κ ′
γ

2
> κ ′

2,γ = 2
1−ατ

(2τ
e

)τ d2
τ κ2

ε exp(γ − τ). Let us choose κ ′
γ such that κ ′

γ
2

>

max(κ ′
1,γ , κ ′

2,γ ). Then, by combining (73) and (74), we deduce from (71) that, for
every γ > 0,

P
(|Mb,n| ≥ κ ′

γ max(r1,n, r2,n)
) = O(n−γ ),

and so (64) is proved. �

6.3. Proof of Theorem 2. Let us detail the proof presented in Section 6.1. We
have

p − F̂ (ξ(p))

f (ξ(p))
− (̂

ξ(p) − ξ(p)
) = A(p) + B(p) + C(p)

with A(p), B(p) and C(p), respectively, defined by (39), (40) and (41). Under As-
sumption A4(ξ(p)), from Lemma 9 and Taylor’s theorem, we have almost surely,
as n → +∞,

C(p) ≤ sup
|x|≤εn(α,τp)

F ′′
g(Y )

(
ξ(p) + x

)(̂
ξ(p) − ξ(p)

)2 = Oa.s.(εn(α, τp)2).

From the definition of sample quantile, we have almost surely, see, for example,
Serfling [25], A(p) = Oa.s.(n

−1). Now, by combining Lemma 9 and Lemma 10,
we have almost surely B(p) = Oa.s.(rn(α, τp)). Thus, we finally obtain

ξ̂ (p) − ξ(p) = p − F̂ (ξ(p))

f(ξ(p))
+ Oa.s.(n

−1)

+ Oa.s.(rn(α, τp)) + Oa.s.(εn(α, τp)2),

which leads to the result by noticing that εn(α, τp)2 = O(rn(α, τp)).
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6.4. Auxiliary lemmas for the proof of Theorem 4. Let 0 < p0 ≤ p1 < 1.

LEMMA 11. Under conditions of Theorem 3, there exists a constant denoted
by θ = θ(α, τp0,p1) such that, we have almost surely, as n → +∞,

T = sup
p0≤p≤p1

∣∣̂ξ(p;g(Y)) − ξg(Y )(p)
∣∣ ≤ εn(α, τp0,p1),(75)

where εn = εn(α, τp0,p1) = θyn(α, τp0,p1) and yn is given by (50).

The following result is an extension of Lemma 10 and Theorem 4.2 obtained by
Sen and Ghosh [23].

LEMMA 12. Under assumptions of Theorem 3 and following Lemma 10, we
have almost surely, as n → +∞,

S�
n = sup

x,y∈[ξ(p0),ξ(p1)]
|x−y|≤εn(α,τp0,p1 )

|�(x) − �(y)| = Oa.s.(rn(α, τp0,p1))(76)

where τp0,p1 is defined by (25).

Proofs of Lemmas 11 and 12 are omitted since they are essentially based on the
same arguments of proofs of Lemmas 9 and 10, see Coeurjolly [10].

6.5. Proof of Theorem 3. We follow the proof of Theorem 2. Let p ∈ [p0,p1]
and let εn = εn(α, τp0,p1), then

p − F̂ (ξ(p))

f (ξ(p))
− (̂

ξ(p) − ξ(p)
) = A(p) + B(p) + C(p),

where A(p),B(p) and C(p) are respectively defined by (39), (40) and (41).
Similarly to the proof of Theorem 2, one may prove that supp0≤p≤p1

A(p) =
Oa.s.(n

−1). Under Assumption A5(p0,p1), C(p) ≤ (sup|x|≤εn(α,τp) F
′′(x +

ξ(p)))
(̂ξ(p)−ξ(p))2

f (ξ(p))
. Therefore, for n large enough, C(p) ≤ λ(supp0≤p≤p1

(̂ξ (p) −
ξ(p)))2. And from Lemma 11, this leads to

sup
p0≤p≤p1

C(p) = Oa.s.(εn(α, τp0,p1)
2).

In addition, using Lemma 12, one also has supp0≤p≤p1
B(p) = Oa.s.(rn(α,

τp0,p1)), which ends the proof.
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6.6. Auxiliary lemma for the proof of Theorem 4.

LEMMA 13. Consider for 0 < p < 1 the function hp(·), given by

hp(t) = 1{|t |≤ξ|Y |(p)}(t) − p,(77)

that is the function hξg(Y )(p)(·) with g(·) = | · |. Then by denoting c
hp

j the j th Her-
mite coefficient of hp(·), we have for all j ≥ 1

c
hp

0 = c
hp

2j+1 = 0 and c
hp

2j = −2H2j−1(q)φ(q),(78)

where q = ξ|Y |(p) = �−1(
1+p

2 ).

PROOF. Since P(|Y | ≤ q) = p and hp(·) is even, we have c
hp

0 = c
hp

2j+1 = 0,
for all j ≥ 1. Now, (19) implies

c
hp

2j =
∫

R

hp(t)H2j (t)φ(t) dt = 2 ×
∫ q

0
H2j (t)φ(t) dt

= 2 × [
φ(2j−1)(t)

]q
0 = 2 × [−H2j−1(t)φ(t)]q0

= −2H2j−1(q)φ(q). �

REMARK 10. Let g(·) = g̃(| · |), where g̃(·) is a strictly increasing function
on R

+, then for all 0 < p < 1, we have

ξ|Y |(p) = g̃−1(
ξg(Y )(p)

)
.

Consequently, the functions hξg(Y )(p)(·) for g(·) = |·|, g(·) = |·|α and g(·) = log | · |
are strictly identical. And so, their Hermite decomposition is given by (78) and
their Hermite rank is equal to 2.

6.7. Proofs of Theorems 4 and 5. Once Lemma 13, Theorems 2 and 3 are
established, the proofs of Theorem 4 and Theorem 5 are semiroutine. They are
essentially based on the application of a general central limit theorem obtained
by Arcones [3] for nonlinear functional of Gaussian vector fields. The reader is
referred to Coeurjolly [10] for details.
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