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ASYMPTOTIC APPROXIMATION OF NONPARAMETRIC
REGRESSION EXPERIMENTS WITH UNKNOWN VARIANCES1

BY ANDREW V. CARTER

University of California, Santa Barbara

Asymptotic equivalence results for nonparametric regression experi-
ments have always assumed that the variances of the observations are known.
In practice, however the variance of each observation is generally considered
to be an unknown nuisance parameter. We establish an asymptotic approx-
imation to the nonparametric regression experiment when the value of the
variance is an additional parameter to be estimated or tested. This asymptot-
ically equivalent experiment has two components: the first contains all the
information about the variance and the second has all the information about
the mean. The result can be extended to regression problems where the vari-
ance varies slowly from observation to observation.

1. Introduction. We will show that a nonparametric regression experiment
where the variance is unknown (and possibly changing) is asymptotically equiv-
alent to a continuous Gaussian process. This equivalence is demonstrated by the
explicit construction of the continuous Gaussian process from the nonparametric
regression observations and vice versa.

In particular, a simple version of the nonparametric regression problem observes
n independent normals,

Yi = f (i/n) + σξi, i = 1, . . . , n,(1.1)

where f is an unknown smooth function that we want to estimate (or test), the ξi

are independent standard normals and σ 2 is the variance of the noise.
Brown and Low [2] showed that this nonparametric regression problem is as-

ymptotically equivalent to trying to estimate f in the white-noise experiment that
observes the continuous process

Y(t) =
∫ t

0
f (x) dx + σ√

n
W(t), 0 ≤ t ≤ 1,(1.2)

where W(t) is a standard Brownian motion (SBM). Brown and Low [2] assumed
that the variance structure was known, and their construction of the white-noise
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process Y(t) depends crucially on the value of σ . In practice, however, we typi-
cally do not know the value of σ , and it is usually considered a secondary “nui-
sance” parameter. Its estimation is only necessary to the extent that it calibrates
the estimation of f (as in setting a threshold level or bandwidth). Our approach is
to include the variance as a second parameter so that the experiment is now con-
cerned with decision procedures concerning the pair (f, σ ). While it is too strong
to assume that σ is known, we may be erring in the other direction by promoting
its importance to the same level as the mean function. However, Theorem 1 shows
that there is no significant penalty to pay in treating the variance as part of the
parameter space because the equivalence holds for essentially the same spaces as
in [2].

Our motivation comes from wavelet thresholding techniques (e.g., [5, 7]) that
estimate the variance using the high frequency wavelet coefficients and estimate
the mean mainly from the low frequency coefficients using the estimate of the
variance to determine which terms to include in the model. A similar approach is
used by Rice [21] to choose the bandwidths of kernel estimators. Our asymptotic
approximation contains two components: a χ2-distributed random variable with
information about the variance, and a continuous Gaussian process with informa-
tion about the mean.

This sort of approximation is also available when the variance is a function over
the unit interval, Yi = f (i/n) + σ(i/n)ξi . In this case, the strategy is to separate
the Yi ’s into groups such that within each group the variance function is nearly
constant and then to proceed as in the constant variance case. Not surprisingly, if
the variance is also to be nonparametrically estimated, the equivalence result is
only true under somewhat stricter conditions on the means.

1.1. Asymptotic equivalence. The proposed approximation is in the sense of
Le Cam’s deficiency distance between statistical experiments [15]. This type of
approximation provides a correspondence between estimation procedures in each
experiment such that any good estimator in the asymptotic approximation corre-
sponds to a good estimator in the nonparametric regression estimator and vice
versa.

In this formulation, we have a pair of statistical experiments P and Q that
consist of sets of distribution functions {Pf | f ∈ F } on (X,A) and {Qf |
f ∈ F } on (Y,B). Both are indexed by the same parameter set F , and the
two experiments are equivalent if they provide the same information about f ∈
F . Le Cam proposed a pseudometric for statistical experiments �(P ,Q) =
max[δ(P ,Q), δ(Q,P )] where δ(P ,Q) = infK supf ‖K(Pf )− Qf ‖TV, using the
total variation distance and “transitions” K that map distributions on the sample
space of P to distributions on the sample space of Q. For our purposes, however,
Le Cam’s general notion of transitions (see [16], page 18) is not necessary. Instead,
we will bound δ(P ,Q) by proposing a randomized transformation of the observed
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data. Thus, K can be represented by the conditional distribution on (Y,B) given
an observation from Pf , and K(Pf ) is the marginal distribution on Y.

Therefore, the first step in bounding this �-distance is to propose a candidate
transformation from X to Y. Then the bound is established by bounding the dis-
tance between the distributions of the transformed observations and the observa-
tions from the approximating experiment. Explicit transformations between the
experiments are useful because they generate a correspondence between the es-
timators in experiments. For instance, if the distribution of T (X) is close to that
of Y , then the estimator f̂ (T (X)) has nearly the same risk as f̂ (Y ). The transfor-
mation T may be randomized in the sense that it may depend on some external
random variables, but it may not depend on the parameters. In particular, the trans-
formation in [2] depends on the variance σ 2 which is now a part of our parameter
space. Therefore, we must formulate a different transformation that does not de-
pend on σ 2.

Two sequences of experiments Qn and Pn are asymptotically equivalent if
�(Pn,Qn) → 0. Asymptotic equivalence implies that the risk under a bounded
loss function achieved by any estimator in Pn can be achieved asymptotically by
associated estimators in Qn and vice versa [15].

1.2. Main results.

1.2.1. Constant variance. In order to accommodate the added aspect of an un-
known variance, the parameter space will be expanded to include both the smooth
functions f and the variance σ 2. The specification of the exact set of parameters
is described in Section 2. For Theorem 1, the parameter space Fσ includes all
functions in a Hölder space with α > 1/2 as in [2].

THEOREM 1. Suppose that the experiment Pn observes Yi as in (1.1). The
distributions are indexed by (f, σ ) ∈ Fσ × R+ as in Definition 1.

Further, suppose that the experiment Qn has distributions indexed by the same

pairs (f, σ ) with V ∼ �(n
2 , 2σ 2

n
) and

Y(t) | V =
∫ t

0
f (x) dx + V 1/2n−1/2W(t), 0 ≤ t ≤ 1,(1.3)

where W(t) is a SBM.
Then the experiments Pn and Qn are asymptotically equivalent, �(Pn,

Qn) → 0.

The proof for simplified versions of these experiments is in Section 3, and the
rest of the argument is in Section 5.
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Remarks on Theorem 1. Note that the experiment Qn is equivalent to observ-
ing Y(t) alone because the random variable V can be computed almost surely from
Y(t) via its quadratic variation. This is why the variance of Y(t) is random as op-
posed to just σ 2/n as in [2]. Qn is like Le Cam’s locally asymptotically mixed
normal experiment ([17], page 121).

One implication of this approximation is that asymptotically V is sufficient
for estimating σ 2. Further, because the distributions of Y(t) conditional on dif-
ferent values of V are mutually singular, the conditionality principle implies
that inference for f should be performed conditional on V . For instance, min-
imax results for the white-noise problem similar to those in [20] or [6] bound
inf

f̂
supf ∈Fσ

Ef L(f̂ , f ) = R(Fσ , σ 2) for observations as in (1.2). This implies
a bound on the risk in estimating f in (1.3) using the expected value of the con-
ditional risk, ER(F ,V ). Theorem 1 implies that the same asymptotic minimax
result also applies to Pn (for bounded loss functions).

The advantage of approximating the regression observations in (1.1) by the con-
tinuous process is that it makes certain calculations easier. For instance, in the ex-
periment Qn a linear estimate of the mean f at a point t which is of the form
Y(Kh), where Kh is a kernel function with bandwidth h, has a normal distrib-
ution with mean

∫
Kh(x)f (x) dx and variance V

n

∫
K2

h(x) dx conditional on V .
The bandwidth h should be chosen as a function of V to minimize the error, and
even knowing the exact value of σ would not provide a better bandwidth. This is
very much like the approach to choosing a bandwidth described in [21].

1.2.2. Varying variance. It may be more interesting to consider nonparamet-
ric regression experiments where the variance changes over the interval. Here the
parameter space is the product of two function spaces, F̆σ and �. The varying
variance means that more smoothness is required in F̆σ , in particular F̆σ includes
Hölder spaces only for α > 3/4 and � includes functions σ(t) such that logσ(t)

is Hölder for α > 1. The exact definition of the parameter space is in Section 2.

THEOREM 2. The experiment P̆n observes Yi = f (i/n) + σ(i/n)ξi for i =
1, . . . , n with ξi as in Theorem 1 and (f, σ 2) ∈ F̆σ (α, γk) × �(α1), the parameter
space in Definition 2.

The experiment Q̆n,m observes two Gaussian processes:

V (t) =
∫ t

0
logσ 2(x) dx + √

2n−1/2W2(t),

and then conditional on V (t),

dY (t) = f (t) dt + Z
n
−1/2 dW1(t), (
 − 1)/m < t ≤ 
/m,

as 
 = 1, . . . ,m, where Z
 = exp[m
2 (V (
/m) − V ([
 − 1]/m))]. The processes

W1(t) and W2(t) are independent SBMs.
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For any α > 3/4 and α1 > max(1, α
2α−1), there is a sequence mn (where n1/3 <

mn < n1/2 depending on α and α1) such that these experiments are asymptotically
equivalent, �(P̆n, Q̆n,mn) → 0.

The proof of a simplified version of this result is in Section 4 and the rest of the
proof is in Section 6 and depends on asymptotic results in Sections 7 and 8 that
bound the distance between the simplified experiments and P̆ and Q̆, respectively.

Theorem 2 requires a bit more smoothness on f , but we can trade off a bit of
smoothness in the set of mean functions for less smoothness in the variance space.
In particular, if f is a Hölder function for some 3/4 < α < 1, then logσ 2(x) needs
to be a Hölder function for α1 > 2α/(2α − 1). This always implies that α1 > 1 and
the variance function has one bounded derivative.

Sections 9 and 10 give bounds on the K–L divergence between gamma and
normal distributions that will be used in the proofs. Further technical lemmas are
established in Sections 11, 12 and 13.

1.3. Related work. The equivalence results of Brown and Low [2] were the
first to apply Le Cam’s deficiency to a nonparametric regression experiment, and
their introduction provides a number of further references motivating this ap-
proach. Brown, Cai, Low and Zhang [1] extends their results to the case where the
design points are randomly chosen uniformly over the interval. Rohde [22] uses a
Fourier series decomposition to get better results in the approximation of Brown
and Low [2]. Carter [3] extends the fixed design result to the unit square. All of
these results assume that the errors are normal with a known variance. Brown and
Low [2] discuss how to adjust their results to cases where the variance changes
over the interval, but it is essential to their methodology that the experimenter
know the variance at each observation.

Grama and Nussbaum [10] discusses nonparametric regression problems with
nonnormal errors. In particular, one of the cases they treat is estimating the vari-
ance of normal observations. Zhou [24] treats the variance case in particular and
improves the bounds to apply to Besov spaces. The Q̆ experiment in Theorem 2
reduces to the continuous Gaussian experiment from [10] if the mean function is
assumed known. Therefore, Theorem 2 synthesizes the results of both [2] and [10]
(under stronger smoothness conditions).

The most interesting applications of our work may be in heteroscedastic non-
parametric regression, of which there is a considerable literature, (e.g., [4, 9, 11,
13, 23]). The variance estimator of Müller and Stadtmuller [19] seems closest to
these results in that the mean squared error is estimated on a fine grid, thus produc-
ing approximately the V (t) or Z
 of experiment Q̆n,m, and then these observations
are smoothed to produce an estimator of σ 2(t). Hall, Kay and Titterington [11]
improve on this technique by finding the best linear functions of the Yi which can
be squared and averaged to get a estimate of σ 2. Other types of estimators from
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Fan and Yao [9] and Ruppert, Wand, Holst and Hössjer [23] are based on residuals
from a preliminary fit of the mean. Testing for heteroscedasticity is addressed in
Dette and Munk [4] based on differences between successive observations, while
Eubank and Thomas [8] use residuals.

2. The parameter spaces. The most convenient way of describing these pa-
rameter spaces is using wavelet bases and their associated Besov sequence norms.
Assuming that the mean functions f are in L2([0,1]), let φk,j for j = 1, . . . ,2k

and ψi,j for i ≥ k and j = 1, . . . ,2i be the scale functions and wavelets, respec-
tively, for an orthonormal wavelet basis on [0,1]. For most of our arguments it
is necessary that these are the Haar basis: φk,j (t) = 2k/2φ0(2kt − j + 1) where
φ0(t) = 1{0 ≤ t ≤ 1}, and ψi,j is defined analogously with ψ0(t) = 1{0 ≤ t ≤
1
2} − 1{1

2 ≤ t ≤ 1}.
The coefficients ϑk,j and θi,j are such that

f (x) =
2k∑

j=1

ϑk,jφk,j (x) +
∞∑
i=k

2i∑
j=1

θi,jψi,j (x).(2.1)

These coefficients can be found via θi,j = 〈f,ψi,j 〉 = ∫
f ψi,j dx. The parameter

space is the set of smooth functions that can be described succinctly by the basis
functions φk,j and ψi,j .

There are two Besov sequence norms we will use on the series of coefficients.
The b(α,2,2) norm is

‖θ‖b(α,2,2) =
(∑

j

ϑ2
j + ∑

i≥k

22αi
∑
j

θ2
i,j

)1/2

and the b(α,∞,1) norm is

‖θ‖b(α,∞,1) = sup
j

2k(α+1/2)|ϑj | +
∑
i≥k

2i(α+1/2) sup
j

|θi,j |.

These norms are equivalent to Besov norms (see, e.g., [12], Chapter 9).
The parameter spaces we will use are compact in these norms. This implies

that there is a uniform bound on the partial sums in each norm. Specifically, for a
sequence of positive γk that goes to 0 as k gets large, let �(α,2,2, γk) be the set
of all sequences θi,j such that ∑

i≥k

22αi
∑
j

θ2
i,j ≤ γ 2

k .(2.2)

Analogously,

sup
θ∈�(α,∞,1,γk)

[∑
i≥k

2i(α+1/2) sup
j

|θi,j |
]

≤ γk.
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The results in Sections 3 and 4 require that the mean functions are in
�(α,2,2, γk) while the approximations in Sections 5 and 6 require that the means
are in �(α,∞,1, γk). Hölder(M,α∗) functions with α < α∗ < 1 are in both spaces
with γk = M2k(α−α∗).

DEFINITION 1. Using the Haar basis functions, the parameter space for The-
orem 1 is

Fσ (γk) × R+ = {(f, σ 2) :f ∈ �(1/2,2,2, γkσ ) ∩ �(1/2,∞,1, γkσ ), σ 2 > 0}.
When the constant variance is replaced by a function σ 2(t), then greater

smoothness in the mean function is necessary. The log of the variance function
is assumed to be a Hölder function with α1 > 1. Let τ(t) = logσ 2(t). Then the
parameter set H(M,α1) includes all such τ where

sup
t∈[0,1]

|τ ′(t)| ≤ M and sup
t,s∈[0,1]

|τ ′(t) − τ ′(s)| ≤ M|s − t |α1−1.(2.3)

Furthermore, let log σ̄ 2 = ∫ 1
0 logσ 2(t) dt .

DEFINITION 2. The parameter space for Theorem 2 is

F̆σ (α, γk) × �(α1) = {(f, σ 2) :f (t) ∈ �(α,2,2, γkσ̄ ) ∩ �(α,∞,1, γkσ̄ ),

and log(σ 2(t)) ∈ H(M,α1)},
where again the basis is assumed to be the Haar basis.

REMARK. There are two tricks used here to avoid the condition σ 2(t) > ε > 0.

First the smoothness of the functions is measured relative to the variance in that
the tail of the Besov norm has to decrease proportionally with σ . Also, the smooth-
ness condition on the variance is on the logarithm of σ 2(t) as opposed to σ 2(t)

itself, thus sup0<t<1 | log σ 2(t)

σ̄ 2 | ≤ M by the mean value theorem. We avoided a
lower bound on the variance so that the experiments will still be invariant under
rescalings.

3. Sequence space result. Instead of working directly Pn, we will first con-
sider an experiment based on the orthonormal basis functions. The experiment P̄k

observes n = 2k independent normals

X0,j ∼ N

(
ϑk0,j ,

σ 2

n

)
for j = 1, . . . ,2k0,

Xi,j ∼ N

(
θi,j ,

σ 2

n

)
for k0 ≤ i < k,

where the ϑk0,j and θi,j are the wavelet coefficients of the mean function f as
defined above.
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The experiment P̄∞ observes the entire sequence of normal random vari-
ables. This sequence experiment is equivalent to the experiment that observes the
Gaussian process from (1.2) because the random coefficients can be generated
from this process via X0,j = ∫

φk0,j (t) dY (t) and Xi,j = ∫
ψi,j (t) dY (t), and the

process can be constructed from the coefficients via (2.1) using θi,j = Xi,j . Unfor-
tunately, this experiment P̄∞ is completely informative with respect to estimating
σ 2 and therefore cannot be asymptotically equivalent to Pn except in trivial cases.

Instead, P̄k is approximated by Q which replaces σ 2 in P̄∞ with a chi-squared
observation. The experiment Q observes the random variables

V ∼ �

(
n

2
,

2σ 2

n

)
, Y0,j |V ∼ N

(
ϑk0,j ,

V

n

)
, Yi,j |V ∼ N

(
θi,j ,

V

n

)
.

LEMMA 1. For the parameter set F̄σ (γk) × R+ = {(θ , σ 2) : θ ∈ �(1/2,2,2,

γkσ ), σ 2 ∈ R+} and n = 2k , m = 2k0 and m = nγk0 ,

�(P̄k,Q) ≤ 2γ
1/2
k0

.(3.1)

If γk = M2−εk for some small ε between 0 and 1/2, then

�(P̄k,Q) ≤ 2M1/2n−ε/(2(1+ε)).(3.2)

Clearly, (3.2) follows directly from (3.1) using m = M1/(1+ε)n1/(1+ε).
This lemma and its proof imply that there is a sense in which the χ2 random

variable V and the scaling function coefficients Y0,j are asymptotically sufficient
statistics for these experiments. Sections 3.5 and 3.7 argue that the information
about f in the Yi,j and Xi,j is negligible and the information about the variances
is summarized in V .

The bound on the deficiency δ(P̄k,Q) is described in Sections 3.2–3.6 and the
bound on δ(Q, P̄k) is in Section 3.7.

3.1. Using Kullback–Leibler divergence. The total variation distance mea-
sures the distance between distributions in the deficiency distance, but total varia-
tion is inconvenient for the analysis especially in the case of product measures.
It is easier to establish the bounds using Kullback–Leibler divergence because
the divergence between the joint distributions of X and Y is equal to the di-
vergence between the marginal distributions of X plus the expected value of
the divergence between the conditional distributions of Y given X. In particular,
for product measures D(

∏
i Pi,

∏
i Qi) = ∑

i D(Pi,Qi). We also have the bound
‖P − Q‖TV ≤ √

D(P,Q) which allows us to apply K–L bounds to the deficiency
distance.

In a convenient abuse of notation, we will use D(X,Y ) to refer to the divergence
between the distributions of X and Y . This allows us to write

D((X1, Y1, ), (X2, Y2)) = D(X1,X2) + E[D(Y1, Y2 | X)].
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Furthermore, D(X,Y ) ≤ E[D(X,Y | V )], which means that the divergence be-
tween the marginal distributions of X and Y is less than the expected value of the
divergence between the conditional distribution of X given V and the conditional
distribution of Y given V .

3.2. Hierarchical structure of the experiments. The strategy is to consider the
X0,j and Y0,j observations as those containing the information about the mean,
and the rest as having information about the variance. The Q experiment consists
of observations of V , Y0,j and Yi,j for i ≥ k0 as above.

We can construct a parallel structure from the P̄k observations,

V̂ = n

n − m

∑
k0<i≤k

∑
j

X2
i,j ,

Ŷ0,j = X0,j | V̂ ∼ N

(
ϑk0,j ,

σ 2

n

)
, Ŷi,j | V̂ ∼ N

(
0,

V̂

n

)
,

where the Ŷi,j are generated independently conditional on the estimated variance.
In both experiments, the conditional distribution given V of the wavelet coeffi-

cients, Yi,j , is independent of the distribution of the scaling function coefficients
Y0,j . Thus, there is a decomposition of the bound on the divergence into three
terms,

D(Q,K(P)) = D(V , V̂ ) + ∑
j

E[D(Y0,j ,X0,j | V )]
(3.3)

+ ∑
i≥k0

∑
j

E[D(Yi,j , Ŷi,j | V )].

We will bound the contribution from each of these terms in Sections 3.3, 3.4 and
3.5, respectively.

3.3. The variances. The construction first generates an estimate of the vari-
ance. This estimate, V̂ , is σ 2/(n−m) times a noncentral χ2 random variable with
n−m degrees of freedom and noncentrality parameter µ = n

∑
k0≤i<k

∑
j θ2

i,j /σ
2.

The distributions of V̂ and V are approximately gamma with α = (n − m)/2
and n/2, respectively. The distribution of V̂ is approximate because the normals
have nonzero means. Ignoring that inconvenience for a moment, Lemma 6 bounds
the divergence by D(V , V̂ ) ≈ m2n−2.

The effect of the noncentrality of V̂ on the bound can be handled using a mixture
distribution characterization of the noncentral χ2. A noncentral χ2

n with noncen-
trality parameter µ can be generated from a Poisson mixture of χ2 distributions
with 2� + n degrees of freedom with mixing parameter � ∼ Poisson(µ). For the
K–L divergence between mixture distributions, D(V , V̂ ) ≤ EµD(V , V̂ | �) where
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V is independent of �. From (9.6),

EµD(V , V̂ | �) ≤ m2

2n2 + Eµ

(
�2

2(n − m)
+ �

n − 1

)
≤ m2

2n2 + µ2 + 3µ

2(n − m)
.

The size of µ will be shown below in (3.7) to be nγ 2
k0

/m, and therefore only the
first term in this bound will concern us,

D(V , V̂ ) ≤ m2

2n2 + smaller order terms.(3.4)

3.4. The top level. The broadest coefficients X0,j are equated directly to the
Y0,j , and the distributions are normals with means ϑk0,j . The only difference be-
tween the two sets of coefficients is the variance: for the Y0,j it is V/n, and for the
X0,j it is σ 2/n.

Therefore, from (10.1),

∑
j

E[D(Y0,j ,X0,j | V )] = m

2
E

[
V

σ 2 − 1 − log
(

V

σ 2

)]

≤ m

2
log

(
n

n − 2

)
(3.5)

≤ m

n − 2

using Jensen’s inequality on E log 1/V . This is actually larger than the error
in (3.4), and they both imply that m = o(n).

3.5. The bottom levels. The third and final term in (3.3) compares the wavelet
coefficients. The coefficients Ŷi,j are uninformatively generated by random zero-
mean normals with variance V̂ /n.

The difference between one of these normals and a normal generated by the
experiment Q (conditional on V ) is in the difference of the means, D(Yi,j , Ŷi,j |
V ) = nθ2

i,jV
−1/2. Thus the total error is

∑
i≥k0

∑
j

E[D(Yi,j , Ŷi,j | V )] = n2

2(n − 2)

∑
i,j

θ2
i,j

σ 2 ≤ n
∑
i>k0

∑
j

θ2
i,j

σ 2 .(3.6)

Using m = 2k0 ,

n
∑
i>k0

∑
j

θ2
i,j

σ 2 ≤ n

m

∑
i>k0

2i
∑
j

θ2
i,j

σ 2 ≤ n

m
γ 2
k0

.(3.7)
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3.6. Choosing m. Choosing the dimension of the scaling functions balances
the errors in the approximation of the scaling and the wavelet coefficients. The
trade-off is between the bound in (3.5) (m/n) and the bound in (3.7). Minimizing
the bound is then possible by setting the two terms equal to each other,

m

n
= nγ 2

k0

m
�⇒ m = nγk0 �⇒ m2

n2 + m

n
+ n

m
γ 2
k0

≤ 3γk0 .

Therefore, plugging (3.4), (3.5) and (3.7) into (3.3) for m = nγk0 gives δ(P̄k,Q) ≤
2γ

1/2
k0

.

3.7. The transition in the other direction. The other half of the deficiency dis-
tance bound requires a map from the (V ,Yi,j ) observations from Q to the Xi,j

observations from P̄k . Once again, the top level observations remain unchanged,
X̂0,j = Y0,j ∼ N (ϑk0,j , V /n). The Yi,j for i ≥ k0 are not used in the transforma-
tion; instead the X̂i,j are functions of the variance V . Because V is a sufficient
statistic for estimating σ 2 from n independent normals with mean 0, there is a
probability distribution conditional on V that is not a function of σ of n indepen-
dent N (0, σ 2/n) random variables from which we can use the first n − m as X̂i,j .

The X̂i,j and X̂0,j are not independent because they both depend on V , but we
can bound the K–L divergence via

D(X̂,X) = ∑
k<i<k0

∑
j

D(X̂i,j ,Xi,j ) + E
∑
j

D(X̂0,j ,X0,j | {Xi,j }k<i<k0,j )

≤ ∑
k<i<k0

∑
j

D(X̂i,j ,Xi,j ) + E
∑
j

D(Y0,j ,X0,j | V ).

The contribution to the error from the second term is just as in (3.5), and the first
term is less than the error in (3.7). Therefore, δ(Q, P̄k) ≤ 2γ

1/2
k0

and Lemma 1 is
established.

4. A variance function over the interval. An interesting extension of the
result in Lemma 1 is to consider what happens when the variance changes over
the interval. Our simplified version of this experiment assumes that we can group
the basis functions into m1 = 2k1 groups for k1 < k0,

I
 =
{
(i, j) : 2i

(

 − 1

m1

)
< j ≤ 2i

(



m1

)}
,

and then each group of coefficients will have a different variance, σ 2

 . These groups

are chosen so that each Haar basis function ψi,j with (i, j) ∈ I
 has support in
(
 − 1)/m1 < t ≤ 
/m1. The variance of the group will be determined by the
variance function σ 2(t) via

logσ 2

 = m1

∫ 
/m1

(
−1)/m1

logσ 2(t) dt.
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LEMMA 2. The parameter space F̃σ̄ × � contains the mean functions f (t) ∈
�(α,2,2, γkσ̄ ) for some α > 3/4, and the variance functions σ 2(t) are such that
sup� max
(logσ 2


 − log σ̄ 2) ≤ M .
The experiment P̃k observes n independent normals,

X0,j ∼ N

(
ϑk0,j ,

σ 2



n

)
for (k0, j) ∈ I
,

Xi,j ∼ N

(
θi,j ,

σ 2



n

)
for (i, j) ∈ I
, k0 ≤ i < k.

The Q̃ experiment observes m1 independent V
 ∼ �( n
2m1

,
2σ 2


 m1
n

) and

Y0,j |V ∼ N

(
ϑk0,j ,

V


n

)
for (k0, j) ∈ I
,

Yi,j |V ∼ N

(
θi,j ,

V


n

)
for (i, j) ∈ I
, i ≥ k0,

where the normals are all conditionally independent.
Then for m0 = 2k0 ,

�(P̃k, Q̃) ≤ 2m
1/2
1 m

1/2
0 n−1/2 + eM/2m−α

0 n1/2γk0 .

This bound is of order γk0 when m0 = n1/(2α) and m1 = n1−1/(2α)γ 2
k0

.
The basic idea is that the argument for Lemma 1 can be repeated on each of

the m1 independent pieces of this experiment. A Haar basis is used here because
the basis functions have disjoint support which keeps things tidy as the variance
changes over the interval.

Comparing this to Lemma 1, the approximate sufficient statistics are the m0 ran-
dom variables Y0,j and the m1 variances V
 where m0 < m from Lemma 1 because
the f are smoother and m1 < m0 because the variance functions are smoother still.

4.1. Proof of Lemma 2. The transformation of the Xi,j follows as in Section 3
on each of the m1 pieces. First, there are estimates of the variances based on the
observations for i ≥ k0,

V̂
 = nm1

n − m1

∑
(i,j)∈I
,i≥k0

X2
i,j .

Then new Gaussian observations Ŷi,j for i ≥ k0 are generated by independent nor-
mals with variance V̂
.

The error in the approximation is bounded in the same three stages: first the
error in the estimation of the variance, then the difference between the distributions
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when i = 0, and finally the distance between the distributions of the observations
for i ≥ k0,

D(Q̃, P̃K) =
m∑


=1

D(V
, V̂
) +
m1∑

=1

∑
{j : (k0,j)∈I
}

E[D(Y0,j ,X0,j | V
)]
(4.1)

+
m1∑

=1

∑
i≥k0

∑
{j : (i,j)∈I
}

E[D(Yi,j , Ŷi,j | V
)].

Each of the estimates V̂
 is m1σ
2

 /(n − m1) times a noncentral χ2 with (n −

m1)/m1 degrees of freedom and noncentrality parameter

µ
 = ∑
k0≤i<k

∑
{j : (i,j)∈I
}

nθ2
i,j

σ 2



,

which is small for large k0. By (9.6), the divergence between the distributions of
V̂
 and V
 is

D(V̂
,V
) ≤ m2
1

2(n − m1)2 + m1(µ
2

 + 2µ
)

n
.

Using independence, the divergence between the distributions of the entire vectors
is just the sum,

m∑

=1

D(V̂
,V
) ≤ m3
1

n2 + 3m1

n

(
m∑


=1

µ


)
.(4.2)

These terms will turn out to be negligible relative to the errors in the other two
terms.

The second term in (4.1) is the divergence between the conditional distributions
of X0,j and the Y0,j . By (10.1) and Jensen’s inequality,

E[D(Y0,j ,X0,j | V
)] = 1

2

[
E(V
)

σ 2



− 1 − E log
(

V


σ 2



)]
≤ m1

n − 2m1
.

Thus the bound on the sum is
m1∑

=1

∑
{j : (k0,j)∈I
}

E[D(Y0,j ,X0,j | V
)] ≤ m1m0

n
.(4.3)

Finally, the third term in (4.1) is the divergence between the conditional distri-
butions of the Yi,j ’s and the Ŷi,j ’s. By (10.1)

m1∑

=1

∑
i≥k0

∑
{j : (i,j)∈I
}

E[D(Yi,j , Ŷi,j | V
)] =
m1∑

=1

∑
i≥k0

∑
{j : (i,j)∈I
}

E
nθ2

i,j

2V


.



ASYMPTOTICS FOR UNKNOWN VARIANCES 1657

In this case, EV −1

 = σ−2


 (1 − 2m1
n

)−1 ≤ eMσ̄−2 by the smoothness condition in
Lemma 2. Thus

m1∑

=1

∑
i≥k0

∑
{j : (i,j)∈I
}

E[D(Yi,j , Ŷi,j | V
)] ≤ eMn
∑
i≥k0

∑
j

θ2
i,j

σ̄ 2 .

Here we will use the smoothness properties of the function space to get the bound

n
∑
i≥k0

∑
j

θ2
i,j

σ̄ 2 ≤ nm−2α
0

∑
i≥k0

22αi
∑
j

θ2
i,j

σ̄ 2 ≤ nm−2α
0 γ 2

k0
.(4.4)

Therefore, plugging in (4.2), (4.3) and (4.4) into (4.1) yields

D(Q̃, P̃K) ≤ 2m1m0

n
+ eM n

m2α
0

γ 2
k0

,

and the deficiency is

δ(P̃ , Q̃) ≤ 2m
1/2
1 m

1/2
0 n−1/2 + eM/2n1/2m−α

0 γk0 .

4.1.1. The transformation in the other direction. The proof of Lemma 2 is
completed by bounding the deficiency in the other direction. Following very much
what we did in Section 3.7, each V
 can be decomposed into n/m1 independent
normals with mean 0 and variance σ 2


 to create a set of observations (conditional
on V
)

X̂0,j ∼ N

(
ϑk0,j ,

V


n

)
, X̂i,j ∼ N

(
0,

σ 2



n

)

for (i, j) ∈ I
 and k0 ≤ i < k.
The divergence between these distributions and the distributions in P̃k is less

than

m1∑

=1

∑
k<i≤k0

∑
{j : (i,j)∈I
}

D(X̂i,j ,Xi,j ) +
m1∑

=1

∑
{j : (k0,j)∈I
}

ED(X̂0,j ,X0,j | V
),

where the first term is bounded as in (4.4), and the second term as in (4.3).
Therefore,

δ(P̃k, Q̃) ≤ m
1/2
1 m

1/2
0 n−1/2 + eM/2n1/2m−α

0 γk0

and the proof of Lemma 2 is finished.
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5. The difference between the sequence and sampled experiments. The
sequence results in Lemma 1 and 2 assume that the observations are n wavelet
coefficients. This is unrealistic, and we would prefer that the observations were of
the form (1.1). The standard technique is to use Y
/

√
n as approximations to the

scaling coefficients at the lowest level in the wavelet expansion ϑk,
.
The cascade algorithm of [18] constructs higher frequency scaling function co-

efficients from the scale function and wavelet coefficients. This construction can
be used to generate Y ∗


 ∼ N (n1/2θk,
, σ
2) from the Yi,j , and the construction can

be inverted to construct the wavelet coefficients from these scaling function coef-
ficients at level k.

The error in this approximation is in the difference between the means,

∑



D(Y ∗

 , Y
) =

n∑

=1

(n1/2ϑk,
 − f (
/n))2

2σ 2 .

To be concrete, take the orthonormal basis to be the Haar basis. For f a contin-
uous function,

f (
/n) = n1/2ϑk,
 + ∑
i>log2 n

θi,j∗2(i−1)/2,(5.1)

where the j∗’s are the indices of the wavelets such that |φi,j∗(
/n)| > 0.
The K–L divergence bound becomes

∑



D(Y ∗

 , Y
) = 1

2σ 2

n∑

=1

( ∑
i>log2 n

2(i−1)/2θi,j∗

)2

≤ n

2σ 2

( ∑
i>log2 n

2(i−1)/2 sup
j

|θi,j |
)2

(5.2)

≤ 1

4

( ∑
i>log2 n

2i sup
j

∣∣∣∣θi,j

σ

∣∣∣∣
)2

≤ 1

4
γ 2
k

for mean functions in �(1/2,∞,1, γkσ ). This function space is different than
required in Lemma 1 but still includes any Hölder space for α > 1/2 as in [2].

Theorem 1 is proven by first appealing to the triangle inequality for �,
�(P ,Q) ≤ �(P , P̄ ) + �(P̄ ,Q). Then, for the parameter space that is the in-
tersection of the two spaces required for Lemma 1 and (5.2), �(P , P̄ ) ≤ γk from
(5.2) and �(P̄ ,Q) ≤ 2M1/2γk0 by Lemma 1. Therefore, �(P ,Q) ≤ 3M1/2γk0 →
0, and Theorem 1 is established.

6. Proving Theorem 2. There are three asymptotic results that can be com-
bined to establish Theorem 2. The first is Lemma 2, which showed

�(P̃k, Q̃) ≤ eM/2n1/2m−α
0 γk0 + 2m

1/2
1 m

1/2
0 n−1/2.
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We need two more approximations. First the P experiment needs to be approx-
imated by the nonparametric regression experiment.

LEMMA 3. We have

�(P̃k, P̆ ) ≤ 2eM/2(n1/2m−α
0 γk0 + n1/2m

−α1
1

+ m
1/2
0 m−1

1 + n1/2m−1
0 + n1/2m

−3/2
1 ).

This is proven in Section 7.
Finally, we need to approximate Q̃ by a continuous Gaussian process.

LEMMA 4.

�(Q̆, Q̃) ≤ m1n
−1/2 + 2Mn1/2m

−α1
1 + Mn1/2m

−3/2
1 .

This result is shown in Section 8.
These three results can be combined using the triangle inequality for the �

distance to prove that

�(P̆ , Q̆) ≤ Cn1/2m−α
0 γk0 + Cn1/2m

−α1
1 + Cm

1/2
1 m

1/2
0 n−1/2 + m

1/2
0 m−1

1 + · · · .
Let ζ0 = logn m0 and ζ1 = logn m1 so that if

ζ0 ≥ 1

2α
, ζ1 >

1

2α1
, ζ0 + ζ1 < 1 and ζ0 < 2ζ1,

then �(P̆ , Q̆) → 0. The conditions can only be fulfilled if α > 3/4 and α1 >

α/(2α − 1). Of course the argument assumes all along that α ≤ 1 and α1 > 1.
For 3

4 < α < 1 and 1 < α1 < 3
2 , we could take m0 = n1/(2α) and m1 =

n1/(2α1)nε , where ε = 1
4(2α−1

α
− 1

α1
) so that

n1/2m−α
0 γk0 + n1/2m

−α1
1 + m

1/2
1 m

1/2
0 n−1/2 + m

1/2
0 m−1

1

= γk0 + n−εα1 + n−ε/2 + n1/(4α)−1/(2α1)n−ε,

which goes to 0 as n → ∞ because ε > 0 and 4α > 2α1. The other terms in the
bound on �(P̆ , Q̆) are also negligible,

n1/2m−1
0 + n1/2m

−3/2
1 = n(α−1)/(2α) + n(2α1−3)/(4α1)n−3ε/2,

which goes to 0 because α < 1 and α1 < 3
2 . Finally, if n1/2m−1

0 → 0 and
m0m1n

−1 → 0 then clearly m1n
−1/2 → 0.

Therefore, Lemmas 2, 3 and 4 together are sufficient to prove Theorem 2 where
the sequence mn = n1/(2α1)+ε .
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7. Sequence space result for changing variances. Lemma 3 compares the
experiment P̃k which observes n wavelet coefficients to the experiment P̆ which
observes n normals with means f (i/n) and variances σ 2(i/n). The approximation
will be established in a series of steps by establishing intermediary experiments
that are equivalent to both experiments.

7.1. Negligible wavelet means. The first approximation of P̃ is by P ∗
1 , which

observes the X0,j the same as in P̃ but observes X∗
i,j that have expectation zero.

The divergence between the joint distributions is

D(({X0,j }, {Xi,j }), ({X0,j }, {X∗
i,j })) = n

∑
i≥k0

∑
j

θ2
i,j

σ 2



,

which is the same as the bound in (4.4), and therefore it goes to 0 for n large and

�(P̃k,P
∗
1,n) ≤ eM/2n1/2m−α

0 γk0 .(7.1)

A sequence of zero-mean normals with an unknown variance has the sum of
the squared observations as a sufficient statistic. In particular, P ∗

1 is equivalent to
observing

X0,j ∼ N

(
ϑk0,j ,

σ 2



n

)
, V̂
 ∼ �

(
n − m0

2m1
,

2m1σ
2



n − m0

)

for 
 = 1, . . . ,m1, where

V̂
 = nm1

n − m0

∑
(i,j)∈I


X∗2
i,j .

7.2. Distributing the variances. Next, we consider the experiment P ∗
2 that has

m0 variances instead of m1. It has observations

X∗
0,j ∼ N

(
ϑk0,j ,

σ̄ 2
j

n

)
and V ∗

j ∼ �

(
n − m0

2m0
,

2m0σ̄
2
j

n − m0

)
,

all independent for j = 1, . . . ,m0. The new variances are

log σ̄ 2
j = [ζ
,j logσ 2


 + ζ
+1,j logσ 2

+1]

for (2
 − 1)/2m1 < j/m0 ≤ (2
 + 1)/2m1 where ζ
,j + ζ
+1,j = 1 are weight
functions defined below.

This experiment is generated by smoothing out the variance information in the
V̂
 of P ∗

1 . The transformation of the observations from P ∗
1 leaves the observations

X0,j alone and uses the V̂
 to generate the χ2 random variables. The trick is to
redistribute this information in a smooth way to produce the V ∗

j .
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7.2.1. The transformation of the V̂
. We decompose each V̂
 into 2m1/m0
gamma observations (with a small correction for 
 = 1 and 
 = m1). The tech-
nique depends on the fact that a random variable X ∼ �(α,β) times a beta
random variable ξ ∼ B(δα, [1 − δ]α) is Xξ ∼ �(δα,β) and is independent of
X(1 − ξ) ∼ �([1 − δ]α,β). This can be extended to a multivariate beta distribu-
tion. For j between (2
− 3)m0/(2m1) and (2
+ 1)m0/(2m1) and parameters δ
,j

such that
∑

j δ
,j = 1, the density of ξ
,j on the simplex
∑

j ξ
,j = 1 is

f (ξ) = �

(
n − m0

m1

)[∏
j

�

(
δ
,j

n − m0

m1

)]−1 ∏
j

ξ
δ
,j ((n−m0)/m1)


,j

so that the ξ
,j V̂
 are independent gamma random variables with α = δ
,j ((n −
m0)/2m1).

The variance terms for P ∗
2 are constructed via

V̂ ∗
j = m0

m1
[ξ
,j V̂
 + ξ
+1,j V̂
+1] for

2
 − 1

2m1
<

j

m0
≤ 2
 + 1

2m1
,

which is a sum of gamma random variables. The weighting parameters are

δ
,j = m1

m0

(
2
 + 1

2
− 2j − 1

2

[
m1

m0

])
= m1

m0
ζ
,j ,

δ
+1,j = m1

m0

(
2j − 1

2

[
m1

m0

]
− 2
 − 1

2

)
= m1

m0
ζ
+1,j .

Thus m0
m1

ξ
,j V̂
 ∼ �(
n−m0
2m0

ζ
,j ,
2m0σ

2



n−m0
).

On the edges of the interval, for j/m0 ≤ 1/2m1 and j/m0 > 1 − 1/2m1, the
weights are simply δ1,j = δm1,j = m1/m0. There is no smoothing on the edges of
the interval.

This is a somewhat involved transformation, and the divergence between the
generated observations and the P ∗

2 observations is

m0∑
j=1

D(X0,j ,X
∗
0,j ) +

m0∑
j=1

D
(

m0

m1
[ξ
,j V̂
 + ξ
+1,j V̂
+1],V ∗

j

)
.(7.2)

The first term can be bounded by noting that the logarithm of the variance function
has a derivative bounded by M , and thus

| log σ̄ 2
j − logσ 2


 | = ζ
+1,j | logσ 2

+1 − logσ 2


 | ≤ M

m1
,(7.3)

which, along with (10.1), implies

D(X0,j ,X
∗
0,j ) = 1

2

[ σ̄ 2
j

σ 2



− 1 − log
σ̄ 2

j

σ 2



]
≤ (log σ̄ 2

j − logσ 2

 )2 ≤ M2m−2

1 .(7.4)
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Thus the total error from the first term in (7.2) is less than m0M
2m−2

1 . The contri-
bution to the error from the edges is zero because σ̄ 2

j = σ 2

 for j/m0 ≤ 1/2m1 or

j/m0 ≥ 1 − 1/2m1.
For the second term in (7.2), V̂ ∗

j is a sum of gammas with different scale terms.
We need a general lemma on the distribution of gamma sums.

LEMMA 5. For independent X1, . . . ,Xm random variables with Xi ∼ �(δin,

σ 2
i /n) where the δi > 0 and

∑
i δi = 1, the distribution of the sum of the Xi’s is

approximately gamma,

∑
i

Xi ≈ Y ∼ �

(
n,

σ̄ 2

n

)
where σ̄ 2 =

m∏
i=1

σ
2δi

i .

For ri = logσ 2
i − log σ̄ 2, the divergence between the distributions is bounded as

ri → 0 by

D
(∑

Xi,Y
)

≤
m∑

i=1

nδir
4
i

8
+ r2

i

4
+ O(n|ri |5 + |ri |3 + r2

i n−1).

The proof of this lemma is in Section 11. For r
 = log(σ 2

 /σ̄ 2

j ), Lemma 5 im-
plies

D(V̂ ∗
j ,V ∗

j ) ≤
(

n − m0

2m0

)
(ζ
,j r

4

 + ζ
+1,j r

4

+1) + r2


 + r2

+1

4
+ · · · .

Using (7.3) once again, the bounds on the divergences are

D(V̂ ∗
j ,V ∗

j ) ≤
(

n − m0

2m0

)
M4

m4
1

+ M2

2m2
1

+ O(nm−5
1 + m−3

1 ).

On the edges the relationship is exact, V ∗
j = ξ
,j V̂
 for j/m0 ≤ 1/2m1 and

j/m0 > 1 − 1/2m1 where 
 = 1 and 
 = m1, respectively. Therefore, the second
term in (7.2) is bounded,

m0∑
j=1

D(V̂ ∗
j ,V ∗

j ) ≤
m0−m0/2m1∑
j=m0/2m1

(
n − m0

m0

)
M4

m4
1

+ M2

m2
1

(7.5)
≤ M4nm−4

1 + M2m0m
−2
1 .

Putting the two divergence bounds from (7.4) and (7.5) into (7.2) gives

δ(P ∗
1 ,P ∗

2 ) ≤ 2Mm
1/2
0 m−1

1 + M2n1/2m−2
1 .(7.6)
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7.2.2. The transformation of the V ∗
j . To reproduce the P ∗

1 random variables
from the observation of P ∗

2 , the chi-squared random variables V ∗
j are added to-

gether to generate approximately the V̂
.
As before, the transformation leaves the X0,j alone and the difference in the

distributions of the X∗
0,j and X0,j contributes a O(m0/m2

1) term to the bound.

The V̂
 can be approximated by the sum of V ∗
j in the set J
 = {j : 
−1

m1
<

j
m0

≤



m1
}. By Lemma 5, the sum of the m1

m0
V ∗

j will be approximately a gamma with
expectation

logσ ∗2

 =

m0(
−1/2)/m1∑
j=m0(
−1)/m1+1

(ζ
−1,j logσ 2

−1 + ζ
,j logσ 2


 )

+
m0
/m1∑

j=m0(
−1/2)/m1+1

(ζ
,j logσ 2

 + ζ
+1,j logσ 2


+1),

which equals 1
8 logσ 2


−1 + 3
4 logσ 2


 + 1
8 logσ 2


+1. The correction at the edges im-
plies that logσ ∗2

1 = 7
8 logσ 2

1 + 1
8 logσ 2

2 and logσ ∗2
m1

= 1
8 logσ 2

m0−1 + 7
8 logσ 2

m0
.

To the error bounded in Lemma 5, we will have to add the error from the differ-
ence between σ ∗2


 and σ 2

 . Let gσ (x) be the density of a gamma distribution with

α = (n − m0)/2m1 and β = 2m1σ
2/(n − m0). The divergence can then be written

as

D

(
m1

m0

∑
j∈J


V ∗
j , V̂


)
= D

(
m1

m0

∑
j∈J


V ∗
j , V̌


)

(7.7)

+ E log
gσ ∗



(m1/m0

∑
j∈J


V ∗
j )

gσ

(m1/m0

∑
j∈J


V ∗
j )

,

where V̌
 is the gamma random variable with density gσ ∗



,

Let rj = log σ̄ 2
j /σ 2


 . Then by Lemma 5,

D

(
m1

m0

∑
j∈J


V ∗
j , V̌


)
≤ ∑

j∈J


[(
n − m0

2m0

)r4
j

8
+ r2

j

4
+ · · ·

]
,

where the rj are bounded for (
 − 1)/m1 < j/m0 < (2
 − 1)/2m1 using (7.3),

|rj | =
∣∣∣∣1

8
log

σ 2



σ 2

−1

+
(
ζ
,j − 7

8

)
log

σ 2



σ 2

+1

∣∣∣∣ ≤ M

m1
.

For (2
−1)/2m1 < j/m0 ≤ 
/m1, there is an analogous calculation so that |rj | <
M/m1 for every j . For j/m0 < 1/2m1, the |rj | = | logσ 2

1 /σ 2
2 |/8 ≤ M/m1. There

is an analogous bound on the other end of the interval as well.
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Thus,

∑



D

(
m1

m0

∑
j∈J


V ∗
j , V̌


)
≤ M4(n − m0)

16m4
1

+ M2m0

4m2
1

+ O(m0m
−3
1 ).(7.8)

The second term in (7.7) is the expected value of

log
gσ ∗



(X)

gσ

(X)

= n − m0

2m1

[
log

σ 2



σ ∗2



+ X

(
1

σ 2



− 1

σ ∗2



)]
.

The expectation is to be taken over the distribution of the average of the V ∗
j ,

E
m1

m0

∑
j∈J


V ∗
j = m1

m0

∑
j∈J


σ̄ 2
j = m1

m0

∑
j∈J


σ
ζ
,j


 σ
1−ζ
,j


+1 .

Section 13 does the necessary calculation to bound the contribution from this ex-
pectation. From (13.2) and (13.3),

m1∑

=1

E log
gσ ∗



(X)

gσ

(X)

≤ M2nm−3
1 + M2

m1

m1−1∑

=2

nm
−2α1
1 .

Putting this together with the bound in (7.8),

δ(P ∗
2 ,P ∗

1 ) ≤ Mn1/2m
−α1
1 + Mm

1/2
0 m−1

1 + Mn1/2m
−3/2
1 .

Therefore, in light of the analogous result in (7.6),

�(P ∗
2 ,P ∗

1 ) ≤ Mn1/2m
−α1
1 + 2Mm

1/2
0 m−1

1 + Mn1/2m
−3/2
1 .(7.9)

7.3. Approximating the nonparametric regression. The last step is to show
that P ∗

2 is equivalent to the n independent normal observations from the original
P̆ experiment.

The V ∗
j observations are sufficient statistics for (n − m0)/m0 independent nor-

mals with means 0 and variances σ̄ 2
j . These normals will be used in place of

all the wavelet coefficients Xi,j . These wavelet coefficients are combined with
the X∗

0,j , and using Mallat’s algorithm, n normal observations are produced,

Y ∗
i ∼ N (

√
m0θk0,j , σ̄

2
j ) where (j − 1)/m0 < i/n ≤ j/m0.

The error made by this approximation is

D(Y ∗
i , Yi) = (

√
m0θk0,j − f (i/n))2

2σ̄ 2
j

+ 1

2

[
σ 2(i/n)

σ̄ 2
j

− 1 − log
(

σ 2(i/n)

σ̄ 2
j

)]
.

The mean functions are bounded much as with the constant variance case,

∑
i

(f (i/n) − √
m0θk0,j )

2

σ̄ 2
j

≤ eM n

m2α
0

( ∑
i≥k0

2i(α+1/2) sup
j

∣∣∣∣θi,j∗

σ̄

∣∣∣∣
)2

(7.10)

≤ eM n

m2α
0

γ 2
k0

,
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because the partial sums of the b(α,∞,1) norm are uniformly bounded for f ∈
F̆σ̄ (α, γk) and using the smoothness of the variances for σ̄ 2 ≤ eMσ̄ 2

j .
The second part of the divergence is

n∑
i=1

1

2

[
σ 2(i/n)

σ̄ 2
j

− 1 − log
(

σ 2(i/n)

σ̄ 2
j

)]
≤

n∑
i=1

(logσ 2(i/n) − log σ̄ 2
j )2.

To bound this quantity requires taking advantage of all the smoothness in the
variance functions. To simplify things a bit, we write τ(t) = logσ 2(t) and t∗j =
(2j − 1)/(2m0). The smoothness condition on τ implies that τ(t) = τ(t∗j ) +
(t − t∗j )τ ′(t∗j ) + E where the error term is |E| ≤ M|t − t∗j |α . By the definition

of σ̄ 2
j ,

log σ̄ 2
j = m1

∫ 
/m1

(
−1)/m1

ζ
,j τ (t) + ζ
+1,j τ (t + 1/m1) dt

= τ(t∗j )

+ m1τ
′(t∗j )

∫ 
/m1

(
−1)/m1

[ζ
,j (t − t∗j ) + ζ
+1,j (t − t∗j + 1/m1)]dt + E1

= τ(t∗j )

+ τ ′(t∗j )

[
ζ
,j

(
2
 − 1

2m1
− 2j − 1

2m0

)
+ ζ
+1,j

(
2
 + 1

2m1
− 2j − 1

2m0

)]
+ E1.

The error is an average over errors in the expansion and so |E1| ≤ Mm
−α1
1 . Plug-

ging in ζ
,j and ζ
+1,j according to their definitions,

ζ
,j

(
2
 − 1

2m1
− 2j − 1

2m0

)
+ ζ
+1,j

(
2
 + 1

2m1
− 2j − 1

2m0

)

= −ζ
,j ζ
+1,j

m1
+ ζ
+1,j ζ
,j

m1
= 0.

Thus, log σ̄ 2
j = τ(t∗j )+E1, and, from the bound on the derivative, |τ( i

n
)−τ(t∗j )| ≤

Mm−1
0 implies that the bound is[

n∑
i=1

(logσ 2(i/n) − log σ̄ 2
j )2

]1/2

≤ Mn1/2m
−α1
1 + Mn1/2m−1

0 .(7.11)

Combining (7.11) and (7.10) implies

�(P ∗
2 , P̆ ) ≤ eM/2n1/2m−α

0 γk0 + Mn1/2m
−α1
1 + Mn1/2m−1

0 .(7.12)

It is not necessary to do a specific calculation to bound δ(P ,P ∗
2 ) because Mallat’s

algorithm is invertible, and the deficiency distance between the distributions after
applying the inverse to both distributions can only be smaller.
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Putting together (7.1), (7.9) and (7.12),

�(P̃k, P̆ ) ≤ 2eM/2n1/2m−α
0 γk0

+ 2Mn1/2m
−α1
1 + 2Mm

1/2
0 m−1

1 + Mn1/2m−1
0 + Mn1/2m

−3/2
1 ,

which proves Lemma 3.

8. The variance process. The final piece of the proof of Theorem 2 is to show
that the variance observations in the simplified experiment can be transformed into
a continuous Gaussian process. The experiment Q̃n observes m1 independent vari-
ance components V
 and a countable sequence of normal coefficients. Mimicking
the results of [10] and [24], we can construct an independent Gaussian process
V (t) from the χ2 observations, dV (t) = logσ 2(t) dt +√

2n−1/2 dW2(t). The con-
struction follows by taking the logarithm of the V
 and then using them to approx-
imate the increments of V (t).

Taking the logarithm of the V
 generates an intermediate experiment Q∗ that
observes Z
 ∼ N (logσ 2


 , 2m1
n

) all independent and the Gaussian process, condi-
tional on the Z
,

dY ∗(t) = f (t) dt + eZ
/2n−1/2 dW(t) for

 − 1

m1
≤ t ≤ 


m1
.

The divergence between the distributions is

D((logV,Y ), (Z,Y ∗)) =
m1∑

=1

D(logV
,Z
) + D(Y,Y ∗| logV ).

The first term is bounded as in Section 10.1 by m2
1/n and for the second the diver-

gence term D(Y,Y ∗|V ) = 0 because the conditional distributions are the same.
In the other direction, the V
 are approximated by exp[Z
]. The divergence

bounds are the same (these transformations are one-to-one and increasing), thus

�(Q̃,Q∗) ≤ m1n
−1/2.(8.1)

The scaled increments m1[V (
/m1) − V ([
 − 1]/m1)] from Q̆ have the same
distribution as the Z
 from Q∗. Thus, δ(Q̆,Q∗) = 0.

To bound δ(Q∗, Q̆) we need to construct the entire V (t) process via a smoothing
operation on the Z
 that is described in detail in [3]. Our argument follows this
reference very closely, so only an outline of the steps will be given.

The transformation uses triangular interpolating kernels,

K
(x) = m1 − m2
1

∣∣∣∣x − 2
 − 1

2m1

∣∣∣∣ for
2
 − 3

2m1
≤ x ≤ 2
 + 1

2m1

with the appropriate reflections at the boundaries. The variable V (t) is constructed
from the Z
,

dV ∗(t) =
m1∑

=1

Z
K
(t) + √
2n−1/2

m1∑

=1

1√
m1

dB
(t),
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where the B
(t) are independent K
-Brownian bridges. This Gaussian process is
(see [3])

dV ∗(t) = τ̂ (t) dt + √
2n−1/2 dW2(t),

where W2(t) is a standard Brownian motion and τ̂ is a piecewise-linear function
where τ̂ (t∗
 ) = logσ 2


 for t∗
 = 2
−1
2m1

and

τ̂ (t) = m1(t
∗

+1 − t)τ̂ (t∗
 ) + m1(t − t∗
 )τ̂ (t∗
+1)(8.2)

for t∗
 ≤ t ≤ t∗
+1. For t < 1
2m1

or t > 1 − 1
2m1

, the function τ̂ is just a constant

equal to τ̂ ( 1
2m1

) or τ̂ (1 − 1
2m1

), respectively.
The smoothness condition on the τ functions implies that

τ̂ (t∗
 ) = m1

∫ 
/m1

(
−1)/m1

τ(x) dx = τ(t) + m1(t
∗

 − t)τ ′(t) + Ē1.(8.3)

Likewise, τ̂ (t∗
+1) = τ(t) + m1(t
∗

+1 − t)τ ′(t) + Ē2. Therefore, plugging (8.3)

into (8.2) yields |τ̂ (t) − τ(t)| ≤ 2Mm
−α1
1 for t in the interior of the interval. Un-

fortunately, at the boundaries the error is of the order m−1
1 . Thus, the L2 distance

between τ̂ and τ is bounded by

‖τ̂ − τ‖2
2 ≤ 4M2m

−2α1
1 + M2m−3

1 .(8.4)

The total-variation distance between the distributions of V ∗(t) and V (t) is of
the order of this distance divided by the variance. Therefore, from (8.1) and (8.4),

�(Q̆, Q̃) ≤ m1n
−1/2 + 2Mn1/2m

−α1
1 + Mn1/2m

−3/2
1 .(8.5)

This proves Lemma 4.

9. Divergence bounds for gamma distributions.

LEMMA 6. The K–L divergence between P1 = �(α1, β1) and P2 = �(α2, β2)

is

D(P1,P2) ≤ (α1 − α2)
2

2α2
1

+ O

(
(α1 − α2)

2

α3
1

)
(9.1)

when the means are the same (α1β1 = α2β2).

The divergence between a pair of gamma distributions is

D(P1,P2) = α1(β1 − β2)

β2
+ α2 log

(
β2

β1

)
(9.2)

+ log
(

�(α2)

�(α1)

)
+ (α1 − α2)P1 log

[
x

β1

]
.
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We can rewrite (9.2) just in terms of the α’s using the substitution β1
β2

= α2
α1

,

D(P1,P2) = (α2 − α1)
(9.3)

+ α2 log
(

α1

α2

)
+ log

(
�(α2)

�(α1)

)
+ (α1 − α2)P1 log

[
x

β1

]
.

Let δ = α2 − α1. As in the proof of Lemma 7, the last two terms can be bounded
using the integral remainder of a Taylor series,

log
(

�(α1 + δ)

�(α1)

)
− δP1 log

[
x

β1

]
=

∫ δ

0
ψ ′(α1 + t)(δ − t) dt.

On the other hand, the first two terms in (9.3) have a similar Taylor series form,

(α2 − α1) + α2 log
α1

α2
= δ − (α1 + δ) log[1 + δ/α1] = −

∫ δ

0

δ − t

α + t
dt.

The classical expansion in (12.2) implies that the K–L divergence is

D(P1,P2) =
∫ δ

0
ψ ′(α1 + t)(δ − t) dt −

∫ δ

0

δ − t

α1 + t
dt

=
∫ δ

0

δ − t

2(α1 + t)2 + (δ − t)O(α−3
1 ) dt,

which gives the bound asserted by the lemma.

9.1. What if we increase the degrees of freedom? In order to take into account
the noncentrality of some χ2 distributions, we need a bound on the divergence
between a �(α1, β1) and a P∗

2 = �(α2 + λ,β2) when α1β1 = α2β2 and λ > 0,

D(P1,P∗
2) = D(P1,P2) + λ log

(
α1

α2

)
(9.4)

+ log
(

�(α2 + λ)

�(α2)

)
− λP1 log

[
x

β1

]
.

From Lemma 7

log
(

�(α2 + λ)

�(α2)

)
− λP2 log

[
x

β1

]
= λ2

(
1

2α2
+ O(α−2

2 )

)
,(9.5)

and the difference in taking the expectation with respect to P1 instead of P2 can be
bounded using Jensen’s inequality,

λ log
(

α1

α2

)
+ λ

[
P2 log

[
x

β1

]
− P1 log

[
x

β1

]]
≤ λ log

α1

α1 − 1
≤ λ

α1 − 1
,

Therefore, substituting this last inequality, (9.5), and Lemma 6 into (9.4),

D(P1,P∗
2) ≤ (α1 − α2)

2

2α2
1

+ λ2

2α2
+ λ

α1 − 1
(9.6)

+ O
(
λ2α−2

2 + (α1 − α2)
2α−3

1

)
.
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10. Divergence between normal distributions. If there are two normal dis-
tributions with means µ1 and µ2, and variances σ 2

1 and σ 2
2 , respectively, then the

divergence between them is

D(N1,N2) = 1

2

[
σ 2

1

σ 2
2

− 1 − log
(

σ 2
1

σ 2
2

)]
+ (µ1 − µ2)

2

2σ 2
2

.(10.1)

10.1. The logarithm of the gamma distribution. Suppose that X has a �(α,1)

distribution and W = log(X). Let f (w) be the density of W which is approxi-
mately normal for large α. Let φα(z) be the density of a Z ∼ N (logα,α−1) dis-
tribution. The K–L divergence between these distributions can be bounded using
Stirling’s formula,

D(Z,W) = log�(α) − log
(√

2π
) + 1

2
logα + αe1/(2α) − α logα − 1

2

= α

(
exp

[
1

2α

]
− 1

)
− 1

2
+ θ

12α
≤ 1

3α
for α ≥ 1/2.

To extend this bound, notice the logarithm of a �(α,β) random variable is a shift of
the distribution of logX. Therefore, if X ∼ �(n/2,2σ 2/n), then D(Z, log(X)) ≤
n−1 where Z ∼ N (logσ 2, 2

n
). Compare this to [14], Lemma A.3.

11. Proof of Lemma 5. To bound the divergence between the sums, we de-

fine some similar random variables X∗
i ∼ �(δi(1 + ri)n, σ̄ 2

n
). The definition of ri

implies that
∑

δiri = 0, and thus the distribution of the sum of the X∗
i ’s is the

same as the distribution of Y . It is necessary that 1 + ri > 0, but the bound is only
interesting for small ri anyway.

We bound the divergence between the sums by the divergence between the
joint distributions, D(

∑
Xi,

∑
X∗

i ) ≤ D((X1, . . . ,Xm), (X∗
1, . . . ,X∗

m)) =∑m
i=1 D(Xi,X

∗
i ).

The divergence can then be bounded using
m∑

i=1

D(Xi,X
∗
i ) =

m∑
i=1

log
[
�(δi(1 + ri)n)

�(δin)

]
(11.1)

− δirinE logXi + E

[
nXi

(
1

σ̄ 2 − 1

σ 2
i

)]
.

From Lemma 7, the first two terms of (11.1) are

log
[
�(δin + δirin)

�(δin)

]
− δirinE logXi

= −δirin log
[
σ 2

i

n

]
+ nδir

2
i

2
(11.2)

+ r2
i

4
− nδir

3
i

6
+ nδir

4
i

12
+ O

(
δir

2
i

n
+ |ri |3 + δi |ri |5

)
.
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In summing over i, the first term is n
∑m

i=1 δiri(logσ 2
i − logn) = n

∑m
i=1 δir

2
i be-

cause
∑

δiri log σ̄ 2 = ∑
δiri logn = 0. Summing over all the terms in (11.2) yields

a bound on the contribution from the first two terms of (11.1),

∑
i

[
−nδir

2
i

2
+ r2

i

4
− nδir

3
i

6
+ nδir

4
i

12
+ O(nδi |ri |5 + |ri |3 + δir

2
i n−1)

]
.(11.3)

The last term in (11.1) is

E

[
nX

(
1

σ̄ 2 − 1

σ 2
i

)]
= nδi(e

ri − 1)

(11.4)

= nδiri + nδir
2
i

2
+ nδir

3
i

6
+ nδir

4
i

24
+ O(nδi |ri |5).

By summing (11.4) over i and then adding it to (11.3), we bound the divergence
by

D
(∑

Xi,
∑

X∗
i

)
≤

m∑
i=1

nδir
4
i

8
+ r2

i

4
+ O(nδi |ri |5 + |ri |3 + δir

2
i n−1).

12. Digamma bound.

LEMMA 7. For X ∼ �(α,1),

log
(

�(α + δ)

�(α)

)
− δE logX = δ2

2

(
1

α
+ 1

2α2 + O(α−3)

)
− δ3

6

(
1

α2 + O(α−3)

)

+ δ4

24

(
2

α3 + O(α−4)

)
+ O(δ5α−4)

as α → ∞ and δ/α → 0.

This lemma is essentially a result on the properties of gamma and “polygamma”
functions,

�′(α) =
∫ ∞

0

d

dα
xα−1e−x dx =

∫ ∞
0

(logx)xα−1e−x dx = �(α)E logX.

Thus,

log
(

�(α + δ)

�(α)

)
− δE logX = log

(
�(α + δ)

�(α)

)
− δ

�′(α)

�(α)
.

The (n+ 1)th derivative of the logarithm of the gamma function is the polygamma
function ψ(n)(α). Thus the expression can be seen as a Taylor expansion of
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log�(k) around k = α,

log
(

�(α + δ)

�(α)

)
= δψ(0)(α) + δ2

2
ψ(1)(α)

(12.1)

+ δ3

6
ψ(2)(α) + δ4

24
ψ(3)(α) + O

(
δ5ψ(4)(α)

)
.

There is a classical result,

ψ(1)(α) = 1

α
+ 1

2α2 + O(α−3),(12.2)

and plugging the derivatives of this function into (12.1) gives the desired expan-
sion.

13. Bound. In Section 7.2.2, we need a bound on the quantity

S
 = E log
gσ ∗



(X)

gσ

(X)

= n − m0

2m0

∑
j∈J


log
[

σ 2



σ ∗2



]
+ σ̄ 2

j

σ 2



− σ̄ 2
j

σ ∗2



.

To straighten out this sum we need to separate it into two sets of j ’s,

J1

 =

{
j :


 − 1

m1
<

j

m0
≤ 2
 − 1

2m1

}
and J2


 =
{
j :

2
 − 1

2m1
<

j

m0
≤ 


m1

}
,

so that J1

 ∪ J2


 = J
. For j ∈ J1

 the variances σ 2∗

j are σ
2ζ
,j


 σ
2ζ
−1,j


−1 , and for

j ∈ J2

 the variances σ 2∗


 are σ
2ζ
,j


 σ
2ζ
+1,j


+1 . Thus the sum can be written as

S
 = n − m0

2m0

∑
j∈J1




log
[

σ 2



σ
1/4

−1σ

3/2

 σ

1/4

+1

]
+

(
σ 2


−1

σ 2



)1−ζ
,j

−
[
σ

2ζ
,j


 σ
2(1−ζ
,j )


−1

σ
1/4

−1σ

3/2

 σ

1/4

+1

]

+ n − m0

2m0

∑
j∈J2




log
[

σ 2



σ
1/4

−1σ

3/2

 σ

1/4

+1

]
+

(
σ 2


+1

σ 2



)1−ζ
,j

−
[
σ

2ζ
,j


 σ
2(1−ζ
,j )


+1

σ
1/4

−1σ

3/2

 σ

1/4

+1

]
.

Note that at the edges, where the 
 = 1 or 
 = m1, this equation is still true if we
define σ 2

0 = σ 2
1 and σ 2

m1+1 = σ 2
m1

.

Setting r
 = logσ 2

+1 − logσ 2


 and r
−1 = logσ 2

 − logσ 2


−1, we can write S
 as

S
 = n − m0

2m0

∑
j∈J1




(r
−1 − r
)

8
+ exp[−r
−1(1 − ζ
,j )]

[
1 − exp

(
1

8
(r
−1 − r
)

)]

+ n − m0

2m0

∑
j∈J2




(r
−1 − r
)

8
+ exp[r
(1 − ζ
,j )]

[
1 − exp

(
1

8
(r
−1 − r
)

)]
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≤ n − m0

2m0

[ ∑
j∈J1




(
r
−1 − r


8

)[
1 − e−r
−1(1−ζ
,j )]

+ ∑
j∈J2




(
r
−1 − r


8

)[
1 − er
(1−ζ
,j )]]

≤ n − m0

2m0

(
r
−1 − r


8

)[ ∑
j∈J1




r
−1(1 − ζ
,j ) − ∑
j∈J2




r
(1 − ζ
,j )

]
.

By the definition of the weights ζ
,j , each one is between 0 and 1 and the sums
of them are

∑
j∈J1



(1 − ζ
,j ) = ∑

j∈J2


(1 − ζ
,j ) = 3

8(
m0
m1

). Therefore,

S
 ≤ 3(n − m0)

128m1
(r
−1 − r
)

2.(13.1)

The definition of the function class says that the function τ(t) = log(σ 2(t))

is smooth in the sense that τ(t + δ) = τ(t) + δτ ′(t) + E where |E| ≤ Mδα1 . To
use this notice that, for 
 = 1, . . . ,m1 − 1, expanding the functions around (2
 −
1)/2m1,

r
 − r
−1 = m1

∫ 1/2m1

−1/2m1

τ

(
2
 + 1

2m1
+ t

)
− 2τ

(
2
 − 1

2m1
+ t

)
+ τ

(
2
 − 3

2m1
+ t

)
dt

= m1

∫ 1/2m1

−1/2m1

E1 − 2E2 + E3 dt,

and the average value of the errors is less than m1
∫ 1/2m1
−1/2m1

|E1 − 2E2 + E3|dt ≤
5Mm−α1 . Plugging this bound into (13.1), we have

S
 ≤
[
M2(n − m0)

m1

]
m

−2α1
1 for 
 = 2, . . . ,m1 − 1.(13.2)

By definition, r0 = rm1 = 0 and the only bound available for the first and last term
is |r
| ≤ Mm−1

1 , thus

max(S1, Sm1) ≤
[
M2(n − m0)

m1

]
m−2

1 .(13.3)
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