
The Annals of Statistics
2007, Vol. 35, No. 6, 2691–2722
DOI: 10.1214/009053607000000280
© Institute of Mathematical Statistics, 2007

SOME THEORETICAL RESULTS ON NEURAL SPIKE TRAIN
PROBABILITY MODELS

BY HOCK PENG CHAN AND WEI-LIEM LOH

National University of Singapore

This article contains two main theoretical results on neural spike train
models, using the counting or point process on the real line as a model for
the spike train. The first part of this article considers template matching of
multiple spike trains. P -values for the occurrences of a given template or pat-
tern in a set of spike trains are computed using a general scoring system. By
identifying the pattern with an experimental stimulus, multiple spike trains
can be deciphered to provide useful information.

The second part of the article assumes that the counting process has a
conditional intensity function that is a product of a free firing rate function
s, which depends only on the stimulus, and a recovery function r , which
depends only on the time since the last spike. If s and r belong to a q-smooth
class of functions, it is proved that sieve maximum likelihood estimators for
s and r achieve the optimal convergence rate (except for a logarithmic factor)
under L1 loss.

1. Introduction. In the field of neuroscience, it is generally acknowledged
that neurons are the basic units of information processing in the brain. They play
this role by generating characteristic and highly peaked electric action potentials
of very short duration, or more simply, spikes (cf. Dayan and Abbott [11]). These
spikes can travel along nerve fibers that extend over relatively long distances to
other cells. The temporal pattern of these spikes depends dynamically on the stim-
uli of the neuron or the biochemicals induced by the spikes of other neurons. The
collection of such spikes generated by a neuron over a time period is called a
spike train. In this way, information is transmitted via spike trains. Because the
spikes are of very short duration and are highly peaked, point processes or counting
processes are the most commonly used probability models for neural spike trains,
with points on the time axis representing the temporal locations of the spikes (cf.
Brillinger [3]).

Sections 2 and 3 deal with the detection of multiple spike train patterns.
Let Ni(T ) be the number of spikes of the ith template neuron in the time inter-
val [0, T ) and w(i) = {w(i)

1 , . . . ,w
(i)
Ni(T )} the corresponding spike times. We are
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interested in establishing the presence of the template w := (w(1), . . . ,w(d)) inside
a longer spike train pattern y = (y(1), . . . ,y(d)). Loosely speaking, the template w
is said to have occurred at time t in the spike trains y if for most y ∈ y(i)∩[t, t +T ),
1 ≤ i ≤ d , there exists w ∈ w(i) such that y − t is close to w. A more precise defin-
ition of a match, via a user-chosen score function, is given in Section 2. When the
number of matches is significantly large, we can identify the onset of the patterns w
in y with the stimulus provided when w are recorded. For example, w can be the
spike times of an assembly of neurons of a zebra finch when its own song is played
while it is awake and y the spike trains of the same assembly when it is sleeping.
The replaying of these patterns during sleep has been observed and hypothesized
to play an important role in bird song learning (cf. Dave and Margoliasch [10] and
Mooney [22]).

It was observed in Brown, Kass and Mitra [4] that “research in statistics and
signal processing on multivariate point process models has not been nearly as ex-
tensive as research on models of multivariate continuous-valued processes” in a
section titled “Future challenges for multiple spike train data analysis.” In Sections
2 and 3, an asymptotic theory of scan statistics in multivariate point processes is
developed and applied to the template matching problem. The finite-sample accu-
racy of these results is then checked via computer experiments.

The second part of the article assumes that the spike train is modeled as a count-
ing process with a conditional intensity function that is a product of a free firing
rate function, which depends only on the stimulus, and a recovery function, which
depends only on the time since the last spike. More specifically, let N(t) denote
the number of spikes on the interval [0, t) and w1 < · · · < wN(t) be the spike times
occurring in [0, t). Suppose the following conditional intensity function exists:
λ(t |w1, . . . ,wN(t)) = limδ↓0 δ−1E[N(t + δ) − N(t)|w1, . . . ,wN(t)], a.s.

In the neuroscience literature, a number of probability models for λ have been
proposed. One of the simplest is when λ depends only on t . This leads to a non-
homogeneous Poisson process (cf. Ventura et al. [29]). It is well known that for a
short period of time after a spike has been discharged, it is more difficult, or even
impossible, for a neuron to fire another spike (cf. Dayan and Abbott [11]). Such a
time interval is called the refractory period. The main drawback of the nonhomo-
geneous Poisson process model is that it does not incorporate the refractory period
of the neuron. To account for this, a number of researchers (cf. Johnson and Swami
[17], Miller [21], Berry and Meister [1] and Kass and Ventura [18]) have proposed
modeling the conditional intensity function λ by

λ1
(
t |w1, . . . ,wN(t)

)=
{

s(t), if N(t) = 0,
s(t)r

(
t − wN(t)

)
, if N(t) ≥ 1,(1)

where s, r are nonnegative functions. s and r are known as the free firing rate
function and the recovery function, respectively. This model is Markovian in that it
depends only on the present time t and the duration t − wN(t) since the last spike.
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Section 4 considers sieve maximum likelihood estimation of s and r in (1) based
on n independent realizations of N(t), t ∈ [0, T ), where 0 < T < ∞. Here, we
assume that the true free firing rate function s and recovery function r both lie
in the class of q-smooth functions �κ,q [defined as in (56)]. Assuming that there
exists an absolute refractory period, it is proved in Theorems 4 and 5 that the sieve
MLE’s for s and r both achieve essentially the optimal convergence rate (except
for a logarithmic factor) under L1 loss.

2. Template matching with continuous kernels. Let w = (w(1), . . . ,w(d))

be the spike train pattern of an assembly of d neurons recorded when an experi-
mental stimulus is provided to a subject, where w(i) = {w(i)

1 , . . . ,w
(i)
Ni(T )} are the

spike times of the ith neuron over the period [0, T ). The same neurons are sub-
sequently observed for a longer time period when the subject is engaged in other
activities and the corresponding spike trains y = (y(1), . . . ,y(d)) are checked for
occurrences of the template w.

For t ≥ 0, let yt = (y(1)
t , . . . ,y(d)

t ), where y(i)
t = {y − t :y ∈ y(i) ∩ [t, t + T )}.

There are various algorithms in the neuroscience literature that have been used to
determine if there is a close match between yt and w. In Grün, Diesmann and Aert-
sen [15], T is chosen small and a match is declared if {1 ≤ i ≤ d : w(i) = ∅} = {1 ≤
i ≤ d : y(i)

t = ∅}. In the sliding sweeps algorithm (cf. Dayhoff and Gerstein [12]
and Nádasdy et al. [23]), a match is declared if

sup
1≤i≤d

sup
w∈w(i)

inf
y−t∈y(i)

t

|y − t − w| ≤ �,

where � > 0 is a predetermined constant. In this section, we shall study the
pattern-filtering algorithm (cf. Chi, Rauske and Margoliasch [8]), which uses a
scoring system to measure the proximity between w and yt .

Let f be a nonincreasing and nonconstant function on [0,∞) with f (0) > 0.
The score between w and yt is given by

St =
d∑

i=1

S
(i)
t , where S

(i)
t = T −1

∑
y−t∈y(i)

t

max
w∈w(i)

f (|y − t − w|).(2)

For a given template w, define the kernel functions

g(i)
w (u) =

[
max

w∈w(i)
f (|u − w|)

]
1{0≤u<T } ∀i = 1, . . . , d.(3)

We can then also express S
(i)
t = T −1∑

y∈y(i) g
(i)
w (y − t). The graph of S

(i)
t against t

is thus a normalized sum of the kernels g
(i)
w (y − ·) over all y ∈ y(i). We declare a

match between yt and w to be present when the proximity score St exceeds a
predetermined threshold level c. To prevent overcounting, a match at time t is
declared to be new only if the overlap between [t, t + T ) and the time interval of
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the previous new match is less than αT for some 0 < α < 1. More specifically,
let σ1 = inf{t :St ≥ c} and σj+1 = inf{t > σj + (1 − α)T :St ≥ c} for j ≥ 1. The
number of new matches between the spike trains y over the time interval [0, a +T )

and the template w is then Ua := sup{j :σj ≤ a}, with the convention that Ua = 0
if σ1 > a.

To prevent the occurrence of too many (false) matches when y is pure noise, the
threshold level c must be chosen reasonably large. For a large, there can be, on av-
erage, more than one new (false) match between y and w. The Poisson distribution
is often used for modeling Ua to compute the p-value under such circumstances.
For small a, the occurrence of a single match would itself be rare and we can use
the probability of having at least one match as the p-value. For this purpose, we
study

Ma := sup
0≤t≤a

St and Vc := inf{t :St ≥ c},
which are the scan statistic and its dual, the time to detection, respectively. In this
section, we obtain their asymptotic distributions when f is continuous on [0,∞)

and deal with discontinuous score functions in Section 3.

2.1. Main results. Let y(i), i = 1, . . . , d, be independent Poisson processes
with constant intensity λi > 0. Consider the following regularity conditions on
w and f .

(A1) Let w(i) = w(i)∗ ∩ [0, T ), where w(1)∗ , . . . ,w(d)∗ are point processes on
[0,∞) with each w(i)∗ ergodic, stationary and having nonconstant interarrival
times.

(A2) Let f be continuous and let there be a possibly empty finite set H such
that the second derivative of f is uniformly continuous and bounded over any
interval inside R

+ \ H . Moreover,

0 < sup
x∈R+\H

∣∣∣∣ d

dx
f (x)

∣∣∣∣< ∞ and lim
x→∞f (x) > −∞.(4)

Let μw = T −1∑d
i=1 λi

∫ T
0 g

(i)
w (u) du be the expected value of St conditioned on

known w and let the large deviation rate function of St be

φw(c) = sup
θ>0

[
θc − T −1

d∑
i=1

λi

∫ T

0

(
eθg

(i)
w (u) − 1

)
du

]
for c > μw.(5)

We shall denote by θw (= θw,c) the unique value of θ > 0 that attains the supre-
mum on the right-hand side of (5). By the stationarity of w(i)∗ in (A1), for all
y ∈ R, the distribution of max

w∈w(i)∗ f (|y − w|) is equal to the distribution of
Zi := max

w∈w(i)∗ f (|w|). Hence, by (A1) and (A2), for all θ > 0,

T −1
∫ T

0
eθg

(i)
w (u) du → EeθZi and T −1

∫ T

0
g(i)

w (u) du → EZi a.s.(6)
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as T → ∞. Let μ =∑d
i=1 λiEZi and

φ(c) = sup
θ>0

[
θc −

d∑
i=1

λi(EeθZi − 1)

]
for c > μ.(7)

Let θ∗ (= θ∗,c) be the unique value of θ > 0 attaining the supremum on the right-
hand side of (7). Then by (5)–(7), μw → μ, φw → φ [pointwise on (μ,∞)] and
θw → θ∗ a.s. as T → ∞. Similarly,

vw := T −1
d∑

i=1

λi

∫ T

0

[
g(i)

w (u)
]2

eθwg
(i)
w (u) du,

(8)

τw := T −1
d∑

i=1

λi

∫ T

0

[
d

du
g(i)

w (u)

]2

eθwg
(i)
w (u) du

both converge almost surely to positive constants as T → ∞. Let Pw denote the
probability measure conditioned on a known w and ζw = (2π)−1(τw/vw)1/2.

PROPOSITION 1. Assume (A1)–(A2). Then for any t ≥ 0, � > 0 and c > μ,

Pw

{
sup

t<u≤t+�

Su ≥ c

}
∼ �ζwe−T φw(c) a.s. as T → ∞.(9)

By piecing together the boundary crossing probabilities in (9), we obtain the
following.

THEOREM 1. Assume (A1)–(A2).

(a) Let c > μ. The distribution (conditional on w) of ζwe−T φw(c)Vc converges
to the exponential distribution with mean 1 almost surely as T → ∞.

(b) Let a → ∞ as T → ∞ in such a way that (loga)/T converges to a positive
constant. Let cw > μw satisfy φw(cw) = (loga)/T . Then for any z ∈ R,

Pw{θwT (Ma − cw) − log ζw ≥ z} → 1 − exp(−e−z) a.s. as T → ∞.

(c) Let a → ∞ as T → ∞ in such a way that (loga)/T converges to a positive
constant. Let c (= cT ) be such that ηw := aζwe−T φw(c) → η > 0 almost surely.
Then

Pw{Ua = k} − e−ηw
ηk

w

k! → 0 a.s. ∀k = 0,1, . . . .(10)

REMARK 1. In Theorem 1 of Chi [7], it was shown [without the regularity
condition (A2)] that limT →∞ T −1 logVc → φ(c) a.s. for all c > μ. The question
of whether logVc = T φw(c)+ o(T 1/2) was also raised in a remark on page 157. It
follows from Theorem 1(a) that the more precise logVc = T φw(c)+OP (1) holds.
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REMARK 2. We can extend Theorem 1(c) to deal with piecewise constant rate
functions λi(t). Let (a0 =)0 < a1 < · · · < an−1 < a(= an) be such that (aj −aj−1)

are large compared to T for all j . Let λi(t) = λij for all aj−1 < t ≤ aj . De-
fine φw,j , τw,j and vw,j as in (5) and (8), with λi replaced by λij . Then Pois-
son approximation can be used with ηw =∑n

j=1(aj − aj−1)ζw,j e
−T φw,j (c), where

ζw,j = (2π)−1(τw,j /vw,j )
1/2.

2.2. Implementation. We conduct a small-scale simulation study here to test
the finite-sample accuracy of the analytic approximations in Theorem 1. An alter-
native to analytic approximations is to compute the p-values pw := Pw{Ma ≥ c}
via direct Monte Carlo simulations. However, as p-values of interest are often
small, a large number of simulation runs is required for these estimations to be
accurate. The computational cost is compounded when the time period [0, a + T )

of y(i) is large.
We shall now introduce an importance sampling alternative for the simulation

of p-values. Even though the probability of interest is with respect to a homoge-
neous Poisson process y(i), a nonhomogeneous Poisson process is used to gener-
ate y(i) so that {Ma ≥ c} is encountered more frequently. Likelihood ratio weights
reflecting the change of measure are then introduced to ensure that estimates are
unbiased with respect to the underlying homogeneous Poisson process. The same
change of measure is also used to prove Proposition 1. Analogous techniques for
computing p-values have been used in sequential analysis (cf. Siegmund [26]),
change-point detection (cf. Lai and Shan [20]) and DNA sequence alignments (cf.
Chan [5]).

Let Pθ,t denote the probability measure under which y(i) is generated as a

Poisson point process with intensity ηi(v) = λie
θg

(i)
w (v−t) for each i. Note that

g
(i)
w (v − t) = 0 for v /∈ [t, t + T ) and hence the change of measure occurs only

for the generation of spikes in the interval [t, t + T ). The likelihood of y(i)
t un-

der Pθ,t is given by

Lθ,t

(
y(i)
t

)= exp
(
−λi

∫ T

0
eθg

(i)
w (u) du

) ∏
y∈y(i)

t

λie
θg

(i)
w (y−t).

Hence, by (5), the likelihood ratio

dPθw,t

dPw
(y) =

d∏
i=1

Lθw,t (y
(i)
t )

L0,t (y
(i)
t )

=
d∏

i=1

exp
[
θwT S

(i)
t − λi

∫ T

0

(
eθwg

(i)
w (u) − 1

)
du

]
(11)
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= exp

[
θwT St −

d∑
i=1

λi

∫ T

0

(
eθwg

(i)
w (u) − 1

)
du

]
= exp[T φw(c) + T θw(St − c)].

In our importance sampling algorithm, we first select a small � > 0 such that
J := a/� is a positive integer. For each simulation run, we generate j randomly
from {0, . . . , J } followed by y from Pθw,j�. The estimate

p̂ = (J + 1)

[
J∑

j=0

dPθw,j�

dPw
(y)

]−1

1{Ma≥c}

(12)

= (J + 1) exp

[
d∑

i=1

λi

∫ T

0

(
eθwg

(i)
w (u) − 1

)
du

](
J∑

j=0

eθwT Sj�

)−1

1{Ma≥c}

is then unbiased for pw. The averages of (12) over all the simulation runs is then
the importance sampling estimate of pw.

EXAMPLE 1. Consider the Hamming window function

f (t) =
⎧⎨⎩

1

2
(1 − β) + 1

2
(1 + β) cos

(
πt

ε

)
, if 0 ≤ t < ε,

−β, if t ≥ ε,

(13)

with ε = 5 ms and β = 0.4 (see, e.g., Chi, Rauske and Margoliash [8]).
We generate a template w over the time interval from 0 to T = 500 ms on d = 4

spike trains, with interarrival distance X ms between two spikes satisfying

P {X ≤ x} = 1 − e−(x−1)+/24.(14)

This corresponds to an absolute refractory period or “dead time” of 1 ms after each
spike in w(i) before the next spike can be generated. Further discussion and results
on the implications of a refractory period in estimating the spike train intensity will
be provided in Section 4. In our computer experiment, a total of 80 spikes were
first generated on the four spike trains using (14).

To compute p-values using direct Monte Carlo simulations, we generated 2000
realizations of y by using Poisson point processes with constant intensity λi = 0.04
ms−1 on the interval from 0 to a+T = 20 s. The proportion of times that {Ma ≥ c}
occurs is taken as the estimate of pw. For importance sampling, 2000 simulation
runs were also executed using the algorithm described earlier by choosing � = 0.2
ms.

For the analytic approximation, we apply Theorem 1(a), which gives us

Pw{Ma ≥ c} = Pw{Vc ≤ a}
(15) .= 1 − exp

(−aζwe−T φw(c)).
We see from the results summarized in Table 1 that there is substantial variance re-
duction when importance sampling is used. The analytic approximations have also
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TABLE 1
Estimates of Pw{Ma ≥ c} ± standard error

c Direct MC Imp. sampling Anal. approx. (15)

0.017 0.037 ± 0.004 0.0387 ± 0.0019 0.0383
0.018 0.024 ± 0.003 0.0237 ± 0.0012 0.0241
0.019 0.016 ± 0.003 0.0158 ± 0.0008 0.0149
0.020 0.009 ± 0.002 0.0095 ± 0.0005 0.0091
0.021 0.005 ± 0.002 0.0054 ± 0.0003 0.0055
0.022 0.003 ± 0.001 0.0033 ± 0.0002 0.0033

been shown to be quite accurate, lying within two standard errors of the importance
sampling estimate in all cases considered.

2.3. Proofs. We preface the proofs of Proposition 1 and Theorem 1 with the
following preliminary lemmas. We shall let �· denote the greatest integer function.
Let Pθw,t be the change of measure defined at the beginning of Section 2.2 and let
Pθw = Pθw,0.

LEMMA 1. Let t ≥ 0 and c > μw. Then

Pw{St ≥ c} ∼ (2πvw)−1/2θ−1
w T −1/2e−T φw(c) a.s. as T → ∞.

PROOF. Let Eθ,t denote expectation with respect to the probability mea-
sure Pθ,t . Let IT = [zT , zT + εT ) with εT = o(T −1/2). Then, by (11),

Pw{T 1/2(St − c) ∈ IT } = e−T φw(c)Eθw,t

[
eT θw(c−St )1{T 1/2(St−c)∈IT }

]
.(16)

By similar computations, for any y ∈ R,

Pw{St ≥ c + y} = e−T φw(c)Eθw,t

[
eT θw(c−St )1{St≥c+y}

]
(17)

≤ e−T φw(c)−T θwy.

Under Pθw,t , T S
(i)
t =∑

y∈y(i) g
(i)
w (y − t) is compound Poisson with expected num-

ber of summands ηi = λi

∫ T
0 eθwg

(i)
w (u) du, each summand identically distributed as

g
(i)
w (Ui), where Ui has positive density (λi/ηi)e

θwg
(i)
w (u) for u ∈ [0, T ). We note

that

Eθw,t

[
g(i)

w (Ui)
]= (λi/ηi)

∫ T

0
g(i)

w (u)eθwg
(i)
w (u) du

= η−1
i

d

dθ

∫ T

0
λie

θg
(i)
w (u) du

∣∣∣∣
θ=θw

.
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Since θw maximizes the right-hand side of (5), it follows that

Eθw,t [T St ] =
d∑

i=1

ηiEθw

[
g(i)

w (Ui)
]

(18)

= d

dθ

d∑
i=1

λi

∫ T

0

(
eθg

(i)
w (u) − 1

)
du

∣∣∣∣
θ=θw

= T c.

A compound Poisson Y =∑N
j=1 Yj satisfies Var(Y ) = (EN)(EY 2

1 ). Hence, by (8),

Varθw,t (St ) = T −2
d∑

i=1

ηi

∫ T

0

[
g(i)

w (u)
]2

(λi/ηi)e
θwg

(i)
w (u) du = T −1vw.(19)

By (18) and (19), T 1/2(St − c) is asymptotically normal with mean 0 and vari-
ance vw. Hence, by equation (5) of Stone [28],

Pθw,t {T 1/2(St − c) ∈ IT }
(20)

= (2πvw)−1/2
∫
IT

e−z2/(2vw) dz + oT (1)(εT + T −1/2)

almost surely as T → ∞, where oT (1) does not depend on εT and zT . Let
εT T 1/2 → 0 sufficiently slowly that oT (1)/(εT T 1/2) → 0. Then, by (16), (17)
and (20),

Pw{St ≥ c} =
�ε−1

T ∑
k=0

Pw{kεT ≤ T 1/2(St − c) < (k + 1)εT } + Pw{ST ≥ c + T −1/2}

∼ (2πvw)−1/2e−T φw(c)
∫ ∞

0
e−T 1/2θwz−z2/(2vw) dz a.s. as T → ∞,

and Lemma 1 holds. �

LEMMA 2. Assume (A1)–(A2). There exists εT = o(T −1/2) such that for all
uniformly bounded intervals I1,T , I2,T of length εT , as T → ∞,

Pθw,t

{
T 1/2

(
St − c,

d

dx
Sx

∣∣∣
x=t

)
∈ I1,T × I2,T

}
∼ (2π)−1(vwτw)−1/2

(∫
z1∈I1,T

e−z2
1/(2vw) dz1

)
(21)

×
(∫

z2∈I2,T

e−z2
2/(2τw) dz2

)
a.s.

PROOF. By stationarity, we may assume without loss of generality that
t = 0. Under Pθw , (T S

(i)
0 , T d

dx
S

(i)
x |x=0)

′ is bivariate compound Poisson with Pois-

son mean ηi = λi

∫ T
0 eθwg

(i)
w (u) du and each summand distributed as (g

(i)
w (Ui),
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− d
du

g
(i)
w (u)|u=Ui

)′, where Ui is a random variable on [0, T ) with density (λi/ηi)×
eθwg

(i)
w (u).

We shall now compute the means and covariances of (S0,
d
dx

Sx |x=0)
′ =∑d

i=1(S
(i)
0 , d

dx
S

(i)
x |x=0)

′ under Pθw . Since g
(i)
w is bounded, it follows that

Eθw

[
d

dx
Sx

∣∣∣
x=0

]
= T −1

d∑
i=1

ηiEθw

[
− d

du
g(i)

w (u)
∣∣∣
u=U(i)

]

= −T −1
d∑

i=1

λi

∫ T

0

[
d

du
g(i)

w (u)

]
eθwg

(i)
w (u) du

(22)

= −T −1
d∑

i=1

λiθ
−1
w
(
eθwg

(i)
w (T ) − eθwg

(i)
w (0))

= O(T −1) a.s.

The bivariate compound Poisson (Y,Z)′ = ∑N
j=1(Yj ,Zj )

′ satisfies Cov(Y,Z) =
E(N)E(Y1Z1). Hence,

Covθw

(
S0,

d

dx
Sx

∣∣∣
x=0

)
= −T −2

d∑
i=1

ηiEθw

[
g(i)

w (Ui)

(
d

du
g(i)

w (u)
∣∣∣
u=Ui

)]

= −T −2
d∑

i=1

λi

∫ T

0

[
d

du
g(i)

w (u)

]
g(i)

w (u)eθg
(i)
w (u) du

(23)

= −T −2
d∑

i=1

λi

[
θ−1

w g(i)
w (u) − θ−2

w
]
eθwg

(i)
w (u)

∣∣∣u=T

u=0

= O(T −2) a.s.

Since Varθw(S0) ∼ T −1vw and Varθw( d
dx

Sx |x=0) ∼ T −1τw, it follows from equa-
tion (5) of Stone [28], (18), (22) and (23) that

Pθw,t

{
T 1/2

(
St − c,

d

dx
Sx

∣∣∣
x=t

)
∈ I1,T × I2,T

}
= (2π)−1(vwτw)−1/2

×
(∫

z1∈I1,T

e−z2
1/(2vw) dz1

)(∫
z2∈I2,T

e−z2
2/(2τw) dz2

)
+ oT (1)(ε2

T + T −1),

where oT (1) does not depend on Ij,T , j = 1,2. Lemma 2 follows by selecting εT

such that εT T 1/2 → 0 and oT (1)/ε2
T T → 0. �

LEMMA 3. Let κ , T , K and c be positive constants. Let

s(u) = c + z1T
−1/2 + uz2T

−1/2 − u2K/2.
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Then sup{s(u) : 0 < u < κT −1/2} ≥ max{c, s(0), s(κT −1/2)} if and only if
z2/K ∈ [0, κ] and z1 ≥ −z2

2/(2KT 1/2).

PROOF. The quadratic s is maximized at u = z2/(KT 1/2). If z2/K ∈ [0, κ],
then

sup{s(u) : 0 < u < κT −1/2} = s(z2/KT 1/2) = c + z1/T 1/2 + z2
2/2KT

and Lemma 3 easily follows. �

Let At(= At,κ,c,T ) = {supt<u<t+κT −1/2 Su ≥ max(c, St , St+κT −1/2)} and
Dt(= Dt,κ,c,T ) = At ∩ {St ≥ c − κ2θwτw(2T )−1}.

LEMMA 4. Assume (A1)–(A2). Then for any κ > 0, t ≥ 0 and c > μ,

Pw(At ) ∼ Pw(Dt) ∼ κT −1/2ζwe−T φw(c) a.s.,(24)

where ζw = (2π)−1(τw/vw)1/2.

PROOF. Assume without loss of generality that t = 0. Let Hi (= Hi,w) be the
set of all v such that a second derivative does not exist at g

(i)
w (v). By (A1)–(A2),

the number of elements in Hi is O(T ) a.s. for all i. Let 0 < u < κT −1/2 and let
y ∈ y(i) be such that y − h /∈ (0, u) for all h ∈ Hi . Then by (A2) and the mean
value theorem,

g(i)
w (y − u) − g(i)

w (y) + u
d

dv
g(i)

w (v)
∣∣∣
v=y

= u2

2

(
d2

dv2 g(i)
w (v)

∣∣∣
v=ξ

)
(25)

for some y − u ≤ ξ ≤ y. If y ∈ y(i) ∩ (h,h + u) for some h ∈ Hi \ {0, T }, then

g(i)
w (y − u) − g(i)

w (y) + u
d

dv
g(i)

w (v)

∣∣∣∣
v=y

=
∫ y

y−u

(
d

dv
g(i)

w (v)
∣∣∣
v=y

− d

dξ
g(i)

w (ξ)

)
dξ(26)

= (h + u − y)

(
d

dv
g(i)

w (v)
∣∣∣
v↓h

− d

dv
g(i)

w (v)
∣∣∣
v↑h

)
+ o(u2).

The case y − T ∈ (0, u) and y ∈ (0, u) has negligible contribution and hence by
adding up (25) and (26) over y ∈ y(i) for i = 1, . . . , d and dividing by T , we obtain

Su − S0 − u
d

dv
Sv

∣∣∣
v=0

= −Cw,uu
2

2
,(27)

where Cw,u is an expression derived from the right-hand sides of (25) and (26). It
is shown in Chan and Loh [6] that

lim
T →∞ sup

0<u<κT −1/2
u2T |Cw,u − θwτw| → 0 a.s. under Pθw .(28)
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Then, by Lemma 2, the change of variables

z1 = T 1/2(S0 − c) and z2 = T 1/2 d

dx
Sx

∣∣∣
x=0

,(29)

substituting K = θwτw into Lemma 3, (11) and (27), we have

Pw(A0) = e−T φw(c)Eθw

[
eT θw(c−S0)1{sup0<u<κT −1/2 Su≥max(c,S0,SκT −1/2 )}

]
∼ e−T φw(c)

2π(vwτw)1/2

∫ κθwτw

0

∫ ∞
−z2

2/(2θwτwT 1/2)
e−T 1/2θwz1−z2

1/2vw−z2
2/2τw dz1 dz2

∼ e−T φw(c)

(2π)(vwτw)1/2

×
∫ κθwτw

0
e−z2

2/2τw(−T −1/2θ−1
w e−T 1/2θwz1)

∣∣∣z1=∞
z1=−z2

2/(2θwτwT 1/2)
dz2,

which gives us the right-hand side of (24). Since the constraint z1 ≥ −z2
2/

(2θwτwT 1/2) ≥ −(κθwτw)2/(2θwτwT 1/2) is satisfied in the integrals above, it fol-
lows from (29) that Pw(D0) is also asymptotically equal to the right-hand side
of (24). �

The proof of the next lemma is shown in Chan and Loh [6].

LEMMA 5. Assume (A1)–(A2). There exists rκ = o(κ) as κ → ∞ such that
for all t ≥ 0, with probability 1,

�T 3/2/κ−1∑
�=2

Pw{St ≥ c − κ2θwτw(2T )−1, St+�κT −1/2 ≥ c − κ2θwτw(2T )−1}
(30)

+Pw(At ∩ At+κT −1/2) ≤ rκT −1/2e−T φw(c),

for all large T .

PROOF OF PROPOSITION 1. By stationarity, we may assume without loss of
generality that t = 0. By Lemmas 1, 4, 5 and the inequalities

��/(κT −1/2)−1∑
q=0

[
Pw(DqκT −1/2) − Pw

(
AqκT −1/2 ∩ A(q+1)κT −1/2

)

−
��/(κT −1/2)−1−q∑

�=2

Pw

{
SqκT −1/2 ≥ c − κ2θwτw

2T
,

S(q+�)κT −1/2 ≥ c − κ2θwτw

2T

}]
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≤ Pw

{
sup

0<u≤�

Su ≥ c

}
≤

��/(κT −1/2)∑
q=0

[Pw(AqκT −1/2) + Pw{SqκT −1/2 ≥ c}],

it follows that for any ε > 0, there exists κ arbitrarily large such that rκ ≤ εκζw,
(2πvw)−1/2θ−1

w ≤ εκζw and the inequality∣∣∣∣Pw

{
sup

0<u≤�

Su ≥ c

}/(
�ζwe−T φw(c))− 1

∣∣∣∣≤ 2ε

holds for all large T with probability 1. It remains to choose ε arbitrarily small.
�

PROOF OF THEOREM 1. Let z ∈ R and let ξ (= ξw) be such that ξ/T → ∞
and k (= kw) := zeT φw(c)/ζwξ is a positive integer tending to infinity almost surely.
Define Bj = {sup(j−1)ξ≤t<jξ−T St ≥ c} and Cj = {supjξ−T ≤t≤jξ St ≥ c}. Then

Pw

(
k⋃

j=1

Bj

)
≤ Pw{ζwe−T φw(c)Vc ≤ z} ≤ Pw

(
k⋃

j=1

Bj

)
+

k∑
j=1

Pw(Cj ).(31)

Conditioned on known w, the event Bj depends only on the spike train times of y(i)

lying inside [(j − 1)ξ, jξ). Since these intervals are disjoint for different j , it
follows that B1, . . . ,Bk are independent, conditioned on w. By Lemmas 4 and 5,
it follows that with probability 1,

Pw(Bj ) ∼ (ξ − T )ζwe−T φw(c) ∼ z/k,
(32)

Pw(Cj ) ∼ T ζwe−T φw(c) ∀1 ≤ j ≤ k.

Since k → ∞ a.s. as T → ∞, with probability 1, we have

Pw

(
k⋃

j=1

Bj

)
= 1 −

k∏
j=1

Pw(Bc
j ) = 1 − (1 − z/k)k + o(1) → 1 − e−z.(33)

Moreover, because ξ/T → ∞, it follows from (32) that with probability 1,
k∑

j=1

Pw(Cj ) ∼ T kζwe−T φw(c) = o(1).(34)

Hence, (a) follows from (31), (33) and (34). The proofs of (b) and (c) use similar
techniques and shall be omitted here. �

3. Template matching with discontinuous kernels. In this section, we ob-
tain analogues of Proposition 1 and Theorem 1 when the score function f contains
discontinuities. A typical example is the box kernel

f (x) =
{

1, if x < ε,
−β, if x ≥ ε,

(35)

where β, ε are positive real numbers. Instead of (A2), we assume the following.
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(A2)′ Let f be a discontinuous function and let there be a finite set H such that
the first derivative of f exists and is uniformly continuous over any interval within
R

+ \ H . Moreover, (4) holds.

Under (A2)′, the values of f may be concentrated on 0,±q,±2q, . . . for some
q > 0.

DEFINITION. Let L(f ) = {f (x) :x ≥ 0}. We say that f is arithmetic if

L(f ) ⊆ qZ for some q > 0.(36)

Moreover, if q is the largest number satisfying (36), then we say that f is arith-
metic with span q . If (36) is not satisfied for all q > 0, we say that f is nonarith-
metic.

For example, if β in (35) is irrational, then f is nonarithmetic, while if β = s/r

for coprimes r and s, then f is arithmetic with span q = r−1. We write, for
i = 1, . . . , d ,

g(i)
w (u+) = lim

v↓u
g(i)

w (v), g(i)
w (u−) = lim

v↑u
g(i)

w (v),

δi(u) = g(i)
w (u−) − g(i)

w (u+), Di = {u ∈ (0, T ) : δi(u) �= 0},
where g

(i)
w is defined in (3).

Let φw, θw, vw and μ be defined as in Section 2.1. If Di �= ∅ for some i, we can
define a probability mass function h∗

w taking values in {δi(u)}u∈Di,1≤i≤d such that

h∗
w(x) =

d∑
i=1

λi

∑
u∈Di

eθwg
(i)
w (u−)1{δi (u)=x}

/ d∑
i=1

λi

∑
u∈Di

eθwg
(i)
w (u−).(37)

Let E∗ denote expectation when X1,X2, . . . are independent identically distributed
random variables with probability mass function h∗

w. Define

ωb = inf{n :X1 + · · · + Xn ≥ b} and Rb = X1 + · · · + Xωb
.(38)

The overshoot constant is then defined as

νw = lim
b→∞E∗e−θw(Rb−b),(39)

where b is taken to be a multiple of χ if h∗
w is arithmetic with span χ . Note that

the statement “h∗
w is arithmetic with span χ” implies that {δi(u)}u∈Di,1≤i≤d ⊂ χZ.

The constants νw have been well studied in sequential analysis; see, for example,
Siegmund [27] for the existence of the limits in (39). Let us define

ζ ′
w = (2πT vw)−1/2νwKw

d∑
i=1

λi

∑
u∈Di

δi(u)eθwg
(i)
w (u−),(40)
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where

Kw =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if h∗
w is nonarithmetic,

1

θwχ
(1 − e−θwχ), if h∗

w is arithmetic with span χ

and f is nonarithmetic,
q

χ

(
1 − e−θwχ

1 − e−θwq

)
, if h∗

w arithmetic with span χ

and f arithmetic with span q.

Since we can express each δi(u), u ∈ Di , in the form g1 − g2 for g1, g2 ∈ L(f ), it
follows that if f is arithmetic, then h∗

w is arithmetic and χ/q is a positive integer.
Analogously to Proposition 1 and Theorem 1, we can obtain the asymptotic bound-
ary crossing probabilities of St , the asymptotic distribution of the scan statistic Ma

and the time to detection Vc for kernels with discontinuities.

PROPOSITION 2. Assume (A1), (A2)′ and let � > 0, t ≥ 0. If f is nonarith-
metic and c > μ, then

Pw

{
sup

t<u≤t+�

Su ≥ c

}
∼ �ζ ′

we−T φw(c) a.s. as T → ∞.(41)

If f is arithmetic with span q , then (41) also holds under the convention that

T c(= T cT ) ∈ qZ with c → c′ as T → ∞ for some c′ > μ.(42)

THEOREM 2. Assume (A1) and (A2)′ and let f be nonarithmetic.

(a) Let c > μ. Then the distribution (conditional on w) of ζ ′
we−T φw(c)Vc con-

verges to the exponential distribution with mean 1 almost surely as T → ∞.
(b) Let a → ∞ as T → ∞ in such a way that (loga)/T converges to a positive

constant. Let cw > μw satisfy φw(cw) = (loga)/T . Then for any z ∈ R,

Pw{θwT (Ma − cw) − log ζ ′
w ≥ z} → 1 − exp(−e−z) a.s. as T → ∞.

(c) Let a → ∞ as T → ∞ in such a way that (loga)/T converges to a positive
constant. Let c (= cT ) be such that ηw := aζ ′

we−T φw(c) → η > 0 almost surely.
Then

Pw{Ua = k} − e−ηw
ηk

w

k! → 0 a.s. ∀k = 0,1, . . . .(43)

If f is arithmetic with span q , then (a) and (c) also hold under the convention (42).

EXAMPLE 2. We conduct here a simulation study similar to Example 1. The
generation of w and y are as in Example 1, but the box kernel (35) is used instead
of the Hamming window function (13) when computing g

(i)
w . We choose parame-
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TABLE 2
Estimates of Pw{Ma ≥ c} ± standard error with a + T = 20 s

c Direct MC Imp. sampling Anal. approx. (44)

0.065 0.029 ± 0.004 0.0300 ± 0.0016 0.0289
0.066 0.019 ± 0.003 0.0218 ± 0.0012 0.0207
0.067 0.012 ± 0.002 0.0140 ± 0.0008 0.0144
0.068 0.008 ± 0.002 0.0103 ± 0.0006 0.0101
0.069 0.005 ± 0.002 0.0067 ± 0.0004 0.0070
0.070 0.003 ± 0.001 0.0051 ± 0.0003 0.0047

ters ε = 4 ms and β = 0.3. Hence, f is arithmetic with span q = 0.1 and h∗
w

arithmetic with span χ = 1.3. In fact, h∗
w is positive only on the values −1.3

and 1.3 and hence νw = 1. In the template w, there were a total of 2 × 59 el-
ements in

⋃
i Di with half of all u ∈ Di satisfying δi(u) = 1.3 and the other

half satisfying δi(u) = −1.3. Hence, h∗
w(−1.3) = e−0.3θw/(eθw + e−0.3θw) and

h∗
w(1.3) = eθw/(eθw + e−0.3θw). This information is used in the computation of ζ ′

w
in the approximation

Pw{Ma ≥ c} = Pw{Vc ≤ a} .= 1 − exp
(−aζ ′

we−T φw(c)),(44)

an analogue of (15) that follows from Theorem 2(a).
In Table 2, we compare the analytical approximation (44) with both direct

Monte Carlo simulations and importance sampling, with 2000 simulation runs
used to obtain each entry. The variance reduction when using importance sam-
pling is similar to that seen in Example 1 and the technique is indeed an effective
time-saving device for computing p-values, especially when they are small. The
analytic approximations are also accurate and agree with the simulation results that
were obtained.

In addition to the above simulation study, we also conducted a similar exercise
to check the accuracy of the Poisson approximation of Ua in (43), this time with
a + T = 200 s and threshold level c = 0.0614. The maximal proportion of over-
lap between two matches is chosen to be α = 0.8. The analytical approximations
are compared with 2000 direct Monte Carlo simulation runs and the results are
recorded in Table 3 (with standard errors in parentheses). Again, we see that the
analytical approximations are quite accurate and this indicates the usefulness of
the asymptotic results in Theorem 2 for estimating p-values.

We shall now prove Proposition 2 and Theorem 2. The next result shows that

hw(x) :=
d∑

i=1

λi

∑
u∈Di

eθwg
(i)
w (u+)1{δi (u)=x}

/ d∑
i=1

λi

∑
u∈Di

eθwg
(i)
w (u+)(45)

and h∗
w [see (37)] are asymptotically conjugate probability mass functions.
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TABLE 3
Estimates of Pw{Ua = k} and ηw = Ew(Ua)

k 0 1 2 3 4 5 ≥6 ηw

Poisson 0.336 0.366 0.200 0.073 0.020 0.004 0.001 1.09

Direct 0.328 0.363 0.195 0.084 0.024 0.005 0.001 1.13
MC (0.011) (0.011) (0.009) (0.006) (0.003) (0.002) (0.001) (0.02)

LEMMA 6. There exists γw = 1 + O(T −1) a.s. such that h∗
w(x) =

γweθwxhw(x) for all x.

PROOF. Let u ∈ Di with w
(i)
j < u < w

(i)
j+1 for adjacent spikes w

(i)
j ,

w
(i)
j+1 ∈ w(i). Then, by the symmetry of g

(i)
w in the interval (w

(i)
j ,w

(i)
j+1) about

its midpoint (w
(i)
j +w

(i)
j+1)/2, it follows that v := w

(i)
j+1 − (y −w

(i)
j ) lies inside Di

and g
(i)
w (v−) = g

(i)
w (u+). Hence, γw, which we define here to be the ratio of the

denominators on the right-hand sides of (37) and (45), is 1 +O(T −1) a.s. with the
O(T −1) coming from u ∈ Di occurring before the first spike or after the last spike

in w(i). Lemma 6 holds since eθwg
(i)
w (u−)1{δi (u)=x} = eθw[x+g

(i)
w (u+)]1{δi (u)=x}. �

LEMMA 7. Assume (A1) and (A2)′. For all ε > 0, there exists κ sufficiently
large enough that for any t ≥ 0, with probability 1,∣∣∣∣Pw{St < c, supt<u≤t+κT −1 Su ≥ c}

κT −1ζ ′
we−T φw(c)

− 1
∣∣∣∣≤ ε for all large T ,

where ζ ′
w is defined in (40) and c > μ if f is nonarithmetic, while c satisfies (42)

if f is arithmetic with span q .

PROOF. Assume without loss of generality that t = 0 and let Gi =⋃
v∈Di

(v, v + κT −1]. We can write T S0 = T S′
0 + J0, where

S′
0 = T −1

d∑
i=1

∑
y∈y(i),y /∈Gi

g(i)
w (y) and J0 =

d∑
i=1

∑
y∈y(i)∩Gi

g(i)
w (y).

The random variables S′
0 and J0 are independent because they are functions of the

Poisson processes y(i) over disjoint subsets of the real line. Let us first consider f

arithmetic with span q . Then T S′
0 and J0 are both integral multiples of q . Since f

is constant between jumps, we can express T Su = T S′
0 + Ju [see (2)], where

Ju =
d∑

i=1

∑
y∈y(i)∩Gi

g(i)
w (y − u) ∀u ∈ (0, κT −1).(46)
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Hence, both S0 < c and sup0<u≤κT −1 Su ≥ c occur if and only if

sup
0<u≤κT −1

(Ju − J0) ≥ �q and S ′
0 = c − T −1kq

(47)
for some � ≥ 1 and k = J0/q + �.

We shall now consider the probability measure Pθw and its associated ex-
pectation Eθw as defined at the beginning of Sections 2.2 and 2.3. By (18),
Eθw[S′

0] = c + O(T −1) a.s. and hence, by the local limit theorem for lattice ran-
dom variables (see, e.g., Theorem 15.5.3 of Feller [14]),

Pθw{S′
0 = c − T −1qk} ∼ q/(2πT vw)1/2 a.s.(48)

for any integer k. Since S′
0 and (Ju)0<u≤κT −1 are independent, it follows from (5),

the change of measure (11), (47) and (48) that

Pw

{
S0 < c, sup

0<u≤κT −1
Su ≥ c

}

= Eθw

[
dPw

dPθw

(y)1{S0<c,sup0<u≤κT −1 Su≥c}
]

(49)

∼ q

(2πT vw)1/2 e−T φw(c)
∞∑

�=1

eθw�qPθw

{
sup

0<u≤κT −1
(Ju − J0) ≥ �q

}
.

Since g
(i)
w is piecewise constant, the graph of (Ju − J0) against u is also piece-

wise constant, with jumps of δi(y − u) whenever y − u ∈ Di for some y ∈ y(i),
1 ≤ i ≤ d ; see (46). Let N∗ be the total number of spikes in

⋃
1≤i≤d(y(i) ∩ Gi).

Then there are N∗ such jumps and

sup
0<u≤κT −1

(Ju − J0) = sup
1≤j≤N∗

(X1 + · · · + Xj),(50)

where Xj is the j th jump and has probability mass function hw. Moreover,
X1,X2, . . . are independent, conditioned on N∗, which is Poisson with mean

EN∗ = κT −1
d∑

i=1

λi

∑
u∈Di

eθwg
(i)
w (u+).(51)

If r ∈ {0, . . . , χ/q − 1} and s ∈ Z
+, then Rsχ−rq = Rsχ ; see (38). Let E∗ and P∗

denote the expectation and probability measure, respectively, when X1,X2, . . . are
independent identically distributed with probability mass function h∗

w. It then fol-
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lows from a change of measure to P∗, (50) and Lemma 6 that

∞∑
�=1

eθw�qPθw

{
sup

0<u≤κT −1
(Ju − J0) ≥ �q

}

= γ −1
w

∞∑
�=1

E∗
[
e−θw(R�q−�q)1{sup1≤j≤N∗ (X1+···+Xj )≥�q}

]
(52)

= γ −1
w E∗

[χ/q−1∑
r=0

∞∑
s=1

e−θw[Rsχ−(sχ−rq)]1{sup1≤j≤N∗ (X1+···+Xj )≥sχ}
]

∼ χ−1

(χ/q−1∑
r=0

e−θwrq

)
νwE∗

[
sup

1≤j≤N∗
(X1 + · · · + Xj)

]
.

Since E∗Xi > 0 for all large T and the almost sure limit of EN∗ [see (51)] is
proportional to κ , it follows that there exists κ sufficiently large that∣∣∣∣E∗[sup1≤j≤N∗(X1 + · · · + Xj)]

(EN∗)(E∗X1)
− 1

∣∣∣∣< ε

2
(53)

for all large T . Since (q/χ)
∑χ/q−1

r=0 e−θwrq = Kw, Lemma 7 follows from (37),
(49) and (51)–(53). When f is nonarithmetic, the local limit result (21) with
I2,T = R and t = 0 is used in place of (48). �

The next lemma is proved in Chan and Loh [6].

LEMMA 8. Assume (A1) and (A2)′. Let At,v = {St < c, supt<u≤t+v Su ≥ c}.
There exist rκ = o(κ) as κ → ∞, �0 > 0 and γ > 0 such that with probability 1,

Pw

{
St < c − κγ T −1, sup

t<u≤t+κT −1
Su ≥ c

}
+ Pw

(
At,κT −1 ∩ At+κT −1,(�0−1)κT −1

)
(54)

+
�T 2/κ∑
�=�0

Pw{St ≥ c − κγ T −1, St+�κT −1 ≥ c − κγ T −1}

≤ rκT −1/2e−T φw(c),

for all t ≥ 0 and large T .

PROOF OF PROPOSITION 2 AND THEOREM 2. By stationarity, we may as-
sume without loss of generality that t = 0. Select �0 > 0 and γ > 0 such that (54)
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is satisfied. Let Dy,v = Ay,v ∩ {Sy ≥ c − κγ T −1}. Then (41) follows from Lem-
mas 1, 7, 8 and the inequalities

��/(κT −1)−1∑
q=0

[
Pw(DqκT −1,κT −1) − Pw

(
AqκT −1,κT −1 ∩ A(q+1)κT −1,(�0−1)κT −1

)

−
��/(κT −1)−1−q∑

�=�0

Pw
{
SqκT −1 ≥ c − κγ T −1, S(q+�)κT −1 ≥ c − κγ T −1}]

≤ Pw

{
sup

0<u≤�

Su ≥ c

}
≤ Pw{S0 ≥ c} +

��/(κT −1)∑
q=0

Pw(AqκT −1,κT −1),

with κ arbitrarily large; see, for example, the proof of Proposition 1. The proof of
Theorem 2 proceeds as in the proof of Theorem 1, replacing ζw by ζ ′

w. �

4. Sieve maximum likelihood estimation. In the second part of this arti-
cle, we assume that the spike train N is modeled by a counting process with
conditional intensity λ1, as given by (1). Suppose that a realization of N is
observed on the interval [0, T ), 0 < T < ∞, and that the spike times are
0 < w1 < · · · < wN(T ) < T . Let wT = {w1, . . . ,wN(T )} denote the point process
corresponding to N(t), t ∈ [0, T ), and N be the set of all possible realizations
of wT . It follows from Daley and Vere-Jones [9] that the likelihood is the local
Janossy density, given by

ps,r (wT ) = e− ∫ T
0 s(t)r(t−wN(t))dt

N(T )∏
j=1

s(wj )r(wj − wj−1),(55)

where r(t − w0) = 1 for all t ∈ [0, T ). Next, let q, q0, q1 be constants such that
q = q0 +q1, q0 is a nonnegative integer and 0 < q1 ≤ 1, and let κ = (κ0, . . . , κq0+1)

be a vector of strictly positive constants. Here, we assume that the true free firing
rate function s and the recovery function r lie in the q-smooth function class �κ ,q

where

�κ,q =
{
f = g2 :g ∈ Cq0[0, T ), min

t∈[0,T )
g(t) ≥ 0, max

t∈[0,T )

∣∣∣∣ dj

dtj
g(t)

∣∣∣∣< κj ,

j = 0, . . . , q0,

∣∣∣∣ dq0

dtq0
g(t1) − dq0

dtq0
g(t2)

∣∣∣∣< κq0+1|t1 − t2|q1,(56)

∀t1, t2 ∈ [0, T )

}
.

Let {0 < δn ≤ 1 :n = 1,2, . . .} be a sequence of constants (to be suitably chosen
later and where δn depends only on n) such that δn → 0 as n → ∞. Define

�κ,q,n = �κ,q ∩
{
f = g2 :g ∈ Cq0[0, T ), min

t∈[0,T )
g(t) ≥ δn

}
.
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Let �κ,q and �κ,q,n be endowed with the metrics ρ�κ,q and ρ�κ,q,n , respec-

tively, where ρ�(f1, f2) = supt∈[0,T ) |f 1/2
1 (t) − f

1/2
2 (t)|,∀f1, f2 ∈ �, � ∈

{�κ,q ,�κ,q,n}. We observe that any f ∈ �κ,q can be approximated arbitrarily
closely by (f 1/2 + δn)

2 ∈ �κ,q,n by choosing n sufficiently large. Consequently,
a sieve for the parameter space of (s, r) can now be expressed as �2

κ,q,n with
metric ρ�2

κ,q,n
, where

ρ�2
κ,q,n

((f1, g1), (f2, g2))

= ρ�κ,q,n(f1, f2) + ρ�κ,q,n(g1, g2) ∀(f1, g1), (f2, g2) ∈ �2
κ,q,n.

Next, let Fκ,q,n = {ps1,r1 is as in (55): (s1, r1) ∈ �κ,q,n2} be endowed with the
Hellinger metric ρFκ,q,n . More precisely, writing wj = {w1, . . . ,wj },
ρFκ,q,n(ps1,r1,ps2,r2) = ‖p1/2

s1,r1
− p1/2

s2,r2
‖2

=
{ ∞∑

j=0

∫
0<w1<···<wj<T

[p1/2
s1,r1

(wj ) − p1/2
s2,r2

(wj )]2 dwj

}1/2

.

For ε > 0, let �2
κ,q,n(ε) ⊆ �2

κ,q,n denote a finite ε-net for �2
κ,q,n with respect to the

metric ρ�2
κ,q,n

. This implies that card(�2
κ,q,n(ε)) < ∞ and that for each (s1, r1) ∈

�2
κ,q,n, there exists an (s2, r2) ∈ �2

κ,q,n(ε) such that ρ�2
κ,q,n

((s1, r1), (s2, r2)) ≤ ε.
Now, suppose that for each ε > 0, there exist measurable nonnegative functions

fl,ε and fu,ε on �2
κ,q,n(ε) × N such that for each (s1, r1) ∈ �2

κ,q,n, there exists
some (s2, r2) ∈ �2

κ,q,n(ε) satisfying:

(C1) ρ�2
κ,q,n

((s1, r1), (s2, r2)) ≤ ε;
(C2) fl,ε((s2, r2),wT ) ≤ ps1,r1(wT ) ≤ fu,ε((s2, r2),wT ), a.s.;

(C3) {∑∞
j=0

∫
0<w1<···<wj<T [f 1/2

u,ε ((s2, r2), wj )−f
1/2
l,ε ((s2, r2),wj )]2 dwj }1/2

≤ ε.

For ε > 0, the ε-entropy of �2
κ,q,n with respect to ρ�2

κ,q,n
is defined to be

H(ε,�2
κ,q,n, ρ�2

κ,q,n
)

= log[min{card(�2
κ,q,n(ε)) :�2

κ,q,n(ε) is a ε-net for �2
κ,q,n

with respect to the metric ρ�2
κ,q,n

}].
The ε-entropies of �κ,q and �κ,q,n are defined in a similar manner. The ε-entropy
of Fκ,q,n with bracketing with respect to the metric ρFκ,q,n is defined to be

HB(ε,Fκ,q,n, ρFκ,q,n)

= log[min{card(�2
κ,q,n(ε)) : (C1), (C2) and (C3) are satisfied}].
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We observe from Kolmogorov and Tihomirov [19], page 308, and Dudley [13],
page 11, that the ε-entropy of �2

κ,q,n satisfies

H(ε,�2
κ,q,n, ρ�2

κ,q,n
) ≤ 2H(ε/2,�κ,q , ρ�κ,q ) ≤ 2(q+1)/qε−1/qCκ,q ,(57)

where Cκ,q is a constant depending only on κ and q . Next, let f :N → R be a
nonnegative function such that

∑∞
j=0

∫
0≤w1<···<wj<T f (wj ) dwj < ∞. We follow

Wong and Shen [30] in defining Zf (wT ) = log[f (wT )/ps,r (wT )], where s is the
true free firing rate function and r the true recovery function. For τ > 0, we write

Z̃f (wT ) =
{

Zf (wT ), if Zf (wT ) ≥ −τ ,
−τ, if Zf (wT ) < −τ .

Let Z̃κ,q,n = {Z̃ps1,r1
:ps1,r1 ∈ Fκ,q,n} be the space of truncated log-likelihood ra-

tios [based on one (spike train) observation]. Define HB(ε, Z̃κ,q,n, ρZ̃κ,q,n
) to be

the ε-entropy of Z̃κ,q,n with bracketing with respect to the metric

ρZ̃κ,q,n
(Z̃ps1,r1

, Z̃ps2,r2
) = {

Es,r{[Z̃ps1,r1
(wT ) − Z̃ps2,r2

(wT )]2}}1/2
.(58)

In this section, Es,r and Ps,r denote expectation and probability, respectively, when
the true free firing rate function is s and the recovery function is r . We observe
from Lemma 9 below that

HB(ε, Z̃κ,q,n, ρZ̃κ,q,n
) ≤ C∗

κ,q

(
2eτ/2

ε

)1/q

.(59)

4.1. Main results. Suppose we have n i.i.d. copies of N(t), t ∈ [0, T ), with
conditional intensity λ1, as given by (1). Let these n copies be denoted by Ni(t),
t ∈ [0, T ), the spike times be written as 0 < w

(i)
1 < · · · < w

(i)
Ni(T ) < T and w(i)

T =
{w(i)

1 , . . . ,w
(i)
Ni(T )}, i = 1, . . . , n.

PROPOSITION 3. Let 0 < ε < 1 and C∗
κ,q be as in (59). Suppose that∫ √

2ε

ε2/28

[
C∗

κ,q

(
10

x

)1/q]1/2

dx ≤ n1/2ε2

213
√

2
.(60)

Then, letting P ∗
s,r denote the outer measure corresponding to the density ps,r , we

have

P ∗
s,r

{
sup

‖p1/2
s1,r1−p

1/2
s,r ‖2≥ε,ps1,r1∈Fκ,q,n

n∏
i=1

ps1,r1(w
(i)
T )

ps,r (w
(i)
T )

≥ e−nε2/8

}
≤ 4 exp

[
− nε2

27(250)

]
.

The above proposition is motivated by (and the proof is similar to) Theorem 1
of Wong and Shen [30] (see also Theorem 3 of Shen and Wong [25]). As such, we
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shall refer the reader to Chan and Loh [6] for the proof. Next, we define nonnega-
tive functions s†

n and r†
n on t ∈ [0, T ) by√

s
†
n(t) =√

s(t) + δn,

√
r

†
n(t) =√

r(t) + δn.(61)

Since s, r ∈ �κ,q , we have s†
n, r†

n ∈ �κ,q,n and p
s

†
n,r

†
n

∈ Fκ,q,n for sufficiently
large n. We further observe from Lemma 8 of Wong and Shen [30] that

0 ≤ δ†
n := Es,r(ps,rp

−1
s

†
n,r

†
n

− 1) ≤ C∗
κδn,

where C∗
κ is a constant depending only on κ .

DEFINITION. Let ηn be a sequence of positive numbers converging to 0. We
call an estimator pŝn,r̂n :N n → R

+ an ηn-sieve MLE of ps,r if (ŝn, r̂n) ∈ �2
κ,q,n

and

n−1
n∑

i=1

log
[
pŝn,r̂n

(
w(i)

T

)]≥ sup
ps1,r1∈Fκ,q,n

n−1
n∑

i=1

log
[
ps1,r1

(
w(i)

T

)]− ηn.

ŝn and r̂n are called ηn-sieve MLE’s of s and r , respectively. If δn = 0
for n = 1,2, . . . , then an ηn-sieve MLE is more simply called an ηn-MLE.

THEOREM 3. Let εn > 0 be the smallest value of ε satisfying (60), q > 1/2
and 0 < ηn < ε2

n/16. If pŝn,r̂n is an ηn-MLE of ps,r , then

Es,r‖p1/2
ŝn,r̂n

− p1/2
s,r ‖2 = O

(
n−q/(2q+1)) as n → ∞.

We now assume that there exists a refractory period in which the neuron cannot
discharge another spike after a spike has been fired (cf. Brillinger [3] and Johnson
and Swami [17]).

THEOREM 4. Let εn > 0 be the smallest value of ε satisfying (60), q > 1/2,
0 < ηn < ε2

n/16 and δn = n−α for some constant α ∈ (2q/(2q + 1),1). Suppose
that there exists a constant θ > 0 such that r(u) = 0,∀u ∈ [0, θ ] and ŝn, r̂n are
ηn-sieve MLE’s of s, r , respectively. Then

Es,r

[∫ T

0
|ŝn(t) − s(t)|dt

]
= O

(
n−q/(2q+1) log1/2 n

)
as n → ∞.

If, in addition, s(t) > 0 for all t ∈ [0, T ], then

Es,r

[∫ T ∗

0
|r̂n(u) − r(u)|du

]
= O

(
n−q/(2q+1) log1/2 n

)
as n → ∞,

where T ∗ is any constant satisfying 0 < T ∗ < T .
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We end this subsection by computing lower bounds on the convergence rate of
estimators for s and r based on N1(t), . . . ,Nn(t), t ∈ [0, T ). For 0 < θ < T , define

�θ,κ,q = �κ,q ∩ {f = g2 :g ∈ Cq0[0, T ), g(t) = 0 ∀t ∈ [0, θ ]}.
Theorem 5 below is motivated by the lower bound results of Yatracos [31].

THEOREM 5. Let q > 0 and θ, T ∗ be constants satisfying 0 < θ < T ∗ < T .
Suppose that s̃n and r̃n are estimators for s and r , respectively, based on N1(t), . . .,
Nn(t), t ∈ [0, T ). Then there exist strictly positive constants Cκ,q , Cθ,κ,q such that

sup
{
Es,r

[∫ T

0
|s̃n(t) − s(t)|dt

]
: s ∈ �κ,q , r ∈ �θ,κ,q

}
≥ Cκ,qn

−q/(2q+1),

sup
{
Es,r

[∫ T ∗

0
|r̃n(u) − r(u)|du

]
: s ∈ �κ,q , r ∈ �θ,κ,q

}
≥ Cθ,κ,qn

−q/(2q+1).

4.2. Proofs. In this subsection, we shall sketch the proofs of Theorems 3,
4 and 5. We refer the reader to Chan and Loh [6] for the details.

LEMMA 9. Let ε > 0 and Z̃κ,q,n be as in (58). Then

HB(ε, Z̃κ,q,n, ρZ̃κ,q,n
) ≤ HB

(
ε

2eτ/2 ,Fκ,q,n, ρFκ,q,n

)
≤ C∗

κ,q

(
2eτ/2

ε

)1/q

,

where C∗
κ,q is a constant depending only on κ and q .

PROOF. The first inequality follows from Lemma 3 of Wong and Shen [30].
The second inequality follows from (57) and Lemma 2.1 of Ossiander [24]. �

PROOF OF THEOREM 3. We observe that δ†
n = 0 for n = 1,2, . . . (from the

definition of an ηn-MLE) and that εn is exactly of order n−q/(2q+1) as n → ∞. We
further observe from Proposition 3 and Markov’s inequality that

Ps,r(‖p1/2
ŝn,r̂n

− p1/2
s,r ‖2 ≥ εn)

≤ P ∗
s,r

{
sup

‖p1/2
s1,r1−p

1/2
s,r ‖2≥εn,ps1,r1∈Fκ,q,n

n∏
i=1

ps1,r1(w
(i)
T )

p
s

†
n,r

†
n
(w(i)

T )
≥ e−nηn

}

≤ P ∗
s,r

{
sup

‖p1/2
s1,r1−p

1/2
s,r ‖2≥εn,ps1,r1∈Fκ,q,n

n∏
i=1

ps1,r1(w
(i)
T )

p
s

†
n,r

†
n
(w(i)

T )
≥ e−nε2

n/16

}

≤ P ∗
s,r

{
sup

‖p1/2
s1,r1−p

1/2
s,r ‖2≥εn,ps1,r1∈Fκ,q,n

n∏
i=1

ps1,r1(w
(i)
T )

ps,r (w
(i)
T )

≥ e−nε2
n/8

}

+ Ps,r

{
n∏

i=1

ps,r (w
(i)
T )

p
s

†
n,r

†
n
(w(i)

T )
≥ enε2

n/16

}
≤ 4 exp

[
− nε2

n

27(250)

]
+ exp

(
−nε2

n

16

)
.
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We conclude that as n → ∞,

Es,r‖p1/2
ŝn,r̂n

− p1/2
s,r ‖2 ≤ εn + 8 exp

[
− nε2

n

27(250)

]
+ 2 exp

(
−nε2

n

16

)
= O

(
n−q/(2q+1)). �

We preface the proof of Theorem 4 by Lemmas 10 and 11, whose proofs can be
found in Chan and Loh [6].

LEMMA 10. Let εn > 0 be the smallest value of ε satisfying (60) and 0 <

ηn < ε2
n/16 ≤ (1 − e−1)2/32. If r(u) = 0,∀u ∈ [0, θ ], and pŝn,r̂n is an ηn-sieve

MLE of ps,r , then

Ps,r

{
nθ∑

j=0

∫
0<w1<···<wj<T

ps,r (wj ) log
[

ps,r (wj )

pŝn,r̂n(wj )

]
dwj

>

[
6 + 2 log(2)

(1 − e−1)2 + 8 max
{

1, log
(

eκ̄4(κ̄4+1)T /2

εnδ
2nθ
n

)}]
ε2
n

}

≤ 4 exp
[
− nε2

n

27(250)

]
+ exp

[
−n

(
ε2
n

16
− δ†

n

)]
,

where κ̄ = κ0 ∨ 1, nθ = �T/θ�.

LEMMA 11. Let N(t), t ∈ [0, T ), be a counting process with conditional in-
tensity λ1, as in (1). Suppose r(u) = 0, ∀u ∈ [0, θ ], and

ξ(t) := lim
δ↓0

1

δ
Ps,r [N(t + δ) − N(t) = 1] ∀t ∈ [0, T ).(62)

Then for s1, r1 ∈ �κ,q,n, we have

nθ∑
j=0

∫
0<w1<···<wj<T

ps,r (wj ) log
[

ps,r (wj )

ps1,r1(wj )

]
dwj

=
∫ T

0

{
s1(t)

s(t)
− 1 − log

[
s1(t)

s(t)

]}
s(t)e− ∫ t

0 s(u)du dt

+
∫ T

0

∫ t

0

{
s1(t)r1(u)

s(t)r(u)
− 1 − log

[
s1(t)r1(u)

s(t)r(u)

]}
× ξ(t − u)s(t)r(u)e− ∫ t

t−u s(v)r(v−t+u)dv dudt.
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Also, if
∑nθ

j=0

∫
0<w1<···<wj<T ps,r (wj ) log[ps,r (wj )/ps1,r1(wj )]dwj ≤ 1, then

nθ∑
j=0

∫
0<w1<···<wj<T

ps,r (wj ) log
[

ps,r (wj )

ps1,r1(wj )

]
dwj

≥ min
{

1

20
∫ T

0 s(t)e− ∫ t
0 s(u) du dt

,
1

200

}[∫ T

0
|s1(t) − s(t)|e− ∫ t

0 s(u) du dt

]2

and
nθ∑

j=0

∫
0<w1<···<wj<T

ps,r (wj ) log
[

ps,r (wj )

ps1,r1(wj )

]
dwj

≥ min
{

1

20
∫ T

0
∫ t

0 ξ(t − u)s(t)r(u)e− ∫ t
t−u s(v)r(v−t+u)dv dudt

,
1

200

}

×
[∫ T

0

∫ t

0
|s1(t)r1(u) − s(t)r(u)|ξ(t − u)e− ∫ t

t−u s(v)r(v−t+u)dv dudt

]2

.

PROOF OF THEOREM 4. We observe from Lemmas 10 and 11 that

Ps,r

{∫ T

0
|ŝn(t) − s(t)|e− ∫ t

0 s(u) du dt

≤
{

max
{

20
∫ T

0
s(t)e− ∫ t

0 s(u) du dt,200
}

×
[
6 + 2 log(2)

(1 − e−1)2 + 8 max
{

1, log
(

eκ̄4(κ̄4+1)T /2

εnδ
2nθ
n

)}]
ε2
n

}1/2}

≥ 1 − 4 exp
[
− nε2

n

27(250)

]
− exp

[
−n

(
ε2
n

16
− δ†

n

)]
.

This implies that

Es,r

[∫ T

0
|ŝn(t) − s(t)|e− ∫ t

0 s(u) du dt

]

≤
{

max
{

20
∫ T

0
s(t)e− ∫ t

0 s(u) du dt,200
}

×
[
6 + 2 log(2)

(1 − e−1)2 + 8 max
{

1, log
(

eκ̄4(κ̄4+1)T /2

εnδ
2nθ
n

)}]
ε2
n

}1/2

+ κ2
0T

{
4 exp

[
− nε2

n

27(250)

]
+ exp

[
−n

(
ε2
n

16
− δ†

n

)]}
and consequently, Es,r [∫ T

0 |ŝn(t) − s(t)|dt] = O(n−q/(2q+1) log1/2 n) as n → ∞,
since εn is exactly of the order n−q/(2q+1). Next, we assume, in addition, that
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s(t) > 0 for all t ∈ [0, T ]. Let ξ(t), t ∈ [0, T ), be as in (62). Since s ∈ �κ,q and

s(t)e− ∫ t
0 s(u)du ≤ ξ(t) ≤ max{s(t), s(t)r(u) :u ∈ [0, T )},

we have 0 < min0≤t<T ξ(t) ≤ max0≤t<T ξ(t) ≤ κ̄4. Thus, as in the previous case,

Es,r

[∫ T

0

∫ t

0
|ŝn(t)r̂n(u) − s(t)r(u)|dudt

]

≤
{

max{20κ̄8T 2e2κ̄4T ,200e2κ̄4T }
min0≤t<T ξ2(t)

×
[
6 + 2 log(2)

(1 − e−1)2 + 8 max
{

1, log
(

eκ̄4(κ̄4+1)T /2

εnδ
2nθ
n

)}]
ε2
n

}1/2

+ κ̄8T 2eκ̄4T

min0≤t<T ξ(t)

{
4 exp

[
− nε2

n

27(250)

]
+ exp

[
−n

(
ε2
n

16
− δ†

n

)]}
,

which is of order n−q/(2q+1) log1/2 n as n → ∞. Since[
min

0≤t<T
s(t)

]
Es,r

[∫ T

0
|r̂n(u) − r(u)|(T − u)du

]

≤ κ̄2T Es,r

[∫ T

0
|ŝn(t) − s(t)|dt

]

+ Es,r

[∫ T

0

∫ t

0
|ŝn(t)r̂n(u) − s(t)r(u)|dudt

]
,

we conclude that Es,r [∫ T ∗
0 |r̂n(u)− r(u)|du] = O(n−q/(2q+1) log1/2 n) as n → ∞.

�

We precede the proof of Theorem 5 with the following lemma.

LEMMA 12. Let �̃κ,q,n ⊆ �κ,q such that card(�̃κ,q,n) < ∞. Suppose that
s̃n, r̃n are estimators for s, r , respectively, based on N1(t), . . . ,Nn(t), t ∈ [0, T ).
Then

sup
{
Es,r

[∫ T

0
|s̃n(t) − s(t)|dt

]
: s ∈ �κ,q , r ∈ �θ,κ,q

}

≥ 1

2
inf
{∫ T

0
|s1(t) − s2(t)|dt : s1 �= s2, s1, s2 ∈ �̃κ,q,n

}

×
{

1 − 1

log[card(�̃κ,q,n) − 1]

×
[

log 2 + 1

[card(�̃κ,q,n)]2
(63)
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× ∑
s1,s2∈�̃κ,q,n

n∑
i=1

Es1,r1 log
ps1,r1(w

(i)
T )

ps2,r1(w
(i)
T )

]}
,

for any r1 ∈ �θ,κ,q . Next, let T ∗ be a constant satisfying θ < T ∗ < T and
�̃θ,T ∗,κ,q,n ⊂ �θ,κ,q such that card (�̃θ,T ∗,κ,q,n) < ∞ and r1(u) = r2(u), u ∈
[T ∗, T ), ∀r1, r2 ∈ �̃θ,T ∗,κ,q,n. Then

sup
{
Es,r

[∫ T ∗

0
|r̃n(t) − r(t)|dt

]
: s ∈ �κ,q , r ∈ �θ,κ,q

}

≥ 1

2
inf
{∫ T ∗

0
|r1(t) − r2(t)|dt : r1 �= r2, r1, r2 ∈ �̃θ,T ∗,κ,q,n

}

×
{

1 − 1

log[card(�̃θ,T ∗,κ,q,n) − 1]
(64)

×
[

log 2 + 1

[card(�̃θ,T ∗,κ,q,n)]2

× ∑
r1,r2∈�̃θ,T ∗,κ,q,n

n∑
i=1

Es1,r1 log
ps1,r1(w

(i)
T )

ps1,r2(w
(i)
T )

]}
,

for any s1 ∈ �κ,q .

PROOF. Following Yatracos [31], page 1183, we observe that

sup
{
Es,r

[∫ T

0
|s̃n(t) − s(t)|dt

]
: s ∈ �κ,q , r ∈ �θ,κ,q

}

≥ 1

card(�̃κ,q,n)

∑
s1∈�̃κ,q,n

Es1,r1

[∫ T

0
|s̃n(t) − s1(t)|dt

]
,(65)

for any r1 ∈ �θ,κ,q . Define s̃∗
n ∈ �̃κ,q,n such that∫ T

0
|s̃n(t) − s̃∗

n(t)|dt = inf
{∫ T

0
|s̃n(t) − s1(t)|dt : s1 ∈ �̃κ,q,n

}
.

Then, for s1 ∈ �̃κ,q,n, we have
∫ T

0 |s̃∗
n(t) − s1(t)|dt ≤ 2

∫ T
0 |s̃n(t) − s1(t)|dt . So∑

s1∈�̃κ,q,n

Es1,r1

[∫ T

0
|s̃n(t) − s1(t)|dt

]

≥ 1

2
inf
{∫ T

0
|s1(t) − s2(t)|dt : s1 �= s2, s1, s2 ∈ �̃κ,q,n

}
(66)

× ∑
s1∈�̃κ,q,n

Ps1,r1(s̃
∗
n �= s1).
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We observe from Fano’s lemma (cf. Ibragimov and Has’minskii [16], pages
323–325, or Yatracos [31], page 1182) that

1

card(�̃κ,q,n)

∑
s1∈�̃κ,q,n

Ps1,r1(s̃
∗
n �= s1)

≥ 1 − 1

log[card(�̃κ,q,n) − 1]
(67)

×
{

log 2 + 1

[card(�̃κ,q,n)]2

× ∑
s1,s2∈�̃κ,q,n

Es1,r1 log

[
n∏

i=1

ps1,r1(w
(i)
T )

ps2,r1(w
(i)
T )

]}
.

(63) now follows from (65), (66) and (67). (64) is proved in a similar manner. �

PROOF OF THEOREM 5. Let {bn > 0 :n = 1,2, . . .} be a sequence of constants
that tend to 0 as n → ∞ and such that each b−1

n is an integer. For i = 1, . . . , b−1
n ,

define φi,n : [0, T ) → R by

φi,n(t) =
⎧⎨⎩ (bnT )q

[
1 −

(
2t − (2i − 1)bnT

bnT

)2]q

, if (i − 1)bnT ≤ t < ibnT ,

0, otherwise.

Writing q = q0 + q1, where q0 is a nonnegative integer and 0 < q1 ≤ 1, we have

lim
n→∞ max

t∈[0,T )

∣∣∣∣ dj

dtj
φi,n(t)

∣∣∣∣< ∞ ∀j = 0, . . . , q0,

lim
n→∞ max

t1 �=t2∈[0,T )

∣∣∣∣ dq0

dtq0
φi,n(t1) − dq0

dtq0
φi,n(t2)

∣∣∣∣/|t1 − t2|q1 < ∞.

Let �a,n denote functions of the form a[1 +∑b−1
n

i=1 γiφi,n(t)]2, ∀t ∈ [0, T ), where
γi = 0 or 1 and a > 0 is a suitably small constant such that �a,n ⊂ �κ,q . If s1, s2 ∈
�a,n where s1 �= s2, then writing

s1(t) = a

[
1 +

b−1
n∑

i=1

γ1,iφi,n(t)

]2

, s2(t) = a

[
1 +

b−1
n∑

i=1

γ2,iφi,n(t)

]2

,(68)

with γ1,i , γ2,i taking values 0 or 1, we have∫ T

0
|s1(t) − s2(t)|dt ≥ a

∫ bnT

0
[2φ1,n(t) + φ2

1,n(t)]dt

= a(bnT )q+1Jq + a(bnT )2q+1J2q

2
,
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where Jl = ∫ 1
−1(1 − y2)l dy > 0, ∀l > 0. Also, it follows from (68) that∣∣∣∣s1(t) − s2(t)

s1(t)

∣∣∣∣≤ 2aφi,n(t) + aφ2
i,n(t) ≤ 2a(bnT )q + a(bnT )2q ∀t ∈ [0, T ).

Let r1 ∈ �θ,κ,q . Now, using Lemma 11,

Es1,r1 log
[
ps1,r1(w

(i)
T )

ps2,r1(w
(i)
T )

]
≤ 1

2

∫ T

0

(
s1(t) − s2(t)

s1(t)

)2

s1(t)e
− ∫ t

0 s1(u) du dt

+ 1

2

∫ T

0

∫ t

0

(
s1(t) − s2(t)

s1(t)

)2

ξ(t − u)s1(t)r1(t)

× e− ∫ t
t−u s1(v)r1(v−t+u)dv dudt

≤ a2(bnT )2q

2
[2 + (bnT )q]2(1 + κ̄8T 2),

where κ̄ = κ0 ∨ 1. Finally, we observe from Proposition 3.8 of Birgé [2] that there
exists a subset �̃κ,q,n of �a,n such that∫ T

0
|s1(t) − s2(t)|dt ≥ 1

8bn

[
a(bnT )q+1Jq + a(bnT )2q+1J2q

2

]
∀s1 �= s2 ∈ �̃κ,q,n,

and log[card(�̃κ,q,n) − 1] > 0.316/bn. Consequently, it follows from (63) that

sup
{
Es,r

[∫ T

0
|s̃n(t) − s(t)|dt

]
: s ∈ �κ,q , r ∈ �θ,κ,q

}

≥ 1

16bn

[
a(bnT )q+1Jq + a(bnT )2q+1J2q

2

]

×
{

1 − bn

0.316

[
log 2 + a2n(bnT )2q

2
[2 + (bnT )q]2(1 + κ̄8T 2)

]}
.

Thus, we conclude that there exist strictly positive constants C0 and Cκ,q (depend-
ing only on κ and q) such that by taking bn = 1/�C0n

1/(2q+1)�, we have

sup
{
Es,r

[∫ T

0
|s̃n(t) − s(t)|dt

]
: s ∈ �κ,q , r ∈ �θ,κ,q

}
≥ Cκ,qn

−q/(2q+1).

The proof of the second part of Theorem 5 is similar and is omitted. �
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