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SIMULTANEOUS ADAPTATION TO THE MARGIN AND TO
COMPLEXITY IN CLASSIFICATION

BY GUILLAUME LECUÉ

Université Paris VI

We consider the problem of adaptation to the margin and to complex-
ity in binary classification. We suggest an exponential weighting aggre-
gation scheme. We use this aggregation procedure to construct classifiers
which adapt automatically to margin and complexity. Two main examples
are worked out in which adaptivity is achieved in frameworks proposed by
Steinwart and Scovel [Learning Theory. Lecture Notes in Comput. Sci. 3559
(2005) 279–294. Springer, Berlin; Ann. Statist. 35 (2007) 575–607] and Tsy-
bakov [Ann. Statist. 32 (2004) 135–166]. Adaptive schemes, like ERM or
penalized ERM, usually involve a minimization step. This is not the case for
our procedure.

1. Introduction. Let (X,A) be a measurable space. Denote by Dn a sample
((Xi, Yi))i=1,...,n of i.i.d. random pairs of observations where Xi ∈ X and Yi ∈
{−1,1}. Denote by π the joint distribution of (Xi, Yi) on X × {−1,1}, and P X

the marginal distribution of Xi . Let (X,Y ) be a random pair distributed according
to π and independent of the data, and let the component X of the pair be observed.
The problem of statistical learning in classification (pattern recognition) consists
of predicting the corresponding value Y ∈ {−1,1}.

A prediction rule is a measurable function f :X �−→ {−1,1}. The misclassifi-
cation error associated with f is

R(f ) = P(Y �= f (X)).

It is well known (see, e.g., Devroye, Györfi and Lugosi [15]) that

min
f

R(f ) = R(f ∗) = R∗, where f ∗(x) = sign
(
2η(x) − 1

)
and η is the a posteriori probability defined by

η(x) = P(Y = 1|X = x),

for all x ∈ X [where sign(y) denotes the sign of y ∈ R with the convention
sign(0) = 1]. The prediction rule f ∗ is called the Bayes rule and R∗ is called the
Bayes risk. A classifier is a function, f̂n = f̂n(X,Dn), measurable with respect to

Received August 2005; revised October 2006.
AMS 2000 subject classifications. Primary 62G05; secondary 62H30, 68T10.
Key words and phrases. Classification, statistical learning, fast rates of convergence, excess risk,

aggregation, margin, complexity of classes of sets, SVM.

1698

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/009053607000000055
http://www.imstat.org
http://www.ams.org/msc/


AGGREGATION OF CLASSIFIERS 1699

Dn and X with values in {−1,1} that assigns to every sample Dn a prediction rule
f̂n(·,Dn) :X �−→ {−1,1}. A key characteristic of f̂n is the generalization error
E[R(f̂n)], where

R(f̂n) = P
(
Y �= f̂n(X)|Dn

)
.

The aim of statistical learning is to construct a classifier f̂n such that E[R(f̂n)] is
as close to R∗ as possible. Accuracy of a classifier f̂n is measured by the value
E[R(f̂n)] − R∗, called the excess risk of f̂n.

The classical approach due to Vapnik and Chervonenkis (see, e.g., [15]) consists
of searching for a classifier that minimizes the empirical risk

Rn(f ) = 1

n

n∑
i=1

1(Yif (Xi)≤0),(1.1)

over all prediction rules f in a source class F , where 1A denotes the indicator
of the set A. Minimizing the empirical risk (1.1) is computationally intractable
for many sets F of classifiers, because this functional is neither convex nor con-
tinuous. Nevertheless, we might base a tractable estimation procedure on mini-
mization of a convex surrogate φ for the loss (Cortes and Vapnik [13], Freund and
Schapire [17], Lugosi and Vayatis [28], Friedman, Hastie and Tibshirani [18] and
Bühlmann and Yu [7]). It has recently been shown that these classification meth-
ods often give classifiers with small Bayes risk (Blanchard, Lugosi and Vayatis [5]
and Steinwart and Scovel [38, 39]). The main idea is that the sign of the mini-
mizer of A(φ)(f ) = E[φ(Yf (X))], the φ-risk, where φ is a convex loss function
and f a real-valued function, is in many cases equal to the Bayes classifier f ∗.
Therefore, minimizing A

(φ)
n (f ) = 1

n

∑n
i=1 φ(Yif (Xi)), the empirical φ-risk, and

taking f̂n = sign(F̂n) where F̂n ∈ Arg minf ∈F A
(φ)
n (f ), leads to an approximation

for f ∗. Here, Arg minf ∈F P(f ), for a functional P , denotes the set of all f ∈ F
such that P(f ) = minf ∈F P(f ). Schapire, Freund, Bartlett and Lee [36], Lugosi
and Vayatis [28], Blanchard, Lugosi and Vayatis [5], Zhang [48], Steinwart and
Scovel [38, 39] and Bartlett, Jordan and McAuliffe [2] give results on statistical
properties of classifiers obtained by minimization of such a convex risk. A wide
variety of classification methods in machine learning are based on this idea, in par-
ticular, on using the convex loss associated with support vector machines (Cortes
and Vapnik [13] and Schölkopf and Smola [37]),

φ(x) = (1 − x)+,

called the hinge-loss, where z+ = max(0, z) denotes the positive part of z ∈ R.
Denote by

A(f ) = E
[(

1 − Yf (X)
)
+

]
the hinge risk of f :X �−→ R and set

A∗ = inf
f

A(f ),(1.2)
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where the infimum is taken over all measurable functions f . We will call A∗ the
optimal hinge risk. One may verify that the Bayes rule f ∗ attains the infimum
in (1.2) and Lin [27] and Zhang [48] have shown that

R(f ) − R∗ ≤ A(f ) − A∗,(1.3)

for all measurable functions f with values in R. Thus, minimization of A(f )−A∗,
the excess hinge risk, provides a reasonable alternative for minimization of excess
risk.

The difficulty of classification is closely related to the behavior of the a poste-
riori probability η. Mammen and Tsybakov [31], for the problem of discriminant
analysis which is close to our classification problem, and Tsybakov [42] have in-
troduced an assumption on the closeness of η to 1/2, called the margin assump-
tion (or low noise assumption). Under this assumption, the risk of a minimizer of
the empirical risk over some fixed class F converges to the minimum risk over the
class with a fast rate, namely, faster than n−1/2. In fact, with no assumption on the
joint distribution π , the convergence rate of the excess risk is not faster than n−1/2

(cf. Devroye, Györfi and Lugosi [15]). However, under the margin assumption,
it can be as fast as n−1. Minimizing a penalized empirical hinge risk, under this
assumption, also leads to fast convergence rates (Blanchard, Bousquet and Mas-
sart [4], Steinwart and Scovel [38, 39]). Massart [32], Massart and Nédélec [34]
and Massart [33] also obtain results that can lead to fast rates in classification using
penalized empirical risk in the special case of a low noise assumption. Audibert
and Tsybakov [1] show that fast rates can be achieved for plug-in classifiers.

In this paper we consider the problem of adaptive classification. Mammen and
Tsybakov [31] have shown that fast rates depend on both the margin parameter
κ and complexity ρ of the class of candidate sets for {x ∈ X :η(x) ≥ 1/2}. Their
results were nonadaptive, supposing that κ and ρ are known. Tsybakov [42] sug-
gested an adaptive classifier that attains fast optimal rates, up to a logarithmic fac-
tor, without knowing κ and ρ. Tsybakov and van de Geer [43] suggest a penalized
empirical risk minimization classifier that adaptively attains, up to a logarithmic
factor, the same fast optimal rates of convergence. Tarigan and van de Geer [40] ex-
tend this result to l1-penalized empirical hinge risk minimization. Koltchinskii [23]
uses Rademacher averages to get a similar result without the logarithmic factor.
Related work is that of Koltchinskii [22], Koltchinskii and Panchenko [24] and
Lugosi and Wegkamp [29].

Note that the existing papers on fast rates either suggest classifiers that can be
easily implemented but are nonadaptive, or adaptive schemes that are hard to apply
in practice and/or do not achieve the minimax rates (they pay a price for adaptiv-
ity). The aim of the present paper is to suggest and to analyze an exponential
weighting aggregation scheme which does not require a minimization step, unlike
other adaptation schemes such as ERM (Empirical Risk Minimization) and penal-
ized ERM, and which does not pay a price for adaptivity. This scheme is used first
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to construct minimax adaptive classifiers (cf. Theorem 3.1) and second to construct
easily implemented classifiers that are adaptive simultaneously to complexity and
to the margin parameters and which achieve the fast rates.

The paper is organized as follows. In Section 2 we prove an oracle inequality
which corresponds to the adaptation step of the procedure that we suggest. In Sec-
tion 3 we apply the oracle inequality to two types of classifiers, one of which is
constructed by minimization on sieves (as in Tsybakov [42]), and which gives an
adaptive classifier which attains fast optimal rates without a logarithmic factor, and
the other which is based on support vector machines (SVM), following Steinwart
and Scovel [38, 39]. The latter is realized as a computationally feasible proce-
dure and it adaptively attains fast rates of convergence. In particular, we suggest a
method of adaptive choice of the parameter of L1-SVM classifiers with Gaussian
RBF kernels. Proofs are given in Section 4.

2. Oracle inequalities. In this section we give an oracle inequality showing
that a specifically defined convex combination of classifiers mimics the best clas-
sifier in a given finite set.

Suppose that we have M ≥ 2 different classifiers f̂1, . . . , f̂M taking values
in {−1,1}. The problem of model selection type aggregation, as studied in Ne-
mirovski [35], Yang [46, 47], Catoni [11] and Tsybakov [41], consists in construc-
tion of a new classifier f̃n (called aggregate) which is approximatively at least as
good, with respect to the excess risk, as the best among f̂1, . . . , f̂M . In most of
these papers the aggregation is based on a splitting of the sample into two inde-
pendent subsamples D1

m and D2
l of sizes m and l, respectively, where m � l and

m + l = n. The first subsample D1
m is used to construct the classifiers f̂1, . . . , f̂M

and the second subsample D2
l is used to aggregate them, that is, to construct a

new classifier that mimics in a certain sense the behavior of the best among the
classifiers f̂i .

In this section we will not consider the sample splitting and will concen-
trate only on the construction of aggregates (following Nemirovski [35], Judit-
sky and Nemirovski [20], Tsybakov [41], Birgé [3] and Bunea, Tsybakov and
Wegkamp [10]). Thus, the first subsample is fixed, and instead of classifiers
f̂1, . . . , f̂M , we have fixed prediction rules f1, . . . , fM . Rather than work with a
part of the initial sample, we will suppose, for notational simplicity, that the whole
sample Dn of size n is used for the aggregation step instead of a subsample D2

l .
Our procedure uses exponential weights. The idea of exponential weights is

well known; see, for example, Buckland, Burnham and Augustin [8], Yang [47],
Catoni [11], Hartigan [19] and Leung and Barron [26]. This procedure has been
widely used in on-line prediction; see, for example, Vovk [45] and Cesa-Bianchi
and Lugosi [12]. We consider the following aggregate which is a convex combina-
tion with exponential weights of M classifiers:

f̃n =
M∑

j=1

w
(n)
j fj ,(2.1)
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where

w
(n)
j = exp(

∑n
i=1 Yifj (Xi))∑M

k=1 exp(
∑n

i=1 Yifk(Xi))
∀j = 1, . . . ,M.(2.2)

Since f1, . . . , fM take their values in {−1,1}, we have

w
(n)
j = exp(−nAn(fj ))∑M

k=1 exp(−nAn(fk))
,(2.3)

for all j ∈ {1, . . . ,M}, where

An(f ) = 1

n

n∑
i=1

(
1 − Yif (Xi)

)
+(2.4)

is the empirical analog of the hinge risk. Since An(fj ) = 2Rn(fj ) for all
j = 1, . . . ,M , these weights can be written in terms of the empirical risks of the
fj ’s,

w
(n)
j = exp(−2nRn(fj ))∑M

k=1 exp(−2nRn(fk))
∀j = 1, . . . ,M.

The aggregation procedure defined by (2.1) with weights (2.3) does not need
any minimization algorithm in contrast to the ERM procedure. Moreover, the fol-
lowing proposition shows that this exponential weighting aggregation scheme has
theoretical properties similar to those of the ERM procedure, up to the resid-
ual (logM)/n. In what follows, the aggregation procedure defined by (2.1) with
exponential weights (2.3) is called the Aggregation procedure with Exponential
Weights and is denoted by AEW.

PROPOSITION 2.1. Let M ≥ 2 be an integer and f1, . . . , fM be M prediction

rules on X. For any integers n, the AEW procedure f̃n satisfies

An(f̃n) ≤ min
i=1,...,M

An(fi) + log(M)

n
.(2.5)

Obviously, inequality (2.5) is satisfied when f̃n is the ERM aggregate defined by

f̃n ∈ Arg min
f ∈{f1,...,fM }Rn(f ).

It is a convex combination of fj ’s with weights wj = 1 for one j ∈ Arg minj Rn(fj )

and 0 otherwise.
We will use the following assumption (cf. Mammen and Tsybakov [31] and

Tsybakov [42]) that will allow us to get fast learning rates for the classifiers that
we aggregate.
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ASSUMPTION (MA1) [Margin (or low noise) assumption]. The probability
distribution π on the space X×{−1,1} satisfies the margin assumption (MA1)(κ)
with margin parameter 1 ≤ κ < +∞ if there exists c > 0 such that

E{|f (X) − f ∗(X)|} ≤ c
(
R(f ) − R∗)1/κ

,(2.6)

for all measurable functions f with values in {−1,1}.
We first give the following proposition which is valid not necessarily for the

particular choice of weights given in (2.2).

PROPOSITION 2.2. Let Assumption (MA1)(κ) hold with some 1 ≤ κ < +∞.
Assume that there exist two positive numbers a ≥ 1, b such that M ≥ anb. Let
w1, . . . ,wM be M statistics measurable w.r.t. the sample Dn, such that wj ≥ 0, for
all j = 1, . . . ,M , and

∑M
j=1 wj = 1 (π⊗n-a.s.). Define f̃n = ∑M

j=1 wjfj , where
f1, . . . , fM are prediction rules. There exists a constant C0 > 0 such that(

1 − (logM)−1/4)
E[A(f̃n) − A∗]

≤ E[An(f̃n) − An(f
∗)] + C0n

−κ/(2κ−1)(logM)7/4,

where f ∗ is the Bayes rule. For instance, we can take C0 = 10 + ca−1/(2b) +
a−1/b exp[(b(8c/6)2) ∨ (((8c/3) ∨ 1)/b)2].

As a consequence, we obtain the following oracle inequality.

THEOREM 2.3. Let Assumption (MA1)(κ) hold with some 1 ≤ κ < +∞. As-
sume that there exist two positive numbers a ≥ 1, b such that M ≥ anb. Let f̃n

satisfy (2.5), for instance, the AEW or the ERM procedure. Then f̃n satisfies

E[R(f̃n) − R∗]
(2.7)

≤
(

1 + 2

log1/4(M)

){
2 min

j=1,...,M

(
R(fj ) − R∗) + C0

log7/4(M)

nκ/(2κ−1)

}

for all integers n ≥ 1, where C0 > 0 appears in Proposition 2.2.

REMARK 2.1. The factor 2 multiplying minj=1,...,M(R(fj ) − R∗) in (2.7) is
due to the relation between the hinge excess risk and the usual excess risk [cf.
inequality (1.3)]. The hinge-loss is more adapted for our convex aggregate, since
we have the same statement without this factor, namely,

E[A(f̃n) − A∗] ≤
(

1 + 2

log1/4(M)

){
min

j=1,...,M

(
A(fj ) − A∗) + C0

log7/4(M)

nκ/(2κ−1)

}
.

Moreover, linearity of the hinge-loss on [−1,1] leads to

min
j=1,...,M

(
A(fj ) − A∗) = min

f ∈Conv

(
A(f ) − A∗)

,
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where Conv is the convex hull of the set {fj : j = 1, . . . ,M}. Therefore, the excess
hinge risk of f̃n is approximately the same as one of the best convex combinations
of fj ’s.

REMARK 2.2. For a convex loss function φ, consider the empirical φ-risk
A

(φ)
n (f ). Our proof implies that the aggregate

f̃ (φ)
n (x) =

M∑
j=1

w
φ
j fj (x) with w

φ
j = exp(−nA

(φ)
n (fj ))∑M

k=1 exp(−nA
(φ)
n (fk))

, ∀j = 1, . . . ,M,

satisfies the inequality (2.5) with A
(φ)
n in place of An.

We consider next a recursive analog of the aggregate (2.1). It is close to the
one suggested by Yang [46] for density aggregation under Kullback loss and by
Catoni [11] and Bunea and Nobel [9] for the regression model with squared loss.
It can be also viewed as a particular case of the mirror descent algorithm suggested
in Juditsky, Nazin, Tsybakov and Vayatis [21]. We consider

f̄n = 1

n

n∑
k=1

f̃k =
M∑

j=1

w̄jfj ,(2.8)

where

w̄j = 1

n

n∑
k=1

w
(k)
j = 1

n

n∑
k=1

exp(−kAk(fj ))∑M
l=1 exp(−kAk(fl))

,(2.9)

for all j = 1, . . . ,M , where Ak(f ) = (1/k)
∑k

i=1(1 − Yif (Xi))+ is the empirical

hinge risk of f and w
(k)
j is the weight defined in (2.2) for the first k observations.

This aggregate is especially useful for the on-line framework. The following theo-
rem says that it has the same theoretical properties as the aggregate (2.1).

THEOREM 2.4. Let Assumption (MA1)(κ) hold with some 1 ≤ κ < +∞. As-
sume that there exist two positive numbers a ≥ 1, b such that M ≥ anb. Then the
convex aggregate f̄n defined by (2.8) satisfies

E[R(f̄n) − R∗] ≤
(

1 + 2

log1/4(M)

){
2 min

j=1,...,M

(
R(fj ) − R∗)

+ C0γ (n, κ) log7/4(M)

}
,

for all integers n ≥ 1, where C0 > 0 appears in Proposition 2.2 and γ (n, κ) is
equal to ((2κ − 1)/(κ − 1))n−κ/(2κ−1) if κ > 1 and to (logn)/n if κ = 1.
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REMARK 2.3. For all k ∈ {1, . . . , n − 1}, less observations are used to con-
struct f̃k than to construct f̃n; thus, intuitively, we expect that f̃n will learn better
than f̃k . In view of (2.8), f̄n is an average of aggregates whose performances are,
a priori, worse than those of f̃n; therefore, its expected learning properties are pre-
sumably worse than those of f̃n. An advantage of the aggregate f̄n is its recursive
construction, but the risk behavior of f̃n seems to be better than that of f̄n. In fact,
it is easy to see that Theorem 2.4 is satisfied for any aggregate f̄n = ∑n

k=1 wkf̃k ,
where wk ≥ 0 and

∑n
k=1 wk = 1 with γ (n, κ) = ∑n

k=1 wkk
−κ/(2κ−1), and the re-

mainder term is minimized for wj = 1 when j = n and 0 elsewhere, that is, for
f̄n = f̃n.

REMARK 2.4. In this section we have dealt only with the aggregation step.
But the construction of classifiers has to take place prior to this step. This requires a
split of the sample as discussed at the beginning of this section. The main drawback
of this method is that only a part of the sample is used for the initial estimation.
However, by using different splits of the sample and taking the average of the
aggregates associated with each of them, we get a more balanced classifier which
does not depend on a particular split. Since the hinge loss is linear on [−1,1],
we have the same result as in Theorem 2.3 and Theorem 2.4 for an average of
aggregates of the form (2.1) and (2.8), respectively, for averaging over different
splits of the sample.

3. Adaptation to the margin and to complexity. In Steinwart and Scovel [38,
39] and Tsybakov [42] two concepts of complexity are used. In this section we
show that combining classifiers used by Tsybakov [42] or the L1-SVM classifiers
of Steinwart and Scovel [38, 39] with our aggregation method leads to classifiers
that are adaptive both to the margin parameter and to the complexity in the two
cases. Results are established for the first method of aggregation defined in (2.1),
but they are also valid for the recursive aggregate defined in (2.8).

We use a sample splitting to construct our aggregate. The first subsample
D1

m = ((X1, Y1), . . . , (Xm,Ym)), where m = n − l and l = an/ logn� for a con-
stant a > 0, is implemented to construct classifiers and the second subsample
D2

l = ((Xm+1, Ym+1), . . . , (Xn,Yn)) is implemented to aggregate them by the pro-
cedure (2.1).

3.1. Adaptation in the framework of Tsybakov. Here we take X = R
d . Intro-

duce the following pseudo-distance, and its empirical analogue, between the sets
G,G′ ⊆ X:

d�(G,G′) = P X(G�G′), d�,e(G,G′) = 1

n

n∑
i=1

1(Xi∈G�G′),

where G�G′ is the symmetric difference between the sets G and G′. If Y is a
class of subsets of X, denote by HB(Y, δ, d�) the δ-entropy with bracketing of Y
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for the pseudo-distance d� (cf. van de Geer [44], page 16). We say that Y has a
complexity bound ρ > 0 if there exists a constant A > 0 such that

HB(Y, δ, d�) ≤ Aδ−ρ ∀0 < δ ≤ 1.

Various examples of classes Y having this property can be found in Dudley [16],
Korostelëv and Tsybakov [25] and Mammen and Tsybakov [30].

Let (Gρ)ρmin≤ρ≤ρmax be a collection of classes of subsets of X, where Gρ has
a complexity bound ρ, for all ρmin ≤ ρ ≤ ρmax. This collection corresponds to
a priori knowledge on π that the set G∗ = {x ∈ X :η(x) > 1/2} lies in one of
these classes (typically we have Gρ ⊂ Gρ′ if ρ ≤ ρ′). The aim of adaptation to the
margin and complexity is to propose f̃n, a classifier free of κ and ρ such that, if π

satisfies (MA1)(κ) and G∗ ∈ Gρ , then f̃n learns with the optimal rate n−κ/(2κ+ρ−1)

(optimality has been established in Mammen and Tsybakov [31]), and this property
holds for all values of κ ≥ 1 and ρmin ≤ ρ ≤ ρmax. Following Tsybakov [42], we
introduce the following assumption on the collection (Gρ)ρmin≤ρ≤ρmax .

ASSUMPTION (A1) (Complexity assumption). Assume that 0 < ρmin <

ρmax < 1 and the Gρ ’s are classes of subsets of X such that Gρ ⊆ Gρ′ for
ρmin ≤ ρ < ρ′ ≤ ρmax and the class Gρ has complexity bound ρ. For any inte-
ger n, we define ρn,j = ρmin + j

N(n)
(ρmax − ρmin), j = 0, . . . ,N(n), where N(n)

satisfies A′
0n

b′ ≤ N(n) ≤ A0n
b, for some finite b ≥ b′ > 0 and A0,A

′
0 > 0. As-

sume that for all n ∈ N:

(i) for all j = 0, . . . ,N(n), there exists N
j
n , an ε-net on Gρn,j

for the pseudo-
distance d� or d�,e, where ε = ajn

−1/(1+ρn,j ), aj > 0 and maxj aj < +∞;

(ii) N
j
n has complexity bound ρn,j , for j = 0, . . . ,N(n).

The first subsample D1
m is used to construct the ERM classifiers f̂

j
m(x) =

21
Ĝ

j
m
(x) − 1, where Ĝ

j
m ∈ Arg min

G∈N
j
m

Rm(21G − 1) for all j = 0, . . . ,N(m),

and the second subsample D2
l is used to construct the exponential weights of the

aggregation procedure,

w
(l)
j = exp(−lA[l](f̂ j

m))∑N(m)
k=1 exp(−lA[l](f̂ k

m))
∀j = 0, . . . ,N(m),

where A[l](f ) = (1/l)
∑n

i=m+1(1 − Yif (Xi))+ is the empirical hinge risk of
f :X �−→ R based on the subsample D2

l . We consider

f̃n(x) =
N(m)∑
j=0

w
(l)
j f̂ j

m(x) ∀x ∈ X.(3.1)

The construction of the f̂
j
m’s does not depend on the margin parameter κ .
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THEOREM 3.1. Let (Gρ)ρmin≤ρ≤ρmax be a collection of classes satisfying As-
sumption (A1). Then the aggregate defined in (3.1) satisfies

sup
π∈Pκ,ρ

E[R(f̃n) − R∗] ≤ Cn−κ/(2κ+ρ−1) ∀n ≥ 1,

for all 1 ≤ κ < +∞ and all ρ ∈ [ρmin, ρmax], where C > 0 is a constant depending
only on a, b, b′,A,A0,A

′
0, ρmin, ρmax and κ , and Pκ,ρ is the set of all probability

measures π on X × {−1,1} such that Assumption (MA1)(κ) is satisfied and G∗ ∈
Gρ .

3.2. Adaptation in the framework of Steinwart and Scovel.

3.2.1. The case of a continuous kernel. Steinwart and Scovel [38] have ob-
tained fast learning rates for SVM classifiers depending on three parameters, the
margin parameter 0 ≤ α < +∞, the complexity exponent 0 < p ≤ 2 and the ap-
proximation exponent 0 ≤ β ≤ 1. The margin assumption was first introduced in
Mammen and Tsybakov [31] for the problem of discriminant analysis and in Tsy-
bakov [42] for the classification problem, in the following way:

ASSUMPTION (MA2) [Margin (or low noise) assumption]. The probability
distribution π on the space X×{−1,1} satisfies the margin assumption (MA2)(α)
with margin parameter 0 ≤ α < +∞ if there exists c0 > 0 such that

P
(|2η(X) − 1| ≤ t

) ≤ c0t
α ∀t > 0.(3.2)

As shown in Boucheron, Bousquet and Lugosi [6], the margin Assumptions
(MA1)(κ) and (MA2)(α) are equivalent with κ = 1+α

α
for α > 0.

Let X be a compact metric space. Let H be a reproducing kernel Hilbert space
(RKHS) over X (see, e.g., Cristianini and Shawe–Taylor [14] and Schölkopf
and Smola [37]) and BH its closed unit ball. Denote by N (BH , ε,L2(P

X
n )) the

ε-covering number of BH w.r.t. the canonical distance of L2(P
X
n ), the L2-space

w.r.t. the empirical measure, P X
n , on X1, . . . ,Xn. Introduce the following assump-

tions as in Steinwart and Scovel [38]:

ASSUMPTION (A2). There exist a0 > 0 and 0 < p ≤ 2 such that, for any
integer n,

sup
Dn∈(X×{−1,1})n

logN
(
BH , ε,L2(P

X
n )

) ≤ a0ε
−p ∀ε > 0.

Note that the supremum is taken over all samples of size n and the bound
is assuming for any n. Every RKHS satisfies (A2) with p = 2 (cf. Steinwart
and Scovel [38]). We define the approximation error function of the L1-SVM as

a(λ)
def= inff ∈H(λ‖f ‖2

H + A(f )) − A∗.
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ASSUMPTION (A3). The RKHS H approximates π with exponent 0 ≤ β ≤ 1,
if there exists a constant C0 > 0 such that a(λ) ≤ C0λ

β, ∀λ > 0.

Note that every RKHS approximates every probability measure with exponent
β = 0 and the other extremal case β = 1 is equivalent to the fact that the Bayes
classifier f ∗ belongs to the RKHS (cf. Steinwart and Scovel [38]). Furthermore,
β > 1 only for probability measures such that P(η(X) = 1/2) = 1 (cf. Steinwart
and Scovel [38]). If (A2) and (A3) hold, the parameter (p,β) can be considered as
a complexity parameter characterizing π and H .

Let H be an RKHS with a continuous kernel on X satisfying (A2) with para-
meter 0 < p < 2. Define the L1-SVM classifier by

f̂ λ
n = sign(F̂ λ

n ), where F̂ λ
n ∈ Arg min

f ∈H

(
λ‖f ‖2

H + An(f )
);(3.3)

λ > 0 is called the regularization parameter. Assume that the probability measure
π belongs to the set Qα,β of all probability measures on X×{−1,1} satisfying As-
sumption (MA2)(α) with α ≥ 0 and (A3) with complexity parameter (p,β), where
0 < β ≤ 1. It has been shown in Steinwart and Scovel [38] that the L1-SVM classi-

fier, f̂
λ

α,β
n

n , where the regularization parameter is λ
α,β
n = n−4(α+1)/(2α+pα+4)(1+β),

satisfies the following excess risk bound: for any ε > 0, there exists C > 0 depend-
ing only on α,p,β and ε such that

E[R(f̂ λ
α,β
n

n ) − R∗] ≤ Cn−4β(α+1)/((2α+pα+4)(1+β))+ε ∀n ≥ 1.(3.4)

We remark that if β = 1, that is, f ∗ ∈ H , then the learning rate in (3.4) is (up to
an ε) n−2(α+1)/(2α+pα+4), which is a fast rate since 2(α + 1)/(2α + pα + 4) ∈
[1/2,1).

To construct the classifier f̂
λ

α,β
n

n , we need to know parameters α and β that are
not available in practice. Thus, it is important to construct a classifier, free from

these parameters, which has the same behavior as f̂
λ

α,β
n

n , if the underlying distrib-
ution π belongs to Qα,β . Below we give such a construction.

Since the RKHS H is given, the implementation of the L1-SVM classifier f̂ λ
n

requires only knowledge of the regularization parameter λ. Thus, to provide an
easily implemented procedure, using our aggregation method, it is natural to com-
bine L1-SVM classifiers constructed for different values of λ in a finite grid. We
now define such a procedure.

We consider the L1-SVM classifiers f̂ λ
m, defined in (3.3) for the subsample D1

m,
where λ lies in the grid

G(l) = {λl,k = l−φl,k :φl,k = 1/2 + k�−1, k = 0, . . . , �3�/2�},
where we set � = lb0 with some b0 > 0. The subsample D2

l is used to aggregate
these classifiers by the procedure (2.1), namely,

f̃n = ∑
λ∈G(l)

w
(l)
λ f̂ λ

m,(3.5)
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where

w
(l)
λ = exp(

∑n
i=m+1 Yif̂

λ
m(Xi))∑

λ′∈G(l) exp(
∑n

i=m+1 Yif̂ λ′
m (Xi))

= exp(−lA[l](f̂ λ
m))∑

λ′∈G(l) exp(−lA[l](f̂ λ′
m ))

and A[l](f ) = (1/l)
∑n

i=m+1(1 − Yif (Xi))+.

THEOREM 3.2. Let H be an RKHS with a continuous kernel on a compact
metric space X satisfying (A2) with parameter 0 < p < 2. Let K be a compact
subset of (0,+∞) × (0,1]. The classifier f̃n, defined in (3.5), satisfies

sup
π∈Qα,β

E[R(f̃n) − R∗] ≤ Cn−4β(α+1)/((2α+pα+4)(1+β))+ε

for all (α,β) ∈ K and ε > 0, where Qα,β is the set of all probability measures on
X × {−1,1} satisfying (MA2)(α) and (A2) with complexity parameter (p,β) and
C > 0 is a constant depending only on ε,p,K,a and b0.

3.2.2. The case of the Gaussian RBF kernel. In this subsection we apply our
aggregation procedure to L1-SVM classifiers using the Gaussian RBF kernel. Let
X be the closed unit ball of the space R

d0 endowed with the Euclidean norm ‖x‖ =
(
∑d0

i=1 x2
i )1/2,∀x = (x1, . . . , xd0) ∈ R

d0 . The Gaussian RBF kernel is defined as
Kσ(x, x′) = exp(−σ 2‖x − x′‖2) for x, x′ ∈ X, where σ is a parameter and σ−1 is
called the width of the Gaussian kernel. The RKHS associated with Kσ is denoted
by Hσ .

Steinwart and Scovel [39] introduced the following assumption.

ASSUMPTION (GNA) (Geometric noise assumption). There exist C1 > 0 and
γ > 0 such that

E

[
|2η(X) − 1| exp

(
−τ(X)2

t

)]
≤ C1t

γ d0/2 ∀t > 0.

Here τ is a function on X with values in R which measures the distance between
a given point x and the decision boundary, namely,

τ(x) =



d(x,G0 ∪ G1), if x ∈ G−1,
d(x,G0 ∪ G−1), if x ∈ G1,
0, otherwise,

for all x ∈ X, where G0 = {x ∈ X :η(x) = 1/2}, G1 = {x ∈ X :η(x) > 1/2} and
G−1 = {x ∈ X :η(x) < 1/2}. Here d(x,A) denotes the Euclidean distance from a
point x to the set A. If π satisfies Assumption (GNA) for a γ > 0, we say that π

has a geometric noise exponent γ .
The L1-SVM classifier associated to the Gaussian RBF kernel with width σ−1

and regularization parameter λ is defined by f̂
(σ,λ)
n = sign(F̂

(σ,λ)
n ), where F̂

(σ,λ)
n
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is given by (3.3) with H = Hσ . Using the standard development related to SVM
(cf. Schölkopf and Smola [37]), we may write F̂

(σ,λ)
n (x) = ∑n

i=1 ĈiKσ (Xi, x),

∀x ∈ X, where Ĉ1, . . . , Ĉn are solutions of the maximization problem

max
0≤2λCiYi≤n−1

{
2

n∑
i=1

CiYi −
n∑

i,j=1

CiCjKσ (Xi,Xj )

}
,

which can be obtained using standard quadratic programming software. According
to Steinwart and Scovel [39], if the probability measure π on X×{−1,1} satisfies
the margin Assumption (MA2)(α) with margin parameter 0 ≤ α < +∞ and As-

sumption (GNA) with a geometric noise exponent γ > 0, the classifier f̂
(σ

α,γ
n ,λ

α,γ
n )

n ,
where the regularization parameter and width are defined by

λα,γ
n =


n−(γ+1)/(2γ+1), if γ ≤ α + 2

2α
,

n−2(γ+1)(α+1)/(2γ (α+2)+3α+4), otherwise

and

σα,γ
n = (λα,γ

n )−1/(γ+1)d0,

satisfies

E
[
R

(
f̂ (σ

α,γ
n ,λ

α,γ
n )

n

) − R∗]
(3.6)

≤ C


n−γ /(2γ+1)+ε, if γ ≤ α + 2

2α
,

n−2γ (α+1)/(2γ (α+2)+3α+4)+ε, otherwise,

for all ε > 0, where C > 0 is a constant which depends only on α,γ and ε. We
remark that fast rates are obtained only for γ > (3α + 4)/(2α).

To construct the classifier f̂
(σ

α,γ
n ,λ

α,γ
n )

n , we need to know parameters α and γ ,
which are not available in practice. As in Section 3.2.1, we use our procedure to
obtain a classifier which is adaptive to the margin and to the geometric noise para-
meters. Our aim is to provide an easily computed adaptive classifier. We propose
the following method based on a grid for (σ,λ). We consider the finite sets

M(l) =
{
(ϕl,p1,ψl,p2) =

(
p1

2�
,
p2

�
+ 1

2

)
:p1 = 1, . . . ,2���;

p2 = 1, . . . , ��/2�
}
,

where we let � = lb0 for some b0 > 0, and

N (l) = {(σl,ϕ, λl,ψ) = (lϕ/d0, l−ψ) : (ϕ,ψ) ∈ M(l)}.
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We construct the family of classifiers (f̂
(σ,λ)
m : (σ,λ) ∈ N (l)) using the observa-

tions of the subsample D1
m and we aggregate them by the procedure (2.1) using

D2
l , namely,

f̃n = ∑
(σ,λ)∈N (l)

w
(l)
σ,λf̂

(σ,λ)
m ,(3.7)

where

w
(l)
σ,λ = exp(

∑n
i=m+1 Yif̂

(σ,λ)
m (Xi))∑

(σ ′,λ′)∈N (l) exp(
∑n

i=m+1 Yif̂
(σ ′,λ′)
m (Xi))

∀(σ,λ) ∈ N (l).(3.8)

Denote by Rα,γ the set of all probability measures on X × {−1,1} satisfying
both the margin Assumption (MA2)(α) with a margin parameter α > 0 and As-
sumption (GNA) with a geometric noise exponent γ > 0. Define U = {(α, γ ) ∈
(0,+∞)2 :γ > α+2

2α
} and U′ = {(α, γ ) ∈ (0,+∞)2 :γ ≤ α+2

2α
}.

THEOREM 3.3. Let K be a compact subset of U and K ′ a compact subset
of U′. The aggregate f̃n, defined in (3.7), satisfies

sup
π∈Rα,γ

E[R(f̃n) − R∗] ≤ C

{
n−γ /(2γ+1)+ε, if (α, γ ) ∈ K ′,
n−2γ (α+1)/(2γ (α+2)+3α+4)+ε, if (α, γ ) ∈ K ,

for all (α, γ ) ∈ K∪K ′ and ε > 0, where C > 0 depends only on ε,K,K ′, a and b0.

4. Proofs.

LEMMA 4.1. For all positive v, t and all κ ≥ 1, t + v ≥ v(2κ−1)/2κ t1/(2κ).

PROOF. Since log is concave, we have log(ab) = (1/x) log(ax) + (1/y) ×
log(by) ≤ log(ax/x +by/y) for all positive numbers a, b and x, y such that 1/x +
1/y = 1; thus ab ≤ ax/x + by/y. Lemma 4.1 follows by applying this relation
with a = t1/(2κ), x = 2κ and b = v(2κ−1)/(2κ). �

PROOF OF PROPOSITION 2.1. Observe that (1 − x)+ = 1 − x for x ≤ 1.
Since Yif̃n(Xi) ≤ 1 and Yifj (Xi) ≤ 1 for all i = 1, . . . , n and j = 1, . . . ,M , we

have An(f̃n) = ∑M
j=1 w

(n)
j An(fj ). We have An(fj ) = An(fj0) + 1

n
(log(w

(n)
j0

) −
log(w

(n)
i )), for any j, j0 = 1, . . . ,M , where the weights w

(n)
j are defined in (2.3)

by

w
(n)
j = exp(−nAn(fj ))∑M

k=1 exp(−nAn(fk))
,

and by multiplying the last equation by w
(n)
j and summing over j , we get

An(f̃n) ≤ min
j=1,...,M

An(fj ) + logM

n
.(4.1)
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Indeed, we have log(w
(n)
j0

) ≤ 0,∀j0 = 1, . . . ,M , and
∑M

j=1 w
(n)
j log(

w
(n)
j

1/M
) =

K(w|u) ≥ 0, where K(w|u) denotes the Kullback–Leiber divergence between the
weights w = (w

(n)
j )j=1,...,M and uniform weights u = (1/M)j=1,...,M . �

PROOF OF PROPOSITION 2.2. Denote γ = (logM)−1/4, u = 2γ n−κ/(2κ−1) ×
log2 M and Wn = (1 − γ )(A(f̃n) − A∗) − (An(f̃n) − An(f

∗)). We have

E[Wn] = E
[
Wn

(
1(Wn≤u) + 1(Wn>u)

)]
≤ u + E

[
Wn1(Wn>u)

]
= u + uP(Wn > u) +

∫ +∞
u

P(Wn > t) dt

≤ 2u +
∫ +∞
u

P(Wn > t) dt.

On the other hand, (fj )j=1,...,M are prediction rules, so we have A(fj ) =
2R(fj ) and An(fj ) = 2Rn(fj ) (recall that A∗ = 2R∗). Moreover, we work in the
linear part of the hinge-loss; thus

P(Wn > t) = P

(
M∑

j=1

wj

((
A(fj ) − A∗)

(1 − γ ) − (
An(fj ) − An(f

∗)
))

> t

)

≤ P

(
max

j=1,...,M

((
A(fj ) − A∗)

(1 − γ ) − (
An(fj ) − An(f

∗)
))

> t

)

≤
M∑

j=1

P
(
Zj > γ

(
R(fj ) − R∗) + t/2

)

for all t > u, where Zj = R(fj ) − R∗ − (Rn(fj ) − Rn(f
∗)) for all j = 1, . . . ,M

[recall that Rn(f ) is the empirical risk defined in (1.1)].
Let j ∈ {1, . . . ,M}. We can write Zj = (1/n)

∑n
i=1(E[ζi,j ]−ζi,j ), where ζi,j =

1(Yifj (Xi)≤0) −1(Yif
∗(Xi)≤0). We have |ζi,j | ≤ 1 and, under the margin assumption,

we have V(ζi,j ) ≤ E(ζ 2
i,j ) = E[|fj (X) − f ∗(X)|] ≤ c(R(fj ) − R∗)1/κ , where V

is the symbol of the variance. By applying Bernstein’s inequality and Lemma 4.1
respectively, we get

P[Zj > ε] ≤ exp
(
− nε2

2c(R(fj ) − R∗)1/κ + 2ε/3

)

≤ exp
(
− nε2

4c(R(fj ) − R∗)1/κ

)
+ exp

(
−3nε

4

)
,
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for all ε > 0. Denote uj = u/2 + γ (R(fj ) − R∗). After a standard calculation we
get∫ +∞

u
P

(
Zj > γ

(
R(fj ) − R∗) + t/2

)
dt = 2

∫ +∞
uj

P(Zj > ε)dε ≤ B1 + B2,

where

B1 = 4c(R(fj ) − R∗)1/κ

nuj

exp
(
− nu2

j

4c(R(fj ) − R∗)1/κ

)

and

B2 = 8

3n
exp

(
−3nuj

4

)
.

Since R(fj ) ≥ R∗, Lemma 4.1 yields uj ≥ γ (R(fj )−R∗)1/(2κ)(logM)(2κ−1)/κ ×
n−1/2. For any a > 0, the mapping x �→ (ax)−1 exp(−ax2) is decreasing on
(0,+∞); thus we have

B1 ≤ 4c

γ
√

n
(logM)−(2κ−1)/κ exp

(
−γ 2

4c
(log(M))(4κ−2)/κ

)
.

The mapping x �−→ (2/a) exp(−ax) is decreasing on (0,+∞) for any a > 0 and
uj ≥ γ (logM)2n−κ/(2κ−1); thus

B2 ≤ 8

3n
exp

(
−3γ

4
n(κ−1)/(2κ−1)(logM)2

)
.

Since γ = (logM)−1/4, we have E(Wn) ≤ 4n−κ/(2κ−1)(logM)7/4 + T1 + T2,

where

T1 = 4Mc√
n

(logM)−(7κ−4)/(4κ) exp
(
− 3

4c
(logM)(7κ−4)/(2κ)

)

and

T2 = 8M

3n
exp

(−(3/4)n(κ−1)/(2κ−1)(logM)7/4)
.

We have T2 ≤ 6(logM)7/4/n for any integer M ≥ 1. Moreover, κ/(2κ − 1) ≤ 1
for all 1 ≤ κ < +∞, so we get T2 ≤ 6n−κ/(2κ−1)(logM)7/4 for any integers n ≥ 1
and M ≥ 2.

Let B be a positive number. The inequality T1 ≤ Bn−κ/(2κ−1)(logM)7/4 is
equivalent to

2(2κ − 1)

[
3

4c
(logM)(7κ−4)/(2κ) − logM + 7κ − 2

2κ
log(logM)

]

≥ log
(
(4c/B)2(2κ−1)n

)
.
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Since we have 7κ−4
2κ

≥ 3
2 > 1 for all 1 ≤ κ < +∞ and M ≥ anb for some positive

numbers a and b, there exists a constant B which depends only on a, b and c [for
instance, B = 4ca−1/(2b) when n satisfies log(anb) ≥ (b2(8c/6)2)∨ ((8c/3)∨1)2]
such that T1 ≤ Bn−κ/(2κ−1)(logM)7/4. �

PROOF OF THEOREM 2.3. Let γ = (logM)−1/4. Using (4.1), we have

E
[(

A(f̃n) − A∗)
(1 − γ )

] − (
A(fj0) − A∗)

= E
[(

A(f̃n) − A∗)
(1 − γ ) − (

An(f̃n) − An(f
∗)

)] + E[An(f̃n) − An(fj0)]

≤ E
[(

A(f̃n) − A∗)
(1 − γ ) − (

An(f̃n) − An(f
∗)

)] + logM

n
.

For Wn defined at the beginning of the proof of Proposition 2.2 and f ∗ the Bayes
rule, we have

(1 − γ )
(
E[A(f̃n)] − A∗) ≤ min

j=1,...,M

(
A(fj ) − A∗) + E[Wn] + logM

n
.(4.2)

According to Proposition 2.2, E[Wn] ≤ C0n
−κ/(2κ−1)(logM)7/4, where C0 > 0 is

given in Proposition 2.2. Using (4.2) and (1−γ )−1 ≤ 1+2γ for any 0 < γ < 1/2,
we get

E[A(f̃n) − A∗] ≤
(

1 + 2

log1/4(M)

){
min

j=1,...,M

(
A(fj ) − A∗) + C

log7/4(M)

nκ/(2κ−1)

}
.

We complete the proof by using inequality (1.3) and equality 2(R(f ) − R∗) =
A(f ) − A∗, which holds for any prediction rule f . �

PROOF OF THEOREM 2.4. Since the f̃k’s take their values in [−1,1] and
x �→ (1 − x)+ is linear on [−1,1], we obtain A(f̄n) − A∗ = 1

n

∑n
k=1(A(f̃k) −

A∗). Applying Theorem 2.3 to every f̃k for k = 1, . . . , n, then taking the average
of the n oracle inequalities satisfied by the f̃k for k = 1, . . . , n and seeing that
(1/n)

∑n
k=1 k−κ/(2κ−1) ≤ γ (n, κ), we obtain

E[A(f̄n) − A∗]
≤

(
1 + 2

log1/4(M)

){
min

j=1,...,M

(
A(fj ) − A∗) + Cγ (n, κ) log7/4(M)

}
.

We complete the proof by the same argument as at the end of the previous proof.
�

PROOF OF THEOREM 3.1. Let ρmin ≤ ρ ≤ ρmax and κ ≥ 1. Let ρm,j0 =
min(ρm,j :ρm,j ≥ ρ). Since N(m) ≥ A′

0m
b′ ≥ Clb

′
, where C > 0, using the or-
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acle inequality, stated in Theorem 2.3, we have, for π satisfying (MA1)(κ),

E[R(f̃n) − R∗|D1
m]

≤
(

1 + 2

log1/4 N(m)

){
2 min

j=1,...,N(m)

(
R(f̂ j

m) − R∗) + C
log7/4 N(m)

lκ/(2κ−1)

}
,

where C is a positive number depending only on b′, a,A′
0 and c. Taking the ex-

pectation with respect to the subsample D1
m, we have

E[R(f̃n) − R∗]

≤
(

1 + 2

log−1/4 N(m)

){
2E[R(f̂ j0

m ) − R∗] + C
log7/4 N(m)

lκ/(2κ−1)

}
.

It follows from Tsybakov [42] that the excess risk of f̂
j0
m satisfies

sup
π∈Pκ,ρj0

E[R(f̂ j0
m ) − R∗] ≤ Cm−κ/(2κ+ρj0−1),

where C is a positive number depending only on A,c, κ, ρmin and ρmax (note that
C does not depend on ρj0 ).

Moreover, we have m ≥ n(1 − a/ log 3 − 1/3), N(m) ≤ A0m
b ≤ A0n

b and l ≥
an/ logn, so that there exists a constant C depending only on a,A0,A

′
0, b, b′, κ,

ρmin and ρmax such that

sup
π∈Pκ,ρj0

E[R(f̃n) − R∗] ≤ C
{
n−κ/(2κ+ρj0−1) + n−κ/(2κ−1)(logn)11/4}

.(4.3)

Since ρj0 ≤ ρ + N(m)−1 ≤ ρ + (A′
0)

−1[n(1 − a/ log 3 − 1/3)]−b′
, there exists

a constant C depending only on a,A′
0, b

′, κ, ρmin and ρmax such that, for all inte-
gers n, n−κ/(2κ+ρj0−1) ≤ Cn−κ/(2κ+ρ−1). Theorem 2.4 follows directly from (4.3),
seeing that ρ ≥ ρmin > 0 and Pκ,ρ ⊆ Pκ,ρj0

since ρj0 ≥ ρ. �

PROOF OF THEOREM 3.2. Define 0 < αmin < αmax < +∞ and 0 < βmin < 1
such that K ⊂ [αmin, αmax]× [βmin,1]. Let (α0, β0) ∈ K . We consider the function
on (0,+∞) × (0,1] with values in (1/2,2), φ(α,β) = 4(α + 1)/((2α + pα +
4)(1 + β)). We take k0 ∈ {0, . . . , �3�/2� − 1} such that

φl,k0 = 1/2 + k0�
−1 ≤ φ(α0, β0) < 1/2 + (k0 + 1)�−1.

For n greater than a constant depending only on K,p,b0 and a, there ex-
ists ᾱ0 ∈ [αmin/2, αmax] such that φ(ᾱ0, β0) = φl,k0 . Since α �→ φ(α,β0) in-
creases on R

+, we have ᾱ0 ≤ α0. Moreover, we have |φ(α1, β0) − φ(α2, β0)| ≥
A|α1 − α2|,∀α1, α2 ∈ [αmin/2, αmax], where A > 0 depends only on p and αmax.
Thus, |ᾱ0 − α0| ≤ (A�)−1. Since ᾱ0 ≤ α0, we have Qα0,β0 ⊆ Qᾱ0,β0 , so

sup
π∈Qα0,β0

E[R(f̃n) − R∗] ≤ sup
π∈Qᾱ0,β0

E[R(f̃n) − R∗].
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Since 3�/2� ≥ (3/2)lb0 , for π satisfying the margin Assumption (MA2)(ᾱ0),
Theorem 2.3 leads to

E[R(f̃n) − R∗|D1
m]

≤
(

1 + 2

log1/4(3�/2�)
){

2 min
λ∈G(l)

(
R(f̂ λ

m) − R∗) + C0
log7/4(3�/2�)
l(ᾱ0+1)/(ᾱ0+2)

}
,

for all integers n ≥ 1, where C0 > 0 depends only on K,a and b0. Therefore, tak-
ing the expectation w.r.t. the subsample D1

m, we get

E[R(f̃n) − R∗] ≤ C1
(
E[R(f̂

λl,k0
m ) − R∗] + l(ᾱ0+1)/(ᾱ0+2) log7/4(n)

)
,

where λl,k0 = l−φl,k0 and C1 > 0 depends only on K,a and b0.
Set � : (0,+∞) × (0,1] �−→ R

+ defined by �(α,β) = βφ(α,β),∀(α,β) ∈
(0,+∞) × (0,1]. According to Steinwart and Scovel [38], if π ∈ Qᾱ0,β0 , then
for all ε > 0, there exists C > 0, a constant depending only on K,p and ε, such
that

E[R(f̂
λl,k0
m ) − R∗] ≤ Cm−�(ᾱ0,β0)+ε.

We remark that C does not depend on ᾱ0 and β0 since (ᾱ0, β0) ∈ [αmin/2, αmax]×
[βmin,1] and that the constant multiplying the rate of convergence, stated in Stein-
wart and Scovel [38], is uniformly bounded over (α,β) belonging to a compact
subset of (0,+∞) × (0,1].

Let ε > 0. Assume that π ∈ Qα0,β0 . We have n(1−a/ log 3−1/3) ≤ m ≤ n, l ≥
an/ logn and �(ᾱ0, β0) ≤ (ᾱ0 +1)/(ᾱ0 +2) ≤ 1. Therefore, there exist C2,C

′
2 > 0

depending only on a, b0,K,p and ε such that, for any n greater than a constant
depending only on βmin, a and b0,

E[R(f̃n) − R∗] ≤ C2
(
n−�(ᾱ0,β0)+ε + n−(ᾱ0+1)/(ᾱ0+2)(logn)11/4)

≤ C′
2n

−�(ᾱ0,β0)+ε.

Moreover, � satisfies |�(ᾱ0, β0) − �(α0, β0)| ≤ B�−1, where B depends only on
p and αmin, and (nB�−1

)n∈N is upper bounded. This completes the proof. �

PROOF OF THEOREM 3.3. Let (α0, γ0) ∈ K ∪ K ′. First assume that (α0, γ0)

belongs to K ⊂ U. We consider the set

S = {(ϕ,ψ) ∈ (0,1/2) × (1/2,1) : 2 − 2ψ − ϕ > 0}.
Each point of S is associated with a margin parameter (3.2) and with a geometric
noise exponent by the following functions on S with values in (0,+∞):

ᾱ(ϕ,ψ) = 4ψ − 2

2 − 2ψ − ϕ
and γ̄ (ϕ,ψ) = ψ

ϕ
− 1.
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We take (ϕ,ψ) ∈ S ∩ M(l) such that ᾱ(ϕ,ψ) ≤ α0, γ̄ (ϕ,ψ) ≤ γ0, ᾱ(ϕ,ψ) is
close enough to α0, γ̄ (ϕ,ψ) is close enough to γ0 and γ̄ (ϕ,ψ) >

(ᾱ(ϕ,ψ) + 2)/(2ᾱ(ϕ,ψ)). Since γ0 > (α0 + 2)/(2α0), there exists a solution
(ϕ0,ψ0) ∈ S of the system of equations{

ᾱ(ϕ,ψ) = α0,

γ̄ (ϕ,ψ) = γ0.
(4.4)

For all integers n greater than a constant depending only on K,a and b0, there
exists (p1,0,p2,0) ∈ {1, . . . ,2���} × {2, . . . , ��/2�} defined by

ϕl,p1,0 = min(ϕl,p :ϕl,p ≥ ϕ0) and ψl,p2,0 = max(ψl,p2 :ψl,p2 ≤ ψ0) − �−1.

We have 2 − 2ψl,p2,0 − ϕl,p1,0 > 0. Therefore, (ϕl,p1,0,ψl,p2,0) ∈ S ∩ M(l). Define
ᾱ0 = ᾱ(ϕl,p1,0,ψl,p2,0) and γ̄0 = γ̄ (ϕl,p1,0,ψl,p2,0). Since (ϕ0,ψ0) satisfies (4.4),
we have

ψl,p2,0 + 1

�
≤ ψ0 = −α0

2α0 + 4
ϕ0 + 1 + α0

2 + α0
≤ −α0

2α0 + 4

(
ϕl,p1,0 − 1

2�

)
+ 1 + α0

2 + α0

and (α0/(2α0 + 4))(2�)−1 ≤ �−1; thus

ψl,p2,0 ≤ − α0

2α0 + 4
ϕl,p1,0 + 1 + α0

2 + α0
so ᾱ0 ≤ α0.

With a similar argument, we have ψl,p2,0 ≤ (α0 + 1)ϕl,p1,0 , that is, γ̄0 ≤ γ0. Now
we show that γ̄0 > (ᾱ0 + 2)/(2ᾱ0). Since (α0, γ0) belongs to a compact, (ϕ0,ψ0)

and (ϕl,p1,0,ψl,p2,0) belong to a compact subset of (0,1/2)× (1/2,1) for n greater
than a constant depending only on K,a, b0. Thus, there exists A > 0, depending
only on K , such that, for n large enough, we have

|α0 − ᾱ0| ≤ A�−1 and |γ0 − γ̄0| ≤ A�−1.

Denote dK = d(∂U,K), where ∂U is the boundary of U and d(A,B) denotes the
Euclidean distance between sets A and B . We have dK > 0 since K is a compact,
∂U is closed and K ∩ ∂U = ∅. Set 0 < αmin < αmax < +∞ and 0 < γmin <

γmax < +∞ such that K ⊂ [αmin, αmax] × [γmin, γmax]. Define Uµ = {(α, γ ) ∈
(0,+∞)2 :α ≥ 2µ and γ > (α − µ + 2)/(2(α − µ))} for µ = min(αmin/2, dK).
We have K ⊂ Uµ, so γ0 > (α0 − µ + 2)/(2(α0 − µ)). Since α �→ (α + 2)/(2α) is
decreasing, γ̄0 > γ0 − A�−1 and α0 ≤ ᾱ0 + A�−1, we have γ̄0 > β̄(ᾱ0) − A�−1,
where β̄ is a positive function on (0,2αmax] defined by β̄(α) = (α−(µ−A�−1)+
2)/(2(α − (µ − A�−1))). We have |β̄(α1) − β̄(α2)| ≥ (2αmax)

−2|α1 − α2| for all
α1, α2 ∈ (0,2αmax]. Therefore, β̄(ᾱ0) − A�−1 ≥ β̄(ᾱ0 + 4Aα2

max�
−1). Thus, for

n greater than a constant depending only on K,a and b0, we have γ̄0 > (ᾱ0 +
2)/(2ᾱ0).

Since ᾱ0 ≤ α0 and γ̄0 ≤ γ0, we have Rα0,γ0 ⊂ Rᾱ0,γ̄0 and

sup
π∈Rα0,γ0

E[R(f̃n) − R∗] ≤ sup
π∈Rᾱ0,γ̄0

E[R(f̃n) − R∗].
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If π satisfies (MA2)(ᾱ0), then we get from Theorem 2.3

E[R(f̃n) − R∗|D1
m]

≤
(

1 + 2

log1/4 M(l)

)
(4.5)

×
{

2 min
(σ,λ)∈N (l)

(
R

(
f̂ (σ,λ)

m

) − R∗) + C2
log7/4(M(l))

l(ᾱ0+1)/(ᾱ0+2)

}
,

for all integers n ≥ 1, where C2 > 0 depends only on K,a and b0 and M(l) is the
cardinality of N (m). We remark that M(l) ≥ l2b0/2, so we can apply Theorem 2.3.

Let ε > 0. Since M(l) ≤ n2b0 and γ̄0 > (ᾱ0 + 2)/(2ᾱ0), taking expectations in
(4.5) and using the result (3.6) of Steinwart and Scovel [39], for σ = σl,ϕl,p1,0

and
λ = λl,ψl,p2,0

, we obtain

sup
π∈Rᾱ0,γ̄0

E[R(f̃n) − R∗] ≤ C
(
m−�(ᾱ0,γ̄0)+ε + l−(ᾱ0+1)/(ᾱ0+2) log7/4(n)

)
,

where � :U �→ R is defined for all (α, γ ) ∈ U by �(α,γ ) = (2γ (α+1))/(2γ (α+
2) + 3α + 4) and C > 0 depends only on a, b0,K and ε. We remark that the
constant before the rate of convergence in (3.6) is uniformly bounded on every
compact of U. We have �(ᾱ0, γ̄0) ≤ �(α0, γ0) ≤ �(ᾱ0, γ̄0) + 2A�−1, m ≥
n(1 − a/ log 3 − 1/3) and (m2A�−1

)n∈N is upper bounded, so there exists C1 > 0
depending only on K,a, b0 such that m−�(ᾱ0,γ̄0) ≤ C1n

−�(α0,γ0),∀n ≥ 1.

A similar argument as at the end of the proof of Theorem 3.2 and the fact that
�(α,γ ) < (α + 1)/(α + 2) for all (α, γ ) ∈ U lead to the result of the first part of
Theorem 3.3.

Let now (α0, γ0) ∈ K ′. Let α′
max > 0 be such that ∀(α, γ ) ∈ K ′, α ≤ α′

max.
Take p1,0 ∈ {1, . . . ,2���} such that ϕl,p1,0 = min(ϕl,p :ϕl,p ≥ (2γ0 + 1)−1 and
p ∈ 4N), where 4N is the set of all integer multiples of 4. For large values of n,
p1,0 exists and p1,0 ∈ 4N. Denoting γ̄0 ∈ (0,+∞) such that ϕl,p1,0 = (2γ̄0 + 1)−1,
we have γ̄0 ≤ γ0; thus Rα0,γ0 ⊆ Rα0,γ̄0 and

sup
π∈Rα0,γ0

E[R(f̃n) − R∗] ≤ sup
π∈Rα0,γ̄0

E[R(f̃n) − R∗].

If π satisfies the margin assumption (3.2) with the margin parameter α0, then,
using Theorem 2.3, we obtain, for any integer n ≥ 1,

E[R(f̃n) − R∗|D1
m]

≤
(

1 + 2

log1/4(M(l))

)
(4.6)

×
{

2 min
(σ,λ)∈N (l)

(
R

(
f̂ (σ,λ)

m

) − R∗) + C0
log7/4 M(l)

l(α0+1)/(α0+2)

}
,
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where C > 0 appears in Proposition 2.2 and M(l) is the cardinality of N (l).
Let ε > 0 and p2,0 ∈ {1, . . . , ��/2�} be defined by p2,0 = p1,0/4 (note that

p1,0 ∈ 4N). We have

σl,ϕl,p1,0
= (λl,ψl,p2,0

)−1/(d0(γ̄0+1)).

Since γ̄0 ≤ (α0 + 2)/(2α0), using (3.6) of Steinwart and Scovel [39], we have, for
σ = σl,ϕl,p1,0

and λ = λl,ψl,p2,0
,

E
[
R

(
f̂ (σ0,λ0)

m

) − R∗] ≤ Cm−�̄(γ̄0)+ε,

where �̄ : (0,+∞) �−→ R is the function defined by �̄(γ ) = γ /(2γ + 1) for all
γ ∈ (0,+∞) and C > 0 depends only on a, b0,K

′ and ε. We remark that, as in
the first part of the proof, we can uniformly bound the constant before the rate of
convergence in (3.6) on every compact subset of U′. Since M(l) ≤ n2b0 , taking the
expectation in (4.6), we find

sup
π∈Rα0,γ̄0

E[R(f̃n) − R∗] ≤ C
(
m−�(γ̄0)+ε + l−(α0+1)/(α0+2) log7/4(n)

)
,

where C > 0 depends only on a, b0,K
′ and ε. Moreover, |γ0 − γ̄0| ≤ 2(2α′

max +
1)2�−1, so |�̄(γ̄0)− �̄(γ0)| ≤ 2(2αmax + 1)�−1. To achieve the proof, we use the
same argument as for the first part of the proof. �
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