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ON THE NUMBER OF SUPPORT POINTS OF MAXIMIN AND
BAYESIAN OPTIMAL DESIGNS1

BY DIETRICH BRAESS AND HOLGER DETTE

Ruhr-Universität Bochum

We consider maximin and Bayesian D-optimal designs for nonlinear re-
gression models. The maximin criterion requires the specification of a region
for the nonlinear parameters in the model, while the Bayesian optimality cri-
terion assumes that a prior for these parameters is available. On interval pa-
rameter spaces, it was observed empirically by many authors that an increase
of uncertainty in the prior information (i.e., a larger range for the parameter
space in the maximin criterion or a larger variance of the prior in the Bayesian
criterion) yields a larger number of support points of the corresponding opti-
mal designs. In this paper, we present analytic tools which are used to prove
this phenomenon in concrete situations. The proposed methodology can be
used to explain many empirically observed results in the literature. More-
over, it explains why maximin D-optimal designs are usually supported at
more points than Bayesian D-optimal designs.

1. Optimal designs for nonlinear models. Consider the common problem
of nonlinear experimental design where the scalar response variable, say Y , is
distributed as a member of the exponential family with

E[Y |x] = η(x, θ),(1.1)

θ ∈ R
m is the unknown parameter, x denotes the explanatory variable that varies

in a compact space, say X, and η is a given function. We assume that observations
under different experimental conditions are independent and denote the Fisher in-
formation matrix for the parameter θ at the point x by

I (x, θ) = 1

Var[Y |x]
(

∂η

∂θ
(x, θ)

)(
∂η

∂θ
(x, θ)

)T

∈ R
m×m;(1.2)

see [7]. Throughout this paper, we assume the continuous differentiability of the
function η with respect to θ and the existence of the conditional variance.

An approximate design ξ for this model is a probability measure on the design
space X with finite support x1, . . . , xn and weights w1, . . . ,wn representing the
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relative proportions of total observations taken at the corresponding design points;
see, for example, [11]. The information matrix of a design ξ is defined by

M(ξ, θ) =
∫
X

I (x, θ) dξ(x),(1.3)

and a local optimal design maximizes a given function of the matrix M(ξ, θ);
see [18]. We consider the D-optimality criterion log |M(ξ, θ)| for discriminating
among competing designs. In general, such a design depends on the unknown para-
meter θ , which must be specified for its implementation. Local optimality criteria
have been criticized by numerous authors because the resulting optimal designs
can be highly inefficient within the true model setting if the unknown parameters
are misspecified.

A more robust approach has been achieved in practice by using the concepts of
Bayesian and maximin optimality, since additional information on the uncertainty
in those parameters can be incorporated. A priori knowledge of the experimenter
can be modeled mathematically as follows. Assume that θ ∈ �, where � ⊂ R

m

denotes a set and let π denote a probability measure on �. A design is called
Bayesian D-optimal (with respect to a given prior π on �) if it maximizes the
function ∫

�
log |M(ξ, θ)|π(dθ).(1.4)

Bayesian D-optimal designs have been studied by Chaloner and Larntz [2], Pron-
zato and Walter [17], Mukhopadhyay and Haines [15], Dette and Neugebauer
[5, 6] and many others.

In some circumstances, it is difficult for the experimenter to specify a prior
on the parameter space �. Therefore, several authors have proposed standardized
maximin D-optimal designs, that is, designs which maximize

min
{ |M(ξ, θ)|
|M(ξ [θ ], θ)|

∣∣∣θ ∈ �

}
,(1.5)

where ξ [θ ] denotes the local D-optimal design for fixed θ ; see, for example,
[3, 9, 16] or [4]. The criterion (1.5) does not compare the quantities |M(ξ, θ)| di-
rectly, but rather with respect to the values that could be obtained if θ , and, as a
consequence, the local D-optimal design, were known. Bayesian and standardized
maximin D-optimal designs can only be given explicitly in rare circumstances.
Moreover, optimal designs often require more than m support points unless the
parameter space � is “sufficiently narrow” or the prior in the Bayesian criterion
puts “most of its mass at a small” subset of �. For interval parameter spaces, it was
observed empirically that the number of support points increases if less knowledge
about θ is incorporated in the optimality criteria (see [2] and [4], among others).

In the present paper, we will provide analytic tools for making a rigorous deci-
sion as to whether the number of support points is unbounded if the a priori infor-
mation on an interval parameter space is repeatedly diminished. It turns out that
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the answer to this question depends in a complicated way on the given nonlinear
model. Therefore, we will mainly concentrate on the case where only one parame-
ter, say β , enters nonlinearly in the optimality criterion and will mention possible
extensions to the general case briefly in the Appendix. For the maximin criterion,
we quantify uncertainty by considering an interval with increasing length, while
for the Bayesian case, we use the properties of the prior—this includes a uniform
prior on an interval with increasing length. We establish sufficient conditions on
the nonlinear model such that increasing uncertainty about the nonlinear parameter
leads to an arbitrarily large number of support points of Bayesian and standardized
maximin D-optimal designs. In fact, the tools in this paper are applicable to all
models known to us.

The conditions are more restrictive for the Bayesian D-optimal design than
for the standardized maximin D-optimal one. This explains why standardized
maximin D-optimal designs are usually supported at more points than Bayesian
D-optimal designs. In particular, in the case of Bayesian D-optimality, the num-
ber of support points may increase so slowly that it is almost impossible to decide
by numerical computations whether the number is asymptotically bounded or not.

In Section 3 we discuss standardized maximin optimal designs, while Section 4
deals with the Bayesian case. We illustrate our approach for models with one,
two and three parameters. The proposed methodology is a general one, but the
technical difficulties for the verification of the conditions differ in each scenario
and increase with the dimension. Finally, some conclusions are given in Section 5,
while all technical details are deferred to the Appendix. For further examples, see
the technical report of Braess and Dette [1].

2. Preliminaries. For the sake of simplicity, we assume that the local
D-optimal design depends only on one component of the parameter θ ∈ R

m. The
general situation can be obtained by a straightforward generalization which is
briefly indicated in Appendix A.3. We denote this component by β and the cor-
responding design by ξ [β]. Consequently, we will reflect only this dependence in
our notation and the optimality criteria in (1.4) and (1.5) are represented by the
functions

�(ξ) =
∫
B

log |M(ξ,β)|π(dβ),(2.1)

	(ξ) = min
{ |M(ξ,β)|
|M(ξ [β], β)|

∣∣∣ β ∈ B

}
,(2.2)

respectively. Here, M(ξ,β) is the information matrix (1.3) in the nonlinear model,
B = [βmin, βmax] represents the prior knowledge about the location of the un-
known parameter β and π denotes a prior on B.
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Let ξ be a design on X with masses wk at the support points xk (k = 1, . . . , n).
The information matrix of ξ is then given by

M(ξ,β) =
n∑

k=1

wkI (xk, β).

Throughout this paper,

Q(β, β̃) = |M(ξ [β̃], β)|
|M(ξ [β], β)|(2.3)

quantifies the loss of information if β is the “true” unknown parameter, while
the experimenter uses the local D-optimal design for the (wrong) guess β̃ . Note
that (Q(β, β̃))1/m is the D-efficiency of the design ξ [β̃]. We will derive sufficient
conditions such that the number of support points of the optimal designs with
respect to the criteria (2.1) and (2.2) exceeds any given number if the amount of
prior information is decreased.

Our first definition quantifies the loss of efficiency caused by an application of
a local D-optimal design based on a misspecified parameter.

DEFINITION 2.1. Let 
 :B → R be a nondecreasing continuous function. The
function Q defined in (2.3) is said to be uniformly decreasing with respect to the
scale 
 if the following two conditions hold:

(i) for all β, β̃ ∈ B, the inequality

Q(β, β̃) ≤ ϕ
(

(β) − 
(β̃)

)
(2.4)

holds, where ϕ is a real-valued function whose decay [i.e., ϕ(z) → 0] for z → ∞
will be sufficiently fast, as specified later for each case under consideration;

(ii) there is a positive constant λ > 0 such that

Q(β, β̃) ≥ 1
2 whenever |
(β) − 
(β̃)| ≤ λ.(2.5)

There is some heuristic explanation for the two conditions in Definition 2.1. The
quantity

d(β, β̃) = |
(β) − 
(β̃)|(2.6)

can be considered a distance between the parameters β and β̃ . This interpretation
is also useful for the extension to models with more than one nonlinear parameter.
On one hand, condition (2.4) requires that the efficiency decrease sufficiently fast
if the parameter is misspecified. On the other hand, condition (2.5) guarantees that
the efficiency cannot become small if the parameter is only slightly misspecified.
Since these conditions are very natural, they are satisfied by most of the commonly
used nonlinear models with 
(β) = β or 
(β) = logβ . In fact, we are not aware of
any model where conditions (2.4) and (2.5) are not satisfied.
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A final assumption is required for our main results. Roughly speaking, it guar-
antees that points in the design space X which are not in the support of any local
D-optimal design ξ [β] can be disregarded for the construction of the optimal de-
signs. To be precise, we represent the Fisher information as

I (x1, . . . , xm,β) = f (x,β)f T (x,β),(2.7)

where f (x,β) = (f1(x,β), . . . , fm(x,β))T ∈ R
m, and introduce, for x1, . . . , xm ∈

X, the determinant

Im(x1, . . . , xm,β) =
∣∣∣∣∣∣∣
f1(x1, β) . . . f1(xm,β)

...
...

...

fm(x1, β) . . . fm(xm,β)

∣∣∣∣∣∣∣

2

.(2.8)

We assume that there exists a constant, say c0, such that for any x = (x1, . . . ,

xm)T ∈ Xm, there exist local D-optimal designs ξ [β̃(1)], . . . , ξ [β̃(m)] with
β̃(1), . . . , β̃(m) ∈ B, such that

|Im(x1, . . . , xm,β)| ≤ c0

m∑
j=1

∣∣M(
ξ
[
β̃(j)], β)∣∣ ∀β ∈ B.(2.9)

Additionally, we define mη ≥ 0 as the number of points which appear as sup-
port points of any local D-optimal design in the nonlinear model and we assume
m > mη. For example, if η(x, θ) = θ0 + θ1e

−θ2x and x ∈ [0,1], it follows from [8]
that any local D-optimal design has three support points, including the points 0
and 1. For this model, we have m = 3 and mη = 2.

Finally, we note that assumption (2.9) is obviously satisfied in models where
the local D-optimal designs are supported at a minimal number of m points. In
examples where the local D-optimal designs are supported at more than m points,
the condition has to be checked in each situation. However, thus far, the authors
have not found a case where (2.9) is not satisfied.

3. Standardized maximin D-optimal designs. The following result shows
for nonlinear models that the number of support points of the standardized max-
imin D-optimal design can become arbitrarily large under the assumptions stated
in Section 2.

THEOREM 3.1. Assume that Q is uniformly decreasing with respect to the
scale 
 in the sense of Definition 2.1, where

ϕ(z) ≤ c1|z|−γ with c1 > 0, γ > m,(3.1)

and that (2.9) is satisfied. Let N ∈ N be given. If 
(βmax) − 
(βmin) is sufficiently
large, then the standardized maximin D-optimal design with respect to the interval
B = [βmin, βmax] is supported at more than N points.

Moreover, if the local D-optimal designs are minimally supported and the sup-
port contains only m points, then the condition γ > m in (3.1) can be replaced by
γ > m − mη.
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The technical proof is deferred to the Appendix. The main idea is to use con-
dition (3.1) to show that the value of the standardized maximin D-optimality cri-
terion of any N -point design can be estimated by O(B−γ ), where B = 
(βmax) −

(βmin). In a second-step condition, (2.5) is used to construct a design with n > N

support points, for which the value of the criterion is at least of the order O(B−m).
Since γ > m, it follows, for sufficiently large B , that no design with N support
points can be standardized maximin D-optimal.

In the following we will illustrate the application of Theorem 3.1 in the cases
m = 1,2,3. The technical difficulties for the verification of the sufficient condi-
tions increase with the dimension of the Fisher information.

EXAMPLE 3.2. Consider the one-dimensional exponential growth model with
normally distributed homoscedastic errors and

η(x,β) = e−βx, β ∈ [1,B], x ∈ [0,1].(3.2)

The Fisher information of the parameter β (up to a constant which does not affect
the optimal design problem) is

I (x,β) = x2e−2βx.(3.3)

The local D-optimal design is a one-point design supported at the point x[β] =
1/β and it follows from

M(ξ [β], β) = I (x[β], β) = (eβ)−2(3.4)

that the function Q in (2.3) is given by

Q(β, β̃) =
(

β

β̃
e1−β/β̃

)2

.(3.5)

Hence, Q(β, β̃) = ψ(
β

β̃
), where

ψ(y) = (ye1−y)2 ≤
{

e2y2, if y ≤ 1,
3y−2, if y > 1.

We choose 
(β) = logβ and (2.4) holds with

ϕ(z) ≤ e2e−2|z|.(3.6)

The decay is even faster than required in (3.1). Moreover, ψ(z) ≥ 1
2 if 1

2 ≤ z ≤ 2,

which proves property (ii) in Definition 2.1. Finally, we verify property (2.9) for
m = 1. Consider a point, say x0. If 1 ≥ x0 ≥ 1/B , then we have δx0 = ξ [1/x0]
for the Dirac measure at the point x0 and there is, in fact, equality in (2.9) with
β̃ = 1/x0. On the other hand, if x0 < 1/B , then the Dirac measure δx0 is not lo-
cal D-optimal for any β ∈ [1,B] and x0β <

β
B

≤ 1 for all β ∈ [1,B]. Since the
function z �→ z2e−2z is increasing on the interval [0,1], it follows that

β2I1(x0, β) = β2M(δx0, β)

≤ β2M(δ1/B,β) = β2M(ξ [B], β) for all β ∈ [1,B],
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TABLE 1
Standardized maximin D-optimal designs for the exponential
regression model (3.2) on the interval [0,1] with respect to
various parameter spaces [1,B]. First row: support points;

second row: weights

B 10 40 50 100 200

x1 0.142 0.037 0.028 0.014 0.007
w1 0.553 0.414 0.379 0.336 0.306

x2 0.771 0.193 0.131 0.064 0.034
w2 0.447 0.272 0.221 0.193 0.182

x3 0.772 0.374 0.156 0.101
w3 0.314 0.170 0.093 0.147

x4 0.972 0.287 0.250
w4 0.230 0.137 0.089

x5 0.838 0.326
w5 0.241 0.066

x6 0.856
w6 0.210

which shows (2.9). Similarly, if x0 > 1, we obtain β̃ = 1. Therefore, condi-
tion (2.9) is satisfied with

β̃ = max
{
1,min{B,1/x0}}.

By Theorem 3.1, the number of support points of the standardized maximin
D-optimal design for the regression model (3.2) becomes arbitrarily large with
increasing parameter B → ∞.

Numerical results in Table 1 illustrate this fact. We have calculated the stan-
dardized maximin D-optimal designs using Matlab for various parameter spaces
B = [1,B]. The optimality of the calculated designs was checked by the equiva-
lence theorem of Wong [19].

EXAMPLE 3.3. Consider the exponential growth model with normally distrib-
uted homoscedastic errors and

η(x,α,β) = α + e−βx, x ∈ [0,1], β ∈ [1, βmax],(3.7)

which is used for analyzing the growth of crops; see [13]. The Fisher information
matrix (up to a constant which does not change the optimal design problem) for
the parameter θ = (α,β) is given by

I (x,β) =
(

1 −xe−βx

−xe−βx x2e−2βx

)
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and the function I2 defined in (2.8) is determined as

I2(x1, x2, β) = (x1e
−βx1 − x2e

−βx2)2.

If x1 < x2, we can always increase I2(x1, x2, β) by using x1 = 0. It follows
from [6] that the local D-optimal design puts equal masses at the points x1 = 0
and x2 = 1

β
with corresponding determinant

|M(ξ [β], β)| = 1

4(eβ)2 ;

see also [8]. Therefore, we obtain m = 2, mη = 1, m−mη = 1 for the quantities in

the second part of Theorem 3.1. From I2(0,1/β̃, β) = β̃−2e−2β/β̃ , it follows that
Q(β, β̃) = ψ(β/β̃) with the same function ψ(z) = z2e2(1−z) as in Example 3.2.
This shows that (2.4) and (3.1) are satisfied. Obviously,

I2(x1, x2, β) ≤ (x1e
−βx1)2 + (x2e

−βx2)2 = I2(0, x1, β) + I2(0, x2, β)

and we conclude, as in the previous example, that the remaining assumption (2.9)
of Theorem 3.1 is also satisfied. Therefore, the number of support points of the
standardized maximin D-optimal design in the exponential growth model (3.7)
becomes arbitrarily large if βmax → ∞.

EXAMPLE 3.4. To illustrate how the technical difficulties increase with the
dimension, we consider the exponential growth model with normally distributed
homoscedastic errors and

η(x,α1, α2, β) = α1 + α2e
−βx, x ∈ [0,1], β ∈ [1, βmax].(3.8)

In particular, we obtain for the determinant in (2.8)

I3(x1, x2, x3, β)

= [x1e
−βx1(e−βx3 − e−βx2)

+ x2e
−βx2(e−βx1 − e−βx3) + x3e

−βx3(e−βx2 − e−βx1)]2

= H 2(x1, x2, x3),

where the last line defines the function H(x1, x2, x3). Han and Chaloner [8]
showed that local D-optimal designs for the exponential regression model (3.8)
have three support points and that x̄ = 0 and x̂ = 1 are in fact common support
points of all local D-optimal designs, that is, m = 3, mη = 2, m − mη = 1. An al-
ternative derivation of the latter fact will be given below. For the points x̄ = 0 and
x̂ = 1, the determinant reduces to

I3(0, x,1, β) = [xe−βx(1 − e−β) − e−β(1 − e−βx)]2 = H 2(0, x,1, β).(3.9)
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Note that sums of cyclic products such as a(b−c)+b(c−a)+c(a −b) vanish.
Therefore, we obtain the useful representation

H(x1, x2, x3, β)

= e−βx3 − e−βx2

1 − e−β
[x1e

−βx1(1 − e−β) − e−β(1 − e−βx1)]

+ e−βx1 − e−βx3

1 − e−β
[x2e

−βx2(1 − e−β) − e−β(1 − e−βx2)](3.10)

+ e−βx2 − e−βx1

1 − e−β
[x3e

−βx3(1 − e−β) − e−β(1 − e−βx3)]

=
3∑

k=1

akH(0, xk,1, β),

with coefficients ak satisfying |ak| ≤ 1. If the support points are ordered, that is,

0 ≤ x1 < x2 < x3 ≤ 1,(3.11)

then a1, a3 < 0 and a2 > 0. The estimation of the quantity I3 heavily depends on
the knowledge of the signs of the function H . Obviously, H(0, x,1, β) vanishes
at x = 0 and x = 1. Moreover, the derivative at x = 0 is positive. Since expo-
nential sums of the form a1 + (a2 + a3x)e−βx have at most two real zeros (see
[10], page 23), it follows that H(0, x,1, β) > 0 for 0 < x < 1. For the same rea-
son, the function x �→ H(x, x2, x3, β) vanishes only at x = x2 and x = x3. Hence,
signH(x1, x2, x3, β) = signH(0, x2, x3, β) if the ordering (3.11) holds. Similarly,
it follows that signH(0, x2, x3, β) = signH(0, x2,1, β) = +1. Recalling the state-
ment on the coefficients a1, a2 and a3 in (3.10), we see that the summands with
k = 1 and k = 3 diminish the sum and it follows that

I3(x1, x2, x3, β) ≤ I3(0, x2,1, β).

This not only yields the cited result regarding the location of the smallest and
largest support point of local D-optimal designs, but additionally provides the
bound

I3(x1, x2, x3, β) ≤
3∑

k=1

I3(0, xk,1, β),

which holds for support points x1, x2, x3 in any order. In particular, we have a
bound with a decomposition as stated in (2.9). Therefore, the exponential regres-
sion model can now be treated by arguments similar to those given in the previous
examples, although the technical details are more involved. In particular, we have
from (3.9), for large β ,

I3(0, x,1, β) ≤ 2

3
x2e−2βx, |M(ξ [β], β)| = 1

33 sup
x

I3(0, x,1, β) ≥ 1

27

1

3e2β2 .
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Although there is no simple representation for the determinant |M(ξ [β], β)|, the
estimates above are comparable to the corresponding equations (3.3) and (3.4) for
the one-dimensional exponential model considered in Example 3.2 (the estimates
differ only by constants). Thus, we conclude, similarly as in the previous examples,
that the number of support points of the standardized maximin D-optimal design
in the model (3.8) is unbounded for sufficiently large βmax.

REMARK 3.5. At first glance, the results of Theorem 3.1 and the examples
(including those in the technical report of Braess and Dette [1]) are surprising
because it has never been observed in numerical studies that the number of sup-
port points of the standardized maximin D-optimal design substantially exceeds
the number of parameters. To our knowledge, the numerical results of Example
3.2 are the first ones in this direction. However, it follows from the proof of Theo-
rem 3.1 in the Appendix that the construction of a design with more than N support
points outperforming a given design requires a very large parameter space in the
maximin D-optimality criterion. In particular, the number of support points of the
standardized maximin D-optimal design may increase so slowly that it is almost
impossible to decide by means of numerical computation whether it is asymptot-
ically bounded or not. Thus, in practice, optimal designs with a large number of
support points will only be observed if a very large parameter space is involved.

REMARK 3.6. It was pointed out by a referee that the minimum in the stan-
dardized maximin criterion is usually calculated over a finite grid in the interval
[βmin, βmax]. A careful inspection of the proof of Theorem 3.1 shows that the re-
sults of this section can be extended to such situations.

4. Bayesian D-optimal designs. We now turn to analogous questions for the
Bayesian D-optimality criterion (2.1). When Bayesian D-optimal designs are con-
sidered, it does not make a difference whether the information matrix or its stan-
dardized analogue is considered. The difference between the criterion

�st(ξ) =
∫
B

log
|M(ξ,β)|

|M(ξ [β], β)|π(dβ)

(4.1)
=

∫
B

[
log |M(ξ,β)| − log |M(ξ [β], β)|]π(dβ)

and the function in (2.1) is a constant that does not depend on the design ξ . In
this case, uncertainty can be directly specified by a prior, which is supported on
the interval B = [βmin, βmax], where −∞ ≤ βmin ≤ βmax ≤ ∞. For example, one
might increase the support of the prior without changing its shape or one could
fix the support B of π and change the shape such that its variance increases. The
following result covers both cases.
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THEOREM 4.1. Assume that (2.9) holds and that Q is uniformly decreasing
with respect to the scale 
 in the sense of Definition 2.1, where the function ϕ

satisfies

ϕ(z) ≤ c1e
−|z|γ(4.2)

for some positive constants c1, γ , and that the prior and the function 
 in Defini-
tion 2.1 satisfy, for all measurable sets B ⊂ B = [βmin, βmax],∫

B

c3


(B)

(dβ) ≤

∫
B

π(dβ)(4.3)

for some positive constant c3. Let N ∈ N be given. If 
(βmax) − 
(βmin) is suffi-
ciently large, then the Bayesian D-optimal design with respect to the prior π on
the interval B is supported at more than N points.

REMARK 4.2. Note that increasing the interval B in the optimality crite-
rion (2.1) such that condition (4.3) is satisfied also changes the prior π on B.
A typical example is the uniform distribution on the set B for which the assump-
tion (4.3) is obviously satisfied if 
(β) = β or 
(β) = logβ . In this case, the shape
of the prior does not change, as will be illustrated in Example 4.3. On the other
hand, uncertainty can also be quantified by changing the shape of the prior and, in
this case, the function 
 usually changes with π (see Examples 4.4 and 4.5 below).

EXAMPLE 4.3. Consider the exponential regression model (3.2) of Exam-
ple 3.2. Obviously, the function ϕ in (3.6) also satisfies the stronger assumptions
in Theorem 4.1. As a consequence, the number of support points of Bayesian
D-optimal designs with respect to a uniform distribution is unbounded if the sup-
port of the prior is increased. Table 2 shows the Bayesian D-optimal designs cor-
responding to the situation considered in Table 1. Note that the standardized max-
imin D-optimal designs have remarkably more support points than the Bayesian
D-optimal designs with respect to the uniform prior.

EXAMPLE 4.4. Consider the logistic regression model Y ∼ Bin(1, η(x,β))

with

η(x,β) = 1

1 + ex−β
, x ∈ [0,∞), β ∈ [0,∞),(4.4)

where the Fisher information of the parameter β at point x is given by

I (x,β) = ex−β

(1 + ex−β)2 .

For any a ∈ (0,1), we consider the prior

πa(dβ) = cae−aβI[0,1/a)(β) dβ,
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TABLE 2
Bayesian D-optimal designs with respect to a uniform

distribution on the interval [1,B] in the exponential regression
model (3.2). First row: support points; second row: weights

B 10 40 50 100 200 300 3000

x1 0.182 0.048 0.038 0.019 0.010 0.006 0.0006
w1 1.000 0.981 0.973 0.962 0.959 0.957 0.951

x1 0.354 0.318 0.215 0.134 0.084 0.009
w2 0.019 0.027 0.038 0.041 0.037 0.039

x3 0.236 0.055
w3 0.006 0.006

x4 1.000
w4 0.004

where c = (1 − e−1)−1. Note that the expectation value and the variance of πa are
proportional to 1/a and 1/a2, respectively. If we define


a(dβ) = ca1/2e−aβI[0,1/a)(β) dβ,

then 
a(B) = a−1/2 → ∞ if a → 0, and a straightforward calculation shows that
condition (4.3) holds with c3 = 1.

The local D-optimal design is a one-point design concentrating its mass at the
point x[β] = β with M(ξ [β], β) = 1/4. Hence,

Q(β, β̃) = 4eβ̃−β

(1 + eβ̃−β)2
≤ 4e|β−β̃|.

An application of the mean value theorem shows that condition (2.4) is satisfied
with ϕ(z) = 4e−|z| if a ≤ c−2. Moreover, Q(β, β̃) ≥ 1

2 if |
a(β) − 
a(β̃)| ≤ a1/2

and Theorem 4.1 applies. If a → 0, the quantity 
a(B) = a−1/2 is sufficiently large
and the number of support points of the Bayesian D-optimal design with respect to
the prior πa in the logistic regression model (4.4) exceeds any given bound N ∈ N.

EXAMPLE 4.5. As pointed out by a referee, it is worthwhile to mention that
Theorem 4.1 also applies to discrete priors (where its proof has to be slightly mod-
ified). Consider, for example, the logistic regression model (4.4) and a uniform
prior πL on the set ML = {1, . . . ,L}. If 
 is the distribution function of the dis-
crete measure with mass 1 at each element of ML, we have 
(B) = L and there is
equality in (4.3) with c3 = 1 (note that 
 is a step function with jumps of size 1 at
each element of ML). Consequently, we have, for all β, β̃ ∈ supp(π ),

Q(β, β̃) = 4eβ̃−β

(1 + eβ̃−β)2
≥ 4e−1

(1 + e−1)2 ≥ 1

2
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if |
(β) − 
(β̃)| ≤ 1. Moreover, Q(β, β̃) ≤ 4ee−|
β�−
β̃�| and it follows from The-
orem 4.1 that the number of support points of the Bayesian D-optimal design with
respect to the prior πL becomes arbitrarily large as L → ∞. We finally mention
a consequence of Carathéodory’s theorem. For a discrete prior with L support
points, there exists a Bayesian D-optimal design with at most Lm(m + 1)/2 sup-
port points; see [12]. This bound reduces to L and converges to ∞ in the present
case.

REMARK 4.6. Note that Theorem 4.1 requires stronger decay of the func-
tion ϕ than Theorem 3.1. As a consequence, the number of support points of
Bayesian D-optimal designs usually increases more slowly with the length of
the parameter space compared to the maximin case. We have illustrated this fact
in Examples 3.2 and 4.3, where we compared the standardized maximin and the
Bayesian D-optimal design with respect to the uniform distribution. On the other
hand, it follows from the proof of Theorem 4.1 in the Appendix that a similar result
holds for the Bayesian A-optimality criterion

∫
B

trace(M−1(ξ, β))

trace(M−1(ξ [β], β))
π(dβ),

where condition (4.2) can be replaced by the weaker condition (3.1). This explains
the empirical results of [2] that Bayesian D-optimal designs usually have more
support points than Bayesian A-optimal designs.

5. Conclusions. When efficient designs in nonlinear regression models are
constructed, it has been observed numerically by many authors that the number
of support points of Bayesian and maximin D-optimal designs increases with the
amount of uncertainty about a priori knowledge of the location of the nonlinear pa-
rameters. In this paper, we have established sufficient conditions under which the
number of support points of Bayesian and maximin D-optimal designs can become
arbitrarily large if the prior information on the unknown nonlinear parameters is
diminished. The essential condition is the decay of the efficiency for large devia-
tions between the specified and “true” parameter. The conditions apply to many of
the commonly used regression models. In fact, we did not find any model where
these conditions are not satisfied.

For the sake of brevity and a clear presentation, we have restricted our investi-
gations to nonlinear models where one parameter appears nonlinearly in the Fisher
information. However, our approach can also be applied to models with more non-
linear parameters, although some of the arguments have to be adapted. The main
idea is to introduce an appropriate norm for high-dimensional nonlinear parame-
ters which generalizes the distance (2.6). These arguments are outlined in Appen-
dix A.3. A similar result is also available for the Bayesian D-optimality criterion
by combining this argument with the results of Section 4. Moreover, Theorems
3.1 and 4.1 can also be extended to nonrectangular regions.
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In this paper, we have made a general statement on the structure of optimal de-
signs with respect to the standardized maximin and Bayesian D-optimality crite-
ria, which is important for a better understanding of these sophisticated optimality
criteria. For a given model of interest, our methodology can be used to prove a
phenomenon which was conjectured for a long time in the literature. In all exam-
ples that we have investigated, the developed theory was applicable and we were
able to prove that the number of support points of the standardized maximin and
Bayesian D-optimal designs exceeds any given bound if the knowledge about the
underlying parameter space is diminished. Moreover, we have also provided some
explanation as to why standardized maximin D- and Bayesian A-optimal designs
usually have more support points than Bayesian D-optimal designs.

We finally mention that the results for the Bayesian D-optimality criterion will
have applications for estimating mixture distributions. To be precise, it was pointed
out by Lindsay [14] that the determination of the ML-estimate of a mixture dis-
tribution corresponds to a Bayesian D-optimal design problem in a one-parameter
nonlinear model. It therefore follows from the results of the present paper that
in many models, the number of components of the estimated mixture distribution
increases with the sample size.

APPENDIX: PROOFS

A.1. Proof of Theorem 3.1. The proof consists of two steps. Set B =

(βmax) − 
(βmin). First we show that, for an arbitrary design, say ξN, with N

support points, it follows that

	(ξN) = min
{ |M(ξN,β)|
|M(ξ [β], β)|

∣∣∣β ∈ [βmin, βmax]
}

≤ d1(N + 1)B−γ ,(A.1)

where d1 is a positive constant not depending on B and γ > m. Second we show
that there exists a design ξn (with at least n support points) on X such that

	(ξn) ≥ d2

Bm
(A.2)

for some positive constant d2 not depending on B . Since γ > m, given N , we have

d1(N + 1)B−γ <
d2

Bm

if B is sufficiently large, and the optimal design is supported at more than N points
in this case. This proves the assertion. For the sake of a transparent representation,
we begin with a proof of the estimates (A.1) and (A.2) in the case m = 1. The
general case will be treated in a second step (B), while we prove in part (C) the re-
maining assertion of Theorem 3.1, considering the case where the local D-optimal
designs are minimally supported.
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(A) The case m = 1: To verify the estimate (A.1), let ξN = ∑N
k=1 wkδxk

denote
any design with mass wk at the point xk (k = 1, . . . ,N). Here, δxk

denotes the
Dirac measure at the point xk . Then

M(ξN,β) =
N∑

k=1

wkI (xk, β).

By assumption (2.9), there exist real numbers βmin ≤ β1 < · · · < βN ≤ βmax such
that the inequality

M(ξN,β) ≤
N∑

k=1

wkM(ξ [βk], β) = M(ξ [β], β)

N∑
k=1

wkQ(β,βk)(A.3)

holds for all β ∈ B. For convenience, we put β0 = βmin, βN+1 = βmax. Now, at
least one gap between the numbers 
(βk) must be large. Specifically, there exists
an index j ∈ {0, . . . ,N} such that


(βj+1) − 
(βj ) ≥ 
(βN+1) − 
(β0)

N + 1
= B

N + 1
.(A.4)

We consider the inequality at the point β̄ defined by 
(β̄) = 1
2 [
(βj ) + 
(βj+1)]

and derive from (A.4),

|
(β̄) − 
(βk)| ≥ 1

2

(

(βj+1) − 
(βj )

) ≥ B

2(N + 1)
(A.5)

for all k ∈ {0,1,2, . . . ,N + 1}. We now use inequality (A.3) and the definition of
Q in (2.3), and obtain from assumption (2.4), (3.1) and (A.5),

M(ξN, β̄) ≤
N∑

k=1

wkQ(β̄, βk)M(ξ [β̄], β̄)

≤
N∑

k=1

wkϕ
(

(β̄) − 
(βk)

)
M(ξ [β̄], β̄)

(A.6)

≤ c1

(
B

2(N + 1)

)−γ

M(ξ [β̄], β̄)

= c1(2N + 2)γ

Bγ
M(ξ [β̄], β̄)

for some positive constant c1. We set d1 = c1(2N + 2)γ and the proof of (A.1) is
complete.

For proof of the lower bound (A.2), we may restrict ourselves to the case B ≥
4λ, where λ is the constant defined in Definition 2.1(ii). We choose n = �1

2B/λ
 ≤
B/λ and fix βk such that


(βk) = 
(βmin) + (2k − 1)
B

2n
(k = 1,2, . . . , n).(A.7)
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Note that these points are contained in the interval [βmin, βmax] and that their
distance is at most 2λ. Let ξ [βk], k = 1, . . . , n, denote the corresponding local
D-optimal designs and define

ξn = 1

n

n∑
k=1

ξ [βk].(A.8)

The design ξn has at least n support points and its information matrix satisfies

M(ξn,β) = 1

n

n∑
k=1

M(ξ [βk], β).(A.9)

Obviously, given β ∈ [βmin, βmax], there exists an index j = jβ such that

|
(β) − 
(βj )| ≤ λ.

By construction, M(ξ [βj ], β) = Q(β,βj )M(ξ [β], β) ≥ 1
2M(ξ [β], β). Since all

terms in the sum (A.9) are nonnegative, it follows that for all β ∈ B,

M(ξn,β) ≥ 1

n
M(ξ [βj ], β) ≥ 1

2n
M(ξ [β], β) ≥ λ

B
M(ξ [β], β).

Recalling the definition of the standardized maximin criterion in (2.2), we con-
clude that 	(ξn) ≥ λ/2B . With the choice d2 = λ/2, we have proven the lower
bound (A.2), and the proof in the case m = 1 is complete.

(B) The case m ≥ 1: Let ξN be a design with masses wk at the points xk ∈ X
(k = 1, . . . ,N), and for any tuple (i1, . . . , im) with 1 ≤ i1 < · · · < im ≤ N ,
let ξ [β(1)

i1,...,im
], . . . , ξ [β(m)

i1,...,im
] denote the designs corresponding to the points

xi1, . . . , xim by inequality (2.9). Using the definition of Q in (2.3) and the Cauchy–
Binet formula, we obtain

|M(ξN,β)| = ∑
1≤i1<···<im≤N

wi1 · · ·wimIm(xi1, . . . , xim, β)

≤ c0
∑

1≤i1<···<im≤N

wi1 · · ·wim

m∑
j=1

∣∣M(
ξ
[
β

(j)
i1,...,im

]
, β

)∣∣(A.10)

= c0|M(ξ [β], β)|
m∑

j=1

∑
1≤i1<···<im≤N

wi1 · · ·wimQ
(
β,β

(j)
i1,...,im

)
.

Note that there are m
(N
m

)
terms in this sum and that inequality (A.10) corresponds

to (A.3) in the proof of the case m = 1. Therefore, ordering the points β
(j)
i1,...,im

and
using exactly the same arguments as in the proof of part (A) yields the upper bound
	(ξN) ≤ d1B

−γ for some constant d1 and γ > m.

In order to prove the corresponding lower bound, we define n = �1
2B/λ
 and

again consider the quantities βk defined by (A.7). Let ξ [βk] denote the correspond-
ing local D-optimal design, define the design ξn by (A.8) and denote by x̃i and w̃i
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the corresponding support points and weights of ξn, respectively. For any β , there
exists a βj such that |
(β) − 
(βj )| ≤ λ and we denote the support points and
weights of the corresponding local D-optimal design ξ [βj ] by xi and wi , respec-
tively. By the Cauchy–Binet formula, we obtain

|M(ξn,β)| = ∑
i1<···<im

w̃i1 · · · w̃imIm(x̃i1, . . . , x̃im, β)

≥ 1

nm

∑
i1<···<im

wi1 · · ·wimIm(xi1, . . . , xim, β)(A.11)

= 1

nm
|M(ξ [βj ], β)|,

where the last inequality follows by omitting all terms containing points which are
not in the support of the local D-optimal design ξ [βj ]. Using assumption (2.5), we
therefore obtain

|M(ξn,β)| ≥ 1

nm
|M(ξ [β], β)|Q(β,βj ) ≥ 1

2nm
|M(ξ [β], β)|(A.12)

and the same argument as presented in the proof for the case m = 1 shows the
lower bound 	(ξn) ≥ cd2/B

m for some positive constant d2. The assertion in the
case m ≥ 1 now follows by the same arguments as given in the first part of the
proof.

(C) Proof of the remaining assertion. If the local D-optimal designs are sup-
ported at m points, the corresponding weights all equal 1/m (see [18]) and the es-
timate in (A.11) can be improved as follows. Let x̄1, . . . , x̄mη denote the points of
the design ξn, which are support points of any local D-optimal design, and define
w̄1, . . . , w̄mη to be the corresponding weights. Note that w̄i = 1/m, i = 1, . . . ,mη;
then

|M(ξn,β)|
≥ ∑

imη+1<···<im

w̄1 · · · w̄imη
w̃imη+1 · · · w̃imIm(x̄1, . . . , x̄mη, x̃imη+1, . . . , x̃im, β)

≥ 1

mmnm−mη
Im(x1, . . . , xm,β) = 1

nm−mη
|M(ξ [βj ], β)|.

Here, the first inequality follows by considering only the terms for which Im con-
tains the common support points x̄1, . . . , x̄mη , while the second inequality is ob-
tained by considering only the term corresponding to the local D-optimal design
ξ [βj ]. The same argument as used for (A.12) now shows that 	(ξn) ≥ d2/B

m−mη

for some positive constant d2, and the assertion now follows, as explained in the
first part of the proof.
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A.2. Proof of Theorem 4.1. We restrict ourselves to the case m = 1. The
case m ≥ 1 can be obtained by adapting arguments from part (B) in the proof of
Theorem 3.1.

Moreover, for convenience, in a first step, we assume that the given transforma-
tion 
 is the identity and define B = 
(B) = βmax − βmin. For a given design ξN

with N support points, we know that inequality (A.3) holds. With assumption (4.3)
and the notation β0 = βmin, βN+1 = βmax and �j = 1

2(βj+1 −βj ), we estimate the
contribution of the interval [βj ,βj + �j ] to the Bayesian D-optimality criterion
via

∫ βj+�j

βj

log
|M(ξN,β)|

|M(ξ [β], β)|π(dβ)

≤ c3

B

∫ βj+�j

βj

log
N∑

k=1

wk

|M(ξ [βk], t)|
|M(ξ [t], t)| dt

≤ c3

B

∫ βj+�j

βj

log
N∑

k=1

wkϕ(t − βk) dt

≤ c3

B

∫ βj+�j

βj

log
(
c1 exp(−|t − βj |γ )

)
dt

≤ c3

B

∫ �j

0
[log c1 − zγ ]dz = c3

B

[
�j log c1 − 1

1 + γ
�

1+γ
j

]
.

The same bound is derived for the interval [βj + �j,βj+1]. Summing over all
intervals of this form, we conclude that

�st(ξN) ≤ 2c3

B

N∑
j=0

[
�j log c1 − 1

1 + γ
�

1+γ
j

]
.

Since
∑N

j=0 �j = B
2 and the function z1+γ is strictly convex, the right-hand side

attains its maximum if all �j ’s are equal, and we obtain the upper bound

�st(ξN) ≤ c4

[
log c1 − Bγ

(1 + γ )

]
(A.13)

for some positive constant c4. Note that the right-hand side of this inequality is
dominated by the term with Bγ when B → ∞.

The construction of a better design with respect to the Bayesian optimality cri-
terion follows the arguments given in part (A) of the proof of Theorem 3.1. Let
λ > 0 be defined by

Q(β, β̃) ≥ 1
2 whenever |β − β̃| ≤ λ.
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Set n = � B
2λ


 and βj = βmin + (2j − 1)λ for k = 1,2, . . . , n. We choose a design
ξ with (at least) n support points such that

M(ξ,β) = 1

n

n∑
k=1

M(ξ [βk], β)

[see the identity in (A.9)]. For any given β ∈ [βmin, βmax], there exists a βj with
|β − βj | ≤ λ satisfying (2.5). Therefore, it follows for all β ∈ B that

M(ξ,β) ≥ 1

n
M(ξ [βj ], β) = 1

n
Q(β,βj )M(ξ [β], β) ≥ 1

2n
M(ξ [β], β).

Hence,

�st(ξn) ≥
∫
B

log
1

2n
π(dβ) = log

1

2n
≥ − logB + logλ.

This value is larger than the upper bound (A.13) if B is sufficiently large. There-
fore, a design with N support points cannot be optimal if B is sufficiently large.
Thus far, we have restricted ourselves to the case 
(β) = β . The general case pro-
ceeds in exactly the same way, where one must choose dt = 
(dβ)/
(B) in the
first integral of the proof, and the boundaries of the intervals must be adapted. The
details are left to the reader.

A.3. A comment on more “nonlinear” parameters. In this paragraph, we
briefly describe how the arguments need to be changed if there exist p > 1 non-
linear parameters, say β = (β1, . . . , βp), which appear nonlinearly in the Fisher
information matrix. For the sake of brevity, we consider the standardized maximin
criterion with a p-dimensional cube B. First, note that condition (2.9) does not
depend on the dimension of the parameter β . Second, let d denote a norm on R

p

and replace conditions (2.4) and (2.5) by

Q(β, β̃) ≤ ϕ(d(β, β̃))(A.14)

and

Q(β, β̃) ≥ 1
2 whenever d(β, β̃) ≤ λ,(A.15)

respectively. We then show that the number of support points of the standardized
maximin D-optimal design becomes arbitrarily large if the volume of the cube B
converges to infinity. In other words, Theorem 3.1 also holds in the case where the
p > 1 parameters appear nonlinearly in the Fisher information.

For this, we note that the proof of Theorem 3.1 is performed by establishing the
bounds (A.1) and (A.2). Let ξN denote the design considered in (A.10) and note
that the estimate (A.10) does not depend on the dimension of β . For r > 0, define
the ball with center β and radius r by

Ur(j, i1, . . . , im) = {
x ∈ R

p|d(
x,β

(j)
i1,...,im

) ≤ r
}
.
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There exists a minimal rmin such that B can be covered by balls of this type, that
is,

B ⊂
m⋃

j=1

⋃
i1<···<im

Urmin(j, i1, . . . , im).

Obviously, we have, for some constant c > 0, that rmin > cB , where B denotes the
pth root of the volume of B. Consequently, there exists a β̃ ∈ B such that

d
(
β̃, β

(j)
i;1,...,im

) ≥ rmin/2 ≥ cB.

Thus, replacing condition (2.4) by (A.14) in the argument (A.6) yields the upper
bound (A.1) for any N -point design. The remaining inequality (A.2) is similarly
obtained by covering B with balls of radius λ.
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