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DISCUSSION: THE DANTZIG SELECTOR: STATISTICAL
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University of Pennsylvania and Princeton University

Professors Candès and Tao are to be congratulated for their innovative and valu-
able contribution to high-dimensional sparse recovery and model selection. The
analysis of vast data sets now commonly arising in scientific investigations poses
many statistical challenges not present in smaller scale studies. Many of these data
sets exhibit sparsity where most of the data corresponds to noise and only a small
fraction is of interest. The needs of this research have excited much interest in
the statistical community. In particular, high-dimensional model selection has at-
tracted much recent attention and has become a central topic in statistics. The main
difficulty of such a problem comes from collinearity between the predictor vari-
ables. It is clear from the geometric point of view that the collinearity increases as
the dimensionality grows.

A common approach taken in the statistics literature is the penalized likeli-
hood, for example, Lasso (Tibshirani [11]) and adaptive Lasso (Zou [12]), SCAD
(Fan and Li [7] and Fan and Peng [9]) and nonnegative garrote (Breiman [1]).
Commonly used algorithms include LARS (Efron, Hastie, Johnstone and Tibshi-
rani [6]), LQA (Fan and Li [7]) and MM (Hunter and Li [10]). In the present
paper, Candès and Tao take a new approach, called the Dantzig selector, which
uses �1-minimization with regularization on the residuals. One promising fact is
that the Dantzig selector solves a linear program, usually faster than the existing
methods. In addition, the authors establish that, under the Uniform Uncertainty
Principle (UUP), with large probability the Dantzig selector mimics the risk of the
oracle estimator up to a logarithmic factor logp, where p denotes the number of
variables.

We appreciate the opportunity to comment on several aspects of this article.
Our discussion here will focus on four issues: (1) connection to sparse signal re-
covery in the noiseless case; (2) the UUP condition and identifiability of the model;
(3) computation and model selection; (4) minimax rate.

1. Sparse signal recovery. The “large p, small n” regression problem consid-
ered in this paper can be viewed as a generalization of the classical linear algebra
problem in which one wishes to solve the linear equation

y = Xβ,(1)
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where X is a given n×p matrix and y is a vector in R
n. Because p > n, the linear

equation (1) is underdetermined and there are an infinite number of solutions to the
equation. The goal is to find the “sparsest” solution under certain regularity condi-
tions. In this noiseless setting, the Dantzig selector reduces to an �1-minimization
over the space of all representations of the signal:

Minimize ‖β‖1 subject to y = Xβ.(2)

This idea of finding a sparse representation using �1-minimization has been used
in Donoho and Elad [4]. The authors have also used this approach in their earlier
work (Candès and Tao [2, 3]) on recovering sparse signals in the noiseless case.
When adding a Gaussian noise term ε to (1), the linear algebra problem becomes
a nonstandard linear regression problem because p � n. In the classical linear
regression problem when p ≤ n the least squares estimator is the solution to the
normal equation

XT y = XT Xβ.(3)

The constraint ‖XT r‖∞ ≤ λpσ (which is the same as ‖XT y − XT Xβ‖∞ ≤ λpσ )
in the convex program (DS) in this paper can be viewed as a relaxation of the
normal equation (3). And similarly to the noiseless case �1-minimization leads to
the “sparsest” solution over the space of all feasible solutions.

The authors suggest using λp = √
2 logp, which is equal to

√
2 logn in the

orthogonal design setting. In this setting, the oracle properties of the Dantzig se-
lector are in line with those shrinkage results in Donoho and Johnstone [5] which
are shown to be optimal in the minimax sense. When p � n, it might be possible
that the regularization factor λp = √

2 logp in the Dantzig selector overshrinks the
p-vector β and underestimates the nonzero coordinates. It would be interesting to
find the “optimal” regularization factor.

2. The UUP condition and identifiability of the model. A nice idea in this
paper is the use of the UUP condition. The UUP condition has also been used
by the authors in their earlier work (Candès and Tao [2, 3]) in the noiseless set-
ting. The UUP condition roughly says that for any small set of predictors, these
n-vectors are nearly orthogonal to each other. The authors give an interpretation of
the UUP condition in terms of the model identifiability and have established ora-
cle inequalities for the Dantzig selector under the UUP using geometric arguments.
However, we still have some concerns about this condition.

First, it is computationally unrealistic to verify whether the UUP condition holds
for a given design matrix X when p is large and the number of signals S is not
too small. Note that computing the S-restricted isometry constant δS of the design
matrix X is over the space of all S-subsets of {1, . . . , p}, which is of cardinality

(p
S

)
.

This combinatorial complexity makes it infeasible to check the UUP condition for
reasonable values of p and S, say p = 1000 and S = 5. So it is interesting to look
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FIG. 1. Distribution of the maximum absolute sample correlation when n = 60, pn = 1000 (solid
curve) and n = 60, pn = 5000 (dashed curve).

for other checkable conditions that are compatible with the model identifiability
condition in a similar or new setup.

Second, as discussed in Fan and Lv [8], the UUP is hard to satisfy when the di-
mension p grows rapidly with the sample size n. This is essentially due to signifi-
cant sample correlation, that is, strong collinearity, between the predictor variables
in the high-dimensional setting of p � n. For instance, we take p independent
predictors X1, . . . ,Xp from the standard Gaussian distribution and compute the
maximum of the pairwise absolute sample correlations from an n × p design ma-
trix X. Figure 1, which is extracted from Fan and Lv [8], shows the distributions
of the maximum correlation with n = 60, p = 1000 and n = 60, p = 5000, re-
spectively. The maximum sample correlation between predictors can be very large
and close to 1. Moreover, the maximum of the first canonical correlations between
two groups of predictors, for example, three predictors in one group and five in
another, can be much larger since there are

(p
3

)(p−3
5

) = O(p8) (� n) choices in
this example.

3. Computation and model selection. Due to its nature of involving lin-
ear programming, the Dantzig selector can be solved quickly and efficiently by
a primal–dual interior point algorithm when the dimension is not ultrahigh, for
example, in the thousands. It is usually faster to implement than other existing
methods such as Lasso. However, in problems of large or ultralarge scale the com-
putational cost of implementing linear programs is still a potential hurdle. For ex-
ample, in the analysis of microarray gene expression or proteomics data, it is com-
mon to have dimension of tens of thousands and implementing linear programs in
such settings can still be computationally challenging. Therefore, it is interesting
and necessary to study ultrahigh-dimensional model selection. Recently, Fan and
Lv [8] introduced a procedure for screening variables via iteratively thresholded
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ridge regression and proposed a new method of dimension reduction called Sure
Independence Screening, for ultrahigh-dimensional feature space. The method can
improve the estimation accuracy significantly while speeding up variable selection
drastically.

In our experience, we have found that the algorithm solving the Dantzig selec-
tor is sensitive to the initial value. Trivial initial values such as constant vectors
usually do not work well. The generalized least squares estimator (XT X)−XT y

can be used as an initial value. However, the solution is usually nonsparse in our
experience.

As mentioned earlier, the regularization factor λp = √
2 logp in the Dantzig

selector leads to relatively large bias in estimating the sparse regression coefficient
vector β . To reduce the bias, the authors suggest a two-stage procedure called
the Gauss–Dantzig selector which uses the original Dantzig selector for variable
selection and then runs ordinary least squares on the selected variables. It would
be interesting to know the theoretical and numerical properties of this and other
variations.

4. Minimax rate. It is appealing that the Dantzig selector achieves within a
logarithmic factor logp of the ideal risk. We are curious about the optimality of
this factor. It is unclear at this point whether the minimax factor should be logp or
logn or some other quantity. When p is polynomial in the sample size n, logp and
logn are of the same order and the difference between the two is not significant.
However, when p is exponential in n, say p = ena

for some a > 0, then logp = na

becomes large, much larger than logn. It is of theoretical and practical interest to
study the minimax behavior of the problem. If the minimax rate is logp, then the
Dantzig selector is a rate optimal minimax procedure. Otherwise, it is interesting
to construct a procedure that can attain the minimax rate.

5. Concluding remarks. �1-regularization in terms of linear programming
provides a new framework for model selection and is proven effective in solving
high-dimensional problems. The Dantzig selector provides us new insight on high-
dimensional model selection. Clearly, there is much work ahead of us. This paper
opens a new area and will definitely stimulate new ideas in the future. We thank
the authors for their clear and imaginative work.
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