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A THEORETICAL COMPARISON OF THE DATA AUGMENTATION,
MARGINAL AUGMENTATION AND PX-DA ALGORITHMS

BY JAMES P. HOBERT1 AND DOBRIN MARCHEV2

University of Florida and Baruch College,CUNY

The data augmentation (DA) algorithm is a widely used Markov chain
Monte Carlo (MCMC) algorithm that is based on a Markov transition density
of the form p(x|x′) = ∫

Y fX|Y (x|y)fY |X(y|x′) dy, where fX|Y and fY |X are
conditional densities. The PX-DA and marginal augmentation algorithms of
Liu and Wu [J. Amer. Statist. Assoc. 94 (1999) 1264–1274] and Meng and
van Dyk [Biometrika 86 (1999) 301–320] are alternatives to DA that often
converge much faster and are only slightly more computationally demand-
ing. The transition densities of these alternative algorithms can be written in
the form pR(x|x′) = ∫

Y
∫
Y fX|Y (x|y′)R(y, dy′)fY |X(y|x′) dy, where R is a

Markov transition function on Y. We prove that when R satisfies certain con-
ditions, the MCMC algorithm driven by pR is at least as good as that driven
by p in terms of performance in the central limit theorem and in the operator
norm sense. These results are brought to bear on a theoretical comparison of
the DA, PX-DA and marginal augmentation algorithms. Our focus is on sit-
uations where the group structure exploited by Liu and Wu is available. We
show that the PX-DA algorithm based on Haar measure is at least as good as
any PX-DA algorithm constructed using a proper prior on the group.

1. Introduction.

1.1. Background. In statistical problems where there is a need to explore an
intractable density, fX(x), there is sometimes available a joint density f (x, y), on
X × Y say, such that

∫
Y f (x, y) dy = fX(x) and such that simulating from the con-

ditional densities, fX|Y (x|y) and fY |X(y|x), is straightforward. In such situations,
one can apply the data augmentation (DA) algorithm (Tanner and Wong [22]),
which is a Markov chain Monte Carlo (MCMC) algorithm based on the Markov
transition density (Mtd) given by

p(x|x′) =
∫

Y
fX|Y (x|y)fY |X(y|x′) dy.(1)
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It is well known and easy to show that p(x|x′) is reversible with respect to fX ,
which implies that fX is an invariant density. Like its cousin, the EM algorithm,
the DA algorithm is considered a useful algorithm that sometimes suffers from
slow convergence.

The PX-DA algorithm (Liu and Wu [13]) and the closely related marginal
augmentation (MA) algorithm (Meng and van Dyk [14]) are alternatives to DA
that often converge much faster and are only slightly more computationally de-
manding. The basic idea is to use f (x, y) to create an entire family of joint
densities that all have fX as the x marginal. Each member of this family can
be used to form a DA algorithm and the hope is that some of the resulting al-
gorithms will be significantly better than the original. To be specific, consider
a class of functions tg : Y → Y for g ∈ G such that, for each fixed g, tg(y) is
one-to-one and differentiable in y. Suppose further that r(g) is a probability den-
sity on G and define another probability density f̃ : X × Y × G → [0,∞) as
f̃ (x, y, g) = f (x, tg(y))|Jg(y)|r(g), where Jg(z) is the Jacobian of the transfor-
mation z = t−1

g (y). Let f̃ (x, y) = ∫
G f̃ (x, y, g) dg and note that

∫
Y f̃ (x, y) dy =

fX(x). The PX-DA algorithm (which is the same as the MA algorithm in this
situation) is simply the alternative DA algorithm based on the Mtd given by

pr(x|x′) =
∫

Y
f̃X|Y (x|y)f̃Y |X(y|x′) dy.(2)

By varying r(·), we can create the family of joint densities mentioned above. Liu
and Wu [13], Meng and van Dyk [14] and van Dyk and Meng [23] (hereafter,
L&W, M&vD and vD&M) have provided many examples where this strategy leads
to major improvements over standard DA algorithms.

Straightforward sampling from f̃X|Y and f̃Y |X , which is necessary if the PX-DA
algorithm is to be useful in practice, is made possible by exploiting the relation-
ship between these conditionals and the joint density f̃ (x, y, g). First, consider
sampling from f̃Y |X and note that

f̃Y |X(y|x) =
∫
G

fY |X(tg(y)|x)|Jg(y)|r(g) dg.

Consequently, we can draw from f̃Y |X by drawing y′ and g independently from
fY |X(y′|x) and r(g), respectively, and setting y = t−1

g (y′). Now let fY (y) =∫
X f (x, y) dx and let w(g;y) denote the density proportional to r(g)|Jg(y)| ×

fY (tg(y)). We can draw from f̃X|Y by drawing g from w(g;y) and then
x ∼ fX|Y (x|tg(y)). Putting all of this together, as in [13], Scheme 1.1, a single
iteration of the PX-DA algorithm (x′ → x) can be accomplished by performing
the following three steps:

1. Draw y ∼ fY |X(y|x′).
2. Draw g ∼ r(·), draw g′ from w(g′; t−1

g (y)) and set y′ = tg′(t−1
g (y)).

3. Draw x ∼ fX|Y (x|y′).
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Note that the first and third steps are exactly the same as the two steps of the DA
algorithm. Given that w(g;y) contains the term fY (tg(y)) and that direct sampling
from fY is infeasible (otherwise MCMC would be unnecessary), one might expect
that sampling from w(g;y) would be difficult. However, as the examples in [13,
14, 23] illustrate, when g has lower dimension than y, sampling from w(g;y)

can be completely straightforward, adding very little to the overall computational
burdon.

We use Albert and Chib’s [1] DA algorithm for Bayesian probit regression as
a running example. Let V1,V2, . . . , Vn denote independent random variables with
Vi | β ∼ Bernoulli(�(zT

i β)) where zi is a p × 1 vector of known covariates asso-
ciated with Vi , β is a p × 1 vector of unknown regression coefficients and �(·) is
the standard normal distribution function. A flat prior on β leads to an (intractable)
posterior density given by

π(β|v) = 1

m(v)

n∏
i=1

[�(zT
i β)]vi [1 − �(zT

i β)]1−vi ,

where m(v) is the marginal mass function. Let R
+ = (0,∞), R

− = (−∞,0] and
consider the function

π(β, y|v) = 1

m(v)

[
n∏

i=1

{
IR+(yi)I{1}(vi) + IR−(yi)I{0}(vi)

}
φ(yi; zT

i β,1)

]
,

where y = (y1, y2, . . . , yn)
T ∈ R

n, IA(·) is the indicator of the set A and
φ(x;μ,σ 2) denotes the N(μ,σ 2) density function evaluated at the point x.
Straightforward calculations show that π(β, y|v) is a joint density in (β, y) whose
β marginal is the target, π(β|y). Moreover, π(β|y, v) is a multivariate normal den-
sity and π(y|β, v) is a product of n truncated univariate normal densities. Albert
and Chib’s algorithm alternates between these two conditionals. L&W developed
a PX-DA algorithm for this problem by taking tg(y) = gy and G = (0,∞). This
yields w(g;y) ∝ r(g)gn exp{−g2yT My/2}IR+(g), where M is a known n × n

matrix. Drawing from the multivariate density π(y|v) does not appear straightfor-
ward, but sampling from the univariate density w(g;y) is easy as long as r(g) has
a simple form. Indeed, L&W take r(g) ∝ ga−1e−bg2

IR+(g) where a, b > 0, which
allows one to sample from w(g;y) by drawing a gamma variate and taking the
square root.

1.2. A general class of alternatives to DA. Step 2 of the PX-DA algorithm in-
volves making the transition y → y′ and can therefore be interpreted as simulating
one step of a Markov chain on Y. In fact, Theorem 1 in [13] shows that fY is an
invariant density for this chain. Thus, the Mtd of the PX-DA algorithm is a special
case of the general Mtd given by

pR(x|x′) =
∫

Y

∫
Y
fX|Y (x|y′)R(y, dy′)fY |X(y|x′) dy,(3)
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where R(y, dy′) is any Markov transition function (Mtf) on Y that has fY as an
invariant density. Routine calculations show that fX is invariant for pR and that, if
R is reversible with respect to fY , then pR is reversible with respect to fX . In this
paper, we perform the first general study of (3). The main results provide condi-
tions under which the Markov chain driven by (3) is better than the corresponding
DA algorithm. To be specific, we show that if pR is reversible with respect to fX ,
then pR is at least as good as p in the efficiency ordering of Mira and Geyer [16],
which concerns performance in the central limit theorem (CLT). (For a cleaner ex-
position, we henceforth write “better than” instead of the more accurate “at least as
good as.”) We also show that if pR is itself a DA algorithm; that is, if there exists
a joint density f ∗(x, y) such that

∫
Y f ∗(x, y) dy = fX(x) and such that pR can be

reexpressed as

pR(x|x′) =
∫

Y
f ∗

X|Y (x|y)f ∗
Y |X(y|x′) dy,

then pR is better than p in the operator norm sense (Liu, Wong and Kong [11]).
Because the Mtds of the DA, MA and PX-DA algorithms can all be written

in the form (3), our general results concerning (3) can be brought to bear on a
theoretical comparison of these algorithms. This yields both new results and gen-
eralizations of known results from [13, 14] and [23]. Furthermore, our proofs of
the generalizations are simpler and require fewer regularity conditions than the
original proofs. It is our hope that the results herein will promote theoretical and
methodological development of improved DA algorithms.

Here is a simple example of the application of our results concerning (3). The
PX-DA algorithm is, by definition, a DA algorithm and as such is reversible with
respect to fX . Hence, the results described above are applicable and imply that
every PX-DA algorithm is better than the DA algorithm in the efficiency ordering
and in the operator norm sense. The efficiency ordering result is new, but the op-
erator norm result is known—see Theorem 2 in [13] and Theorem 1 in [14]. Note
that we say “every PX-DA algorithm.” This is because the result holds no matter
what (proper) density r(g) is used to construct the PX-DA algorithm.

1.3. Adapting to an improper r(g): Liu and Wu’s group structure. L&W,
M&vD and vD&M all argued that the PX-DA algorithm should perform better
as the density r(g) becomes more “diffuse” or “spread out,” and they provided
empirical evidence supporting this claim. It is clearly impossible to implement the
PX-DA algorithm in the limiting case where r is improper. However, L&W and
M&vD found (what appear to be) different ways of utilizing an improper r(g) to
construct an algorithm that achieves the limiting convergence rate. L&W devel-
oped their results by exploiting a certain group structure that may be present in the
problem. M&vD, on the other hand, constructed a nonpositive recurrent Markov
chain on X × G having stationary density fX(x)r(g) and provided conditions un-
der which the x component of that chain is itself a Markov chain with invariant
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density fX . We focus on L&W’s approach and show that, when the group struc-
ture exists, L&W’s algorithm is exactly the same as M&vD’s algorithm (under a
particular improper working prior). This is the first formal comparison of the two
limiting algorithms. We now briefly describe L&W’s group structure and limiting
algorithm.

Suppose that G is a topological group; that is, a group such that the functions
(g1, g2) 	→ g1g2 and g 	→ g−1 are both continuous. Let e denote the group’s iden-
tity element. (An example is the multiplicative group, R

+, where group compo-
sition is defined as multiplication, the identity element is e = 1 and g−1 = 1/g.)
Suppose further that te(y) = y for all y ∈ Y and that tg1g2(y) = tg1(tg2(y)) for all
g1, g2 ∈ G and all y ∈ Y. Assume that G is a unimodular group and let ν(dg) de-
note Haar measure on G. One iteration of L&W’s limiting algorithm, which we
call the Haar PX-DA algorithm, consists of the following three steps:

1. Draw y ∼ fY |X(y|x′).
2. Draw g from the density (with respect to ν) proportional to |Jg(y)|fY (tg(y))

and set y′ = tg(y).
3. Draw x ∼ fX|Y (x|y′).
Note that the Haar PX-DA algorithm actually requires less computation than the
PX-DA algorithm. Indeed, Step 2 involves only a single draw from a distribution
on G, while the middle step of the PX-DA algorithm requires two such draws. The
Mtd associated with this algorithm has fX as an invariant density (see L&W) and
is, in fact, another special case of (3). (Note that the invariance of fX is not obvious
in this case because, unlike PX-DA, the Haar PX-DA algorithm is not defined as an
alternative DA algorithm.) L&W proved that the Haar PX-DA algorithm is better
in the operator norm sense than every PX-DA algorithm.

Consider again the probit regression example. The multiplicative group,
G = R

+, is unimodular with Haar measure given by ν(dg) = dg/g where dg

denotes Lebesgue measure. Furthermore, the transformation tg(y) = gy satisfies
the compatibility conditions described above, so the Haar PX-DA algorithm is ap-
plicable. As shown in [13], the middle step entails drawing g from a density pro-
portional to gn−1 exp{−g2yT My}IR+(g). Both L&W and vD&M provide strong
empirical evidence that this algorithm can converge much faster than Albert and
Chib’s [1] DA algorithm.

1.4. Comparing general versions of PX-DA and Haar PX-DA. We develop
generalizations of the PX-DA and Haar PX-DA algorithms in a setting where
X, Y and G are abstract spaces (not necessarily Euclidean) and the group G is
not required to be unimodular (Haar measure is replaced by left-Haar measure).
This is accomplished in two steps. First, the group structure is used to build Mtfs,
Qr(y, dy′) and Q(y,dy′), that are reversible with respect to fY and that behave
like general versions of the middle steps of the PX-DA and Haar PX-DA algo-
rithms. Then Mtds for the generalized versions of PX-DA and Haar PX-DA are
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formed by using Qr and Q in place of R in (a generalized version of) (3). Because
L&W did not use the term “Haar PX-DA,” it is important to bear in mind through-
out this paper that what we call the “general Haar PX-DA algorithm” is, in fact, a
generalization of L&W’s limiting PX-DA algorithm.

A comparison of the resulting generalized algorithms is facilitated by a repre-
sentation of Haar PX-DA as an improvement of PX-DA. More specifically, we
show that there exists a joint density f̃ (x, y), whose x marginal is fX , such that
the Mtd of the general PX-DA algorithm can be written as

pr(x|x′) =
∫

Y

∫
Y
fX|Y (x|y)Qr(y, dy′)fY |X(y|x′)μy(dy)

(4)
=

∫
Y
f̃X|Y (x|y)f̃Y |X(y|x′)μy(dy),

where μx(dx) and μy(dy) are the analogues of dx and dy that will be defined in
Section 3. (This, of course, implies that PX-DA is better than DA.) We then show
that the Mtd of the general Haar PX-DA algorithm can be written as

p∗(x|x′) =
∫

Y

∫
Y
fX|Y (x|y)Q(y, dy′)fY |X(y|x′)μy(dy)

=
∫

Y

∫
Y
f̃X|Y (x|y)Q̃(y, dy′)f̃Y |X(y|x′)μy(dy),

where f̃ is as in (4) and Q̃(y, dy′) is reversible with respect to
∫

X f̃ (x, y)μx(dx) =
f̃Y (y); that is, p∗ is an improvement of pr . It is also shown that p∗(x|x′) is itself a
DA algorithm. Therefore, our results concerning (3) imply that p∗(x|x′) is better
than every version of pr(x|x′) in the efficiency ordering and in the operator norm
sense. As before, the efficiency ordering result is new, but a special case of the
operator norm result was established in [13] (see Section 5 for details).

The remainder of the paper is laid out as follows. In Section 2, we set notation
and review some results from general state space Markov chain theory. Our study
of (3) commences in Section 3. In Section 4, we describe two different methods
of using a group action to construct a Mtf with a prespecified stationary distribu-
tion. Finally, our general versions of the PX-DA and Haar PX-DA algorithms are
introduced and studied in Section 5.

2. Markov chain background. As in Meyn and Tweedie ([15], Chapter 3)
let P(x, dy) be a Mtf on a set X equipped with a countably generated σ -
algebra B(X). Suppose that π is an invariant probability measure; that is, π(A) =∫

X P(x,A)π(dx) for all measurable A. Denote the Markov chain defined by
P(x, dy) as � = {�n}∞n=0, where the distribution of �0 will be stated explicitly
when needed. As usual, let L2(π) be the vector space of real-valued, measurable
functions on X that are square-integrable with respect to π , and let L2

0(π) be the
subspace of mean zero functions; that is, functions satisfying

∫
X f (x)π(dx) = 0.
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Define inner product on this space by 〈f,g〉 = ∫
X f (x)g(x)π(dx). The corre-

sponding norm is given by ‖f ‖ = √〈f,f 〉. The Mtf P(x, dy) defines an operator,
P , that acts on f ∈ L2

0(π) through

(Pf )(x) =
∫

X
f (y)P (x, dy) = E[f (�n+1)|�n = x].

Note that 〈Pf,f 〉 = Cov(f (�0), f (�1)) when �0 ∼ π . The chain � (or, equiv-
alently, the Mtf P ) is said to be reversible with respect to π if for all bounded
functions f,g ∈ L2

0(π), 〈Pf,g〉 = 〈f,Pg〉. The norm of the operator P is defined
as

‖P‖ = sup
f ∈L2

0(π),f �=0

‖Pf ‖
‖f ‖ = sup

f ∈L2
0(π),‖f ‖=1

‖Pf ‖.

A straightforward application of Jensen’s inequality shows that ‖P‖ ≤ 1.
Now assume that

∫
X |h(x)|π(dx) < ∞ and that MCMC will be used to estimate

the intractable expectation πh := ∫
X h(x)π(dx). If � is irreducible, aperiodic and

Harris recurrent (see Meyn and Tweedie [15] for definitions), then the ergodic av-
erage hn = n−1 ∑n−1

i=0 h(�i) converges almost surely to πh no matter what the dis-
tribution of �0. This justifies the use of hn as an estimator of πh. There are several
different methods available for calculating the standard error of this estimator (see,
e.g., Geyer [5], Hobert, Jones, Presnell and Rosenthal [7] and Jones, Haran, Caffo
and Neath [8]) and all are based on the assumption that there is a CLT for hn; that

is, that there exists a σ 2 ∈ (0,∞) such that, as n → ∞,
√

n(hn −πh)
d→ N(0, σ 2).

The asymptotic variance, σ 2, depends on both the function h and the Mtf P (but
not on the distribution of �0) so we write it as v(h,P ). If the CLT fails to hold,
then we simply write v(h,P ) = ∞.

Unfortunately, even if h ∈ L2(π), irreducibility, aperiodicity and Harris re-
currence (henceforth “the usual regularity conditions”) are not enough to guar-
antee that v(h,P ) < ∞. The chain is called geometrically ergodic if there ex-
ist M : X → [0,∞) and ρ ∈ [0,1) such that ‖P n(x, ·) − π(·)‖TV ≤ M(x)ρn for
all x ∈ X and all n = 1,2,3, . . . , where ‖ · ‖TV denotes total variation norm. If
� is geometrically ergodic and reversible with respect to π , then v(h,P ) < ∞
for every h ∈ L2(π) (Roberts and Rosenthal [17]). Many popular Monte Carlo
Markov chains have been shown to be geometrically ergodic. See, for example,
Jones and Hobert [9] and Roberts and Rosenthal [18], and the references therein.

Now suppose that we wish to estimate πh and we have available two differ-
ent Mtf’s, P and Q, with invariant probability measure π such that v(h,P ) and
v(h,Q) are both finite. If P and Q are similar in terms of simulation effort, then
we would clearly prefer the more efficient chain; that is, the chain with the smaller
asymptotic variance. Moreover, if v(h,P ) ≤ v(h,Q) for all h, then we would pre-
fer P over Q regardless of the function h. This discussion motivates the following
definitions from Mira and Geyer [16].
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DEFINITION 1. If P and Q are two Mtf’s with invariant probability mea-
sure π that both satisfy the usual regularity conditions, then P is better than
Q in the efficiency ordering, written P �E Q, if v(h,P ) ≤ v(h,Q) for every
h ∈ L2(π).

DEFINITION 2. If P and Q are two Mtf’s with invariant probability mea-
sure π , then P dominates Q in the covariance ordering, written P �1 Q, if
〈Ph,h〉 ≤ 〈Qh,h〉 for every h ∈ L2

0(π).

The following result provides a characterization of the efficiency ordering for
reversible chains as well as a practical method of proving that P �E Q.

THEOREM 1 (Mira and Geyer [16]). Let P and Q be two Mtf’s that are re-
versible with respect to the probability measure π and that satisfy the usual regu-
larity conditions. Then P �E Q if and only if P �1 Q.

It is important to note that �E provides only a partial ordering; that is, it can
happen that neither P �E Q nor Q �E P holds. In such a case, neither chain is
better than the other and the choice between P and Q will depend on the particular
function to be estimated.

Monte Carlo Markov chains can also be compared via their operator norms.
Indeed, the quantity ‖P‖ is closely related to the convergence rate of the corre-
sponding Markov chain. For instance, if P is reversible with respect to π and
satisfies the usual regularity conditions, then P is geometrically ergodic if and
only if ‖P‖ < 1 (Roberts and Rosenthal [17] and Roberts and Tweedie [20]). Fur-
thermore, results in Liu, Wong and Kong [12] show that the smaller the norm, the
faster the chain converges. Examples of the use of this criterion for comparing
Monte Carlo Markov chains can be found in [11, 13, 14].

It is important to keep in mind that neither ‖P‖ ≤ ‖Q‖ nor P �E Q guarantees
that P is a good Monte Carlo Markov chain. Indeed, even if ‖P‖ ≤ ‖Q‖, it may
be the case that both P and Q are bad chains (with norm 1) and neither should
be used. Similarly, P �E Q tells us nothing about the existence of CLTs for P .
However, if P is also known to be geometrically ergodic, then we could rule out
Q and be content to use P to explore the target distribution. The results described
above imply that if P and Q are both reversible and ‖P‖ ≤ ‖Q‖, then geometric
ergodicity of Q implies that of P . (See Roberts and Rosenthal [19] for some related
results.) This result can be extremely useful in practice because the better chain
(P in this case) is typically more complex and hence harder to analyze. This idea
is exploited in Roy and Hobert [21], who prove that the Haar PX-DA algorithm for
the probit model (discussed in Section 1) is geometric by showing that the simpler
DA algorithm of Albert and Chib is geometric.
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3. Improving upon the DA algorithm. In this section, we study Mtds of
the form (3). Assume that X and Y are locally compact, separable metric spaces
equipped with their Borel σ -algebras. Assume further that μx and μy are σ -finite
measures on X and Y, respectively, and that f (x, y) is a probability density on
X × Y with respect to μx × μy . As usual, let fX , fY , fX|Y and fY |X denote the
marginal and conditional densities. In this context, the DA algorithm has Mtd (with
respect to μx) given by

p(x|x′) =
∫

Y
fX|Y (x|y)fY |X(y|x′)μy(dy).(5)

The analogue of (3) is

pR(x|x′) =
∫

Y

∫
Y
fX|Y (x|y′)R(y, dy′)fY |X(y|x′)μy(dy),(6)

where R(y, dy′) is any Mtf on Y that has fY as an invariant density. Again,
straightforward calculations reveal that fX is an invariant density for pR and
that reversibility of R with respect to fY implies reversibility of pR with respect
to fX . Varying the Mtf R(y, dy′) produces a family of Markov chains having fX

as invariant density, and (as we explain later) the DA algorithm is one of the
family members. In some cases, pR is itself a DA algorithm; that is, there ex-
ists a probability density f ∗(x, y) on X × Y with respect to μx × μy such that∫

Y f ∗(x, y)μy(dy) = fX(x) and such that pR can be reexpressed as

pR(x|x′) =
∫

Y
f ∗

X|Y (x|y)f ∗
Y |X(y|x′)μy(dy).

Clearly, if pR is a DA algorithm, then it is reversible with respect to fX . We now
state a known result about DA that will be used to prove the main result in this
section.

THEOREM 2 (Amit [2] and Liu, Wong and Kong [11]). Let P denote the op-
erator on L2

0(fX) associated with p(x|x′). Let (X,Y ) ∼ f (x, y) and h ∈ L2
0(fX).

Then 〈Ph,h〉 = Var[E(h(X)|Y)] and ‖P‖ = γ 2(X,Y ), where γ (X,Y ) is the max-
imal correlation between X and Y .

The next result allows us to compare two different versions of (6).

THEOREM 3. Suppose that R and S are two Mtf’s on Y that have fY as in-
variant density and assume that R �1 S. Let pR and pS denote the corresponding
versions of (6) and denote the associated operators as PR and PS . Assume that pR

and pS satisfy the usual regularity conditions. If pR and pS are both reversible
with respect to fX , then pR �E pS . If, in addition, pR and pS are both DA algo-
rithms, then ‖PR‖ ≤ ‖PS‖.
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PROOF. Let �∗ = {�∗
n}∞n=0 and �̃ = {�̃n}∞n=0 denote stationary versions of

the chains driven by pR and pS , respectively. Fix h ∈ L2
0(fX) and define h∗(y) =∫

X h(x)fX|Y (x|y)μx(dx). It is easy to see that h∗ ∈ L2
0(fY ). Now

〈PRh,h〉 =
∫

X

∫
X
h(x′)h(x)pR(x|x′)fX(x′)μx(dx′)μx(dx)

=
∫

X

∫
X

∫
Y

∫
Y
h(x′)h(x)fX|Y (x|y′)R(y, dy′)fY |X(y|x′)fX(x′)

× μy(dy)μx(dx′)μx(dx)

=
∫

Y

∫
Y

[∫
X
h(x)fX|Y (x|y′)μx(dx)

][∫
X
h(x′)fX|Y (x′|y)μx(dx′)

]

× R(y, dy′)fY (y)μy(dy)

=
∫

Y

∫
Y
h∗(y)h∗(y′)R(y, dy′)fY (y)μy(dy)

≤
∫

Y

∫
Y
h∗(y)h∗(y′)S(y, dy′)fY (y)μy(dy) = 〈PSh,h〉,

where the inequality follows from the fact that R �1 S. It then follows from Theo-
rem 1 that pR �E pS . Now let f ∗(x, y) and f̃ (x, y) denote the densities that allow
us to express pR and pS as DA algorithms. In conjunction with the results above,
Theorem 2 implies that

Var[E(h(X∗)|Y ∗)] = 〈PRh,h〉 ≤ 〈PSh,h〉 = Var[E(h(X̃)|Ỹ )],
where (X∗, Y ∗) ∼ f ∗(x, y) and (X̃, Ỹ ) ∼ f̃ (x, y). Now, since X∗ d= X̃, we have
{g : Varg(X∗) = 1} = {g : Varg(X̃) = 1}. Suppose that Varg(X∗) = 1 and put
μg = ∫

X g(x)fX(x) dx. Then

Var[E(g(X∗)|Y ∗)] = Var
{
E

[(
g(X∗) − μg

)|Y ∗]}
(7)

≤ Var
{
E

[(
g(X̃) − μg

)|Ỹ ]} = Var[E(g(X̃)|Ỹ )].
But it is well know that for random elements U and V ,

γ 2(U,V ) = sup
{h : Varh(U)=1}

Var[E(h(U)|V )].

It follows that ‖PR‖ = γ 2(X∗, Y ∗) ≤ γ 2(X̃, Ỹ ) = ‖PS‖. �

Theorem 3 actually allows us to compare the DA algorithm with the algorithm
based on (6). Indeed, the Mtd (5) can be viewed as a special case of (6) where
R(y, dy ′) is taken to be the trivial Mtf that is a point mass at y. This trivial Mtf is
obviously dominated in the covariance ordering by any nontrivial R. We conclude
that, if pR can be expressed as a DA algorithm, then it is better than the original
DA algorithm both in terms of efficiency and operator norm. We state this as a
corollary.
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COROLLARY 1. Suppose that R is a Mtf on Y that has fY as invariant density.
Let pR be as in (6) and denote the associated operator by PR . Assume that p and
pR satisfy the usual regularity conditions. If pR is reversible with respect to fX ,
then pR �E p. If, in addition, pR is a DA algorithm, then ‖PR‖ ≤ ‖P‖.

In order to apply Corollary 1, we must establish that pR is reversible and possi-
bly that pR is a DA algorithm. We know that reversibility of R implies that of pR .
The next result shows that there is also a simple condition on R that implies that
pR is a DA algorithm.

PROPOSITION 1. Let R be a Mtf on Y that has fY as invariant density and
let pR be as in (6). If there exists a Mtf R1/2(y, dy′) that is reversible with respect
to fY and is such that R(y, dy′) = ∫

Y R1/2(w,dy′)R1/2(y, dw), then pR is a DA
algorithm with respect to f ∗(x, y) = fY (y)

∫
Y fX|Y (x|y′)R1/2(y, dy′).

PROOF. First, it is easy to see (without using reversibility) that
∫

Y f ∗(x, y) ×
μy(dy) = fX(x). Now∫

Y
f ∗

X|Y (x|y)f ∗
Y |X(y|x′)μy(dy)

=
∫

Y

[
f ∗(x, y)∫

X f ∗(x, y)μx(dx)

][
f ∗(x′, y)∫

Y f ∗(x′, y)μy(dy)

]
μy(dy)

=
∫

Y

[∫
Y
fX|Y (x|y′)R1/2(y, dy′)

]

×
[

fY (y)

fX(x′)

∫
Y
fX|Y (x′|y′′)R1/2(y, dy′′)

]
μy(dy)

=
∫

Y

∫
Y

∫
Y
fX|Y (x|y′)R1/2(y′′, dy′)

× 1

fX(x′)
fX|Y (x′|y)fY (y)R1/2(y, dy′′)μy(dy)

=
∫

Y

∫
Y
fX|Y (x|y′)fY |X(y|x′)

[∫
Y
R1/2(y, dy′′)R1/2(y′′, dy′)

]
μy(dy′′)

= pR(x|x′). �

Two situations where the hypotheses of Proposition 1 are clearly satisfied are (i)
if R is reversible with respect to fY and idempotent in the sense that R(y, dy′) =∫

Y R(w,dy′)R(y, dw), and (ii) if R is defined to be the Mtf corresponding to two
consecutive steps of a chain on Y that is reversible with respect to fY .
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4. Using group actions to construct Markov transition functions. We now
use the group structure on G to build two Mtf’s, Qr(y, dy′) and Q(y,dy′), that
behave like general versions of the middle steps (Step 2) of the PX-DA and Haar
PX-DA algorithms described in Section 1.

4.1. The group structure. Let Y and fY be as defined in the previous section
and assume now that G is another locally compact, separable metric space that is
also a topological group. Suppose that the group G acts topologically on the left
of Y; that is, there is a continuous function F :G × Y → Y such that F(e, y) = y

for all y ∈ Y and F(g1g2, y) = F(g1,F (g2, y)) for all g1, g2 ∈ G and all y ∈ Y.
[Note that F(g, y) is playing the role of tg(y) from Section 1.] As is typically
done, we will abbreviate F(g, y) with gy so, for example, the second condition is
written (g1g2)y = g1(g2y).

As in Eaton [3], we use the term multiplier to describe a continuous homo-
morphism of G into the multiplicative group R

+; that is, a function χ :G → R
+

is a multiplier if χ is continuous and χ(g1g2) = χ(g1)χ(g2) for all g1, g2 ∈ G.
Clearly, if χ is a multiplier, then χ(e) = 1 and χ(g−1) = 1/χ(g). The measure μy

is called relatively (left) invariant with multiplier χ if

χ(g)

∫
Y
h(gy)μy(dy) =

∫
Y
h(y)μy(dy),

for all g ∈ G and all integrable functions h : Y → R. As an example, consider the
PX-DA algorithm for the probit model that was discussed in Section 1. In that case,
the group acts on the left of Y = R

n through scalar multiplication, (g, y) 	→ gy,
and μy , which is Lebesgue measure on R

n, is easily seen to be relatively invariant
with multiplier χ(g) = gn.

While all of the examples considered in [13, 14] and [23] satisfy the assump-
tions of the previous two paragraphs, this level of generality is not quite enough.
In order to ensure that our results subsume those of L&W, we assume that there
exists a function j :G × Y → R

+ such that:

1. j (g−1, y) = 1
j (g,y)

∀g ∈ G, y ∈ Y,
2. j (g1g2, y) = j (g1, g2y)j (g2, y) ∀g1, g2 ∈ G, y ∈ Y, and
3. For all g ∈ G and all integrable functions h : Y → R,∫

Y
h(gy)j (g, y)μy(dy) =

∫
Y
h(y)μy(dy).(8)

Note that when μy is relatively invariant, we can simply take j (g, y) to be χ(g).
Now suppose (as in [13]) that Y ⊂ R

n, μy is Lebesgue measure on Y, and for
each fixed g ∈ G, F(g, ·) : Y → Y is differentiable. Then if we take j (g, y) to be
the Jacobian of the transformation y 	→ F(g, y), the three properties listed above
follow straightforwardly from calculus.
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4.2. A transition based on a probability measure on G. We now build a Mtf,
Qr , that is a generalized version of Step 2 of the PX-DA algorithm. Let r be a
probability measure on G. Define

mr(y) =
∫
G

fY (gy)j (g, y)r(dg)

and assume that mr(y) > 0 for all y ∈ Y. Define N = {y ∈ Y :mr(y) = ∞} and let
Y = Y\N . Note that

∫
Y mr(y)μy(dy) = 1, which implies that μy(N) = 0. Assume

that gy ∈ Y for all y ∈ Y and all g ∈ G. A simple calculation shows that, for fixed
y ∈ Y,

fY (g′g−1y)j (g′, g−1y)/mr(g
−1y)

is a probability density function on G × G with respect to r × r . Let Qr be an
operator on L2

0(fY ) defined as

(Qrh)(y) =
∫
G

∫
G

h(g′g−1y)fY (g′g−1y)j (g′, g−1y)

mr(g−1y)
r(dg)r(dg′)

when y ∈ Y and (Qrh)(y) = ∫
Y h(y)fY (y)μy(dy) when y ∈ N . This is the oper-

ator corresponding to a Markov chain on Y that evolves as follows. If the current
state, y, is in Y, then the distribution of the next state is that of g′g−1y where
(g, g′) is a random element from the density fY (g′g−1y)j (g′, g−1y)/mr(g

−1y),
and if y ∈ N , then the next state is from fY . Denote the corresponding Mtf on Y
as Qr(y, dy′). We now establish that fY is an invariant density for Qr by showing
that Qr is reversible with respect to fY .

PROPOSITION 2. Suppose r is a probability measure on G such that
mr(y) > 0 for all y ∈ Y and such that gy ∈ Y for all y ∈ Y and all g ∈ G. Then the
Mtf Qr is reversible with respect to fY .

PROOF. We prove the result in the case where μy is relatively invariant and
leave the extension to the general case to the reader. Let h1, h2 ∈ L2

0(fY ) be
bounded. We will show that 〈Qrh1, h2〉 = 〈h1,Qrh2〉. Indeed,

〈h1,Qrh2〉 =
∫
G

∫
G

∫
Y

h1(y)h2(g
′g−1y)fY (y)fY (g′g−1y)χ(g′)

mr(g−1y)
(9)

× μy(dy)r(dg)r(dg′).

Now, since gg′−1
g′g−1 = e, the inner integral in (9) can be expressed as

∫
Y

h1(gg′−1
g′g−1y)h2(g

′g−1y)fY (gg′−1
g′g−1y)fY (g′g−1y)χ(g′g−1)χ(g)

mr(g′−1g′g−1y)

× μy(dy),
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which, using the relative invariance of μy , becomes

∫
Y

h1(gg′−1
y)h2(y)fY (gg′−1

y)fY (y)χ(g)

mr(g′−1y)
μy(dy).

Thus, (9) can be written as

∫
G

∫
G

∫
Y

h2(y)h1(g
′g−1y)fY (y)fY (g′g−1y)χ(g′)

mr(g−1y)
μy(dy)r(dg)r(dg′)

= 〈Qrh1, h2〉. �

EXAMPLE 1. Let Y = R and take μy to be Lebesgue measure. Let fY (y) =
1
2e−|y| and take G to be the multiplicative group on R

+. If the group action is
defined as multiplication, then μy is relatively invariant with multiplier χ(g) = g.
[We always use χ(g) instead of j (g, y) when μy is relatively invariant.] If we take
r(dg) to be a probability measure with density e−g on the positive half-line, then
mr(y) = (1 +|y|)−2 ∈ (0,∞) for all y ∈ Y. [For an example where mr is not finite
everywhere, use (1 + g)−2 in place of e−g .] A simple calculation shows that the
distribution of the random element (g, g′) used to make the transitions under Qr

can be described as follows. First, g ∼ Exp(1) and, conditional on g, g′ has density
(with respect to Lebesgue measure on R

+) given by

fY (g′g−1y)χ(g′)e−g′

mr(g−1y)
∝ g′e−g′(1+|y|/g).

Hence, g′|g ∼ Gamma(2,1 + |y|/g) and it follows that g′g−1 d= v, where v is a
random variable on R

+ with density given by

f (v) = v exp{−v|y|}
[

2

(v + 1)3 + 2|y|
(v + 1)2 + |y|2

(v + 1)

]
.

Consequently, for measurable A ⊂ R, Qr(y,A) = ∫
A qr(y

′|y)μy(dy′) where

qr(y
′|y) = e−|y′| |y′||y|

|y′ + y|
[

2

|y′ + y|2 + 2

|y′ + y| + 1
]

× [IR+(y)IR+(y′) + IR−(y)IR−(y′)].
Clearly, qr(y

′|y)fY (y) is a symmetric function of (y′, y) so the Mtf Qr is re-
versible with respect to fY as it must be according to Proposition 2. Note that the
chain is not irreducible. For example, if it is started with y0 > 0, then it will never
visit the negative half-line.
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4.3. A transition based on left-Haar measure on G. In this section, we build
on results in Liu and Sabatti [10] to construct a Mtf, Q, that is a generalized version
of Step 2 of the Haar PX-DA algorithm. We begin by describing left-Haar measure
and some of its properties. Under the assumptions of Section 4.1 there exists a left-
Haar measure, νl , on G, which is a nontrivial measure satisfying∫

G
h(g̃g)νl(dg) =

∫
G

h(g)νl(dg)(10)

for all g̃ ∈ G and all integrable functions h :G → R. This measure is unique up to
a multiplicative constant. Moreover, there exists a multiplier, �, called the (right)
modular function of the group, with the property that νr(dg) := �(g−1)νl(dg) is
a right-Haar measure, which satisfies the obvious analogue of (10). Groups for
which �(g) ≡ 1; that is, for which right- and left-Haar measure are equivalent, are
called unimodular. We now state two useful formulas that will be used repeatedly
in the sequel (see Fremlin [4], Theorem 442K). If g̃ ∈ G and h :G → R is an
integrable function, then∫

G
h(gg̃−1)νl(dg) = �(g̃)

∫
G

h(g)νl(dg)(11)

and ∫
G

h(g−1)νl(dg) =
∫
G

h(g)�(g−1)νl(dg).(12)

Now assume that m(y) := ∫
G fY (gy)j (g, y)νl(dg) is positive for all y ∈ Y and

finite for μy-almost all y ∈ Y. As in Section 4.2, let N denote the μy-null set of y

values for which m(y) = ∞ and set Y = Y \ N . A routine calculation shows that,
for y ∈ Y,

m(gy) = j (g−1, y)�(g−1)m(y).(13)

This formula is basically equation (A1) from [10]. One consequence of (13) is that
gy ∈ Y for all y ∈ Y and all g ∈ G. Let Q be an operator on L2

0(fY ) defined by

(Qh)(y) =
∫
G

h(gy)fY (gy)j (g, y)

m(y)
νl(dg)

when y ∈ Y and (Qh)(y) = ∫
Y h(y)fY (y)μy(dy) when y ∈ N . This is the operator

associated with the Markov chain on Y that evolves as follows. If the current state,
y, is in Y , then the distribution of the next state is that of gy where g is a random
element from G whose density (with respect to νl) is fY (gy)j (g, y)/m(y), and if
y ∈ N , then the next state is from fY . Denote the chain and its Mtf by � = {�n}∞n=0
and Q(y,dy′).

PROPOSITION 3. Suppose that m(y) is positive for all y ∈ Y and finite for
μy-almost all y ∈ Y so that Q is well-defined. Then the Mtf Q is reversible with
respect to fY .

PROOF. As in the proof of Proposition 2, let h1, h2 ∈ L2
0(fY ) be bounded.
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Then

〈h1,Qh2〉 =
∫
G

∫
Y

h1(y)h2(gy)fY (y)fY (gy)j (g, y)

m(y)
μy(dy)νl(dg)

=
∫
G

[∫
Y

h1(g
−1y)h2(y)fY (g−1y)fY (y)

m(g−1y)
μy(dy)

]
νl(dg)

=
∫

Y

h2(y)fY (y)

m(y)

[∫
G

h1(g
−1y)fY (g−1y)j (g−1, y)�(g−1)νl(dg)

]

× μy(dy)

=
∫

Y

h2(y)fY (y)

m(y)

[∫
G

h1(gy)fY (gy)j (g, y)νl(dg)

]
μy(dy)

= 〈Qh1, h2〉,
where the second through fourth equalities are due to, respectively, (8), (13)
and (12). �

Compared with Theorem 1 in [10], our Proposition 3 is more general and has a
stronger conclusion (reversibility versus invariance).

EXAMPLE 1 (continued). As noted previously, the multiplicative group is
unimodular and νl(dg) = dg/g where dg denotes Lebesgue measure on R

+.
Now, m(y) = ∫

G fY (gy)χ(g)νl(dg) = (2|y|)−1. Therefore, N = {0} and Y is the
real line less the origin. For y �= 0, g ∼ Exp(|y|) and for measurable A ⊂ Y,
Q(y,A) = ∫

A q(y′|y)μy(dy′) where

q(y′|y) = e−|y′|[IR+(y)IR+(y′) + IR−(y)IR−(y′)].
Again, the chain is not irreducible. However, for any fixed starting value in Y,
the random variables �1,�2,�3, . . . are independent and identically distributed
(i.i.d.). Indeed, if ψ0 > 0, then �1,�2,�3, . . . are i.i.d. Exp(1) and if ψ0 < 0
then �1,�2,�3, . . . are i.i.d. with common distribution equal to that of −Z where
Z ∼ Exp(1).

The behavior exhibited by � in the example above is not exceptional. Indeed, Q
has the special property that, conditional on any fixed starting value in Y, {�n}∞n=1
is an i.i.d. sequence (which must be from fY if the chain satisfies the usual reg-
ularity conditions). We will not prove this result here (due to space limitations),
but we will prove that Q is idempotent. For n ∈ N := {1,2,3, . . .}, let Qn(y, dy′)
denote the n-step Mtf.

PROPOSITION 4. Suppose that m(y) is positive for all y ∈ Y and finite for μy-
almost all y ∈ Y so that Q is well-defined. For each y ∈ Y, Q2(y, dy′) = Q(y,dy′)
and hence Qn(y, dy′) = Q(y,dy′) for all n ∈ N.
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PROOF. We prove the result in the case where N = ∅ and leave the extension
to the general case to the reader. We will show that for h ∈ L2

0(fY ), (Q2h)(y) =
(Q(Qh))(y) = (Qh)(y) for all y ∈ Y. Indeed,

(Q(Qh))(y) =
∫
G

[∫
G

h(g′gy)fY (g′gy)j (g′, gy)

m(gy)
νl(dg′)

]
fY (gy)j (g, y)

m(y)
νl(dg)

=
∫
G

fY (gy)

m(y)m(gy)

[∫
G

h(g′gy)fY (g′gy)j (g′g, y)νl(dg′)
]
νl(dg)

=
∫
G

fY (gy)

m(y)m(gy)

[∫
G

�(g−1)h(g′y)fY (g′y)j (g′, y)νl(dg′)
]
νl(dg)

=
∫
G

∫
G

j (g, y)h(g′y)fY (gy)fY (g′y)j (g′, y)

m(y)m(y)
νl(dg′)νl(dg)

=
∫
G

h(g′y)fY (g′y)j (g′, y)

m(y)m(y)

[∫
G

fY (gy)j (g, y)νl(dg)

]
νl(dg′)

= (Qh)(y),

where the third and fourth equalities are due to, respectively, (11) and (13). �

The discussion preceding the statement of Proposition 4 suggests that it might
be possible to use Q to make i.i.d. draws from fY . Unfortunately, as we now
explain, it is typically impossible to simulate Q when the corresponding Markov
chain is irreducible. Fix y ∈ Y and define

Oy = {y′ ∈ Y :y′ = gy for some g ∈ G}.
The set Oy is called the orbit of y. The orbits induce an equivalence relation on the
space Y; that is, two points are equivalent if they are in the same orbit. Hence, Y can
be partitioned into a collection of orbits. Clearly, when the Markov chain driven
by Q (or Qr for that matter) is started at the fixed value y ∈ Y, it remains forever
in Oy . Therefore, if the probability measure associated with fY puts positive mass
on the complement of Oy , the Markov chain will not be fY -irreducible. Of course,
the complement of Oy definitely has measure zero when Oy = Y; that is, when
there is only one orbit. Unfortunately, when Y and G are Euclidean spaces, the
situations where there is only one orbit are those in which g and y have the same
dimension. In practice, sampling from fY (y) is not feasible and hence, if g and y

share the same dimension, making draws from a density (in g) that is proportional
to fY (gy)j (g, y) will also likely be impossible. Loosely speaking, we are able to
simulate Q only when the corresponding Markov chain is reducible. While such
reducible chains are not particularly useful by themselves, they can be used as part
of a hybrid chain that is irreducible (see, e.g., Liu and Sabatti [10]) and they can
be used to improve other chains such as the DA algorithm.
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5. General versions of PX-DA and Haar PX-DA. Our general PX-DA al-
gorithm has Mtd given by

pr(x|x′) =
∫

Y

∫
Y
fX|Y (x|y′)Qr(y, dy′)fY |X(y|x′)μy(dy).

We now prove that pr is better than p defined at (5) in both the efficiency ordering
and the operator norm sense. We accomplish this by showing that pr is a DA
algorithm. Let P and Pr denote the operators corresponding to p and pr .

PROPOSITION 5. Let r be a probability measure on G such that Qr is well-
defined. Then the Mtd pr is a DA algorithm. Thus, if p and pr satisfy the usual
regularity conditions, then pr �E p and ‖Pr‖ ≤ ‖P‖.

PROOF. Define f̃ (x, y) = ∫
G f (x, gy)j (g, y)r(dg) and note that

∫
Y f̃ (x, y)×

μy(dy) = fX(x). Hence, f̃ is a joint density on X × Y (with respect to μx × μy)
whose x marginal is fX . For y ∈ Y,

f̃X|Y (x|y) = f̃ (x, y)∫
X f̃ (x, y)μx(dx)

=
∫
G f (x, gy)j (g, y)r(dg)

mr(y)
,

where, as in Section 4.2, mr(y) = ∫
G fY (gy)j (g, y)r(dg). Also,

f̃Y |X(y|x) = f̃ (x, y)∫
Y f̃ (x, y)μy(dy)

=
∫
G f (x, gy)j (g, y)r(dg)

fX(x)

=
∫
G

fY |X(gy|x)j (g, y)r(dg).

Now,∫
Y
f̃X|Y (x|y)f̃Y |X(y|x′)μy(dy)

=
∫

Y

[
1

mr(y)

∫
G

f (x, g′y)j (g′, y)r(dg′)
][∫

G
fY |X(gy|x′)j (g, y)r(dg)

]

× μy(dy)

=
∫
G

∫
G

[∫
Y

1

mr(g−1y)
f (x, g′g−1y)j (g′, g−1y)fY |X(y|x′)μy(dy)

]

× r(dg′)r(dg)

=
∫

Y

[∫
G

∫
G

fX|Y (x|g′g−1y)fY (g′g−1y)j (g′, g−1y)

mr(g−1y)
r(dg′)r(dg)

]

× fY |X(y|x′)μy(dy)

=
∫

Y

[∫
Y
fX|Y (x|y′)Qr(y, dy′)

]
fY |X(y|x′)μy(dy) = pr(x|x′),

where the second equality is due to (8) and the penultimate equality follows from
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the definition of Qr . We conclude that pr is a DA algorithm. An appeal to Corol-
lary 1 yields the result. �

In Proposition 5, the efficiency ordering result is new, but a special case of
the operator norm result (where X, Y & G are Euclidean spaces) is known—see
L&W’s Theorem 2.

Our general Haar PX-DA algorithm has Mtd given by

p∗(x|x′) =
∫

Y

∫
Y
fX|Y (x|y′)Q(y, dy′)fY |X(y|x′)μy(dy),

where Q(y,dy′) is the Mtf defined in Section 4.3. Let P ∗ denote the correspond-
ing operator. Our next result establishes that the Haar PX-DA algorithm is better
than every PX-DA algorithm in both the efficiency ordering and the operator norm
sense. Before we state and prove the result, we explain the main idea. The most
direct route to a proof would be to show that Q �1 Qr for every r(dg), and then
apply Theorem 3. However, we have not been able to establish that Q �1 Qr . Al-
ternatively, the reason we found success in comparing pr and p is that pr is an
improvement of the DA algorithm. At first glance, there is no such connection be-
tween p∗ and pr . However, Proposition 5 says that pr is a DA algorithm and it
turns out that p∗ can be represented as an improvement of pr .

THEOREM 4. Let r be any probability measure on G such that Qr is well-
defined. Suppose that m(y) is positive for all y ∈ Y and finite for μy-almost all
y ∈ Y so that Q is well-defined. If pr and p∗ satisfy the usual regularity conditions,
then p∗ �E pr and ‖P ∗‖ ≤ ‖Pr‖.

PROOF. We prove the result in the case where N = ∅ (for both mr and m)
and leave the extension to the general case to the reader. We know from Propo-
sition 5 that pr is a DA algorithm with respect to the joint density f̃ (x, y) =∫
G f (x, gy)j (g, y)r(dg) and that

∫
X f̃ (x, y)μx(dx) = mr(y). Let Q̃ be the Mtf

on Y with invariant density mr(y) that is constructed according to the recipe in
Section 4.3; that is, Q̃ is what we would have ended up with had we used mr(y)

in place of fY (y) in Section 4.3. We will show that

p∗(x|x′) =
∫

Y

∫
Y
f̃X|Y (x|y′)Q̃(y, dy ′)f̃Y |X(y|x′)μy(dy);(14)

that is, p∗ is an improvement of pr . First, if we substitute mr(y) for fY (y) in the
definition of m(y), we have∫

G
mr(gy)j (g, y)νl(dg) =

∫
G

[∫
G

fY (g′gy)j (g′, gy)r(dg′)
]
j (g, y)νl(dg)

=
∫
G

[∫
G

fY (g′gy)j (g′g, y)νl(dg)

]
r(dg′)

=
∫
G

fY (gy)j (g, y)νl(dg) = m(y).
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Hence, the function m(y) is the same whether we use fY or mr . Now, using the
definition of Q̃ and the calculation above, we have∫

Y
f̃X|Y (x|y′)Q̃(y, dy′) = 1

m(y)

∫
G

f̃X|Y (x|g′′y)mr(g
′′y)j (g′′, y)νl(dg′′).

Thus,∫
Y

[∫
Y
f̃X|Y (x|y′)Q̃(y, dy′)

]
f̃Y |X(y|x′)μy(dy)

=
∫

Y

[∫
G

[∫
G

f (x, g′g′′y)j (g′, g′′y)r(dg′)
mr(g′′y)

]
mr(g

′′y)j (g′′, y)νl(dg′′)
m(y)

]

×
[∫

G
fY |X(gy|x′)j (g, y)r(dg)

]
μy(dy)

=
∫
G

∫
G

∫
G

[∫
Y

f (x, g′g′′y)j (g′g′′, g−1gy)j (g, y)fY |X(gy|x′)
m(y)

μy(dy)

]

× νl(dg′′)r(dg′)r(dg)

=
∫
G

∫
G

∫
G

[∫
Y

f (x, g′g′′g−1y)j (g′g′′, g−1y)fY |X(y|x′)
m(g−1y)

μy(dy)

]

× νl(dg′′)r(dg′)r(dg)

=
∫
G

∫
G

∫
Y

[∫
G

f (x, g′g′′g−1y)j (g′g′′g−1, y)�(g−1)fY |X(y|x′)
m(y)

νl(dg′′)
]

× μy(dy)r(dg′)r(dg)

=
∫
G

∫
G

∫
Y

[∫
G

f (x, g′g′′y)j (g′g′′, y)fY |X(y|x′)
m(y)

νl(dg′′)
]

× μy(dy)r(dg′)r(dg)

=
∫
G

∫
G

∫
Y

[∫
G

f (x, g′′y)j (g′′, y)fY |X(y|x′)
m(y)

νl(dg′′)
]
μy(dy)r(dg′)r(dg)

=
∫

Y

[∫
G

f (x, g′′y)j (g′′, y)fY |X(y|x′)
m(y)

νl(dg′′)
]
μy(dy)

=
∫

Y

[∫
G

fX|Y (x|g′′y)fY (g′′y)j (g′′, y)

m(y)
νl(dg′′)

]
fY |X(y|x′)μy(dy)

=
∫

Y

[∫
Y
fX|Y (x|y′)Q(y, dy′)

]
fY |X(y|x′)μy(dy) = p∗(x|x′),

where the second equality follows from the properties of j , the third is from (8),
the fourth is due to Fubini and (13), the fifth is a consequence of (11), the sixth
is due to the left-invariance of νl , the seventh follows from the fact that r is a
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probability measure, and the penultimate equality is due to the definition of Q.
Proposition 4 implies that Q̃(y, dy′) is idempotent and it follows from Proposi-
tion 1 that p∗(x|x′) is a DA algorithm. An application of Corollary 1 yields the
result. �

L&W proved that ‖P ∗‖ ≤ ‖Pr‖ in the special case where X, Y and G are Euclid-
ean spaces and G is a unimodular group. Their proof relies heavily on a further
assumption regarding the group structure that we now describe. Recall that Y can
be partitioned into a set of orbits. A cross section is basically a subset of Y that
intersects each orbit exactly once (see, e.g., Wijsman [24]). L&W assume the ex-
istence of a cross-section and a corresponding diffeomorphism that allows one to
express each point in Y in terms of two quantities—its orbit and its position within
its orbit. As L&W point out, the existence of a cross-section and an associated
diffeomorphism is not guaranteed in general.

Recall from the discussion in Section 1 that L&W and M&vD developed
(what appear to be) different strategies for handling the case in which r is im-
proper. We now demonstrate that the general Haar PX-DA Markov chain can be
viewed as a marginal Markov chain associated with a nonpositive recurrent chain
on a larger space. This result implies that, when the group structure is present,
M&vD’s chain (with left-Haar measure for the working prior) is exactly the same
as L&W’s Haar PX-DA algorithm. Suppose, as in most of the interesting applica-
tions, that νl(G) = ∞. Following the ideas in M&vD, consider the function map-
ping X × Y × G into [0,∞) that is defined by f̂ (x, y, g) = f (x, gy)j (g, y). Now
since ∫

G

∫
Y

∫
X
f̂ (x, y, g)μx(dx)μy(dy)νl(dg) = νl(G),

f̂ (x, y, g) is not integrable and therefore cannot be normalized to be a probability
density function with respect to μx × μy × νl . On the other hand, we can formally
define “conditional” densities based on f̂ as follows:

f̂ (y|x,g) = f̂ (x, y, g)∫
Y f̂ (x, y, g)μy(dy)

= f (x, gy)j (g, y)

fX(x)
= fY |X(gy|x)j (g, y),

and, for y ∈ Y,

f̂ (x, g|y) = f̂ (x, y, g)∫
G

∫
X f̂ (x, y, g)μx(dx)νl(dg)

= f (x, gy)j (g, y)

m(y)
.

Therefore, despite the fact that f̂ is not a density,

p∗((x, g)|(x′, g′)) =
∫

Y
f̂ (x, g|y)f̂ (y|x′, g′)μy(dy)
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is still a “DA-type” Mtd on X × G. A routine calculation reveals that fX(x) ×
μx(dx)νl(dg) is an invariant measure for the corresponding Markov chain, which
we denote by {(Xn,Gn)}∞n=0. However,

∫
G

∫
X fX(x)μx(dx)νl(dg) = νl(G), and

hence the chain cannot be positive recurrent (Hobert [6]). On the other hand, the
density of Xn+1 given (Xn,Gn) = (x′, g′) is∫

G
p∗((x, g)|(x′, g′))νl(dg)

=
∫
G

[∫
Y

f (x, gy)j (g, y)

m(y)
fY |X(g′y|x′)j (g′, y)μy(dy)

]
νl(dg)

=
∫
G

[∫
Y

f (x, gg′−1y)j (g, g′−1y)

m(g′−1y)
fY |X(y|x′)μy(dy)

]
νl(dg)

=
∫

Y

[∫
G

f (x, gg′−1y)j (g, g′−1y)

m(y)j (g′, y)�(g′)
fY |X(y|x′)νl(dg)

]
μy(dy)

=
∫

Y

[∫
G

f (x, gg′−1y)j (gg′−1, y)�(g′−1)

m(y)
fY |X(y|x′)νl(dg)

]
μy(dy)

=
∫

Y

[∫
G

f (x, gy)j (g, y)

m(y)
fY |X(y|x′)νl(dg)

]
μy(dy) = p∗(x|x′),

where the second equality follows from (8), the third is due to Fubini and (13), the
fourth is a consequence of the properties of j and the fifth equality is due to (11).
Since

∫
G p∗((x, g)|(x′, g′))νl(dg) does not depend on g′, it follows that {Xn}∞n=0

itself is a Markov chain and the previous calculation shows that it is precisely the
Markov chain driven by p∗(x|x′).
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