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A low-degree polynomial model for a response curve is used commonly
in practice. It generally incorporates a linear or quadratic function of the co-
variate. In this paper we suggest methods for testing the goodness of fit of a
general polynomial model when there are errors in the covariates. There, the
true covariates are not directly observed, and conventional bootstrap methods
for testing are not applicable. We develop a new approach, in which decon-
volution methods are used to estimate the distribution of the covariates under
the null hypothesis, and a “wild” or moment-matching bootstrap argument
is employed to estimate the distribution of the experimental errors (distinct
from the distribution of the errors in covariates). Most of our attention is di-
rected at the case where the distribution of the errors in covariates is known,
although we also discuss methods for estimation and testing when the co-
variate error distribution is estimated. No assumptions are made about the
distribution of experimental error, and, in particular, we depart substantially
from conventional parametric models for errors-in-variables problems.

1. Introduction. Suppose we observe independent pairs (W1, Y1), . . . , (Wn,

Yn) distributed as (W,Y ), where

Y = g(X) + ε, W = X + U, E(ε |U,X) = 0,(1)

and U is independent of X and has zero mean. The particular model of interest is
that where g is a polynomial,

g(x) =
p∑

j=0

β0
j xj .(2)

Here, for 0 ≤ j ≤ p, β0
j denotes the true value of a parameter βj .

Our main purpose in this paper is to suggest ways of assessing the goodness of
fit of the polynomial model. We shall treat the goodness-of-fit problem as one of
testing the null hypothesis that g(x) can be expressed as in (2), for values of x that
lie in the support of the distribution of X. Note that in the absence of measurement
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error, that is, if we could observe X, then this problem could be solved readily by
using, for example, the test statistic and its properties developed by Fan, Zhang
and Zhang [14]. However, the presence of the measurement error complicates the
problem, and we are not aware of an existing method in that case.

A related problem has been treated by Cheng and Kukush [4]. There, an inge-
nious, asymptotic squared-difference goodness-of-fit test is suggested, based on a
statistic which, under the null hypothesis, has a limiting chi-squared distribution
with one degree of freedom. However, it is readily seen that, while the Cheng and
Kukush [4] test has good power properties against some alternatives, it has zero
power against many others. Intuitively, this is because the test addresses only one
mode of a potentially infinite number of modes of departure from the null hypoth-
esis of a polynomial fit. That single mode, or single component in the infinite class
of components that are all orthogonal to the class of all polynomials of degree p,
is responsible for the single degree of freedom in the test of Cheng and Kukush
[4].

By way of contrast, the test proposed in the present paper addresses simultane-
ously the infinity of components that can define departure from the class of poly-
nomials of degree p. In this setting the limiting distribution of any test statistic
will be relatively complex, and an asymptotic test will not be feasible. We suggest
instead a bootstrap method for calibrating the test and producing critical points.

However, bootstrap methods in this problem are necessarily quite nonstandard.
Indeed, the bootstrap is seldom used in the context of errors in variables, since
neither the explanatory variables X nor the errors ε can be directly accessed. At
best, only their distributions can be estimated, and so the bootstrap cannot proceed
by resampling either observed or imputed data, such as residuals.

Quite different methods are required for estimating the distributions of X and ε,
as a prelude to applying the bootstrap. From some points of view, estimating the
distribution of X is the simpler of the two tasks; that problem is one of conven-
tional deconvolution, in which, given the distribution of U , we wish to estimate the
distribution of X from data on W = X+U . However, it can be shown theoretically
that, unless the distribution of U is especially unsmooth, the distribution function
of X cannot be estimated root-n consistently. For example, if the characteristic
function of the distribution of U decays like |t |−α as |t | → ∞, where α > 0, then
it can be proved that a necessary condition for root-n consistency to be achievable
is that α < 1

2 . This constraint denies even a single derivative to the density of U .
Therefore, the distribution of X seldom can be estimated root-n consistently,

and so bootstrapping that variable presents challenges. Estimating the distribution
of ε is an even more awkward problem. However, a careful examination of the-
oretical issues shows that the limiting distribution of our test statistic depends on
properties of ε only to the extent of var ε, and so the moment-matching, or wild,
bootstrap is feasible for estimating the distribution of experimental error.

In summary, key contributions of this paper are constructing a statistic for test-
ing model adequacy in the context of polynomial models with measurement error;
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proposing a nonstandard bootstrap method for assessing the distribution of the
test statistic under the null hypothesis; and showing how to use repeated measure-
ments when the measurement-error distribution is unknown. Innovations include
the novel form of the test statistic, the unconventional way in which it is com-
puted, using both deconvolution and wild-bootstrap techniques, and our theoretical
derivation of properties of the test.

Various forms of (1) have been studied in the literature. Most of the work fo-
cuses on a parametric model framework, where a parametric form of the distribu-
tion of ε given U and X is adopted, typically being normal. When g(X) is linear,
extensive research can be found in Fuller [17], and the efficient estimator was
given by Bickel and Ritov [1]. The same efficient estimator was also discovered in
a broader generalized linear model framework by Stefanski and Carroll [27]. The
extension of g(X) to a general polynomial was first studied in Chan and Mak [3],
where a root-n consistent estimator was constructed. Their work was later further
extended by Cheng and Schneeweiss [5] and Cheng, Schneeweiss and Thamerus
[6]. A comparison of several methods is given by Kukush, Schneeweiss and Wolf
[21].

A review and study of a class of estimators can be found in Taupin [29]. Con-
sistent and efficient estimators for a general function g were recently constructed
by Tsiatis and Ma [30]. Estimators proposed in Bickel and Ritov [1] and Cheng
and Schneeweiss [5] also apply when a distributional model for (ε|U,X) is not as-
sumed, hence their model is in fact semiparametric. A further extension from this
semiparametric model framework is to consider a partially linear model through
replacing g(X) by Xβ + θ(Z), where β is an unknown parameter and θ(Z) is
an arbitrary unknown function of some observable covariates Z. Estimators in this
setting were proposed by Liang, Härdle and Carroll [23]. When no functional form
is assumed for g(X), the model becomes nonparametric. Estimators and their prop-
erties are studied in Fan and Truong [13] and Efromovich [10, 11]. Recent work
on the moment-matching bootstrap includes that of Fan and Li [15], Flachaire
[16], Domínguez and Lobato [9], Prášková [26], Kauermann and Opsomer [20],
Li, Hsiao and Zinn [22] and González Manteiga, Martínez Miranda and Pérez
González [18].

The distribution of U in (1) might be known, or it might be estimated directly
or from replicated data on W . To focus on the main problem, we assume first that
the distribution of U is known, and treat subsequently, in Section 5, the case where
it is unknown.

2. Methodology.

2.1. Methodology for estimating β0, . . . , βp . Because various methods for es-
timating β already exist, we only briefly outline the estimator that is used in this
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paper. Let x0, x1, . . . be real numbers with x0 �= 0, and define recursively functions
Pj of j + 1 variables by P0(x0) = x−1

0 , and

x0Pj (x0, . . . , xj ) = −
j−1∑
k=0

(
j

k

)
xj−kPk(x0, . . . , xk), j ≥ 1.

Given a random variable Z, define μj(Z) = E(Zj ). From the data (Wk,Yk),

construct estimators of aj = μj(W) and Aj = E(YWj) using âj = n−1 ∑
k W

j
k

and Âj = n−1 ∑
k YkW

j
k , respectively. Define bj = μj(X) and Bj = E(YXj ), and

put νj = μj(U), a known quantity. It can be shown that

bj =
j∑

k=0

(
j

k

)
aj−kPk(ν0, . . . , νk),

Bj =
j∑

k=0

(
j

k

)
Aj−kPk(ν0, . . . , νk).

Hence, under moment assumptions, root-n consistent estimators of bj and Bj are

b̂j =
j∑

k=0

(
j

k

)
âj−kPk(ν0, . . . , νk),

(3)

B̂j =
j∑

k=0

(
j

k

)
Âj−kPk(ν0, . . . , νk).

An estimator of the true values β0 = (β0, . . . , βp)T is given by

β̂ = M̂−1B̂,(4)

where B̂ = (B̂0, . . . , B̂p)T, M̂ = (m̂jk) is a (p + 1) × (p + 1) matrix, and m̂jk =
b̂j+k for 0 ≤ j, k ≤ p. It can be proved that β̂ is root-n consistent for β0 and is
asymptotically normally distributed, provided (1) and (2) hold, E(W 4p)+E(ε2) <

∞ and the distribution of X has a nondegenerate continuous component.

2.2. Hypotheses and test statistic. Consider the problem of testing the null
hypothesis H0 = H0(p), that g in the model (1) is given by (2) for an appropriate
choice of β0, . . . , βp , against the complementary alternative H1(p). Since we have
access to information about g(x) only when x is in the support of the density fX of
X, then H1(p) should have the form: g is not equal almost everywhere on suppfX

to a polynomial of degree p. Equivalently, H1(p) is characterized by the class of
functions g that are bounded on compact intervals and satisfy

inf
β0,...,βp

∫ t0

−t0

∣∣ψ(t) − φ(t |β)
∣∣2 dt > 0
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for each t0 > 0, where

ψ(t) = E{g(X)eitX}, φ(t |β) = E

(
eitX

p∑
j=0

βjX
j

)

and i = √−1. In defining ψ and φ we assume that E{|g(X)| + |X|p} < ∞.
These considerations suggest that we base our test on the statistic T (β̃), where

T (β) =
∫ ∣∣ψ̂(t) − φ̂(t |β)

∣∣2w1(t) dt;(5)

ψ̂(t) and φ̂(t |β) are root-n consistent estimators of ψ(t) and φ(t |β), respec-
tively; β̃ denotes either β̂ , defined at (4), or an alternative estimator, such as
argminT (β); and w1 > 0 is a known weight function.

For computational simplicity, we shall take β̃ = β̂ . Unbiased estimators of ψ(t)

and φ(t |β) are given by

ψ̂(t) = 1

nf Ft
U (t)

n∑
j=1

Yje
itWj ,

(6)

φ̂(t |β) =
{ p∑

k=0

βk(i
−1Dt)

k

}{∑
j eitWj

nf Ft
U (t)

}
,

where Dt = ∂/∂t is the differentiation operator, and f Ft
U is the characteristic func-

tion of U , or equivalently, the Fourier transform of fU . For these choices of β̂ , ψ̂

and φ̂, our test amounts to rejecting H0 if the statistic S ≡ T (β̂) is too large. We
shall use bootstrap methods to determine a critical point for the test. As a prelude
to that step, we require estimators of the distributions of X and ε.

In order to remove the function f Ft
U from denominators in (6), it is convenient to

take w1 = (f Ft
U )2w, where w is another weight function. This produces the statistic

T (β) =
∫ ∣∣ψ̂(t) − φ̂(t |β)

∣∣2f Ft
U (t)2w(t) dt.

2.3. Estimator of distribution of X. The distribution of X is accessible using
conventional deconvolution methods, as follows. Given data W1, . . . ,Wn on W =
X + U , a kernel estimator of the density fX of X is given by

f̃X(x) = f̃X(x | h) = 1

nh

n∑
j=1

L

(
x − Wj

h

)
,

where

L(u) = 1

2π

∫
e−itu KFt(t)

f Ft
U (t/h)

dt,
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K is a kernel function (in particular, a function which integrates to 1), KFt denotes
the Fourier transform of K and h > 0 is a smoothing parameter. See, for example,
Carroll and Hall [2], Stefanski and Carroll [28] and Fan [12].

Integrating f̃X , we obtain an estimator F̃X of the distribution function FX of X,

F̃X(x) = F̃X(x |h) =
∫ x

−∞
f̂X(u) du = 1

n

n∑
j=1

L1(x − Wj),

where L1(hu) = ∫
v≤u L(v) dv, or equivalently,

L1(u) = 1

2
+ 1

2π

∫ ∞
−∞

sin tu

t

KFt(ht)

f Ft
U (t)

dt,(7)

provided that KFt(ht)/f Ft
U (t) is real valued. In Section 3 we discuss choice of K

and h.
Next we convert F̃X to a distribution function F̂X by defining first F̄X(x) =

maxu≤x F̃X(u) and then

F̂X(x) = F̄X(x) − F̄X(c1)

F̄X(c2) − F̄X(c1)
(8)

if c1 ≤ x < c2, F̂X(x) = 0 if x < c1, and F̂X(x) = 1 if x ≥ c2, where c1 < c2 are
constants.

2.4. Estimator of distribution of ε. Conventional deconvolution methods can
be used to estimate the distribution of ε when p = 1, although they are awkward
to implement; and they fail for p > 1. Fortunately, satisfactory accuracy can be
obtained using a simpler, moment-matching or “wild” bootstrap approach. To this
end, let ωr = E(εr), for integers r ≥ 1, and note that ω1 = 0; let ω̂r , for r ≥ 2,
denote respective estimators of ωr ; let G(· |κ2, . . . , κq) be a known distribution
with zero mean and moments

∫
xr dG(x) = κr , for 2 ≤ r ≤ q , where q ≥ 2; and

put

F̂ε = G(· | ω̂2, . . . , ω̂q).(9)

This estimator is generally not consistent for Fε , but it is adequate for our purpose.
Examples of the distribution G will be given in Section 3.

In Section 4 we shall show that the asymptotically correct level for the test is
achieved by taking q ≥ 2. Although q = 2 is sufficient, accuracy can be improved
by using q = 3, or, in the case of near symmetry, fitting a distribution with first and
third moments equal to zero and second and fourth moments equal to ω̂2 and ω̂4;
see Section 3. The moment-matching bootstrap could also be employed to estimate
the distribution of X, but there we require q ≥ 4p.



2626 P. HALL AND Y. MA

Next we define estimators ω̂r . Observe that

ωr = E(εr) = E(Y r) −
r−1∑
s=0

(
r

s

)
E(εs)E

( p∑
j=0

βjX
j

)r−s

(10)

= E(Y r) −
r−1∑
s=0

∑
t0+···+tp=r−s

r!
s!t0! · · · tp!ωsβ

t0
0 · · ·βtp

p E(Xt1+2t2+···+ptp),

where the second summation is over integers t0, . . . , tp ≥ 0 such that t0 +· · ·+ tp =
r − s, and, since E(ε) = 0, we may exclude from the first summation in (10) the
term corresponding to s = 1. Results (3) and (4) give us root-n consistent estima-
tors b̂j and β̂j of bj = E(Xj ) and βj , respectively, and we can readily compute
Ȳr = n−1 ∑

j Y r
j , an unbiased estimator of E(Y r). Therefore, having constructed

estimators ω̂1 = 0, ω̂2, . . . , ω̂r−1, we define ω̂r recursively by

ω̂r = Ȳr −
r−1∑
s=0

∑
t0+···+tp=r−s

r!
s!t0! · · · tp! ω̂s β̂

t0
0 · · · β̂tp

p b̂t1+2t2+···+ptp .

2.5. Implementing the bootstrap test. Our bootstrap method has six steps, as
follows. (a) Compute the estimators β̂0, . . . , β̂p suggested in Section 2.1, and the
distribution estimators F̂X and F̂ε suggested at (8) and (9). Calculate the test sta-
tistic S = T (β̂) from (5). (b) Draw data X∗

1, . . . ,X∗
n from F̂X , ε∗

1, . . . , ε∗
n from

F̂ε and U∗
1 , . . . ,U∗

n from the distribution of U , and put ĝ(x) = ∑
0≤j≤p β̂j x

j ,
Y ∗

j = ĝ(X∗
j ) + ε∗

j and W ∗
j = X∗

j + U∗
j , for 1 ≤ j ≤ n. (c) Using the data pairs

(W ∗
j , Y ∗

j ) in place of (Wj ,Yj ), compute the estimator β̂∗ = (β̂∗
0 , . . . , β̂∗

p)T of

β = (β0, . . . , βp)T. (d) Compute the analogue T ∗(β) of T (β) defined at (5), using
(W ∗

j , Y ∗
j ) instead of (Wj ,Yj ), and form the statistic S∗ = T ∗(β̂∗), the bootstrap

analogue of S = T (β̂). (e) Using repeated Monte Carlo simulation, approximate
the distribution of S∗ conditional on the data D = {(W1, Y1), . . . , (Wn,Yn)}, and
in particular, approximate the critical point ŝα such that P(S∗ > ŝα |D) = 1 − α.
(f) Reject H0(p) in favor of H1(p) at the nominal level α if S > ŝα .

3. Computational issues and numerical results.

3.1. Choice of K and h. Generally, K is selected so that KFt vanishes outside
a compact interval. A popular choice is

K(x) = 48(cosx)(1 − 15x−2)(πx4)−1 − 144(sinx)(2 − 5x−2)(πx5)−1,(11)

for which KFt(t) = (1− t2)3 if |t | ≤ 1 and KFt(t) = 0 otherwise. See, for example,
Delaigle and Gijbels [7, 8].

In such cases, L1(u) is well defined by (7) and finite for each u, provided

f Ft
U is real-valued and does not vanish on the real line.(12)
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This is a common assumption in deconvolution problems, and while it can be cir-
cumvented, we shall use models for which it holds.

As a prelude to bandwidth choice, we note that if (12) holds and f Ft
U (t) ∼ Ct−α

as t → ∞, with α > 1
2 , and if K is as at (11), then∫ ∞

−∞
E{F̃X(x |h) − FX(x)}2 dx = C1n

−1h1−2α + C2h
4 + o(n−1h1−2α + h4),

where C1 = C2κ(α)/π , C2 = 9
∫
(f ′

X)2 dx and κ(α) = ∫
t>0 t2α−2KFt(t)2 dt .

Delaigle and Gijbels [8] suggested methods for estimating JX = ∫
(f ′

X)2 dx,
and hence, for approximating C2. The simplest of their techniques is a “nor-
mal reference” approach, analogous to bandwidth choice in density estimation by
comparison with the normal distribution. Specifically, fX is taken to be a normal
N(0, σ 2

X) density, where σ 2
X = varX and is estimated by σ̂ 2

X , equal to the em-
pirical variance of the data W1, . . . ,Wn, minus the known variance of U . If X

were normally distributed, then JX would equal (4π1/2σ 3
X)−1. Therefore, we take

ĴX = (4π1/2σ̂ 3
X)−1, and so our estimator of C2 is Ĉ2 = 9/(4π1/2σ 3

X). Finally, we
compute κ(α), and then C1, using the known value of α, and choose h to minimize
C1n

−1h1−2α + Ĉ2h
4.

3.2. Choice of the distribution G = G(· |ω2, . . . ,ωq). The simplest case is
that where q = 2, in which instance one would generally take G to be the normal
N(0,ω2) distribution. Two examples of distributions G that are suitable when ω1 =
ω3 = 0 and q = 4 are the three-point distribution defined by

P(Z = 0) = 1 − π, P (Z = ±π−1/2) = 1
2π,(13)

where 0 < π < 1, and the Student’s t distribution. The three-point distribution
can be used to capture any pair (ω2,ω4), regardless of the sign of kurtosis. The
Student’s t distribution can capture only (ω2,ω4) for which kurtosis is positive;
however, the positive sign is the more common in practice.

The distribution at (13) has E(Z) = 0, E(Z2) = 1 and E(Z4) = π−1. There-
fore, if π = ω2

2/ω4, then the distribution of ω
1/2
2 Z is symmetric with variance

and fourth moment equal to ω2 and ω4, respectively. To implement the moment-
matching method in this setting, one replaces ω2 and ω4 by their respective esti-
mates, ω̂2 and ω̂4, discussed in Section 2.4; takes the estimator of π to be ω̂2

2/ω̂4;
estimates the distribution of Z, at (13), by replacing π by this estimator; and, if
Z has this estimated distribution, takes the distribution G (our surrogate for the
distribution of ε) to be that of ω̂1/2Z. In some instances it is not possible to reli-
ably estimate high-order moments, and there only low-order moments are fitted.
For example, in the Alaskan Earthquake example in Section 3.4 we fit the normal
N(0,ω2) distribution.

The convergence rate of the wild bootstrap typically improves when higher mo-
ments are fitted in additional to the first two moments, as discussed by Liu [24],
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Mammen [25] and Härdle and Mammen [19]. The model that they consider has
the form Yi = g(Xi)+ εi , where εi is not necessarily identically distributed. When
g is linear, Liu [24] shows analytically that the second-order properties of the wild
bootstrap are obtained when the third moment is fitted, due to a correction of a
skewness term in the Edgeworth expansion of a sampling distribution. Following
these results, in the following simulation studies we implement the three-point
distribution which fits the first four moments.

3.3. Simulation results. We conduct two simulation studies. In the first, we
generate data from the linear errors-in-variables model Yi = β1Xi + β0 + εi , with
Wi = Xi + Ui , i = 1, . . . , n. The latent variables Xi are generated from a uniform
distribution in [−3,4], and the experimental errors εi come from a normal distri-
bution with mean 0 and variance 1. We generate the measurement errors Ui from
two different distributions: a normal N(0,1) distribution and a Laplace distribution
with variance 0.5. In each parameter setting we simulate 2000 datasets, for various
sample sizes n, and use bootstrap resample size 100. In the first simulation study,
datasets are generated under H0.

The purpose here is to assess the level accuracy of the test. Results are given
in Table 1. The two different measurement error distributions in the upper and

TABLE 1
Simulation 1: Level accuracy. In the first block (upper half table), the measurement error Ui is
normal N(0,1) and the bandwidth is h = 5.0, which is practically infinite with respect to the

support of the distribution of X. In the second block (lower half table), Ui has a Laplace
distribution with zero mean and variance 0.5, and the bandwidth h is calculated as suggested in
Section 3.1. Each entry in the table is based on 2000 simulated datasets. The bootstrap resample

size is 100. The very top row of the table gives the nominal levels

n 5% 6% 7% 8% 9% 10%

Normal measurement error

50 4.55% 5.85% 6.38% 7.63% 9.45% 9.93%
60 4.38% 6.05% 6.68% 8.00% 10.00% 10.50%
70 4.53% 6.05% 6.55% 7.63% 9.10% 9.63%
80 5.03% 6.15% 6.70% 7.75% 9.20% 9.73%
90 4.33% 5.60% 6.13% 7.28% 9.20% 9.70%

100 5.33% 6.60% 6.95% 7.93% 9.65% 10.13%

Laplace measurement error

50 4.75% 6.40% 6.83% 7.75% 9.30% 10.05%
60 5.05% 6.65% 7.23% 8.45% 10.35% 10.88%
70 4.78% 6.55% 7.13% 8.23% 9.55% 10.08%
80 4.45% 6.30% 6.83% 7.95% 9.65% 10.20%
90 5.25% 6.50% 7.18% 8.50% 9.75% 10.40%

100 5.05% 6.70% 7.15% 8.15% 9.90% 10.65%
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TABLE 2
Simulation 2: Power. Parameter settings are as for Table 1

n 5% 6% 7% 8% 9% 10%

Normal measurement error

50 71.98% 75.90% 76.65% 78.05% 79.80% 80.40%
60 78.78% 81.60% 82.65% 84.20% 85.75% 86.30%
70 84.80% 87.25% 87.93% 89.08% 90.15% 90.68%
80 90.63% 92.30% 92.80% 93.68% 94.60% 95.03%
90 93.15% 94.60% 94.90% 95.48% 96.30% 96.48%

100 95.93% 96.85% 96.95% 97.15% 97.55% 97.73%

Laplace measurement error

50 76.93% 79.80% 80.70% 82.40% 84.65% 85.28%
60 85.55% 87.85% 88.50% 89.78% 91.00% 91.35%
70 91.08% 92.55% 93.03% 93.73% 94.45% 94.70%
80 93.88% 95.05% 95.33% 95.80% 96.50% 96.58%
90 95.80% 96.70% 97.03% 97.58% 98.05% 98.10%

100 97.10% 97.95% 98.25% 98.68% 99.00% 99.10%

lower halves of the table correspond to two approaches to choosing h. In the case
of normal error, the optimal h is infinity, while for Laplace error, a finite value
of h is obtained using the strategy described in Section 3.1. As can be seen from
Table 1, even in this simple model and even for very small sample sizes n = 50
to n = 100, the rejection levels under the null hypothesis are close to the desired
levels for both error types. We repeated the simulations with bootstrap resample
size 200 and obtained very similar results (not reported here).

The second simulation study addresses power. Here we generate datasets from
the model Yi = β1Xi + β0 + c cos(Xi) + εi , with Wi = Xi + Ui and c = 1.5 a
constant. (The first study used the same model but with c = 0. The distributions
of εi , Ui and Xi are as in the first study.) We again take bootstrap resample size
to be 100, but this time we calculate the power of the test at different levels. The
results for different sample sizes are given in Table 2. We can see that as sample
size increases, so too does the power. In this experiment, sample size n = 80 can
already achieve 90% power at level 5%. For n = 100, power increases to 95%,
which is usually sufficient in practice. In simulations with bootstrap resample size
200 we obtained very similar results. Hence, bootstrap resample size 100 seems
adequate.

3.4. Alaskan Earthquake example. We implement our method on the Alaskan
Earthquake data studied by Fuller ([17], Chapters 1 and 4). In this dataset, the
logarithm of the seismogram amplitude of 20 second surface waves (Y ) and the
logarithm of the seismogram amplitude of longitudinal body waves (W ) of 62
earthquakes are recorded. The main interest is in analyzing how the surface wave
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TABLE 3
Alaskan Earthquake example: Testing for linearity between the logarithm of the seismogram
amplitude of 20 second surface waves (Y ), and the logarithm of the seismogram amplitude
of longitudinal body waves (X). Three different values for the measurement error variance
σ 2
U are considered. The p-value of the test, p(B), is reported as a function of the number

of bootstrap resamples, B

σ 2
U β̂0 β̂1 p(100) p(200) p(300) p(400) p(500)

0.0049 −1.65 1.29 50.0% 44.0% 43.3% 45.0% 45.4%
0.035 −2.81 1.51 55.0% 55.5% 54.0% 54.5% 56.8%
0.065 −4.47 1.83 70.0% 72.5% 72.3% 73.5% 75.8%

is related to the longitudinal body wave. Of course, both variables are measured
with error. Fuller [17] used a linear errors-in-variable model, Y = β0 + β1X + ε

and W = X + U . Assuming a normal N(0, σ 2
U) for U , and using extra available

information, Fuller [17] estimated the measurement error variance to be σ 2
U =

0.035, with standard error 0.0086.
We implement a wild bootstrap procedure that matches the first three estimated

moments of the experimental error distribution. (The fourth moment estimate here
is too highly variable to be reliable, and, in fact, its point estimate is negative.)
Taking σ 2

U = 0.035, and employing bootstrap resample sizes 100, 200, 300, 400 or
500, we find that the resulting p-values are all between 54% and 57%.

Considering that the value of σ 2
U is estimated, we also consider two extreme

cases, where σ 2
U equals 0.035 ± 3.5 × 0.0086 = 0.0049 and 0.065, respectively,

and apply the testing procedure in these cases. The results associated with these
values of σ 2

U and with different bootstrap resample sizes are reported in Table 3.
For none of these parameter settings is the reported p-value small enough to cast

reasonable doubt on the adequacy of the linear model for this dataset. Although
the different values of σ 2

U cause significant changes to estimators of β0 and β1,
the evidence in favor of rejecting the null hypothesis is virtually nonexistent, in
all three cases. This observation reflects the substantial variability in the dataset,
noted from a different viewpoint two paragraphs above.

4. Theoretical properties. We shall assume that

E(W 4p) < ∞, 0 < E(ε2) < ∞, the distribution of X has a nondegenerate
(14)

continuous component and f Ft
U vanishes only at isolated points;

w(t) > 0 for each t, w(t) converges to zero faster than any polynomial as
(15)

|t | → ∞ and max
1≤k≤p

∫
|Dk

t f
Ft
U (t)−1|2f Ft

U (t)2w(t) dt < ∞.
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In the context of conventional models for the distribution of U , |Dk
t f

Ft
U (t)|/f Ft

U (t)

is dominated by a polynomial in t , and in such cases the last part of (15) follows
from the rest of that assumption.

When implementing the bootstrap we shall assume, in addition to (14) and (15),
that

the support of the distribution of X is contained

within the finite interval (c1, c2),(16)

where c1 and c2 are fixed and are used in the definition of F̂X at (8).

Of course, the distribution G = G(· |κ2, . . . , κq) that we employ to estimate Fε ,
at (9), has by definition finite variance if κ2 < ∞, so we do not impose this as a
regularity condition. It is not necessary to stipulate whether the distribution G is
discrete or continuous.

The main theoretical properties of our estimator are given in the following theo-
rem. There, part (a) describes limit theory under the null hypothesis H0(p), part (b)
asserts consistency of the bootstrap estimator of the distribution of the test statis-
tic under H0(p), and part (c) shows that the test is able to detect a large class of
semiparametric, root-n departures from the null hypothesis. It is straightforward
to prove a version of part (b) when H0(p) fails; that result requires conditions on
a class of g’s for which H1(p) holds.

THEOREM 1. Assume that the data on which the test is based are generated
by the model (1). Then: (a) If (14) and (15) hold, and if the null hypothesis H0(p)

is valid [i.e., if (2) holds for some choice of the parameters β0
0 , . . . , β0

p], then

nT (β̂) → ξ in distribution, where ξ denotes a random variable for which P(0 <

ξ < ∞) = 1, and the distribution of ξ depends on that of ε only through var ε. (b)
If (14)–(16) hold, and H0(p) is valid, then the distribution of T ∗(β̂∗), conditional
on the data, converges in probability to that of ξ . (c) If (14)–(16) hold, and if the
function g = gn in (1) is taken to depend on n, as

g(x) =
p∑

j=0

β0
j xj + n−1/2cγ (x),(17)

where β0
0 , . . . , β0

p and c > 0 are fixed, and the function γ is bounded, compactly
supported and, on a subset of the support of the distribution of X that has nonzero
Lebesgue measure, does not vanish and does not equal almost everywhere a poly-
nomial of degree p, then

lim
c→∞ lim inf

n→∞ P(S > ŝα) = 1.(18)

The property stated in part (a) of the theorem that the distribution of ξ depends
on that of ε only through var ε, is the key to the fact that the moment-matching
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bootstrap is adequate for estimating the distribution of ε when calibrating the test
statistic T (β̂). By way of comparison, the distribution of ξ depends on that of X

through more than just the first two or three moments.
The function g at (17) represents a local departure from the null hypothesis

H0(p). Indeed, under the latter hypothesis, g would equal just the first part of the
right-hand side of (17). Result (18) asserts that, in the case of a local departure of
this form, the test is asymptotically capable of detecting the fact that H0(p) fails.
More particularly, for all sufficiently large n, the probability that the test correctly
detects the fact that H0(p) is violated exceeds 1 − η, where η > 0 can be chosen
arbitrarily small by selecting c in (17) sufficiently large.

The assumption that the distribution of X is compactly supported, used in parts
(b) and (c) of the theorem, is imposed for convenience and can be relaxed; we do
not do so since we wish to keep the proof and the regularity conditions simple.

An outline proof of Theorem 1 will be given in the Appendix. There the distri-
bution of ξ will be given.

5. Extension to the case where the distribution of U is not known. It is
possible to generalize the estimator β̂ so that it applies to settings where the distri-
bution of U is estimated from data. At least two cases of this type can arise in prac-
tice. First, we may observe direct data U1, . . . ,UN on U , and from those data we
may construct an explicit estimator, μ̂j (U) = N−1 ∑

k(Ui − Ū )j , of μj(U). Here,
Ū = N−1 ∑

k Uk . Replacing νj by μ̂j (U) at each appearance in (3), and in all other
respects defining β̂ as at (4), we obtain a new estimator of β0 = (β0

0 , . . . , β0
p)T. The

convergence rate of the new estimator is readily seen to be Op{min(n,N)−1/2}.
Second, and arguably more realistically, we may observe replicated values of

Wj , so that our dataset is comprised of pairs (Wik, Yik), for 1 ≤ k ≤ Ni and 1 ≤
i ≤ n, where Wik = Xi + Uik and Yik = g(Xi) + εik . Here, the variables Xi , Uik

and εik are assumed to be totally independent. In longitudinal data analysis the
Ni’s are usually small, in the range 2 to 5.

Let us suppose that the distribution of U is symmetric; this would often be a
reasonable assumption, and should it fail, a modified version of the argument be-
low could be employed. Let Si denote the set of Ni(Ni − 1) distinct pairs (k1, k2)

with 1 ≤ k1 �= k2 ≤ Ni , and put N = ∑
i≤n Ni(Ni − 1). We may estimate the mo-

ments μj(V ) = E(V j ) of the distribution of V = U1 + U2, where U1 and U2 are
independent copies of U ,

μ̂j (V ) = 1

N

n∑
i=1

∑
(k1,k2)∈Si

(Wik1 − Wik2)
j .

Of course, μ̂j (V ) = 0 if j is odd. Let clt2j and mnt2j denote the functions that
give the 2j th cumulant, κ2j (Z), of a general random variable Z in terms of its
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moments, and the 2j th moment in terms of the cumulants,

κ2j (Z) = clt2j {μ2(Z), . . . ,μ2j (Z)},
μ2j (Z) = mnt2j {κ2(Z), . . . , κ2j (Z)}.

The 2r th cumulant of the distribution of U equals half the 2r th cumulant of the
distribution of V , and so we define, in succession,

κ̂2j (V ) = clt2j {μ̂2(V ), . . . , μ̂2j (V )},
μ̂2j (U) = mnt2j

{1
2 κ̂2(V ), . . . , 1

2 κ̂2j (V )
}
,

and μ̂j (U) = 0 for odd j . Provided the number of indices i in the range 1 ≤ i ≤ n,
for which Ni ≥ 2, increases at rate n, the convergence rate of the new estimator
is Op(n−1/2).

Next we briefly address hypothesis testing when the distribution of U is not
known and it is assumed that (12) holds. We treat in turn the two earlier settings.
First, if direct data U1, . . . ,UN on U are observed, then we may construct an ex-
plicit characteristic-function estimator, f̂ Ft

U = n−1 ∑
j eitUj . (Here and below, f̂ Ft

U

denotes an estimator of f Ft
U , rather than the Fourier transform of an estimator f̂U

of fU .) We replace f Ft
U in (7) by |f̂ Ft

U |, perhaps incorporating a ridge parameter
to make the procedure more robust. [Note that, assuming (12), f Ft

U = |f Ft
U |.] This

gives a new version of F̃X , leading directly to new formulae for F̄X and F̂X . In the
direct-data setting we do not alter the definitions of ψ̂(t) and φ̂(t |β), except for
replacing f Ft

U by f̂ Ft
U in the latter.

Second, if (12) holds and we observe replicated data (Wjk, Yjk), define

f̂ Ft
U (t) =

∣∣∣∣∣ 1

N

n∑
j=1

∑
(k1,k2)∈Sj

cos{t (Wjk1 − Wjk2)}
∣∣∣∣∣
1/2

,

potentially incorporating weights to reduce variability. Substituting f̂ Ft
U for f Ft

U in
(7), and modifying ψ̂(t), φ̂(t |β) and β̂ by incorporating the replicated data, we
obtain an analogue of T (β̂) which does not require knowledge of f Ft

U . One can
also develop analogues, in the case where the distribution of U is estimated from
data, of bootstrap methods for calibration.

APPENDIX: OUTLINE PROOF OF THEOREM 1

Define pj = Pj (ν0, . . . , νj ), δj = âj − aj , �j = Âj − Aj ,

δ
(k)
B =

k∑
�=0

(
k

�

)
δk−�p�, �

(k)
B =

k∑
�=0

(
k

�

)
�k−�p�.
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Let �B denote the (p + 1)-vector with kth component �
(k)
B , and let �M be the

(p + 1) × (p + 1) matrix with (k1, k2)th component δ
k1+k2
b . Provided (14) holds,

the matrix M is finite and strictly positive definite.
In the notation above, B̂ = B +�B and M̂ = M +�M . Therefore, by the Taylor

expansion,

β̂ = (M + �M)−1(B + �B) = β0 + Q + Op(n−1),(A.1)

where Q = (Q(0), . . . ,Q(p))T = M−1�B − M−1�MM−1B is a (p + 1)-vector.
Since Q is expressible exactly as the mean of n independent and identically dis-
tributed random (p + 1)-vectors with zero expected value, it is readily proved that
n1/2Q is asymptotically normally distributed with zero mean and finite variance.

With Wj = Xj + Uj and Yj = g(Xj ) + εj denoting the data, we have

Q(k) =
p∑

�=0

(M−1)k��
(�)
B −

p∑
�1=0

p∑
�2=0

(M−1)k�1(�M)�1�2(M
−1B)�2(A.2)

=
p∑

�=0

�∑
r=0

(
�

r

)
(M−1)k�pr

1

n

n∑
j=1

(1 − E)

{ p∑
s=0

β0
s Xs

jW
l−r
j + εjW

l−r
j

}

−
p∑

�1=0

p∑
�2=0

�1+�2∑
r=0

(
�1 + �2

r

)
(M−1)k�1(M

−1B)�2pr(A.3)

× 1

n

n∑
j=1

(1 − E)W
l1+l2−r
j ,

where E denotes the expectation operator. Note too that

ψ̂(t)f Ft
U (t) = 1

n

n∑
j=1

Yje
itWj =

p∑
k=0

β0
k

1

n

n∑
j=1

Xk
je

itWj + 1

n

n∑
j=1

εj e
itWj ,

φ̂(t |β)f Ft
U (t) =

p∑
k=0

βk

k∑
�=0

(
k

�

)(
1

n

n∑
j=1

W�
j eitWj

)
φk−�(t),

where φr(t) = f Ft
U (t)(i−1Dt)

rf Ft
U (t)−1. Define

χ1k(t) = 1

n

n∑
j=1

{
Xk

j −
k∑

�=0

(
k

�

)
W�

j φk−�(t)

}
eitWj ,

χ2(t) = 1

n

n∑
j=1

εj e
itWj ,(A.4)

χ3k(t) =
k∑

�=0

(
k

�

)(
1

n

n∑
j=0

W�
j eitWj

)
φk−�(t).
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In this notation,

{ψ̂(t) − φ̂(t | β̂)}f Ft
U (t) =

p∑
k=0

β0
k χ1k(t) + χ2(t)

−
p∑

k=0

(β̂k − β0
k )

k∑
�=0

(
k

�

)(
1

n

n∑
j=1

W�
j eitWj

)
φk−�(t).

The series multiplying (β̂k − β0
k ) in the last term equals χ3k(t). Using (A.1),{∫ ∣∣ψ̂(t) − φ̂(t | β̂)

∣∣2f Ft
U (t)2w(t) dt

}1/2

=
{∫ ∣∣∣∣∣

p∑
k=0

β0
k χ1k(t) + χ2(t) −

p∑
k=0

(β̂k − β0
k )χ3k(t)

∣∣∣∣∣
2

w(t) dt

}1/2

(A.5)

+ Op(n−1)

= ξ1/2
n + Op(n−1),

where

ξn =
∫ ∣∣∣∣∣

p∑
k=0

β0
k χ1k(t) + χ2(t) −

p∑
k=0

Q(k)χ3k(t)

∣∣∣∣∣
2

w(t) dt

and Q(k) is as in (A.3).
Note that χ3k(t) → ξ3k(t) as n → ∞, where

ξ3k(t) =
k∑

�=0

(
k

�

)
E(W�eitW )φk−�(t) = f Ft

U (t)(i−1Dt)
kf Ft

X (t).

Using standard properties of sums of independent random variables, and referring
to (A.3)–(A.4) to deduce the relationships among χ1k(t), χ2(t) and Q(�), it may
be proved that

nξn → ξ(A.6)

in distribution as n → ∞, where

ξ =
∫ ∣∣∣∣∣

p∑
k=0

β0
k ξ1k(t) + ξ2(t) −

p∑
k=0

R(k)ξ3k(t)

∣∣∣∣∣
2

w(t) dt,

ξ10, . . . , ξ1p , ξ2 and R(1), . . . ,R(p) are jointly distributed, ξ1k(t) and ξ2(t) are
complex-valued Gaussian processes with zero means, R = (R(1), . . . ,R(p))T is a
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Gaussian (p + 1)-vector with zero mean, and the covariances among ξ1k(t), ξ2(t)

and R(u) are identical to the covariances among{
Xk −

k∑
�=0

(
k

�

)
W�φk−�(t)

}
eitW , εeitW

and
p∑

�=0

�∑
r=0

(
�

r

)
(M−1)ulpr

{ p∑
s=0

β0
s (1 − E)XsWl−r + εWl−r

}

−
p∑

�1=0

p∑
�2=0

�1+�2∑
r=0

(
�1 + �2

r

)
(M−1)ul1(M

−1B)�2pr(1 − E)Wl1+l2−r ,

respectively. Note particularly that these covariances depend on the distribution of
ε only through the variance of that quantity.

Part (a) of Theorem 1 follows from (A.5) and (A.6). The fact that P(ξ > 0) = 1
can be deduced from the fact that var ε > 0. Derivation of part (b) is virtually
identical to that of part (a). To prove part (c) of Theorem 1, note that the presence
of the perturbation n−1/2cγ (x) in (17) influences Q(k), at (A.2), only by adding
n−1/2cη1k to the first term on the right-hand side of (A.2) [and, hence, by adding
the same quantity to the far right-hand side at (A.3)], where

η1k =
p∑

�=0

�∑
r=0

(
�

r

)
(M−1)k�E{γ (X)W�−r}pr.

The impact of the perturbation on ψ̂(t) can be described completely by adding
n−1/2cη2(t) to χ2(t), where η2(t) = E{γ (X)eitX}f Ft

U (t) = E{γ (X)eitW }. The
perturbation has no effect on φ̂(· |β).

Therefore, retracing the arguments leading to (A.5), we see that result contin-
ues to hold if we add, within the modulus signs in the definition of ξn, the quantity
n−1/2cη3(t), where η3(t) = η2(t) − η4(t) and η4(t) = ∑

0≤k≤p η1kχ3k(t). It fol-
lows from this property that part (c) of Theorem 1 holds provided η3 is nonzero on
a set of positive measure. In the next paragraph we derive this property.

The constants η10, . . . , η1p are the unique solutions of the equations

E{γ (X)Wk} = E

{( p∑
j=0

η1jX
j

)
Wk

}
, 0 ≤ k ≤ p.

Equivalently, γ1(x) = ∑
0≤j≤p η1j x

j is the unique pth degree polynomial for
which E{γ (X)Wk} = E{γ1(X)Wk} for 0 ≤ k ≤ p. From this property, and the
fact that f Ft

U vanishes only at isolated points and

η3(t) = E{γ (X)eitW } − E{γ1(X)eitW }
= E[{γ (X) − γ1(X)}eitX]f Ft

U (t),
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we deduce that η3 vanishes almost everywhere if and only if γ = γ1 almost every-
where on the support of the distribution of X. However, the conditions imposed
for part (c) of Theorem 1 rule this out, and so η3 is nonzero on a set of positive
measure.
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