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STEP-UP SIMULTANEOUS TESTS FOR IDENTIFYING ACTIVE
EFFECTS IN ORTHOGONAL SATURATED DESIGNS

BY SAMUEL S. WU AND WEIZHEN WANG1

University of Florida and Wright State University

A sequence of null hypotheses regarding the number of negligible ef-
fects (zero effects) in orthogonal saturated designs is formulated. Two step-
up simultaneous testing procedures are proposed to identify active effects
(nonzero effects) under the commonly used assumption of effect sparsity. It
is shown that each procedure controls the experimentwise error rate at a given
α level in the strong sense.

1. Introduction. Assume a linear model

Yi = µ + β1xi1 + · · · + βkxik + εi, for i = 1, . . . ,M,(1)

where εi ∼ i.i.d. N(0, σ 2). The unknown parameters βi are of interest and µ and σ

are two unknown nuisance parameters. The design is called orthogonal if the least
squares estimators β̂i (1 ≤ i ≤ k) are uncorrelated (equivalent to independent),
which occurs, for example, in two-level fractional factorial designs. The design is
said to be saturated if there are just enough observations to estimate the model
parameters βi and µ (i.e., M = k + 1), leaving no degrees of freedom to estimate
the error variance σ 2. In order to make inferences on βi , one must typically use the
assumption of effect sparsity, that is, that most of the βi’s are equal to zero. Then
we can use the corresponding β̂i ’s to estimate σ 2. However, we do not know how
many and which of the βi ’s are zero. An initial guess would be at least ν of the
βi ’s equal zero, say one-half of the effects. Therefore, the smallest ν of the β̂2

i ’s
should be used to estimate σ 2. Any other β̂j whose square is substantially larger
is likely to have a nonzero mean and corresponds to an active effect.

For a fixed sequence of β = (β1, . . . , βk), let

N = the number of βi ’s which equal zero.(2)

Thus, the number of nonzero βi ’s is equal to k − N and the entire parameter space
without nuisance parameters is H = {β = (β1, . . . , βk) : N ≥ ν}. For each integer
m ∈ [ν + 1, k], consider the testing problem

H0,m : N ≥ m vs. HA,m : N ≤ m − 1 (i.e., k − N ≥ k − m + 1)(3)
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and define a parameter configuration in each H0,m,

β
m

=: (0, . . . ,0,+∞, . . . ,+∞),(4)

where the first m components are zero. Let

B = {H0,m : ν + 1 ≤ m ≤ k},(5)

which contains all null hypotheses of interest in this paper. Because H0,i is a subset
of H0,j for any i > j , if H0,j is incorrect, then so is H0,i . This implies that a
testing process should be terminated as soon as a rejection occurs for some null
hypothesis. Starting from m = ν + 1, we test these hypotheses one at a time as m

goes up to k. If H0,ν+1 is rejected, we then conclude that there are k − ν active
effects (i.e., H ∩ HA,ν+1) and no longer test any other hypotheses; otherwise, we
test the next hypothesis H0,ν+2. In general, if H0,m0 is the first hypothesis being
rejected for some m0 ≤ k, we stop and conclude that there are k − m0 + 1 nonzero
effects (i.e., H0,m0−1 ∩HA,m0 ); otherwise, all hypotheses in B are accepted and we
conclude that there is no active effect. Clearly, this is a step-up testing procedure.

Many inference procedures have been proposed to identify active effects. The
data analysis of orthogonal saturated designs was initially considered by Birnbaum
[1] and Daniel [2]. The half-normal plot introduced by Daniel [2] is still being used
in the preliminary analysis. Lenth [8] proposed the first adaptive method to let the
data determine which and how many of the β̂i ’s should be used to estimate σ 2.
Whether Lenth’s interval is of level 1−α still remains a question. Besides using the
data adaptively, another fundamentally desirable property is the ability to control
the error rate in the strong sense (i.e., under all parameter configurations), which
is espoused by Hochberg and Tamhane [5]. For orthogonal saturated designs, the
first adaptive confidence interval known to provide strong control of error rates
and more general results can be found in [15] and [16], respectively. Hamada and
Balakrishnan [4] provided a thorough review of the analysis methods available for
saturated designs.

Since we do not know which and how many effects are active, it is reasonable
to search for active effects using simultaneous tests. Here are two possibilities:

(a) Starting from the largest β̂2
i , test whether the corresponding effect is active.

If it is not active, then conclude no active effect and stop; otherwise, test for
the second largest β̂2

i (go down), and so on, until a zero effect is found—the
step-down tests.

(b) Starting from the (ν + 1)th smallest β̂2
i , test whether the corresponding effect

is active. If it is active, then conclude k − ν active effects and stop; otherwise,
test for the (ν + 2)th smallest β̂2

i (go up), and so on, until an active effect is
found—the step-up tests.

Voss [12] proposed nonadaptive step-down tests for a set of hypotheses differ-
ent from B and controlled the experimentwise error rates at the given level α in
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the strong sense. Recently, Voss and Wang [14] derived adaptive step-down tests
with the experimentwise error rates controlled in the same setting as Voss [12].
As pointed out by several researchers [3, 7, 11], the step-up tests typically have
a greater power to detect active effects than the step-down tests. For example,
Venter and Steel [11] proposed one step-up and one step-down procedure for the
orthogonal saturated designs with cutoff points determined at β

m
. However, they

were unable to prove that the experimentwise error rates of their procedures are
controlled at a given level α in the strong sense.

The rest of this article is organized as follows. In Section 2, we provide the mo-
tivation for two desirable tests for H0,m and establish a probability inequality for
noncentral χ2 distributions which asserts that the maximal type I error of any test
in a general class is always achieved at β

m
. Based on this inequality, two level-

α tests are proposed in Section 3 for testing each single hypothesis H0,m. Two
sequential step-up procedures for testing all hypotheses in B, which control the
experimentwise error rates at α in the strong sense, are derived in Section 4. Sec-
tion 5 presents a simulation study and Section 6 concludes with some discussion.

2. Motivation and a general probability inequality. In this section, we pro-
vide motivation for the new procedures testing H0,m and a general class [see Am in
(11)] of the rejection regions of level-α. The maximal type I error of each rejection
region in this class is always achieved at β

m
, as stated in Theorem 1.

Assume the factorial effect estimators β̂i are independently distributed as
N(βi, a

2
i σ

2) for known constants ai . We may assume that each ai = 1 without
loss of generality. Let X1, . . . ,Xk be the order statistics of the β̂2

i for i ≤ k. Intu-
itively, it is more likely that the small order statistics Xi will correspond to estima-
tors β̂j with βj = 0. If we believe a priori that at least ν of the βi ’s are zero, then
those βi’s corresponding to X1, . . . ,Xν are likely to be the negligible ones. To test
H0,m, one needs to compare Xm with X1, . . . ,Xν . For any integer n ∈ [ν,m], let
Sn = ∑n

i=1 Xi and X̄n = Sn/n and define a test statistic for H0,m as follows:

Wn,m = nXm∑n
i=1 Xi

= nXm

Sn

= Xm

X̄n

.(6)

Intuitively, a large value of Wn,m is in favor of HA,m. Therefore, the rejection
region should be Wn,m > dn,m for a constant dn,m which satisfies

sup
β∈H0,m

Pβ(Wn,m > dn,m) = α.(7)

In this section, we will show that Wn,m is stochastically largest at β
m

for β ∈ H0,m.

DEFINITION 1. A random variable X is said to be stochastically smaller than
Y , denoted by X ≺ Y , if P(X ≤ d) ≥ P(Y ≤ d) for all d .
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Let Y1,m, . . . , Ym,m be the order statistics of the β̂2
i ’s for i ≤ m when β1 = · · · =

βm = 0 and let

Zn,m = nYm,m∑n
i=1 Yi,m

.(8)

Langsrud and Næs [7] also studied Zn,m, called �m,0,n,m-distribution in their no-
tation. Clearly, the distribution of Zn,m does not depend on any parameter and can
be sampled based on the order statistics of m independent χ2

1 random variables. It
is easy to see that Wn,m = Zn,m at β

m
and we want to show that Wn,m ≺ Zn,m on

H0,m. If this is true, then (7) reduces to

P(Zn,m > dn,m) = α(9)

and dn,m is the 100(1 − α) percentile of Zn,m.

DEFINITION 2. A function h : R
d → R will be called nondecreasing (to the

coordinatewise ordering) if xi ≤ yi , i = 1, . . . , d, implies that h(x) ≤ h(y).

Now we prove a general theorem that includes (9) as a special case.

THEOREM 1. Suppose that X1, . . . ,Xk are the order statistics of independent
random variables with noncentral chi-squared distributions χ2

1 (β2
i ), 1 ≤ i ≤ k.

Then

sup
β∈H0,m

Pβ(R) = Pβ
m
(R)(10)

for any rejection region R of H0,m that belongs to the class

Am = {TL(X1, . . . ,Xs−1) < TR(Xs), for some integer 1 < s ≤ m},(11)

where TL and TR satisfy the following two properties:

(i) (monotone) TL(x1, . . . , xs−1) and TR(xs) are nondecreasing functions;
(ii) (invariant) TL/TR is invariant to scale transformation, that is, for any

a > 0,

TL(ax1, . . . , axs−1)

TR(axs)
= TL(x1, . . . , xs−1)

TR(xs)
.(12)

COROLLARY 1. For any 0 < α < 1 and dn,m given in (9), the rejection region

Rn,m = {Wn,m > dn,m}(13)

defines a level-α test for (3).

PROOF. Let s = m, TL(x1, . . . , xm−1) = ∑n
i=1 xi/n and TR(xm) = xm/dn,m.

The claim follows from Theorem 1. �

To prove Theorem 1, we need the facts below (Corollary 2 and Corollary 3).
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LEMMA 1. For a nonnegative random variable X and a positive number y,
let Xy = X/y, given that X ≤ y. Let U ∼ χ2

1 , a chi-squared distribution with one
degree of freedom, and V ∼ χ2

1 (θ2), a noncentral chi-squared distribution with
one degree of freedom and noncentrality parameter θ2. Then we have (i) Uy ≺ Vy

and (ii) Uy2 ≺ Uy1 for any y2 > y1 > 0.

Part (ii) of Lemma 1 is identical to Lemma 2 of [7]. The proofs for both sto-
chastic orderings follow from the monotone likelihood ratio function.

LEMMA 2. Let U1, . . . ,Us−1 be any independent random variables. Let the
same be true for V1, . . . , Vs−1. If T (x1, . . . , xs−1) is a nondecreasing function and
Ui ≺ Vi for i ≤ s − 1, then

T (U1, . . . ,Us−1) ≺ T (V1, . . . , Vs−1).

This is called by some researchers (see, e.g., [13]) a “stochastic ordering
lemma.”

COROLLARY 2. Suppose that Ui ∼ χ2
1 , 1 ≤ i ≤ s − 1, and Vj ∼ χ2

1 (θ2
j ), 1 ≤

j ≤ s −1, are independent random variables. For any y > 0, let U(i),y be the order
statistics of Ui,y (= Ui/y, given that Ui ≤ y, as defined in Lemma 1) and let V(j),y

be the order statistics of Vj,y . Then for any nondecreasing function TL,

TL(U(1),y, . . . ,U(s−1),y) ≺ TL(V(1),y, . . . , V(s−1),y).(14)

Therefore, for any t > 0,

P
(
TL(U(1),y, . . . ,U(s−1),y) ≤ t

) ≥ P
(
TL(V(1),y, . . . , V(s−1),y) ≤ t

)
.

PROOF. Let

T ∗
L(U1,y, . . . ,Us−1,y) = TL(U(1),y, . . . ,U(s−1),y).

Since each U(i),y is a nondecreasing function in each Uj,y and TL is nondecreasing
in each of its arguments, T ∗

L is nondecreasing in each of its arguments. Therefore,
if one combines part (i) of Lemma 1 with Lemma 2, it can be concluded that

TL(U(1),y, . . . ,U(s−1),y) = T ∗
L(U1,y, . . . ,Us−1,y) ≺ T ∗

L(V1,y, . . . , Vs−1,y)

= TL(V(1),y, . . . , V(s−1),y). �

COROLLARY 3. Suppose that TL and TR satisfy the monotone and invariant
conditions specified in the definition of Am in (11) and one defines

G∗(y) ≡ P
(
TL(U(1),y, . . . ,U(s−1),y) ≤ TR(1)

)
=

∫
. . .

∫
{0<u1<···<us−1≤y,TL(u1,···,us−1)≤TR(y)}

(s − 1)!
∏s−1

i=1 f (ui) dui

F (y)s−1 .
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Then under the condition of Corollary 2, TL(U(1),y, . . . ,U(s−1),y) is stochastically
nonincreasing in y, that is, for y2 > y1 > 0,

TL(U(1),y2, . . . ,U(s−1),y2) ≺ TL(U(1),y1, . . . ,U(s−1),y1).

Therefore, G∗(y) is a nondecreasing function.

PROOF. Combine part (ii) of Lemma 1 with Lemma 2 and define T ∗
L as in

Corollary 2. �

PROOF OF THEOREM 1. Consider two samples,

{β̂2
1 , . . . , β̂2

m,+∞, . . . ,+∞ (k − m of them)} and {β̂2
1 , . . . , β̂2

k }.
Clearly, the sth order statistic of the first sample is stochastically larger than that of
the second sample, that is, Xs ≺ Ys,m for any given integer s satisfying 1 < s ≤ m.

Second, we have

P
(
TL(Y1,m, . . . , Ys−1,m) < TR(Ys,m)

)
= E

[
P

(
TL(Y1,m, . . . , Ys−1,m) < TR(y)|Ys,m = y

)]
= E

[
P

(
TL(U(1),y, . . . ,U(s−1),y) < TR(1)|Ys,m = y

)]
= E[G∗(Ys,m)].

Next, for any partition ω = (j1, j2, . . . , js−1)(js)(js+1, . . . , jk) of the integers
1 to k, we denote by Eω the event {β̂2

ji
< β̂2

js
,∀i < s; β̂2

js
< β̂2

jl
,∀l > s}. We note

that for any β ∈ H0,m,

Pβ(R)

= Eβ

[
Pβ

(
TL(X1, . . . ,Xs−1) < TR(y)|Xs = y

)]
= Eβ

[
Pβ

(
TL(X1,y, . . . ,Xs−1,y) < TR(1)|Xs = y

)]
= Eβ

[∑
ω

Pβ

({TL(X1,y, . . . ,Xs−1,y) < TR(1)} ∩ Eω|Xs = y
)]

= Eβ

[∑
ω

Pβ

({TL(X1,y, . . . ,Xs−1,y) < TR(1)}|Eω,Xs = y
)
Pβ(Eω|Xs = y)

]

≤ Eβ

[∑
ω

Pβ
m

({TL(X1,y, . . . ,Xs−1,y) < TR(1)}|Xs = y
)
Pβ(Eω|Xs = y)

]

= Eβ

[
Pβ

m

(
TL(X1,y, . . . ,Xs−1,y) < TR(1)|Xs = y

)]
= Eβ

[
P

(
TL

(
U(1),y, . . . ,U(s−1),y

)
< TR(1)|Xs = y

)]
= Eβ[G∗(Xs)],

where the above inequality is due to Corollary 2.
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Finally, since G∗(y) is a nondecreasing function due to Corollary 3, the inequal-
ity Xs ≺ Ys,m implies that G∗(Xs) ≺ G∗(Ys,m). Therefore, it can be concluded that

Eβ[G∗(Xs)] ≤ E[G∗(Ys,m)]. �

3. Two tests for H0,m. In this section, we present two tests for H0,m. While
both are of level α, they are to be used under different circumstances. Let dν,m

and dm−1,m denote the numbers determined by (9) when n = ν and n = m − 1,
respectively.

THEOREM 2. For any 0 < α < 1, the rejection regions

Rν,m = {Wν,m > dν,m} and Rm−1,m = {Wm−1,m > dm−1,m}(15)

both define level-α tests for (3).

This theorem is a special case of Corollary 1 when n = ν and n = m − 1. The
test based on Rν,m estimates the error variance by X̄ν = ∑ν

i=1 Xi/ν, irrespective
of the value of m, while the test based on Rm−1,m uses the adaptive estimator
X̄m−1 = ∑m−1

i=1 Xi/(m− 1). These are referred to by Venter and Steel [11] as fixed
and sequential scaling, respectively. Region Rν,m should be applied only when
H0,m is of interest and no information is available on whether H0,n is true for any
n < m. In such a case, we are certain that at least ν of the β̂2

i ’s have a zero mean.
It is reasonable to compare Xm with the average of X1, . . . ,Xν , the smallest ν of
the β̂2

i ’s, through their average. If Wν,m is large, then one concludes that all β̂2
i ’s

corresponding to Xm, . . . ,Xk are from populations with nonzero means. On the
other hand, if one tests H0,n for n < m sequentially up to H0,m and H0,m−1 is
accepted, then at least m − 1 of the βi ’s are zero. In this case, one should compare
Xm with X1, . . . ,Xm−1 and a large value of Wm−1,m would lead to a rejection of
H0,m.

4. Two step-up testing procedures. When effect sparsity is assumed, we do
not know which and how many of the βi ’s are zero. It is of more interest to conduct
tests simultaneously to identify the nonzero effects. The tests developed in the pre-
vious section, in fact, can detect whether there is a jump at Xm among X1, . . . ,Xk .
However, these tests cannot tell whether the jump, if it exists, is the first one, which
is what interests us. Therefore, as mentioned earlier, since H0,m decreases as m in-
creases, one needs to conduct tests sequentially. Like all testing problems, there
are two major concerns: to control the experimentwise error rate at a given level α,
that is,

sup
β∈⋃k

m=ν+1 H0,m

Pβ(assert not H0,n, which contains β,

for some n ∈ [ν + 1, k]) ≤ α,
(16)

and to obtain more powerful tests, which means larger rejection regions.
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The first requirement (16) can be ensured by using the closed test proce-
dure proposed by Marcus, Peritz and Gabriel [9]. For details, see [6], page 137.
A naïve solution is to assert not H0,m (i.e., to assert HA,m) if one rejects H0,i

at level α for all i ≥ m. For example, suppose Rν,i is used to test for each H0,i .
Then assert not H0,m iff Rm = ⋂k

i=m Rν,i is true. This, by the closed test proce-
dure, controls the experimentwise error rate at α. Note that Rm decreases as m

increases, which contradicts the fact that H0,m is decreasing (we need Rm to in-
crease). Therefore, simply applying the closed test procedure on the tests derived
in the previous section only results in less powerful tests for the simultaneous hy-
potheses. We require that the rejection region for H0,m (a) increases as m gets
larger and (b) is of level-α. In this section, two testing procedures are discussed
with their rejection regions denoted by {R∗

ν,m}km=ν+1 and {R∗
m−1,m}km=ν+1 corre-

sponding to Rν,m and Rm−1,m, respectively.

4.1. The construction of {R∗
ν,m}km=ν+1: step-up tests with fixed scaling (SUF).

The general form of R∗
ν,m, for ν + 1 ≤ m ≤ k, is

R∗
ν,m =

m⋃
i=ν+1

{Wν,i > d∗
ν,i} = {

Sν < max{νXi/d
∗
ν,i}mi=ν+1

}
,(17)

where the sequence of constants {d∗
ν,m}km=ν+1 is determined iteratively below.

More precisely, d∗
ν,m depends on d∗

ν,i for i < m and causes R∗
ν,m to have level-α. It

is clear that R∗
ν,m is nondecreasing when m gets larger and is strictly increasing if

all d∗
ν,m are finite. We start with the following lemma.

LEMMA 3. For a sequence of random variables {
i}si=0, where s is a given
positive integer,

P(
0 < max{
i}si=1) ≤
s∑

i=1

P(max{
j }i−1
j=0 < 
i).(18)

PROOF. We prove (18) by induction. When s = 1, (18) is true. Suppose (18)
is true for any s = n. Then for s = n + 1,

P(
0 < max{
i}n+1
i=1 ) ≤ P(
0 < max{
i}ni=1) + P(max{
j }nj=0 ≤ 
0 < 
n+1)

≤
n+1∑
i=1

P(max{
j }i−1
j=0 < 
i). �

We now determine the sequence of constants {d∗
ν,m}km=ν+1 starting from m =

ν + 1. For testing H0,ν+1, let R∗
ν,ν+1 = Rν,ν+1. It is a level-α test by Theorem 2.
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For any ν + 2 ≤ m < k, let d∗
ν,ν = ∞ and suppose that {d∗

ν,i}m−1
i=ν+1 are available.

Then d∗
ν,m is determined by solving

m∑
i=ν+1

Pβ
m
(Ai) = α,

(19)
where Ai = {

max
{
Sν, {νXj/d

∗
ν,j }i−1

j=ν

}
< νXi/d

∗
ν,i

}
.

Note that R∗
ν,m is of level-α because for any β ∈ H0,m,

Pβ(R∗
ν,m) ≤

m∑
i=ν+1

Pβ(Ai) ≤
m∑

i=ν+1

Pβ
m
(Ai) = α,(20)

where the first inequality follows from Lemma 3 (with 
0 = Sν and 
i−ν =
νXi/d

∗
ν,i for i = ν + 1, . . . ,m) and the second inequality holds since each term

in the summation achieves its maximum at β
m

by Theorem 1. On the other hand,

since the thresholds {d∗
ν,i}m−1

i=ν+1 satisfy
∑m−1

i=ν+1 Pβ
m−1

(Ai) = α and each term in
this summation satisfies Pβ

m−1
(Ai) > Pβ

m
(Ai) by Theorem 1, the last term in the

summation of (19) is greater than zero, that is, Pβ
m
(Am) > 0. This guarantees d∗

ν,m

to be finite, which implies that rejection region R∗
ν,m is larger than R∗

ν,m−1.
Finally, for m = k, since the null hypothesis H0,k now contains only one para-

meter configuration β
k

and d∗
ν,i is available up to i = k − 1, one determines d∗

ν,k

by solving

Pβ
k
(R∗

ν,k) = α,(21)

which implies that R∗
ν,k is level-α. Similarly, one can show that d∗

ν,k is finite. Thus,
R∗

ν,k is larger than R∗
ν,k−1. The determination of {d∗

ν,m}km=ν+1 is completed.
To conduct the simultaneous tests for B, assert not H0,m (i.e., assert HA,m)

if R∗
ν,m is true.(22)

Notice two facts: (1) B is closed under the operation of intersection and (2) for
each ν + 1 ≤ m ≤ k, R∗

ν,m = ⋂k
i=m R∗

ν,i is level-α. Therefore, the experimentwise
error rate is no greater than α by the closed test procedure.

The discussion above is now summarized as the following theorem.

THEOREM 3. The rejection regions R∗
ν,m given in (17) increase when m gets

larger and each defines a level-α test for H0,m. If one conducts simultaneous tests
for B using (22), then the experimentwise error rate is controlled at α in the strong
sense.

Let [1], . . . , [k] be random indices such that β̂2[1] < · · · < β̂2[k]. We now describe
the step-up testing procedure based on R∗

ν,m as follows:
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Step 1: If R∗
ν,ν+1 is true, then conclude that β[ν+1], . . . , β[k] are the k − ν active

effects (= H ∩ HA,ν+1) and stop; otherwise, go to step 2.
Step 2: If R∗

ν,ν+2 is true, then conclude that β[ν+2], . . . , β[k] are the k −ν −1 active
effects (= H0,ν+1 ∩ HA,ν+2) and stop; otherwise, go to step 3.
...

Step k − ν: If R∗
ν,k is true, then conclude that β[k] is the only active effect

(= H0,k−1 ∩ H0,k) and stop; otherwise, conclude no active effect and stop.

4.2. The construction of {R∗
m−1,m}km=ν+1: step-up tests with sequential scaling

(SUS). There is another way to conduct the simultaneous tests for B. For each
integer m ∈ [ν + 1, k], we construct a level-α region for H0,m, denoted by R∗

m−1,m

(corresponding to Rm−1,m in Section 3), of the form

R∗
m−1,m = ⋃m

i=ν+1{Wi−1,i > d∗
i−1,i} = ⋃m

i=ν+1{Sν < Qi}
= {Sν < max{Qi}mi=ν+1},

(23)

where Qi = (i − 1)Xi/d
∗
i−1,i − Si−1 + Sν and Si−1 = ∑i−1

j=1 Xj .

To determine constants {d∗
m−1,m}km=ν+1, we first let the constant d∗

ν,ν+1 equal
dν,ν+1. Suppose that d∗

i−1,i is available up to i = m − 1 for m < k. We then de-
termine d∗

m−1,m. Comparing (23) with (17), R∗
m−1,m and R∗

ν,m have similar forms.
Therefore, similarly to (19), we obtain d∗

m−1,m by solving

m∑
i=ν+1

Pβ
m
(max{Sν, {Qj }i−1

j=ν} < Qi) = α(24)

(with Qν = 0). Finally, for m = k, since d∗
m−1,m is available up to m = k − 1,

d∗
k−1,k is solved by Pβ

k
(R∗

k−1,k) = α. The determination of {R∗
m−1,m}km=ν+1 is

thus complete.
Using a discussion similar to that used for R∗

ν,m, one can show that R∗
m−1,m is a

level-α test for H0,m and is increasing in m. More specifically, Lemma 3 implies
that

Pβ(R∗
m−1,m)

≤
m∑

i=ν+1

Pβ

(
max

{
Sν, {Qj }i−1

j=ν

}
< Qi

)

=
m∑

i=ν+1

Pβ

(
max

{
Si−1,

{
(j − 1)Xj

d∗
j−1,j

+ Si−1 − Sj−1

}i−1

j=ν

}
<

(i − 1)Xi

d∗
i−1,i

)
.

The last step rewrites each set and makes it clear that, by Theorem 1, each proba-
bility above on the right-hand side achieves its maximum at β

m
among β ∈ H0,m.
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Therefore, the type I error of R∗
m−1,m is bounded by α due to (24). Again, by The-

orem 1, each term corresponding to i < m evaluated at β
m

is smaller than that at
β

m−1
, which ensures the existence of a finite solution for d∗

m−1,m.
To conduct the simultaneous tests for the null hypotheses in B, assert not H0,m

(i.e., assert HA,m)

if R∗
m−1,m is true.(25)

Therefore, we have a theorem similar to Theorem 3.

THEOREM 4. The rejection regions R∗
m−1,m given in (23) are increasing when

m increases and each defines a level-α test for H0,m. If one conducts the simultane-
ous tests for B using (25), then the experimentwise error rate is strongly controlled
at α.

We omit the description of the step-up testing procedure based on R∗
m−1,m.

REMARK 1. Langsrud and Næs [7] and Venter and Steel [11] also considered
these two step-up procedures. For the same test statistics Wν,m and Wm−1,m, they
proposed to determine critical values d†

ν,m and d
†
m−1,m iteratively by

Pβ
m

(
m⋃

i=ν+1

{Wν,i > d
†
ν,i}

)
= α and Pβ

m

(
m⋃

i=ν+1

{Wi−1,i > d
†
i−1,i}

)
= α.(26)

Intuitively, the solutions d†
ν,m and d

†
m−1,m to the above equations would be smaller

than their corresponding cutoff points d∗
ν,m and d∗

m−1,m determined by (19) and
(24) and would hence result in larger rejection regions. However, it is still not
clear that the error rates of their procedures are controlled at α in the strong sense
because it is very difficult to establish that for all β ∈ H0,m,

Pβ(R∗
ν,m) ≤ Pβ

m
(R∗

ν,m) or Pβ(R∗
m−1,m) ≤ Pβ

m
(R∗

m−1,m).(27)

If, for example, we write R∗
ν,m in the form

TL(X1, . . . ,Xν)(=: Sν) < TR(Xν+1, . . . ,Xm)(=: max{νXi/d
∗
ν,i}mi=ν+1),

then TR involves more than one argument and Theorem 1 cannot be applied. How-
ever, our numerical studies show no evidence against (27).

4.3. An example. We illustrate the proposed methods using a 24 factorial ex-
periment from [10], pages 246–254, which investigates how temperature, pres-
sure, concentration of formaldehyde and stirring rate influence the filtration rate
of a chemical product. The results are presented in Table 1. Column 2 of Table 1
gives the eight effect estimates with largest absolute values and Column 3 the
corresponding squared statistics, while S7 = ∑7

i=1 Xi equals 15.11 for the seven
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TABLE 1
The Montgomery [10] data, the step-up tests with fixed scaling (SUF) and the step-up tests with

sequential scaling (SUS), and the related cutoff points

Effect Test statistics The cutoff points at level α = 0.05

m estimate Xm Wν,m Wm−1,m d
†
ν,m d∗

ν,m d
†
m−1,m d∗

m−1,m

8 −2.625 6.89 3.2 3.2 14.9 14.9 14.9 14.9
9 3.125 9.77 4.5 3.6 26.5 28.0 16.4 16.7

10 4.125 17.02 7.9 4.8 38.4 42.0 16.0 16.3
11 9.875 97.52 45.2 20.0 52.2 58.5 15.5 15.7
12 14.625 213.89 99.1 16.1 67.7 77.5 15.1 15.2
13 16.625 276.39 128.0 9.2 85.0 99.1 14.6 14.8
14 −18.125 328.52 152.2 6.7 104.5 124.1 14.3 14.5
15 21.625 467.64 216.7 6.8 126.3 123.4 14.0 13.9

effect estimates with smallest absolute values. Test statistics Wν,m and Wm−1,m

are presented in the next two columns for ν = 7. The SUF procedure identi-
fies four largest active effects, irrespective of the two ways of choosing thresh-
olds (d∗

ν,m or d†
ν,m), while the SUS procedure identifies five largest active ef-

fects, also irrespective of the two threshold selections. For the sake of compari-
son, a step-down procedure from Voss and Wang [14], which uses test statistics
TSD,m = Xm/min{0.92S7,0.23S11}, identifies three largest active effects. Finally,
a MATLAB program for the evaluation of cutoff points is available from the au-
thors.

5. Simulation study. A limited simulation study was conducted to compare
five testing procedures: step-up tests with sequential scaling (SUS and SUSI us-
ing cutoff points determined by (24) and (26), respectively), step-up tests with
fixed scaling (SUF and SUFI using cutoff points determined by (19) and (26), re-
spectively) and the Voss and Wang [14] step-down procedure (SD). The testing
procedures were evaluated in terms of four measures: (1) the experimentwise error
rate (EER), (2) the probability of correctly selecting the number of inactive ef-
fects (PCSN), (3) the probability of complete correct selection (PCCS) and (4) the
expected fraction of active effects that are declared active (Power). The simula-
tion was carried out for several choices of k. Since the results are similar, we only
present the choice k = 15 on six cases below, following Venter and Steel [11]:

C1: β ∈ H0,14, β15 = s; C4: β ∈ H0,8, β9 = · · · = β15 = s;
C2: β ∈ H0,12; β13 = β14 = β15 = s; C5: β ∈ H0,12, β12+i = is,1 ≤ i ≤ 3;
C3: β ∈ H0,10, β11 = · · · = β15 = s; C6: β ∈ H0,10, β10+i = is,1 ≤ i ≤ 5,

where s takes values from 0 to 8 with a step of 0.02. Each independent sample
consists of 15 observations, each from N(βi,1) for 1 ≤ i ≤ 15.
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FIG. 1. Selected simulation results for five test procedures (SUSI, SUS, SUFI, SUF and SD) us-
ing α = 0.05, ν = 7, three evaluation measures (EER, PCSN, Power) and six cases of parameter
configuration (C1–C6) given in the text.

Simulation results for PCCS are nearly the same as those for PCSN and hence
are not reported. Figure 1 presents selected results for the other three evaluation
measures for α = 0.05 and ν = 7, although findings are similar for other choices
of α and ν. Each point was determined based on 100,000 simulations. In summary,
all procedures control the EER. Second, there is a very small difference between
the two ways of choosing cutoff points, especially between SUS and SUSI. Third,
in C1, C2 and C5, the SUS is clearly the best. In C4 and C6, there is a small
difference between SUF and SUS. In C3, the SUF performs better at small s, but
the SUS is better at large s. The SD seems to be the worst in most selected cases.

6. Discussion. We search for active effects in orthogonal saturated designs
by conducting simultaneous tests on a sequence of decreasing null hypotheses.
A general class of level-α tests is provided for testing at least a certain number of
active effects and the least favorable distribution is identified to be the one at β

m
.

Two sets of simultaneous tests are derived with increasing rejection regions and
their experimentwise error rates are controlled at α in the strong sense. Between
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these two sets of tests, the step-up tests with sequential scaling are recommended
because our simulation study indicates that {R∗

m−1,m}km=ν+1 has greater power in

most cases. Since the maximal type I errors for {R∗
ν,m}km=ν+1 and {R∗

m−1,m}km=ν+1
at m = ν + 1 and k are equal to α, simply enlarging the rejection regions cannot
yield valid level-α tests.

We can show that Lemma 1 is also true if U ∼ F1,n, an F -distribution with 1
and n degrees of freedom, and V ∼ F1,n(λ), a noncentral F -distribution with 1 and
n degrees of freedom and noncentrality parameter λ. Consequently, Theorem 1
remains true if we let X1, . . . ,Xk be the order statistics of independent random
variables with noncentral F distributions F1,n(λi), 1 ≤ i ≤ k. This implies that our
step-up simultaneous tests also work for squares of independent t-statistics.
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